51
|
Halet G, Tunwell R, Balla T, Swann K, Carroll J. The dynamics of plasma membrane PtdIns(4,5)P2 at fertilization of mouse eggs. J Cell Sci 2002; 115:2139-49. [PMID: 11973355 DOI: 10.1242/jcs.115.10.2139] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A series of intracellular Ca2+ oscillations are responsible for triggering egg activation and cortical granule exocytosis at fertilization in mammals. These Ca2+ oscillations are generated by an increase in inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], which results from the hydrolysis of phosphatidylinositol 4,5-bisphosphate[PtdIns(4,5)P2]. Using confocal imaging to simultaneously monitor Ca2+ and plasma membrane PtdIns(4,5)P2in single living mouse eggs we have sought to establish the relationship between the kinetics of PtdIns(4,5)P2 metabolism and the Ca2+ oscillations at fertilization. We report that there is no detectable net loss of plasma membrane PtdIns(4,5)P2either during the latent period or during the subsequent Ca2+oscillations. When phosphatidylinositol 4-kinase is inhibited with micromolar wortmannin a limited decrease in plasma membrane PtdIns(4,5)P2 is detected in half the eggs studied. Although we were unable to detect a widespread loss of PtdIns(4,5)P2, we found that fertilization triggers a net increase in plasma membrane PtdIns(4,5)P2 that is localized to the vegetal cortex. The fertilization-induced increase in PtdIns(4,5)P2 follows the increase in Ca2+, is blocked by Ca2+ buffers and can be mimicked, albeit with slower kinetics, by photoreleasing Ins(1,4,5)P3. Inhibition of Ca2+-dependent exocytosis of cortical granules, without interfering with Ca2+ transients, inhibits the PtdIns(4,5)P2 increase. The increase appears to be due to de novo synthesis since it is inhibited by micromolar wortmannin. Finally,there is no increase in PtdIns(4,5)P2 in immature oocytes that are not competent to extrude cortical granules. These studies suggest that fertilization does not deplete plasma membrane PtdIns(4,5)P2 and that one of the pathways for increasing PtdIns(4,5)P2 at fertilization is invoked by exocytosis of cortical granules.
Collapse
Affiliation(s)
- Guillaume Halet
- Department of Physiology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | |
Collapse
|
52
|
Abstract
TRPM7 (ChaK1, TRP-PLIK, LTRPC7) is a ubiquitous, calcium-permeant ion channel that is unique in being both an ion channel and a serine/threonine kinase. The kinase domain of TRPM7 directly associates with the C2 domain of phospholipase C (PLC). Here, we show that in native cardiac cells and heterologous expression systems, G alpha q-linked receptors or tyrosine kinase receptors that activate PLC potently inhibit channel activity. Numerous experimental approaches demonstrated that phosphatidylinositol 4,5-bisphosphate (PIP(2)), the substrate of PLC, is a key regulator of TRPM7. We conclude that receptor-mediated activation of PLC results in the hydrolysis of localized PIP(2), leading to inactivation of the TRPM7 channel.
Collapse
Affiliation(s)
- Loren W Runnels
- Howard Hughes Medical Institute, Children's Hospital, Harvard Medical School, Enders 1309, 320 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
53
|
Buitrago C, González Pardo V, de Boland AR. Nongenomic action of 1 alpha,25(OH)(2)-vitamin D3. Activation of muscle cell PLC gamma through the tyrosine kinase c-Src and PtdIns 3-kinase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:2506-15. [PMID: 12027889 DOI: 10.1046/j.1432-1033.2002.02915.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously demonstrated that the steroid hormone 1 alpha,25(OH)(2)-vitamin D(3)[1 alpha,25(OH)(2)D(3)] stimulates the production of inositol trisphosphate (InsP(3)), the breakdown product of phosphatidylinositol 4,5-biphosphate (PtdInsP(2)) by phospholipase C (PtdIns-PLC), and activates the cytosolic tyrosine kinase c-Src in skeletal muscle cells. In the present study we examined whether 1 alpha,25(OH)(2)D(3) induces the phosphorylation and membrane translocation of PLC gamma and the mechanism involved in this isozyme activation. We found that the steroid hormone triggers a significant phosphorylation on tyrosine residues of PLC gamma and induces a rapid increase in membrane-associated PLC gamma immunoreactivity with a time course that correlates with that of phosphorylation in muscle cells. Genistein, a tyrosine kinase inhibitor, blocked the phosphorylation of PLC gamma. Inhibition of 1 alpha,25(OH)(2)D(3)-induced c-Src activity by its specific inhibitor PP1 or muscle cell transfection with an antisense oligodeoxynucleotide directed against c-Src mRNA, prevented hormone stimulation of PLC gamma tyrosine phosphorylation. The isozyme phosphorylation is also blocked by both wortmannin and LY294002, two structurally different inhibitors of phosphatidyl inositol 3-kinase (PtdIns3K), the enzyme that produces PtdInsP(3) known to activate PLC gamma isozymes specifically by interacting with their SH2 and pleckstrin homology domains. The hormone also increases the physical association of c-Src and PtdIns3K with PLC gamma and induces a c-Src-dependent tyrosine phosphorylation of the p85 regulatory subunit of PtdIns3K. The time course of hormone-dependent PLC gamma phosphorylation closely correlates with the time course of its redistribution to the membrane, suggesting that phosphorylation and redistribution to the membrane of PLC gamma are two interdependent events. 1 alpha,25(OH)(2)D(3)-induced membrane translocation of PLC gamma was prevented to a great extent by c-Src and PtdIns3K inhibitors, PP1 and LY294002. Taken together, the present data indicates that the cytosolic tyrosine kinase c-Src and PtdIns 3-kinase play indispensable roles in 1 alpha,25(OH)(2)D(3) signal transduction cascades leading to PLC gamma activation.
Collapse
Affiliation(s)
- Claudia Buitrago
- Department Biología, Bioquímica & Farmacia. Universidad Nacional del Sur, San Juan Bahia Blanca, Argentina
| | | | | |
Collapse
|
54
|
de Graaf P, Klapisz EE, Schulz TKF, Cremers AFM, Verkleij AJ, van Bergen en Henegouwen PMP. Nuclear localization of phosphatidylinositol 4-kinase β. J Cell Sci 2002; 115:1769-75. [PMID: 11950893 DOI: 10.1242/jcs.115.8.1769] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Whereas most phosphatidylinositol 4-kinase (PtdIns 4-kinase) activity is localized in the cytoplasm, PtdIns 4-kinase activity has also been detected in membranedepleted nuclei of rat liver and mouse NIH 3T3 cells. Here we have characterized the PtdIns 4-kinase that is present in nuclei from NIH 3T3 cells. Both type II and type III PtdIns 4-kinase activity were observed in the detergent-insoluble fraction of NIH 3T3 cells. Dissection of this fraction into cytoplasmic actin filaments and nuclear lamina-pore complexes revealed that the actin filament fraction contains solely type II PtdIns 4-kinase,whereas lamina-pore complexes contain type III PtdIns 4-kinase activity. Using specific antibodies, the nuclear PtdIns 4-kinase was identified as PtdIns 4-kinase β. Inhibition of nuclear export by leptomycin B resulted in an accumulation of PtdIns 4-kinase β in the nucleus. These data demonstrate that PtdIns 4-kinase β is present in the nuclei of NIH 3T3 fibroblasts,suggesting a specific function for this kinase in nuclear processes.
Collapse
Affiliation(s)
- Petra de Graaf
- Molecular Cell Biology, Institute of Biomembranes, Universiteit Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
55
|
Defacque H, Bos E, Garvalov B, Barret C, Roy C, Mangeat P, Shin HW, Rybin V, Griffiths G. Phosphoinositides regulate membrane-dependent actin assembly by latex bead phagosomes. Mol Biol Cell 2002; 13:1190-202. [PMID: 11950931 PMCID: PMC102261 DOI: 10.1091/mbc.01-06-0314] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Actin assembly on membrane surfaces is an elusive process in which several phosphoinositides (PIPs) have been implicated. We have reconstituted actin assembly using a defined membrane surface, the latex bead phagosome (LBP), and shown that the PI(4,5)P(2)-binding proteins ezrin and/or moesin were essential for this process (). Here, we provide several lines of evidence that both preexisting and newly synthesized PI(4,5)P(2), and probably PI(4)P, are essential for phagosomal actin assembly; only these PIPs were routinely synthesized from ATP during in vitro actin assembly. Treatment of LBP with phospholipase C or with adenosine, an inhibitor of type II PI 4-kinase, as well as preincubation with anti-PI(4)P or anti-PI(4,5)P(2) antibodies all inhibited this process. Incorporation of extra PI(4)P or PI(4,5)P(2) into the LBP membrane led to a fivefold increase in the number of phagosomes that assemble actin. An ezrin mutant mutated in the PI(4,5)P(2)-binding sites was less efficient in binding to LBPs and in reconstituting actin assembly than wild-type ezrin. Our data show that PI 4- and PI 5-kinase, and under some conditions also PI 3-kinase, activities are present on LBPs and can be activated by ATP, even in the absence of GTP or cytosolic components. However, PI 3-kinase activity is not required for actin assembly, because the process was not affected by PI 3-kinase inhibitors. We suggest that the ezrin-dependent actin assembly on the LBP membrane may require active turnover of D4 and D5 PIPs on the organelle membrane.
