51
|
Sibold J, Kettelhoit K, Vuong L, Liu F, Werz DB, Steinem C. Synthesis of Gb
3
Glycosphingolipids with Labeled Head Groups: Distribution in Phase‐Separated Giant Unilamellar Vesicles. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jeremias Sibold
- Georg-August-Universität GöttingenInstitute of Organic and Biomolecular Chemistry Tammannstr. 2 37077 Göttingen Germany
| | - Katharina Kettelhoit
- Technische Universität BraunschweigInstitute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Loan Vuong
- Georg-August-Universität GöttingenInstitute of Organic and Biomolecular Chemistry Tammannstr. 2 37077 Göttingen Germany
| | - Fangyuan Liu
- Georg-August-Universität GöttingenInstitute of Organic and Biomolecular Chemistry Tammannstr. 2 37077 Göttingen Germany
| | - Daniel B. Werz
- Technische Universität BraunschweigInstitute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Claudia Steinem
- Georg-August-Universität GöttingenInstitute of Organic and Biomolecular Chemistry Tammannstr. 2 37077 Göttingen Germany
- Max Planck Institute for Dynamics and Self Organization Am Faßberg 17 37077 Göttingen Germany
| |
Collapse
|
52
|
Rustmeier NH, Strebl M, Stehle T. The Symmetry of Viral Sialic Acid Binding Sites-Implications for Antiviral Strategies. Viruses 2019; 11:v11100947. [PMID: 31615155 PMCID: PMC6832341 DOI: 10.3390/v11100947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/02/2019] [Accepted: 10/09/2019] [Indexed: 12/12/2022] Open
Abstract
Virus infections are initiated by the attachment of the viral particle to protein or carbohydrate receptors on the host cell. Sialic acid-bearing glycan structures are prominently displayed at the cell surface, and, consequently, these structures can function as receptors for a large number of diverse viruses. Structural biology research has helped to establish the molecular bases for many virus–sialic acid interactions. Due to the icosahedral 532 point group symmetry that underlies many viral capsids, the receptor binding sites are frequently arranged in a highly symmetric fashion and linked by five-fold, three-fold, or two-fold rotation axes. For the inhibition of viral attachment, one emerging strategy is based on developing multivalent sialic acid-based inhibitors that can simultaneously engage several of these binding sites, thus binding viral capsids with high avidity. In this review, we will evaluate the structures of non-enveloped virus capsid proteins bound to sialylated glycan receptors and discuss the potential of these structures for the development of potent antiviral attachment inhibitors.
Collapse
Affiliation(s)
- Nils H Rustmeier
- Interfaculty Institute of Biochemistry, University of Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany.
| | - Michael Strebl
- Interfaculty Institute of Biochemistry, University of Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany.
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany.
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
53
|
Bosse M, Sibold J, Scheidt HA, Patalag LJ, Kettelhoit K, Ries A, Werz DB, Steinem C, Huster D. Shiga toxin binding alters lipid packing and the domain structure of Gb 3-containing membranes: a solid-state NMR study. Phys Chem Chem Phys 2019; 21:15630-15638. [PMID: 31268447 DOI: 10.1039/c9cp02501d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We studied the influence of globotriaosylceramide (Gb3) lipid molecules on the properties of phospholipid membranes composed of a liquid ordered (lo)/liquid disordered (ld) phase separated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/N-palmitoyl-d-erythro-sphingosylphosphorylcholine (PSM)/cholesterol mixture (40/35/20, mol/mol/mol) supplemented with 5 mol% of either short acyl chain palmitoyl-Gb3 or long acyl chain lignoceryl-Gb3 using 2H solid-state NMR spectroscopy. To this end, both globotriaosylceramides were chemically synthesized featuring a perdeuterated lipid acyl chain. The solid-state 2H NMR spectra support the phase separation into a POPC-rich ld phase and a PSM/cholesterol-rich lo phase. The long chain lignoceryl-Gb3 showed a rather unusual order parameter profile of the acyl chain, which flattens out for the last ∼6 methylene segments. Such an odd chain conformation can be explained by partial chain interdigitation and/or a very fluid midplane region of the membrane. Possibly, the Gb3 molecules may thus preferentially be localized at the lo/ld phase boundary. In contrast, the short chain palmitoyl-Gb3 was well associated with the PSM/cholesterol-rich lo phase. Gb3 molecules act as membrane receptors for the Shiga toxin (STx) produced by Shigella dysenteriae and by enterohemorrhagic strains of Escherichia coli (EHEC). The B-subunits of STx (STxB) forming a pentameric structure were produced recombinantly and incubated with the membrane mixtures leading to alterations in the lipid packing properties and lateral organization of the membranes. Typically, STxB binding led to a decrease in lipid chain order in agreement with partial immersion of protein segments into the lipid-water interface of the membrane. In the presence of STxB, Gb3 preferentially partitioned into the lo membrane phase. In particular the short acyl chain palmitoyl-Gb3 showed very similar chain order parameters to PSM. In the presence of STxB, all lipid species showed isotropic contributions to the 2H NMR powder spectra; this was most pronounced for the Gb3 molecules. Such isotropic contributions are caused by highly curved membrane structures, which have previously been detected as membrane invaginations in fluorescence microscopy. Our analysis estimated that STxB induced highly curved membrane structures with a curvature radius of less than ∼10 nm likely related to the insertion of STxB segments into the lipid-water interface of the membrane.
Collapse
Affiliation(s)
- Mathias Bosse
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, D-04107 Leipzig, Germany.
| | - Jeremias Sibold
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Tammannstr. 2, D-37077 Göttingen, Germany
| | - Holger A Scheidt
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, D-04107 Leipzig, Germany.
| | - Lukas J Patalag
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, D-38106 Braunschweig, Germany
| | - Katharina Kettelhoit
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, D-38106 Braunschweig, Germany
| | - Annika Ries
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, D-38106 Braunschweig, Germany
| | - Daniel B Werz
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, D-38106 Braunschweig, Germany
| | - Claudia Steinem
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Tammannstr. 2, D-37077 Göttingen, Germany and Max-Planck-Institute for Dynamics and Self-Organization, Am Fassberg 11, 37077 Göttingen, Germany
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, D-04107 Leipzig, Germany.
| |
Collapse
|
54
|
Yamini G, Nestorovich EM. Multivalent Inhibitors of Channel-Forming Bacterial Toxins. Curr Top Microbiol Immunol 2019; 406:199-227. [PMID: 27469304 PMCID: PMC6814628 DOI: 10.1007/82_2016_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Rational design of multivalent molecules represents a remarkable modern tool to transform weak non-covalent interactions into strong binding by creating multiple finely-tuned points of contact between multivalent ligands and their supposed multivalent targets. Here, we describe several prominent examples where the multivalent blockers were investigated for their ability to directly obstruct oligomeric channel-forming bacterial exotoxins, such as the pore-forming bacterial toxins and B component of the binary bacterial toxins. We address problems related to the blocker/target symmetry match and nature of the functional groups, as well as chemistry and length of the linkers connecting the functional groups to their multivalent scaffolds. Using the anthrax toxin and AB5 toxin case studies, we briefly review how the oligomeric toxin components can be successfully disabled by the multivalent non-channel-blocking inhibitors, which are based on a variety of multivalent scaffolds.
Collapse
Affiliation(s)
- Goli Yamini
- Department of Biology, The Catholic University of America, Washington, D.C., 20064, USA
| | | |
Collapse
|
55
|
Abstract
Proper management of polymicrobial infections in patients with cystic fibrosis (CF) has extended their life span. Information about the composition and dynamics of each patient’s microbial community aids in the selection of appropriate treatment of pulmonary exacerbations. We propose the cystic fibrosis rapid response (CFRR) as a fast approach to determine viral and microbial community composition and activity during CF pulmonary exacerbations. The CFRR potential is illustrated with a case study in which a cystic fibrosis fatal exacerbation was characterized by the presence of shigatoxigenic Escherichia coli. The incorporation of the CFRR within the CF clinic could increase the life span and quality of life of CF patients. Pulmonary exacerbations are the leading cause of death in cystic fibrosis (CF) patients. To track microbial dynamics during acute exacerbations, a CF rapid response (CFRR) strategy was developed. The CFRR relies on viromics, metagenomics, metatranscriptomics, and metabolomics data to rapidly monitor active members of the viral and microbial community during acute CF exacerbations. To highlight CFRR, a case study of a CF patient is presented, in which an abrupt decline in lung function characterized a fatal exacerbation. The microbial community in the patient’s lungs was closely monitored through the multi-omics strategy, which led to the identification of pathogenic shigatoxigenic Escherichia coli (STEC) expressing Shiga toxin. This case study illustrates the potential for the CFRR to deconstruct complicated disease dynamics and provide clinicians with alternative treatments to improve the outcomes of pulmonary exacerbations and expand the life spans of individuals with CF.