Collapse
Affiliation(s)
- Hélène Defacque
- European Molecular Biology Laboratory, 69012 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Yue J, Liu J, Shen X. Inhibition of phosphatidylinositol 4-kinase results in a significant reduced respiratory burst in formyl-methionyl-leucyl-phenylalanine-stimulated human neutrophils. J Biol Chem 2001; 276:49093-9. [PMID: 11592957 DOI: 10.1074/jbc.m101328200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The effects of phenylarsine oxide and a monoclonal antibody directed against type II phosphatidylinositol 4-kinase (PI4K) on the N-formyl-methionyl-leucyl-phenylalanine (fMLP)-stimulated respiratory burst and the PI4K activity in neutrophils were investigated. Fluorescence microscopic imaging showed that the antibody labeled with IANBD amide (N,N'-dimethyl-N-(iodoacetyl)-N'-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)ethylenediamine) could enter into the cytosol possibly by endocytosis. It was found that the antibody inhibited the fMLP-stimulated respiratory burst but had little effect on the phorbol myristate acetate-activated respiratory burst in neutrophils, whereas phenylarsine oxide inhibited both. It was found that even at higher concentration, the antibody could not completely inhibit the cell response. Using cells preincubated with human immunoglobulin G of the same concentration as the control, the maximal inhibition of the fMLP-stimulated respiratory burst by the antibody against type II PI4K was found to be about 70%, whereas the PI4K activity was inhibited by only about 40%. The discrepancy in depressing the cell response and the enzyme activity may be the result of depletion of the phosphatidylinositol 4,5-bisphosphate or phosphatidylinositol 3,4,5-trisphosphate pools during the incubation of cells with the antibody. Both the 40% inhibition of PI4K activity and 70% depression of the respiratory burst by the type II PI4K antibody may imply that at least 40% of the phosphatidylinositol 4,5-biphosphate was synthesized promptly by all forms of PI4K and phosphatidylinositol-4-phosphate 5-kinase in the fMLP-activated cells. The results suggest that PI4K plays a central role in either phospholipase C or PI3K signaling and that PI3K, PI4K, and phosphatidylinositol 4-phosphate 5-kinase must be considered as an integrated family for the phosphatidylinositol 3,4,5-trisphosphate initiated signaling.
Collapse
Affiliation(s)
- J Yue
- Department of Cell Biophysics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | |
Collapse
|
57
|
Paulhe F, Racaud-Sultan C, Ragab A, Albiges-Rizo C, Chap H, Iberg N, Morand O, Perret B. Differential regulation of phosphoinositide metabolism by alphaVbeta3 and alphaVbeta5 integrins upon smooth muscle cell migration. J Biol Chem 2001; 276:41832-40. [PMID: 11551924 DOI: 10.1074/jbc.m105459200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Smooth muscle cell migration is a key step of atherosclerosis and angiogenesis. We demonstrate that alpha(V)beta(3) and alpha(V)beta(5) integrins synergistically regulate smooth muscle cell migration onto vitronectin. Using an original haptotactic cell migration assay, we measured a strong stimulation of phosphoinositide metabolism in migrating vascular smooth muscle cells. Phosphatidic acid production and phosphoinositide 3-kinase IA activation were triggered only upon alpha(V)beta(3) engagement. Blockade of alpha(V)beta(3) engagement or phospholipase C activity resulted in a strong inhibition of smooth muscle cell spreading on vitronectin. By contrast, blockade of alpha(V)beta(5) reinforced elongation and polarization of cell shape. Moreover, Pyk2-associated tyrosine kinase and phosphoinositide 4-kinase activities measured in Pyk2 immunoprecipitates were stimulated upon cell migration. Blockade of either alpha(V)beta(3) or alpha(V)beta(5) function, as well as inhibition of phospholipase C activity, decreased both Pyk2-associated activities. We demonstrated that the Pyk2-associated phosphoinositide 4-kinase corresponded to the beta isoform. Our data point to the metabolism of phosphoinositides as a regulatory pathway for the differential roles played by alpha(V)beta(3) and alpha(V)beta(5) upon cell migration and identify the Pyk2-associated phosphoinositide 4-kinase beta as a common target for both integrins.
Collapse
Affiliation(s)
- F Paulhe
- Institut Fédératif de Recherche Claude de Préval, INSERM, Unité 326, Hôpital Purpan, F31059 Toulouse cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Zhao X, Várnai P, Tuymetova G, Balla A, Tóth ZE, Oker-Blom C, Roder J, Jeromin A, Balla T. Interaction of neuronal calcium sensor-1 (NCS-1) with phosphatidylinositol 4-kinase beta stimulates lipid kinase activity and affects membrane trafficking in COS-7 cells. J Biol Chem 2001; 276:40183-9. [PMID: 11526106 DOI: 10.1074/jbc.m104048200] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylinositol 4-kinases (PI4K) catalyze the first step in the synthesis of phosphatidylinositol 4,5-bisphosphate, an important lipid regulator of several cellular functions. Here we show that the Ca(2+)-binding protein, neuronal calcium sensor-1 (NCS-1), can physically associate with the type III PI4Kbeta with functional consequences affecting the kinase. Recombinant PI4Kbeta, but not its glutathione S-transferase-fused form, showed enhanced PI kinase activity when incubated with recombinant NCS-1, but only if the latter was myristoylated. Similarly, in vitro translated NCS-1, but not its myristoylation-defective mutant, was found associated with recombinant- or in vitro translated PI4Kbeta in PI4Kbeta-immunoprecipitates. When expressed in COS-7 cells, PI4Kbeta and NCS-1 formed a complex that could be immunoprecipitated with antibodies against either proteins, and PI 4-kinase activity was present in anti-NCS-1 immunoprecipitates. Expressed NCS-1-YFP showed co-localization with endogenous PI4Kbeta primarily in the Golgi, but it was also present in the walls of numerous large perinuclear vesicles. Co-expression of a catalytically inactive PI4Kbeta inhibited the development of this vesicular phenotype. Transfection of PI4Kbeta and NCS-1 had no effect on basal PIP synthesis in permeabilized COS-7 cells, but it increased the wortmannin-sensitive [(32)P]phosphate incorporation into phosphatidylinositol 4-phosphate during Ca(2+)-induced phospholipase C activation. These results together indicate that NCS-1 is able to interact with PI4Kbeta also in mammalian cells and may play a role in the regulation of this enzyme in specific cellular compartments affecting vesicular trafficking.
Collapse
Affiliation(s)
- X Zhao
- Endocrinology and Reproduction Research Branch, NICHD, National Institutes of Health, 49 Convent Drive, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Venkatachalam K, Ma HT, Ford DL, Gill DL. Expression of functional receptor-coupled TRPC3 channels in DT40 triple receptor InsP3 knockout cells. J Biol Chem 2001; 276:33980-5. [PMID: 11466302 DOI: 10.1074/jbc.c100321200] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The TRPC3 channel, an intensively studied member of the widely expressed transient receptor potential (TRP) family, is a Ca(2+)-conducting channel activated in response to phospholipase C-coupled receptors. Despite scrutiny, the receptor-induced mechanism to activate TRPC3 channels remains unclear. Evidence indicates TRPC3 channels interact directly with intracellular inositol 1,4,5-trisphosphate receptors (InsP(3)Rs) and that channel activation is mediated through coupling to InsP(3)Rs. TRPC3 channels were expressed in DT40 chicken B lymphocytes in which all three InsP(3)R genes were deleted (DT40InsP(3)R-k/o). Endogenous B-cell receptors (BCR) coupled through Syk kinase to phospholipase C-gamma (PLC-gamma) activated the expressed TRPC3 channels in both DT40w/t and DT40InsP(3)R-k/o cells. The diacylglycerol (DAG) analogue 1-oleoyl-2-acetyl-sn-glycerol (OAG) also activated TRPC3 channels independently of InsP(3)Rs. BCR-induced TRPC3 activation was blocked by the PLC enzymic inhibitor, U-73122, and also blocked by wortmannin-induced PLC substrate depletion. Neither U-73122 nor wortmannin modified either OAG-induced TRPC3 activation or store-operated channel activation in DT40 cells. Cotransfection of cells with both G protein-coupled M5 muscarinic receptors and TRPC3 channels resulted in successful M5 coupling to open TRPC3 channels mediated by PLC-beta. We conclude that TRPC3 channels are activated independently of InsP(3)Rs through DAG production resulting from receptor-mediated activation of either PLC-gamma or PLC-beta.