Collapse
|
56
|
Lee MS, Tesh VL. Roles of Shiga Toxins in Immunopathology. Toxins (Basel) 2019; 11:E212. [PMID: 30970547 PMCID: PMC6521259 DOI: 10.3390/toxins11040212] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 12/20/2022] Open
Abstract
Shigella species and Shiga toxin-producing Escherichia coli (STEC) are agents of bloody diarrhea that may progress to potentially lethal complications such as diarrhea-associated hemolytic uremic syndrome (D+HUS) and neurological disorders. The bacteria share the ability to produce virulence factors called Shiga toxins (Stxs). Research over the past two decades has identified Stxs as multifunctional toxins capable of inducing cell stress responses in addition to their canonical ribotoxic function inhibiting protein synthesis. Notably, Stxs are not only potent inducers of cell death, but also activate innate immune responses that may lead to inflammation, and these effects may increase the severity of organ injury in patients infected with Stx-producing bacteria. In the intestines, kidneys, and central nervous system, excessive or uncontrolled host innate and cellular immune responses triggered by Stxs may result in sensitization of cells to toxin mediated damage, leading to immunopathology and increased morbidity and mortality in animal models (including primates) and human patients. Here, we review studies describing Stx-induced innate immune responses that may be associated with tissue damage, inflammation, and complement activation. We speculate on how these processes may contribute to immunopathological responses to the toxins.
Collapse
Affiliation(s)
- Moo-Seung Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Daejeon 34141, Korea.
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 127 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea.
| | - Vernon L Tesh
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
57
|
Shiga Toxin Type 1a (Stx1a) Reduces the Toxicity of the More Potent Stx2a In Vivo and In Vitro. Infect Immun 2019; 87:IAI.00787-18. [PMID: 30670557 DOI: 10.1128/iai.00787-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/10/2019] [Indexed: 12/17/2022] Open
Abstract
Shiga toxin (Stx)-producing Escherichia coli (STEC) causes foodborne outbreaks of bloody diarrhea. There are two major types of immunologically distinct Stxs: Stx1a and Stx2a. Stx1a is more cytotoxic to Vero cells than Stx2a, but Stx2a has a lower 50% lethal dose (LD50) in mice. Epidemiological data suggest that infections by STEC strains that produce only Stx2a progress more often to a life-threatening sequela of infection called hemolytic-uremic syndrome (HUS) than isolates that make Stx1a only or produce both Stx1a and Stx2a. In this study, we found that an E. coli O26:H11 strain that produces both Stx1a and Stx2a was virulent in streptomycin- and ciprofloxacin-treated mice and that mice were protected by administration of an anti-Stx2 antibody. However, we discovered that in the absence of ciprofloxacin, neutralization of Stx1a enhanced the virulence of the strain, a result that corroborated our previous finding that Stx1a reduces the toxicity of Stx2a by the oral route. We further found that intraperitoneal administration of the purified Stx1a B subunit delayed the mean time to death of mice intoxicated with Stx2a and reduced the cytotoxic effect of Stx2a on Vero cells. Taken together, our data suggest that Stx1a reduces both the pathogenicity of Stx2 in vivo and cytotoxicity in vitro.