Collapse
Affiliation(s)
- K Venkatachalam
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
60
|
Loussouarn G, Pike LJ, Ashcroft FM, Makhina EN, Nichols CG. Dynamic sensitivity of ATP-sensitive K(+) channels to ATP. J Biol Chem 2001; 276:29098-103. [PMID: 11395495 DOI: 10.1074/jbc.m102365200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP and MgADP regulate K(ATP) channel activity and hence potentially couple cellular metabolism to membrane electrical activity in various cell types. Using recombinant K(ATP) channels that lack sensitivity to MgADP, expressed in COSm6 cells, we demonstrate that similar on-cell activity can be observed with widely varying apparent submembrane [ATP] ([ATP](sub)). Metabolic inhibition leads to a biphasic change in the channel activity; activity first increases, presumably in response to a fast decrease in [ATP](sub), and then declines. The secondary decrease in channel activity reflects a marked increase in ATP sensitivity and is correlated with a fall in polyphosphoinositides (PPIs), including phosphatidylinositol 4,5-bisphosphate, probed using equilibrium labeling of cells with [(3)H]myo-inositol. Both ATP sensitivity and PPIs rapidly recover following removal of metabolic inhibition, and in both cases recovery is blocked by wortmannin. These data are consistent with metabolism having a dual effect on K(ATP) channel activity: rapid activation of channels because of relief of ATP inhibition and much slower reduction of channel activity mediated by a fall in PPIs. These two mechanisms constitute a feedback system that will tend to render K(ATP) channel activity transiently responsive to a change in [ATP](sub) over a wide range of steady state concentrations.
Collapse
Affiliation(s)
- G Loussouarn
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
61
|
Smith AJ, Surviladze Z, Gaudet EA, Backer JM, Mitchell CA, Wilson BS. p110beta and p110delta phosphatidylinositol 3-kinases up-regulate Fc(epsilon)RI-activated Ca2+ influx by enhancing inositol 1,4,5-trisphosphate production. J Biol Chem 2001; 276:17213-20. [PMID: 11279065 DOI: 10.1074/jbc.m100417200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fc(epsilon)RI-induced Ca2+ signaling in mast cells is initiated by activation of cytosolic tyrosine kinases. Here, in vitro phospholipase assays establish that the phosphatidylinositol 3-kinase (PI 3-kinase) lipid product, phosphatidylinositol 3,4,5-triphosphate, further stimulates phospholipase Cgamma2 that has been activated by conformational changes associated with tyrosine phosphorylation or low pH. A microinjection approach is used to directly assess the consequences of inhibiting class IA PI 3-kinases on Ca2+ responses after Fc(epsilon)RI cross-linking in RBL-2H3 cells. Injection of antibodies to the p110beta or p110delta catalytic isoforms of PI 3-kinase, but not antibodies to p110alpha, lengthens the lag time to release of Ca2+ stores and blunts the sustained phase of the calcium response. Ca2+ responses are also inhibited in cells microinjected with recombinant inositol polyphosphate 5-phosphatase I, which degrades inositol 1,4,5-trisphosphate (Ins(1,4,5)P3), or heparin, a competitive inhibitor of the Ins(1,4,5)P3 receptor. This indicates a requirement for Ins(1,4,5)P3 to initiate and sustain Ca2+ responses even when PI 3-kinase is fully active. Antigen-induced cell ruffling, a calcium-independent event, is blocked by injection of p110beta and p110delta antibodies, but not by injection of 5-phosphatase I, heparin, or anti-p110alpha antibodies. These results suggest that the p110beta and p110delta isoforms of PI 3-kinase support Fc(epsilon)RI-induced calcium signaling by modulating Ins(1,4,5)P3 production, not by directly regulating the Ca2+ influx channel.
Collapse
Affiliation(s)
- A J Smith
- Department of Pathology and Cancer Research and Treatment Center, University of New Mexico School of Medicine, Albuquerque, New Mexico 87107, USA
| | | | | | | | | | | |
Collapse
|
62
|
Broad LM, Braun FJ, Lievremont JP, Bird GS, Kurosaki T, Putney JW. Role of the phospholipase C-inositol 1,4,5-trisphosphate pathway in calcium release-activated calcium current and capacitative calcium entry. J Biol Chem 2001; 276:15945-52. [PMID: 11278938 DOI: 10.1074/jbc.m011571200] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We investigated the putative roles of phospholipase C, polyphosphoinositides, and inositol 1,4,5-trisphosphate (IP(3)) in capacitative calcium entry and calcium release-activated calcium current (I(crac)) in lacrimal acinar cells, rat basophilic leukemia cells, and DT40 B-lymphocytes. Inhibition of phospholipase C with blocked calcium entry and I(crac) activation whether in response to a phospholipase C-coupled agonist or to calcium store depletion with thapsigargin. Run-down of cellular polyphosphoinositides by concentrations of wortmannin that block phosphatidylinositol 4-kinase completely blocked calcium entry and I(crac). The membrane-permeant IP(3) receptor inhibitor, 2-aminoethoxydiphenyl borane, blocked both capacitative calcium entry and I(crac). However, it is likely that 2-aminoethoxydiphenyl borane does not inhibit through an action on the IP(3) receptor because the drug was equally effective in wild-type DT40 B-cells and in DT40 B-cells whose genes for all three IP(3) receptors had been disrupted. Intracellular application of another potent IP(3) receptor antagonist, heparin, failed to inhibit activation of I(crac). Finally, the inhibition of I(crac) activation by or wortmannin was not reversed or prevented by direct intracellular application of IP(3). These findings indicate a requirement for phospholipase C and for polyphosphoinositides for activation of capacitative calcium entry. However, the results call into question the previously suggested roles of IP(3) and IP(3) receptor in this mechanism, at least in these particular cell types.
Collapse
MESH Headings
- Androstadienes/pharmacology
- Animals
- B-Lymphocytes
- Boron Compounds/pharmacology
- Calcium/metabolism
- Calcium/physiology
- Calcium Channels/drug effects
- Calcium Channels/genetics
- Calcium Channels/physiology
- Cell Line, Transformed
- Cells, Cultured
- Chickens
- Enzyme Inhibitors/pharmacology
- Estrenes/pharmacology
- Heparin/pharmacology
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors
- Kinetics
- Lacrimal Apparatus/cytology
- Lacrimal Apparatus/drug effects
- Lacrimal Apparatus/metabolism
- Leukemia, Basophilic, Acute
- Mice
- Phosphatidylinositol Phosphates/metabolism
- Pyrrolidinones/pharmacology
- Rats
- Receptors, Cytoplasmic and Nuclear/drug effects
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/physiology
- Thapsigargin/pharmacology
- Tumor Cells, Cultured
- Type C Phospholipases/metabolism
- Wortmannin
Collapse
Affiliation(s)
- L M Broad
- Laboratory of Signal Transduction, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | |
Collapse
|
63
|
Barylko B, Gerber SH, Binns DD, Grichine N, Khvotchev M, Südhof TC, Albanesi JP. A novel family of phosphatidylinositol 4-kinases conserved from yeast to humans. J Biol Chem 2001; 276:7705-8. [PMID: 11244087 DOI: 10.1074/jbc.c000861200] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylinositolpolyphosphates (PIPs) are centrally involved in many biological processes, ranging from cell growth and organization of the actin cytoskeleton to endo- and exocytosis. Phosphorylation of phosphatidylinositol at the D-4 position, an essential step in the biosynthesis of PIPs, appears to be catalyzed by two biochemically distinct enzymes. However, only one of these two enzymes has been molecularly characterized. We now describe a novel class of phosphatidylinositol 4-kinases that probably corresponds to the missing element in phosphatidylinositol metabolism. These kinases are highly conserved evolutionarily, but unrelated to previously characterized phosphatidylinositol kinases, and thus represent the founding members of a new family. The novel phosphatidylinositol 4-kinases, which are widely expressed in cells, only phosphorylate phosphatidylinositol, are potently inhibited by adenosine, but are insensitive to wortmannin or phenylarsine oxide. Although they lack an obvious transmembrane domain, they are strongly attached to membranes by palmitoylation. Our data suggest that independent pathways for phosphatidylinositol 4-phosphate synthesis emerged during evolution, possibly to allow tight temporal and spatial control over the production of this key signaling molecule.
Collapse
Affiliation(s)
- B Barylko
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | | | |
Collapse
|
64
|
Vereb G, Balla A, Gergely P, Wymann MP, Gülkan H, Suer S, Heilmeyer LM. The ATP-binding site of brain phosphatidylinositol 4-kinase PI4K230 as revealed by 5'-p-fluorosulfonylbenzoyladenosine. Int J Biochem Cell Biol 2001; 33:249-59. [PMID: 11311856 DOI: 10.1016/s1357-2725(01)00006-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The ATP-binding site of purified bovine brain phosphatidylinositol 4-kinase 230 (PI4K230) was studied by its reaction with 5'-p-fluorosulfonylbenzoyladenosine (FSBA), an ATP-like alkylating reagent. Four hundred to eight hundred micromolar FSBA inactivated PI4K230 specifically with apparently first-order kinetics and resulted in 50% loss of enzyme activity in 36--130 min. The specificity of the reaction with FSBA was demonstrated by the lack of inactivation with 5'-p-fluorosulfonylbenzoyl chloride and by protection with ATP and ATP analogues against inactivation. Most ATP analogues competed with FSBA inactivation in order of their increasing hydrophobicity, parallel to their inhibitory potency in activity measurements. The specific binding of FSBA to PI4K230 was demonstrated also by Western-blot experiments. These results suggest that FSBA-reactive group(s) involved in the enzyme activity are located near to the ATP-binding site in a hydrophobic region of native PI4K230. Experiments with site-directed mutagenesis indicate that the conserved Lys-1792 plays essential role in the enzyme activity and serves as one target of affinity labelling by FSBA. Prevention of both Lys-1792-directed and Lys-1792-independent binding of FSBA by Cibacron Blue 3GA suggest that these sites are located spatially close to each other.
Collapse
Affiliation(s)
- G Vereb
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Bem tér 18/B, H-4026 Debrecen, Hungary.
| | | | | | | | | | | | | |
Collapse
|
65
|
Bony C, Roche S, Shuichi U, Sasaki T, Crackower MA, Penninger J, Mano H, Pucéat M. A specific role of phosphatidylinositol 3-kinase gamma. A regulation of autonomic Ca(2)+ oscillations in cardiac cells. J Cell Biol 2001; 152:717-28. [PMID: 11266463 PMCID: PMC2195768 DOI: 10.1083/jcb.152.4.717] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Purinergic stimulation of cardiomyocytes turns on a Src family tyrosine kinase-dependent pathway that stimulates PLCgamma and generates IP(3), a breakdown product of phosphatidylinositol 4,5-bisphosphate (PIP2). This signaling pathway closely regulates cardiac cell autonomic activity (i.e., spontaneous cell Ca(2+) spiking). PIP2 is phosphorylated on 3' by phosphoinositide 3-kinases (PI3Ks) that belong to a broad family of kinase isoforms. The product of PI3K, phosphatidylinositol 3,4,5-trisphosphate, regulates activity of PLCgamma. PI3Ks have emerged as crucial regulators of many cell functions including cell division, cell migration, cell secretion, and, via PLCgamma, Ca(2+) homeostasis. However, although PI3Kalpha and -beta have been shown to mediate specific cell functions in nonhematopoietic cells, such a role has not been found yet for PI3Kgamma. We report that neonatal rat cardiac cells in culture express PI3Kalpha, -beta, and -gamma. The purinergic agonist predominantly activates PI3Kgamma. Both wortmannin and LY294002 prevent tyrosine phosphorylation, and membrane translocation of PLCgamma as well as IP(3) generation in ATP-stimulated cells. Furthermore, an anti-PI3Kgamma, but not an anti-PI3Kbeta, injected in the cells prevents the effect of ATP on cell Ca(2+) spiking. A dominant negative mutant of PI3Kgamma transfected in the cells also exerts the same action. The effect of ATP was observed on spontaneous Ca(2+) spiking of wild-type but not of PI3Kgamma(2/2) embryonic stem cell-derived cardiomyocytes. ATP activates the Btk tyrosine kinase, Tec, and induces its association with PLCgamma. A dominant negative mutant of Tec blocks the purinergic effect on cell Ca(2+) spiking. Tec is translocated to the T-tubes upon ATP stimulation of cardiac cells. Both an anti-PI3Kgamma antibody and a dominant negative mutant of PI3Kgamma injected or transfected into cells prevent the latter event. We conclude that PI3Kgamma activation is a crucial step in the purinergic regulation of cardiac cell spontaneous Ca(2+) spiking. Our data further suggest that Tec works in concert with a Src family kinase and PI3Kgamma to fully activate PLCgamma in ATP-stimulated cardiac cells. This cluster of kinases provides the cardiomyocyte with a tight regulation of IP(3) generation and thus cardiac autonomic activity.
Collapse
Affiliation(s)
- Claire Bony
- The French Institute of Health and Medical Research, CNRS UPR1086 Montpellier 34293, France
| | - Serge Roche
- the Center for Research of Macromolecular Biochemistry, CNRS UPR1086 Montpellier 34293, France
| | - Ueno Shuichi
- Division of Functional Genomics, Jichi Medical School, Tochigi, 329-04 Japan
| | - Takehiko Sasaki
- Amgen Institute, Ontario Cancer Institute, Department of Medical Biophysics and Immunology, Toronto, Ontario, MSG 2C1 Canada
| | - Michael A. Crackower
- Amgen Institute, Ontario Cancer Institute, Department of Medical Biophysics and Immunology, Toronto, Ontario, MSG 2C1 Canada
| | - Josef Penninger
- Amgen Institute, Ontario Cancer Institute, Department of Medical Biophysics and Immunology, Toronto, Ontario, MSG 2C1 Canada
| | - Hiroyuki Mano
- Division of Functional Genomics, Jichi Medical School, Tochigi, 329-04 Japan
| | - Michel Pucéat
- the Center for Research of Macromolecular Biochemistry, CNRS UPR1086 Montpellier 34293, France
| |
Collapse
|
66
|
Pelyvás IF, Tóth ZG, Vereb G, Balla A, Kovács E, Gorzsás A, Sztaricskai F, Gergely P. Synthesis of new cyclitol compounds that influence the activity of phosphatidylinositol 4-kinase isoform, PI4K230. J Med Chem 2001; 44:627-32. [PMID: 11170653 DOI: 10.1021/jm001081c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis, chemical derivatization, and investigation of the inhibitory properties of novel cyclitol derivatives on the phosphatidylinositol 4-kinase enzymes PI4K55 and PI4K230 involved in the phosphatidylinositol cycle are reported. Some of the prepared cyclitol derivatives (i.e. 9, 11, 12, and 14) proved to be very powerful and specific irreversible inhibitors of PI4K230 at or below a concentration of 1 mM.
Collapse
Affiliation(s)
- I F Pelyvás
- Research Group of Antibiotics of the Hungarian Academy of Sciences, University of Debrecen, P.O. Box 70, Debrecen H-4010, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Collado M, Medema RH, Garcia-Cao I, Dubuisson ML, Barradas M, Glassford J, Rivas C, Burgering BM, Serrano M, Lam EW. Inhibition of the phosphoinositide 3-kinase pathway induces a senescence-like arrest mediated by p27Kip1. J Biol Chem 2000; 275:21960-8. [PMID: 10791951 DOI: 10.1074/jbc.m000759200] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A senescence-like growth arrest is induced in mouse primary embryo fibroblasts by inhibitors of phosphoinositide 3-kinase (PI3K). We observed that senescence-like growth arrest is correlated with an increase in p27(Kip1) but that down-regulation of other cyclin-dependent kinase (CDK) inhibitors, including p15(INK4b), p16(INK4a), p19( INK4d), and p21(Cip1) as well as other negative cell cycle regulators such as p53 and p19(ARF), implies that this senescence-related growth arrest is independent of the activity of p53, p19(ARF), p16(INK4a), and p21(Cip1), which are associated with replicative senescence. The p27(Kip1) binds to the cyclin/CDK2 complexes and causes a decrease in CDK2 kinase activity. We demonstrated that ectopic expression of p27(Kip1) can induce permanent cell cycle arrest and a senescence-like phenotype in wild-type mouse embryo fibroblasts. We also obtained results suggesting that the kinase inhibitors LY294002 and Wortmannin arrest cell growth and induce a senescence-like phenotype, at least partially, through inhibition of PI3K and protein kinase B/Akt, activation of the forkhead protein AFX, and up-regulation of p27(Kip1)expression. In summary, these observations taken together suggest that p27(Kip1) is an important mediator of the permanent cell cycle arrest induced by PI3K inhibitors. Our data suggest that repression of CDK2 activity by p27(Kip1) is required for the PI3K-induced senescence, yet mouse embryo fibroblasts derived from p27(Kip1-/-) mice entered cell cycle arrest after treatment with LY294002. We show that this is due to a compensatory mechanism by which p130 functionally substitutes for the loss of p27(Kip1). This is the first description that p130 may have a role in inhibiting CDK activity during senescence.