Collapse
|
58
|
Tian S, Muneeruddin K, Choi MY, Tao L, Bhuiyan RH, Ohmi Y, Furukawa K, Furukawa K, Boland S, Shaffer SA, Adam RM, Dong M. Genome-wide CRISPR screens for Shiga toxins and ricin reveal Golgi proteins critical for glycosylation. PLoS Biol 2018; 16:e2006951. [PMID: 30481169 PMCID: PMC6258472 DOI: 10.1371/journal.pbio.2006951] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/02/2018] [Indexed: 12/15/2022] Open
Abstract
Glycosylation is a fundamental modification of proteins and membrane lipids. Toxins that utilize glycans as their receptors have served as powerful tools to identify key players in glycosylation processes. Here, we carried out Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9-mediated genome-wide loss-of-function screens using two related bacterial toxins, Shiga-like toxins (Stxs) 1 and 2, which use a specific glycolipid, globotriaosylceramide (Gb3), as receptors, and the plant toxin ricin, which recognizes a broad range of glycans. The Stxs screens identified major glycosyltransferases (GTs) and transporters involved in Gb3 biosynthesis, while the ricin screen identified GTs and transporters involved in N-linked protein glycosylation and fucosylation. The screens also identified lysosomal-associated protein transmembrane 4 alpha (LAPTM4A), a poorly characterized four-pass membrane protein, as a factor specifically required for Stxs. Mass spectrometry analysis of glycolipids and their precursors demonstrates that LAPTM4A knockout (KO) cells lack Gb3 biosynthesis. This requirement of LAPTM4A for Gb3 synthesis is not shared by its homolog lysosomal-associated protein transmembrane 4 beta (LAPTM4B), and switching the domains between them determined that the second luminal domain of LAPTM4A is required, potentially acting as a specific "activator" for the GT that synthesizes Gb3. These screens also revealed two Golgi proteins, Transmembrane protein 165 (TMEM165) and Transmembrane 9 superfamily member 2 (TM9SF2), as shared factors required for both Stxs and ricin. TMEM165 KO and TM9SF2 KO cells both showed a reduction in not only Gb3 but also other glycosphingolipids, suggesting that they are required for maintaining proper levels of glycosylation in general in the Golgi. In addition, TM9SF2 KO cells also showed defective endosomal trafficking. These studies reveal key Golgi proteins critical for regulating glycosylation and glycolipid synthesis and provide novel therapeutic targets for blocking Stxs and ricin toxicity.
Collapse
Affiliation(s)
- Songhai Tian
- Department of Urology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Khaja Muneeruddin
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, Massachusetts, United States of America
| | - Mei Yuk Choi
- Division of Genetics, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Liang Tao
- Department of Urology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Robiul H. Bhuiyan
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Matsumoto, Kasugai, Aichi, Japan
| | - Yuhsuke Ohmi
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Matsumoto, Kasugai, Aichi, Japan
| | - Keiko Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Matsumoto, Kasugai, Aichi, Japan
| | - Koichi Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Matsumoto, Kasugai, Aichi, Japan
| | - Sebastian Boland
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Scott A. Shaffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, Massachusetts, United States of America
| | - Rosalyn M. Adam
- Department of Urology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Min Dong
- Department of Urology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
59
|
Matsuoka K, Nishikawa K, Goshu Y, Koyama T, Hatano K, Matsushita T, Watanabe-Takahashi M, Natori Y, Terunuma D. Synthetic construction of sugar-amino acid hybrid polymers involving globotriaose or lactose and evaluation of their biological activities against Shiga toxins produced by Escherichia coli O157:H7. Bioorg Med Chem 2018; 26:5792-5803. [PMID: 30420327 DOI: 10.1016/j.bmc.2018.10.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 01/09/2023]
Abstract
Synthetic assembly of sugar moieties and amino acids in order to create "sugar-amino acid hybrid polymers" was accomplished by means of simple radical polymerization of carbohydrate monomers having an amino acid-modified polymerizable aglycon. Amines derived from globotriaoside and lactoside as glycoepitopes were condensed with known carbobenzyloxy derivatives, including Z-Gly, Z-l-Ala and Z-β-Ala, which had appropriate spacer ability and a chiral center to afford fully protected sugar-amino acid hybrid compounds in good yields. After deprotection followed by acryloylation, the water-soluble glycomonomers were polymerized with or without acrylamide in the presence of a radical initiator in water to give corresponding copolymers and homopolymers, which were shown by SEC analysis to have high molecular weights. Evaluation of the biological activities of the glycopolymers against Shiga toxins (Stxs) was carried out, and the results suggested that glycopolymers having highly clustered globotriaosyl residues had high affinity against Stx2 (KD = 2.7∼4.0 µM) even though other glycopolymers did not show any affinity or showed very weak binding affinity. When Stx1 was used for the same assay, all of the glycopolymers having globotriaosyl residues showed high affinity (KD = 0.30∼1.74 µM). Interestingly, couple of glycopolymers having lactosyl moieties had weaker binding affinity against Stx1. In addition, when cytotoxicity assays were carried out for both Stxs, glycopolymers having highly clustered globotriaosyl residues showed higher affinity than that of the copolymers, and only highly clustered-type glycopolymers displayed neutralization potency against Stx2.
Collapse
Affiliation(s)
- Koji Matsuoka
- Area for Molecular Function, Division of Material Science, Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan; Medical Innovation Research Unit (MiU), Advanced Institute of Innovative Technology (AIIT), Saitama University, Sakura, Saitama 338-8570, Japan.
| | - Kiyotaka Nishikawa
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakotani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Yusuke Goshu
- Area for Molecular Function, Division of Material Science, Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan
| | - Tetsuo Koyama
- Area for Molecular Function, Division of Material Science, Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan
| | - Ken Hatano
- Area for Molecular Function, Division of Material Science, Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan; Medical Innovation Research Unit (MiU), Advanced Institute of Innovative Technology (AIIT), Saitama University, Sakura, Saitama 338-8570, Japan
| | - Takahiko Matsushita
- Area for Molecular Function, Division of Material Science, Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan; Medical Innovation Research Unit (MiU), Advanced Institute of Innovative Technology (AIIT), Saitama University, Sakura, Saitama 338-8570, Japan
| | - Miho Watanabe-Takahashi
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakotani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Yasuhiro Natori
- Department of Health Chemistry, School of Pharmacy, Iwate Medical University, 19-1 Uchimaru, Morioka, Iwate 020-8505, Japan
| | - Daiyo Terunuma
- Area for Molecular Function, Division of Material Science, Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan
| |
Collapse
|
60
|
Cebecauer M, Amaro M, Jurkiewicz P, Sarmento MJ, Šachl R, Cwiklik L, Hof M. Membrane Lipid Nanodomains. Chem Rev 2018; 118:11259-11297. [PMID: 30362705 DOI: 10.1021/acs.chemrev.8b00322] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lipid membranes can spontaneously organize their components into domains of different sizes and properties. The organization of membrane lipids into nanodomains might potentially play a role in vital functions of cells and organisms. Model membranes represent attractive systems to study lipid nanodomains, which cannot be directly addressed in living cells with the currently available methods. This review summarizes the knowledge on lipid nanodomains in model membranes and exposes how their specific character contrasts with large-scale phase separation. The overview on lipid nanodomains in membranes composed of diverse lipids (e.g., zwitterionic and anionic glycerophospholipids, ceramides, glycosphingolipids) and cholesterol aims to evidence the impact of chemical, electrostatic, and geometric properties of lipids on nanodomain formation. Furthermore, the effects of curvature, asymmetry, and ions on membrane nanodomains are shown to be highly relevant aspects that may also modulate lipid nanodomains in cellular membranes. Potential mechanisms responsible for the formation and dynamics of nanodomains are discussed with support from available theories and computational studies. A brief description of current fluorescence techniques and analytical tools that enabled progress in lipid nanodomain studies is also included. Further directions are proposed to successfully extend this research to cells.