Collapse
Affiliation(s)
- M Collado
- Ludwig Institute for Cancer Research and Section of Virology and Cell Biology, Imperial College School of Medicine at St. Mary's Campus, London, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Gingras AC, Raught B, Sonenberg N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 2000; 68:913-63. [PMID: 10872469 DOI: 10.1146/annurev.biochem.68.1.913] [Citation(s) in RCA: 1641] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eukaryotic translation initiation factor 4F (eIF4F) is a protein complex that mediates recruitment of ribosomes to mRNA. This event is the rate-limiting step for translation under most circumstances and a primary target for translational control. Functions of the constituent proteins of eIF4F include recognition of the mRNA 5' cap structure (eIF4E), delivery of an RNA helicase to the 5' region (eIF4A), bridging of the mRNA and the ribosome (eIF4G), and circularization of the mRNA via interaction with poly(A)-binding protein (eIF4G). eIF4 activity is regulated by transcription, phosphorylation, inhibitory proteins, and proteolytic cleavage. Extracellular stimuli evoke changes in phosphorylation that influence eIF4F activity, especially through the phosphoinositide 3-kinase (PI3K) and Ras signaling pathways. Viral infection and cellular stresses also affect eIF4F function. The recent determination of the structure of eIF4E at atomic resolution has provided insight about how translation is initiated and regulated. Evidence suggests that eIF4F is also implicated in malignancy and apoptosis.
Collapse
Affiliation(s)
- A C Gingras
- Department of Biochemistry McGill University, Montréal, Québec, Canada.
| | | | | |
Collapse
|
69
|
Ekblad L, Jergil B, Gierow JP. Purification of rabbit lacrimal gland plasma membranes by aqueous two-phase affinity partitioning. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 2000; 743:397-401. [PMID: 10942310 DOI: 10.1016/s0378-4347(00)00152-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe the purification of lacrimal gland plasma membranes by affinity partitioning using a two-phase system containing polyethylene glycol and dextran in which wheat germ agglutinin conjugated to dextran is used as affinity ligand. When partitioning a microsomal fraction, the plasma membrane marker 5'-nucleotidase was obtained in the affinity ligand-containing bottom phase, whereas the endoplasmic reticulum marker NADH-ferricyanide reductase remained in the top phase. The affinity partitioning behaviour of components involved in exocytosis and cellular signalling was also examined.
Collapse
Affiliation(s)
- L Ekblad
- Department of Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, Sweden
| | | | | |
Collapse
|
70
|
Arcaro A, Zvelebil MJ, Wallasch C, Ullrich A, Waterfield MD, Domin J. Class II phosphoinositide 3-kinases are downstream targets of activated polypeptide growth factor receptors. Mol Cell Biol 2000; 20:3817-30. [PMID: 10805725 PMCID: PMC85707 DOI: 10.1128/mcb.20.11.3817-3830.2000] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/1999] [Accepted: 02/15/2000] [Indexed: 11/20/2022] Open
Abstract
The class II phosphoinositide 3-kinases (PI3K) PI3K-C2alpha and PI3K-C2beta are two recently identified members of the large PI3K family. Both enzymes are characterized by the presence of a C2 domain at the carboxy terminus and, in vitro, preferentially utilize phosphatidylinositol and phosphatidylinositol 4-monophosphate as lipid substrates. Little is understood about how the catalytic activity of either enzyme is regulated in vivo. In this study, we demonstrate that PI3K-C2alpha and PI3K-C2beta represent two downstream targets of the activated epidermal growth factor (EGF) receptor in human carcinoma-derived A431 cells. Stimulation of quiescent cultures with EGF resulted in the rapid recruitment of both enzymes to a phosphotyrosine signaling complex that contained the EGF receptor and Erb-B2. Ligand addition also induced the appearance of a second, more slowly migrating band of PI3K-C2alpha and PI3K-C2beta immunoreactivity on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Since both PI3K enzymes can utilize Ca(2+) as an essential divalent cation in lipid kinase assays and since the catalytic activity of PI3K-C2alpha is refractory to the inhibitor wortmannin, these properties were used to confirm the recruitment of each PI3K isozyme to the activated EGF receptor complex. To examine this interaction in greater detail, PI3K-C2beta was chosen for further investigation. EGF and platelet-derived growth factor also stimulated the association of PI3K-C2beta with their respective receptors in other cells, including epithelial cells and fibroblasts. The use of EGF receptor mutants and phosphopeptides derived from the EGF receptor and Erb-B2 demonstrated that the interaction with recombinant PI3K-C2beta occurs through E(p)YL/I phosphotyrosine motifs. The N-terminal region of PI3K-C2beta was found to selectively interact with the EGF receptor in vitro, suggesting that it mediates the association of this PI3K with the receptor. However, the mechanism of this interaction remains unclear. We conclude that class II PI3K enzymes may contribute to the generation of 3' phosphoinositides following the activation of polypeptide growth factor receptors in vivo and thus mediate certain aspects of their biological activity.
Collapse
Affiliation(s)
- A Arcaro
- Ludwig Institute for Cancer Research, University College, London W1P 8BT, United Kingdom
| | | | | | | | | | | |
Collapse
|
71
|
Boytim ML, Lilly P, Drouvalakis K, Lyu SC, Jung R, Krensky AM, Clayberger C. A human class II MHC-derived peptide antagonizes phosphatidylinositol 3-kinase to block IL-2 signaling. J Clin Invest 2000; 105:1447-53. [PMID: 10811852 PMCID: PMC315461 DOI: 10.1172/jci8139] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
MHC molecules bind antigenic peptides and present them to T cells. There is a growing body of evidence that MHC molecules also serve other functions. We and others have described synthetic peptides derived from regions of MHC molecules that inhibit T-cell proliferation or cytotoxicity in an allele-nonspecific manner that is independent of interaction with the T-cell receptor. In this report, we describe the mechanism of action of a synthetic MHC class II-derived peptide that blocks T-cell activation induced by IL-2. Both this peptide, corresponding to residues 65-79 of DQA*03011 (DQ 65-79), and rapamycin inhibit p70 S6 kinase activity, but only DQ 65-79 blocks Akt kinase activity, placing the effects of DQ 65-79 upstream of mTOR, a PI kinase family member. DQ 65-79, but not rapamycin, inhibits phosphatidylinositol 3-kinase (PI 3-kinase) activity in vitro. The peptide is taken up by cells, as demonstrated by confocal microscopy. These findings indicate that DQ 65-79 acts as an antagonist with PI 3-kinase, repressing downstream signaling events and inhibiting proliferation. Understanding the mechanism of action of immunomodulatory peptides may provide new insights into T-cell activation and allow the development of novel immunosuppressive agents.
Collapse
Affiliation(s)
- M L Boytim
- Program in Immunology, Division of Immunology and Transplantation Biology, Department of Pediatrics, Stanford University, Stanford, California 94305-5407, USA
| | | | | | | | | | | | | |
Collapse
|
72
|
Zhao XH, Bondeva T, Balla T. Characterization of recombinant phosphatidylinositol 4-kinase beta reveals auto- and heterophosphorylation of the enzyme. J Biol Chem 2000; 275:14642-8. [PMID: 10799551 DOI: 10.1074/jbc.275.19.14642] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylinositol (PI) 4-kinases catalyze the synthesis of PI 4-phosphate, an important intermediate for the synthesis of membrane polyphosphoinositides, regulators of multiple cellular functions. Two mammalian PI 4-kinases have been cloned, a 230-kDa enzyme (alpha-form) and a 110-kDa (beta-form), both of which are inhibited by >0.1 microm concentrations of the PI 3-kinase inhibitor, wortmannin (WT). In the present study, we created a glutathione S-transferase-PI4Kbeta fusion protein for expression in Escherichia coli. The purified protein was biologically active and phosphorylated PI in its 4-position with WT sensitivity and kinetic parameters that were identical to those of purified bovine brain PI4Kbeta. In addition to its lipid kinase activity, the enzyme exhibited autophosphorylation that was enhanced by Mn(2+) ions and inhibited by WT and another PI 3-kinase inhibitor, LY 294002. The recombinant protein was unable to transphosphorylate, but its isolated C-terminal catalytic domain still displayed autophosphorylation, suggesting that the autophosphorylation site resides within the C-terminal catalytic domain of the protein and is held in position by intramolecular interactions. Autophosphorylation inhibited subsequent lipid kinase activity, which was reversed upon dephosphorylation, by protein phosphatases, PP1 and PP2A(1), suggesting that it may represent a regulatory mechanism for the enzyme. Phosphorylation of endogenous or overexpressed PI4Kbeta was also observed in COS-7 cells; however, the in vivo phosphorylation of the expressed protein was only partially inhibited by WT and also occurred in a catalytically inactive form of the enzyme, indicating the presence of additional phosphorylation site(s). Successful bacterial expression of PI4Kbeta should aid research on the structure-function relationships of this protein as well as of other, structurally related enzymes.