Collapse
Affiliation(s)
- Marek Cebecauer
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Mariana Amaro
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Piotr Jurkiewicz
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Maria João Sarmento
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Lukasz Cwiklik
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 3 , 18223 Prague 8 , Czech Republic
| |
Collapse
|
61
|
Kanemaru K, Goto T, Badr HA, Yokoigawa K. Determination of binding affinity of poly-γ-glutamate to Shiga toxin. J Food Biochem 2018. [DOI: 10.1111/jfbc.12538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Kaori Kanemaru
- Graduate School of Integrated Arts and Sciences; Tokushima University, 1-1 Minamijosanjima-cho; Tokushima 770-8502 Japan
- Faculty of Bioscience and Bioindustry; Tokushima University, 2-1 Minamijosanjima-cho; Tokushima , 770-8513 Japan
| | - Tsukie Goto
- Graduate School of Integrated Arts and Sciences; Tokushima University, 1-1 Minamijosanjima-cho; Tokushima 770-8502 Japan
- Department of Science for Human Health; Junior College, Shikoku University, 123-1 Ebisuno, Furukawa, Ojin-cho; Tokushima 771-1192 Japan
| | - Hoida Ali Badr
- Graduate School of Integrated Arts and Sciences; Tokushima University, 1-1 Minamijosanjima-cho; Tokushima 770-8502 Japan
| | - Kumio Yokoigawa
- Graduate School of Integrated Arts and Sciences; Tokushima University, 1-1 Minamijosanjima-cho; Tokushima 770-8502 Japan
- Faculty of Bioscience and Bioindustry; Tokushima University, 2-1 Minamijosanjima-cho; Tokushima , 770-8513 Japan
| |
Collapse
|
62
|
Quan J, Shen FW, Cai H, Zhang YN, Wu H. Galactose-Functionalized Double-Hydrophilic Block Glycopolymers and Their Thermoresponsive Self-Assembly Dynamics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10721-10731. [PMID: 30113172 DOI: 10.1021/acs.langmuir.8b01516] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Glycopolymers with large galactose units are attractive in biological processes because of their ability to selectively recognize lectin proteins. Recently, thermoresponsive double-hydrophilic block glycopolymers (TDHBGs) have been designed, which allow sugar residues to expose or hide via the lower critical solution temperature (LCST)-type phase transition. In this work, we first synthesize a new type of TDHBGs, composed of a thermoresponsive poly(di(ethylene glycol)methyl ether methacrylate) block and a galactose-functionalized, poly(6- O-vinyladipoyl-d-galactose) (POVNG) block. The LCST can be tuned by varying the size of the POVNG block. Then, we have systematically investigated their thermoresponsive self-assembly behavior, using static and dynamic light scattering techniques, combined with transmission electron microscopy (TEM) imaging. It is found that the TDHBGs possess both micellization and LCST-type transition, and there exist strong interactions between them, depending on the concentration and structure of the TDHBGs. It is particularly interesting that for the same type of TDHBGs under different conditions, such interactions result in rich morphologies of the formed micelles (or nanoparticles) such as spheres, hollow spheres, prolate ellipsoids, crystal-like, and so on, thus potentially enriching their biological applications by noting that they are hepatoma-targeting glycopolymers.
Collapse
Affiliation(s)
- Jing Quan
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, and College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Fa-Wei Shen
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, and College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Hao Cai
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, and College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Yi-Na Zhang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, and College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Hua Wu
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences , ETH Zurich , 8093 Zurich , Switzerland
| |
Collapse
|
63
|
Legros N, Pohlentz G, Steil D, Müthing J. Shiga toxin-glycosphingolipid interaction: Status quo of research with focus on primary human brain and kidney endothelial cells. Int J Med Microbiol 2018; 308:1073-1084. [PMID: 30224239 DOI: 10.1016/j.ijmm.2018.09.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/28/2018] [Accepted: 09/06/2018] [Indexed: 12/21/2022] Open
Abstract
Shiga toxin (Stx)-mediated injury of the kidneys and the brain represent the major extraintestinal complications in humans upon infection by enterohemorrhagic Escherichia coli (EHEC). Damage of renal and cerebral endothelial cells is the key event in the pathogenesis of the life-threatening hemolytic uremic syndrome (HUS). Stxs are AB5 toxins and the B-pentamers of the two clinically important Stx subtypes Stx1a and Stx2a preferentially bind to the glycosphingolipid globotriaosylceramide (Gb3Cer, Galα4Galβ4Glcβ1Cer) and to less extent to globotetraosylceramide (Gb4Cer, GalNAcβ3Galα4Galβ4Glcβ1), which are expected to reside in lipid rafts in the plasma membrane of the human endothelium. This review summarizes the current knowledge on the Stx glycosphingolipid receptors and their lipid membrane ensemble in primary human brain microvascular endothelial cells (pHBMECs) and primary human renal glomerular endothelial cells (pHRGECs). Increasing knowledge on the precise initial molecular mechanisms by which Stxs interact with cellular targets will help to develop specific therapeutics and/or preventive measures to combat EHEC-caused diseases.