Collapse
Affiliation(s)
- X H Zhao
- Endocrinology and Reproduction Research Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
73
|
Rosado JA, Sage SO. Phosphoinositides are required for store-mediated calcium entry in human platelets. J Biol Chem 2000; 275:9110-3. [PMID: 10734043 DOI: 10.1074/jbc.275.13.9110] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have recently observed that small GTP-binding proteins are important for mediation of store-mediated Ca(2+) entry in human platelets through the reorganization of the actin cytoskeleton. Because it has been shown in platelets and other cells that small GTP-binding proteins regulate the activity of phosphatidylinositol 3-kinase and phosphatidylinositol 4-kinase, whose products, phosphoinositides, play a key role in the reorganization of the actin cytoskeleton, we have investigated the role of these lipid kinases in store-mediated Ca(2+) entry. Treatment of platelets with LY294002, an inhibitor of phosphatidylinositol 3- and phosphatidylinositol 4-kinases, resulted in a concentration-dependent inhibition of Ca(2+) entry stimulated by thapsigargin or the physiological agonist, thrombin. In addition, wortmannin, another inhibitor of these kinases, which is structurally unrelated to LY294002, significantly reduced store-mediated Ca(2+) entry. The inhibitory effect of LY294002 was not mediated either by blockage of Ca(2+) channels or by modification of membrane potential. LY294002 inhibited actin polymerization stimulated by thrombin or thapsigargin. These results indicate that both phosphatidylinositol 3-kinase and phosphatidylinositol 4-kinase are required for activation of store-mediated Ca(2+) entry in human platelets and that the mechanism could involve the reorganization of the actin cytoskeleton.
Collapse
Affiliation(s)
- J A Rosado
- Department of Physiology, University of Cambridge, Downing St., Cambridge CB2 3EG, United Kingdom
| | | |
Collapse
|
74
|
Westergren T, Ekblad L, Jergil B, Sommarin M. Phosphatidylinositol 4-kinase associated with spinach plasma membranes. Isolation and characterization of two distinct forms. PLANT PHYSIOLOGY 1999; 121:507-16. [PMID: 10517842 PMCID: PMC59413 DOI: 10.1104/pp.121.2.507] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/1999] [Accepted: 06/22/1999] [Indexed: 05/21/2023]
Abstract
Highly purified plasma membranes from spinach (Spinacia oleracea L.) leaves contained phosphatidylinositol (PtdIns) kinase activity that was firmly associated with the membrane. The enzyme was solubilized by detergent treatment (2% [w/v] Triton X-100) and purified by heparin-Sepharose and Q-Sepharose chromatography. Two enzymically active fractions, QI and QII, both exhibiting PtdIns 4-kinase activity, were resolved and purified 100- to 300-fold over the plasma membrane. QI and QII shared similar high apparent K(m) values for ATP (approximately 0.45 mM) and PtdIns (approximately 0.2 mM) and were insensitive to inhibition by adenosine. While Mg(2+) was the preferred divalent cation, Mn(2+) could partly substitute in the reaction catalyzed by the QII enzyme but not in that catalyzed by QI. Mn(2+) acted synergistically with suboptimal Mg(2+) concentrations to activate not only the QII enzyme, but also to some extent QI. Both enzymes were inhibited by millimolar concentrations of Ca(2+) and micromolar concentrations of wortmannin. The apparent molecular mass for QI was 120 kD, which was determined by SDS-PAGE and western blotting using an antibody against a peptide unique for lipid kinases and the binding of (3)H-wortmannin, and for QII 65 kD as determined by immunodetection and renaturation of PtdIns kinase activity in the 65-kD region of polyacrylamide gels.
Collapse
Affiliation(s)
- T Westergren
- Department of Plant Biochemistry, Lund University, Box 117, SE-221 00, Lund, Sweden
| | | | | | | |
Collapse
|
75
|
Cass LA, Summers SA, Prendergast GV, Backer JM, Birnbaum MJ, Meinkoth JL. Protein kinase A-dependent and -independent signaling pathways contribute to cyclic AMP-stimulated proliferation. Mol Cell Biol 1999; 19:5882-91. [PMID: 10454535 PMCID: PMC84437 DOI: 10.1128/mcb.19.9.5882] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effects of cyclic AMP (cAMP) on cell proliferation are cell type specific. Although the growth-inhibitory effects of cAMP have been well studied, much less is known regarding how cAMP stimulates proliferation. We report that cAMP stimulates proliferation through both protein kinase A (PKA)-dependent and PKA-independent signaling pathways and that phosphatidylinositol 3-kinase (PI3K) is required for cAMP-stimulated mitogenesis. In cells where cAMP is a mitogen, cAMP-elevating agents stimulate membrane ruffling, Akt phosphorylation, and p70 ribosomal S6 protein kinase (p70s6k) activity. cAMP effects on ruffle formation and Akt were PKA independent but sensitive to wortmannin. In contrast, cAMP-stimulated p70s6k activity was repressed by PKA inhibitors but not by wortmannin or microinjection of the N-terminal SH2 domain of the p85 regulatory subunit of PI3K, indicating that p70s6k and Akt can be regulated independently. Microinjection of highly specific inhibitors of PI3K or Rac1, or treatment with the p70s6k inhibitor rapamycin, impaired cAMP-stimulated DNA synthesis, demonstrating that PKA-dependent and -independent pathways contribute to cAMP-mediated mitogenesis. Direct elevation of PI3K activity through microinjection of an antibody that stimulates PI3K activity or stable expression of membrane-localized p110 was sufficient to confer hormone-independent DNA synthesis when accompanied by elevations in p70s6k activity. These findings indicate that multiple pathways contribute to cAMP-stimulated mitogenesis, only some of which are PKA dependent. Furthermore, they demonstrate that the ability of cAMP to stimulate both p70s6k- and PI3K-dependent pathways is an important facet of cAMP-regulated cell cycle progression.
Collapse
Affiliation(s)
- L A Cass
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6084, USA
| | | | | | | | | | | |
Collapse
|
76
|
Arneson LS, Kunz J, Anderson RA, Traub LM. Coupled inositide phosphorylation and phospholipase D activation initiates clathrin-coat assembly on lysosomes. J Biol Chem 1999; 274:17794-805. [PMID: 10364223 DOI: 10.1074/jbc.274.25.17794] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adaptors appear to control clathrin-coat assembly by determining the site of lattice polymerization but the nucleating events that target soluble adaptors to an appropriate membrane are poorly understood. Using an in vitro model system that allows AP-2-containing clathrin coats to assemble on lysosomes, we show that adaptor recruitment and coat initiation requires phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) synthesis. PtdIns(4,5)P2 is generated on lysosomes by the sequential action of a lysosome-associated type II phosphatidylinositol 4-kinase and a soluble type I phosphatidylinositol 4-phosphate 5-kinase. Phosphatidic acid, which potently stimulates type I phosphatidylinositol 4-phosphate 5-kinase activity, is generated on the bilayer by a phospholipase D1-like enzyme located on the lysosomal surface. Quenching phosphatidic acid function with primary alcohols prevents the synthesis of PtdIns(4, 5)P2 and blocks coat assembly. Generating phosphatidic acid directly on lysosomes with exogenous bacterial phospholipase D in the absence of ATP still drives adaptor recruitment and limited coat assembly, indicating that PtdIns(4,5)P2 functions, at least in part, to activate the PtdIns(4,5)P2-dependent phospholipase D1. These results provide the first direct evidence for the involvement of anionic phospholipids in clathrin-coat assembly on membranes and define the enzymes responsible for the production of these important lipid mediators.
Collapse
Affiliation(s)
- L S Arneson
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
77
|
Martin TF. Phosphoinositide lipids as signaling molecules: common themes for signal transduction, cytoskeletal regulation, and membrane trafficking. Annu Rev Cell Dev Biol 1999; 14:231-64. [PMID: 9891784 DOI: 10.1146/annurev.cellbio.14.1.231] [Citation(s) in RCA: 388] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Signaling roles for phosphoinositides that involve their regulated hydrolysis to generate second messengers have been well characterized. Recent work has revealed additional signaling roles for phosphoinositides that do not involve their hydrolysis. PtdIns 3-P, PtdIns 3,4,5-P3, and PtdIns 4,5-P2 function as site-specific signals on membranes that recruit and/or activate proteins for the assembly of spatially localized functional complexes. A large number of phosphoinositide-binding proteins have been identified as the potential effectors for phosphoinositide signals. Common themes of localized signal generation and the spatially localized recruitment of effector proteins appear to underlie mechanisms employed in signal transduction, cytoskeletal, and membrane trafficking events.