Collapse
Affiliation(s)
- Nadine Legros
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | | | - Daniel Steil
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany; Interdisciplinary Center for Clinical Research (IZKF), University of Münster, D-48149 Münster, Germany.
| |
Collapse
|
64
|
Lai RC, Lim SK. Membrane lipids define small extracellular vesicle subtypes secreted by mesenchymal stromal cells. J Lipid Res 2018; 60:318-322. [PMID: 30154233 DOI: 10.1194/jlr.r087411] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/07/2018] [Indexed: 12/12/2022] Open
Abstract
The therapeutic efficacy of mesenchymal stromal cells (MSCs), multipotent progenitor cells, is attributed to small (50-200 nm) extracellular vesicles (EVs). The presence of a lipid membrane differentiates exosomes and EVs from other macromolecules. Analysis of this lipid membrane revealed three distinct small MSC EV subtypes, each with a differential affinity for cholera toxin B chain (CTB), annexin V (AV), and Shiga toxin B chain (ST) that bind GM1 ganglioside, phosphatidylserine, and globotriaosylceramide, respectively. Similar EV subtypes are also found in biologic fluids and are independent sources of disease biomarkers. Here, we compare and contrast these three EV subtypes. All subtypes carry β-actin, but only CTB-binding EVs (CTB-EVs) are true exosomes, enriched with exosome proteins and derived from endosomes. No unique protein has been identified yet in AV-binding EVs (AV-EVs); ST-binding EVs (ST-EVs) carry RNA and a high level of extra domain A-containing fibronectin. Based on the CTB, AV, and ST subcellular binding sites, the origins of CTB-, AV-, and ST-EV biogenesis are the plasma membrane, cytoplasm, and nucleus, respectively. The differentiation of EV subtypes through membrane lipids underlies the importance of membrane lipids in defining EVs and implies an influence on EV biology and functions.
Collapse
Affiliation(s)
| | - Sai Kiang Lim
- A*STAR Institute of Medical Biology, S138648 Singapore .,Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore, S119074 Singapore
| |
Collapse
|
65
|
Silva CJ. Food Forensics: Using Mass Spectrometry To Detect Foodborne Protein Contaminants, as Exemplified by Shiga Toxin Variants and Prion Strains. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8435-8450. [PMID: 29860833 DOI: 10.1021/acs.jafc.8b01517] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Food forensicists need a variety of tools to detect the many possible food contaminants. As a result of its analytical flexibility, mass spectrometry is one of those tools. Use of the multiple reaction monitoring (MRM) method expands its use to quantitation as well as detection of infectious proteins (prions) and protein toxins, such as Shiga toxins. The sample processing steps inactivate prions and Shiga toxins; the proteins are digested with proteases to yield peptides suitable for MRM-based analysis. Prions are detected by their distinct physicochemical properties and differential covalent modification. Shiga toxin analysis is based on detecting peptides derived from the five identical binding B subunits comprising the toxin. 15N-labeled internal standards are prepared from cloned proteins. These examples illustrate the power of MRM, in that the same instrument can be used to safely detect and quantitate protein toxins, prions, and small molecules that might contaminate our food.
Collapse
Affiliation(s)
- Christopher J Silva
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service , United States Department of Agriculture , Albany , California 94710 , United States
| |
Collapse
|
66
|
The Chlamydia trachomatis PmpD adhesin forms higher order structures through disulphide-mediated covalent interactions. PLoS One 2018; 13:e0198662. [PMID: 29912892 PMCID: PMC6005502 DOI: 10.1371/journal.pone.0198662] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/23/2018] [Indexed: 12/27/2022] Open
Abstract
Chlamydia trachomatis (Ct) is the most common sexually transmitted bacterial pathogen, and the leading cause of infectious blindness worldwide. We have recently shown that immunization with the highly conserved antigenic passenger domain of recombinant Ct polymorphic membrane protein D (rPmpD) is protective in the mouse model of Ct genital tract infection, and previously, that ocular anti-rPmpD antibodies are elicited following vaccination. However, the mechanisms governing the assembly and structure-function relationship of PmpD are unknown. Here, we provide a biophysical analysis of this immunogenic 65 kDa passenger domain fragment of PmpD. Using differential cysteine labeling coupled with LC-MS/MS analysis, we show that widespread intra- and intermolecular disulphide interactions play important roles in the preservation of native monomeric secondary structure and the formation of higher-order oligomers. While it has been proposed that FxxN and GGA(I, L,V) repeat motifs in the Pmp21 ortholog in Chlamydia pneumoniae mediate self-interaction, no such role has previously been identified for cysteine residues in chlamydial Pmps. Further characterisation reveals that oligomeric proteoforms and rPmpD monomers adopt β-sheet folds, consistent with previously described Gram-negative bacterial type V secretion systems (T5SSs). We also highlight adhesin-like properties of rPmpD, showing that both soluble rPmpD and anti-rPmpD serum from immunized mice abrogate binding of rPmpD-coated beads to mammalian cells in a dose-dependent fashion. Hence, our study provides further evidence that chlamydial Pmps may function as adhesins, while elucidating yet another important mechanism of self-association of bacterial T5SS virulence factors that may be unique to the Chlamydiaceae.