Collapse
Affiliation(s)
- T F Martin
- Department of Biochemistry, University of Wisconsin, Madison 53706, USA.
| |
Collapse
|
78
|
Affiliation(s)
- T Balla
- Endocrinology and Reproduction Research Branch, National Institutes of Health, 49 Convent Drive, Bethesda, MD 20892-4510, USA.
| |
Collapse
|
79
|
Várnai P, Balla T. Visualization of phosphoinositides that bind pleckstrin homology domains: calcium- and agonist-induced dynamic changes and relationship to myo-[3H]inositol-labeled phosphoinositide pools. J Biophys Biochem Cytol 1998; 143:501-10. [PMID: 9786958 PMCID: PMC2132833 DOI: 10.1083/jcb.143.2.501] [Citation(s) in RCA: 854] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phosphatidylinositol 4,5-bisphosphate (PtdIns[4,5]P2) pools that bind pleckstrin homology (PH) domains were visualized by cellular expression of a phospholipase C (PLC)delta PH domain-green fluorescent protein fusion construct and analysis of confocal images in living cells. Plasma membrane localization of the fluorescent probe required the presence of three basic residues within the PLCdelta PH domain known to form critical contacts with PtdIns(4, 5)P2. Activation of endogenous PLCs by ionophores or by receptor stimulation produced rapid redistribution of the fluorescent signal from the membrane to cytosol, which was reversed after Ca2+ chelation. In both ionomycin- and agonist-stimulated cells, fluorescent probe distribution closely correlated with changes in absolute mass of PtdIns(4,5)P2. Inhibition of PtdIns(4,5)P2 synthesis by quercetin or phenylarsine oxide prevented the relocalization of the fluorescent probe to the membranes after Ca2+ chelation in ionomycin-treated cells or during agonist stimulation. In contrast, the synthesis of the PtdIns(4,5)P2 imaged by the PH domain was not sensitive to concentrations of wortmannin that had been found inhibitory of the synthesis of myo-[3H]inositol- labeled PtdIns(4,5)P2. Identification and dynamic imaging of phosphoinositides that interact with PH domains will further our understanding of the regulation of such proteins by inositol phospholipids.
Collapse
Affiliation(s)
- P Várnai
- Endocrinology and Reproduction Research Branch, National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4510, USA
| | | |
Collapse
|
80
|
Abstract
Phosphatidylinositol, a component of eukaryotic cell membranes, is unique among phospholipids in that its head group can be phosphorylated at multiple free hydroxyls. Several phosphorylated derivatives of phosphatidylinositol, collectively termed phosphoinositides, have been identified in eukaryotic cells from yeast to mammals. Phosphoinositides are involved in the regulation of diverse cellular processes, including proliferation, survival, cytoskeletal organization, vesicle trafficking, glucose transport, and platelet function. The enzymes that phosphorylate phosphatidylinositol and its derivatives are termed phosphoinositide kinases. Recent advances have challenged previous hypotheses about the substrate selectivity of different phosphoinositide kinase families. Here we re-examine the pathways of phosphoinositide synthesis and the enzymes involved.
Collapse
Affiliation(s)
- D A Fruman
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA.
| | | | | |
Collapse
|
81
|
D'Souza-Schorey C, Boettner B, Van Aelst L. Rac regulates integrin-mediated spreading and increased adhesion of T lymphocytes. Mol Cell Biol 1998; 18:3936-46. [PMID: 9632778 PMCID: PMC108978 DOI: 10.1128/mcb.18.7.3936] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Leukocyte adhesion to the extracellular matrix (ECM) is tightly controlled and is vital for the immune response. Circulating lymphocytes leave the bloodstream and adhere to ECM components at sites of inflammation and lymphoid tissues. Mechanisms for regulating T-lymphocyte-ECM adhesion include (i) an alteration in the affinity of cell surface integrin receptors for their extracellular ligands and (ii) an alteration of events following postreceptor occupancy (e.g., cell spreading). Whereas H-Ras and R-Ras were previously shown to affect T-cell adhesion by altering the affinity state of the integrin receptors, no signaling molecule has been identified for the second mechanism. In this study, we demonstrated that expression of an activated mutant of Rac triggered dramatic spreading of T cells and their increased adhesion on immobilized fibronectin in an integrin-dependent manner. This effect was not mimicked by expression of activated mutant forms of Rho, Cdc42, H-Ras, or ARF6, indicating the unique role of Rac in this event. The Rac-induced spreading was accompanied by specific cytoskeletal rearrangements. Also, a clustering of integrins at sites of cell adhesion and at the peripheral edges of spread cells was observed. We demonstrate that expression of RacV12 did not alter the level of expression of cell surface integrins or the affinity state of the integrin receptors. Moreover, our results indicate that Rac plays a role in the regulation of T-cell adhesion by a mechanism involving cell spreading, rather than by altering the level of expression or the affinity of the integrin receptors. Furthermore, we show that the Rac-mediated signaling pathway leading to spreading of T lymphocytes did not require activation of c-Jun kinase, serum response factor, or pp70(S6 kinase) but appeared to involve a phospholipid kinase.
Collapse
Affiliation(s)
- C D'Souza-Schorey
- Department of Cell Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
82
|
Hsuan JJ, Minogue S, dos Santos M. Phosphoinositide 4- and 5-kinases and the cellular roles of phosphatidylinositol 4,5-bisphosphate. Adv Cancer Res 1998; 74:167-216. [PMID: 9561269 DOI: 10.1016/s0065-230x(08)60767-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- J J Hsuan
- Ludwig Institute for Cancer Research, University College London Medical School, London, United Kingdom
| | | | | |
Collapse
|
83
|
Willars GB, Nahorski SR, Challiss RA. Differential regulation of muscarinic acetylcholine receptor-sensitive polyphosphoinositide pools and consequences for signaling in human neuroblastoma cells. J Biol Chem 1998; 273:5037-46. [PMID: 9478953 DOI: 10.1074/jbc.273.9.5037] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In this study we have quantitatively assessed the basal turnover of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and M3-muscarinic receptor-mediated changes in phosphoinositides in the human neuroblastoma cell line, SH-SY5Y. We demonstrate that the polyphosphoinositides represent a minor fraction of the total cellular phosphoinositide pool and that in addition to rapid, sustained increases in [3H]inositol phosphates dependent upon the extent of receptor activation by carbachol, there are equally rapid and sustained reductions in the levels of polyphosphoinositides. Compared with phosphatidylinositol 4-phosphate (PtdIns(4)P), PtdIns(4,5)P2 was reduced with less potency by carbachol and recovered faster following agonist removal suggesting protection of PtdIns(4,5)P2 at the expense of PtdIns(4)P and indicating specific regulatory mechanism(s). This does not involve a pertussis toxin-sensitive G-protein regulation of PtdIns(4)P 5-kinase. Using wortmannin to inhibit PtdIns 4-kinase activity, we demonstrate that the immediate consequence of blocking the supply of PtdIns(4)P (and therefore PtdIns(4,5)P2) is a failure of agonist-mediated phosphoinositide and Ca2+ signaling. The use of wortmannin also indicated that PtdIns is not a substrate for receptor-activated phospholipase C and that 15% of the basal level of PtdIns(4,5)P2 is in an agonist-insensitive pool. We estimate that the agonist-sensitive pool of PtdIns(4,5)P2 turns over every 5 s (0.23 fmol/cell/min) during sustained receptor activation by a maximally effective concentration of carbachol. Immediately following agonist addition, PtdIns(4,5)P2 is consumed >3 times faster (0.76 fmol/cell/min) than during sustained receptor activation which represents, therefore, utilization by a partially desensitized receptor. These data indicate that resynthesis of PtdIns(4,5)P2 is required to allow full early and sustained phases of receptor signaling. Despite the critical dependence of phosphoinositide and Ca2+ signaling on PtdIns(4,5)P2 resynthesis, we find no evidence that this rate resynthesis is limiting for agonist-mediated responses.
Collapse
MESH Headings
- Androstadienes/pharmacology
- Atropine/pharmacology
- Carbachol/pharmacology
- Cations, Monovalent/pharmacology
- Chromones/pharmacology
- Dose-Response Relationship, Drug
- Enzyme Inhibitors/pharmacology
- Ganglia, Sympathetic/cytology
- Ganglia, Sympathetic/metabolism
- Hydrolysis
- Inositol 1,4,5-Trisphosphate/metabolism
- Lithium/pharmacology
- Morpholines/pharmacology
- Muscarinic Agonists/pharmacology
- Muscarinic Antagonists/pharmacology
- Neuroblastoma
- Neurons/cytology
- Neurons/metabolism
- Phosphatidylinositol 4,5-Diphosphate/metabolism
- Phosphatidylinositol Phosphates/metabolism
- Receptor, Muscarinic M3
- Receptors, Muscarinic/metabolism
- Signal Transduction
- Tumor Cells, Cultured
- Type C Phospholipases/metabolism
- Wortmannin
Collapse
Affiliation(s)
- G B Willars
- Leicester University, Department of Cell Physiology and Pharmacology, P. O. Box 138, Medical Sciences Building, University Road, Leicester, LE1 9HN, United Kingdom
| | | | | |
Collapse
|
84
|
Bae YS, Cantley LG, Chen CS, Kim SR, Kwon KS, Rhee SG. Activation of phospholipase C-gamma by phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 1998; 273:4465-9. [PMID: 9468499 DOI: 10.1074/jbc.273.8.4465] [Citation(s) in RCA: 277] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Signal transduction across cell membranes often involves the activation of both phosphatidylinositol (PI)-specific phospholipase C (PLC) and phosphoinositide 3-kinase (PI 3-kinase). Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), a substrate for both enzymes, is converted to phosphatidylinositol 3,4, 5-trisphosphate (PI(3,4,5)P3) by the action of PI 3-kinase. Here, we show that PI(3,4,5)P3 activates purified PLC-gamma isozymes by interacting with their Src homology 2 domains. Furthermore, the expression of an activated catalytic subunit of PI 3-kinase in COS-7 cells resulted in an increase in inositol phosphate formation, whereas platelet-derived growth factor-induced PLC activation in NIH 3T3 cells was markedly inhibited by the specific PI 3-kinase inhibitor LY294002. These results suggest that receptors coupled to PI 3-kinase may activate PLC-gamma isozymes indirectly, in the absence of PLC-gamma tyrosine phosphorylation, through the generation of PI(3,4,5)P3.
Collapse
Affiliation(s)
- Y S Bae
- Laboratory of Cell Signaling, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
85
|
Cutler NS, Heitman J, Cardenas ME. STT4 is an essential phosphatidylinositol 4-kinase that is a target of wortmannin in Saccharomyces cerevisiae. J Biol Chem 1997; 272:27671-7. [PMID: 9346907 DOI: 10.1074/jbc.272.44.27671] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Wortmannin is a natural product that inhibits signal transduction. One target of wortmannin in mammalian cells is the 110-kDa catalytic subunit of phosphatidylinositol 3-kinase (PI 3-kinase). We show that wortmannin is toxic to the yeast Saccharomyces cerevisiae and present genetic and biochemical evidence that a phosphatidylinositol 4-kinase (PI 4-kinase), STT4, is a target of wortmannin in yeast. In a strain background in which stt4 mutants are rescued by osmotic support with sorbitol, the toxic effects of wortmannin are similarly prevented by sorbitol. In contrast, in a different strain background, STT4 is essential under all conditions and wortmannin toxicity is not mitigated by sorbitol. Overexpression of STT4 confers wortmannin resistance, but overexpression of PIK1, a related PI 4-kinase, does not. In vitro, the PI 4-kinase activity of STT4, but not of PIK1, was potently inhibited by wortmannin. Overexpression of the phosphatidylinositol 4-phosphate 5-kinase homolog MSS4 conferred wortmannin resistance, as did deletion of phospholipase C-1. These observations support a model for a phosphatidylinositol metabolic cascade involving STT4, MSS4, and phospholipase C-1 and provide evidence that an essential product of this pathway is the lipid phosphatidylinositol 4,5-bisphosphate.
Collapse
Affiliation(s)
- N S Cutler
- Department of Genetics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
86
|
Balla T, Downing GJ, Jaffe H, Kim S, Zólyomi A, Catt KJ. Isolation and molecular cloning of wortmannin-sensitive bovine type III phosphatidylinositol 4-kinases. J Biol Chem 1997; 272:18358-66. [PMID: 9218477 DOI: 10.1074/jbc.272.29.18358] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Agonist-sensitive phosphoinositide pools are maintained by recently-identified wortmannin (WT)-sensitive phosphatidylinositol (PI) 4-kinase(s) (Nakanishi, S., Catt, K. J., and Balla, T. (1995) Proc. Natl. Acad. Sci. U.S.A. 92, 5317-5321). Two loosely membrane-associated WT-sensitive type III PI 4-kinases were isolated from bovine adrenal cortex as [3H]WT-labeled 110- and 210-kDa proteins. Based on peptide sequences from the smaller enzyme, a 3. 9-kilobase pair (kb) cDNA with an open reading frame encoding a 90-kDa protein was isolated from a bovine brain cDNA library. Expression of this cDNA in COS-7 cells yielded a 110-kDa protein with WT-sensitive PI 4-kinase activity. Northern blot analysis of a human mRNA panel showed a single approximately 3.8-kb transcript. Peptide sequences obtained from the 210-kDa enzyme corresponded to those of a recently described rat 230-kDa PI 4-kinase. A 6.5-kb cDNA containing an open reading frame of 6129 nucleotides that encoded a 230-kDa protein, was isolated from brain cDNA. Northern blot analysis of human mRNA revealed a major 7.5-kb transcript. The molecular cloning of these novel WT-sensitive type III PI 4-kinases will allow detailed analysis of their signaling and other regulatory functions in mammalian cells.
Collapse
Affiliation(s)
- T Balla
- Endocrinology and Reproduction Research Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892-4510, USA.
| | | | | | | | | | | |
Collapse
|
87
|
Abstract
A wide variety of messages, in the form of diffusible growth factors, hormones and cytokines, are carried throughout multicellular organisms to coordinate important physiological properties of target cells, such as proliferation, differentiation, migration, apoptosis and metabolism. Most messengers bind to cognate receptors on target cells, which initiate a characteristic cascade of reactions within the cell, ultimately leading to the desired response. The cellular response is defined by the combination of signalling components whose individual activity depends upon the number and type of surface receptors. Consequently the responses of different cell types to one or more stimuli can be quite disparate. A molecular understanding of the signalling pathways employed by each type of receptor therefore underlies the ability to rationalize many cellular functions and to correct disfunctions. As a well studied example of the primary signalling events that take place on the cytoplasmic leaflet of the plasma membrane following receptor activation, we will discuss how the widely expressed receptor for epidermal growth factor (EGF) causes the phosphorylation and hydrolysis of a signalling precursor, the membrane lipid phosphatidylinositol. This paradigm will be used to illustrate certain general principles of signalling, including formation of multienzyme complexes, compartmentation of second messengers and intermediates, and cross-talk between different signalling pathways.
Collapse
Affiliation(s)
- J J Hsuan
- Ludwig Institute for Cancer Research, University college London Medical School, U.K
| | | |
Collapse
|
88
|
Blommaart EF, Krause U, Schellens JP, Vreeling-Sindelárová H, Meijer AJ. The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 243:240-6. [PMID: 9030745 DOI: 10.1111/j.1432-1033.1997.0240a.x] [Citation(s) in RCA: 678] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Recent studies indicate that phosphatidylinositol 3-kinase is essential in the regulation of many processes dependent on membrane flow. Autophagy is a complex pathway in which cell material, including proteins, can be degraded. Membrane flow plays a pivotal role in this process. To find out whether phosphatidylinositol 3-kinase is also required for autophagy, we tested the effects on autophagy of two structurally unrelated phosphatidylinositol 3-kinase inhibitors, wortmannin and 2-(4-morpholinyl)-8-phenylchromone (LY294002). The addition of low concentrations of each of these inhibitors to incubations of hepatocytes in the absence of amino acids resulted in a strong inhibition of proteolysis. The antiproteolytic effect of wortmannin (IC50 30 nM) and LY294002 (IC50 10 microM) was accompanied by inhibition of autophagic sequestration and not by an increase in lysosomal pH or a decrease in intracellular ATP. No further inhibition of proteolysis by the two compounds was observed when autophagy was already maximally inhibited by high concentrations of amino acids. 3-Methyladenine, which is commonly used as a specific inhibitor of autophagic sequestration, was an inhibitor of phosphatidylinositol 3-kinase, thus providing a target for its action. It is proposed that phosphatidylinositol 3-kinase activity is required for autophagy. 3-Methyladenine inhibits autophagy by inhibition of this enzyme.
Collapse
Affiliation(s)
- E F Blommaart
- Department of Biochemistry, Academic Medical Centre, University of Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|