Collapse
|
67
|
Sengupta D, Prasanna X, Mohole M, Chattopadhyay A. Exploring GPCR–Lipid Interactions by Molecular Dynamics Simulations: Excitements, Challenges, and the Way Forward. J Phys Chem B 2018; 122:5727-5737. [DOI: 10.1021/acs.jpcb.8b01657] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Durba Sengupta
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
- Academy of Scientific and Innovative Research, Sector 19, Kamla Nehru Nagar, Ghaziabad 201 002, India
| | - Xavier Prasanna
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
| | - Madhura Mohole
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
- Academy of Scientific and Innovative Research, Sector 19, Kamla Nehru Nagar, Ghaziabad 201 002, India
| | | |
Collapse
|
68
|
Zuverink M, Barbieri JT. Protein Toxins That Utilize Gangliosides as Host Receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 156:325-354. [PMID: 29747819 DOI: 10.1016/bs.pmbts.2017.11.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Subsets of protein toxins utilize gangliosides as host receptors. Gangliosides are preferred receptors due to their extracellular localization on the eukaryotic cell and due to their essential nature in host physiology. Glycosphingolipids, including gangliosides, are mediators of signal transduction within and between eukaryotic cells. Protein toxins possess AB structure-function organization, where the A domain encodes a catalytic function for the posttranslational modification of a host macromolecule, including proteins and nucleic acids, and a B domain, which encodes host receptor recognition, including proteins and glycosphingolipids, alone or in combination. Protein toxins use similar strategies to bind glycans by pockets and loops, generally employing hydrogen bonding and aromatic stacking to stabilize interactions with sugars. In some cases, glycan binding facilitates uptake, while in other cases, cross-linking or a second receptor is necessary to stimulate entry. The affinity that protein toxins have for host glycans is necessary for tissue targeting, but not always sufficient to cause disease. In addition to affinity for binding the glycan, the lipid moiety also plays an important role in productive uptake and tissue tropism. Upon endocytosis, the protein toxin must escape to another intracellular compartment or into cytosol to modify a host substrate, modulating host signaling, often resulting in cytotoxic or apoptotic events in the cell, and a unique morbidity for the organism. The study of protein toxins that utilize gangliosides as host receptors has illuminated numerous eukaryotic cellular processes, identified the basis for developing interventions to prevent disease through vaccines and control bacterial diseases through therapies. In addition, subsets of these protein toxins have been utilized as therapeutic agents to treat numerous human inflictions.
Collapse
|
69
|
Yıldız S, Demirkan F. What is the evidence for the role of therapeutic apheresis in the management of complement-associated thrombotic microangiopathies? Transfus Apher Sci 2018; 57:31-34. [PMID: 29506907 DOI: 10.1016/j.transci.2018.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Thrombotic microangiopathies (TMAs) are disorders characterized by endothelial cell activation, microangiopathic hemolytic anemia, thrombocytopenia and organ failure of variable intensity. The pathophysiology of various types of TMAs have become an interesting field of study. Alternative complement system activation plays an important role in several pathophysiological conditions. Complement activation is also described in an increasing number of TMAs. Inherited defects in complement regulatory genes and acquired autoantibodies against complement regulatory proteins have been described. Atypical hemolytic uremic synrome (HUS) is caused by uncontrolled activation of the alternative complement system, now called complement-mediated TMAs. Recently, application of a monoclonal antibody that specifically binds to C5 became available to treat patients with complement-mediated TMAs. Eculizumab is a humanized monoclonal antibody that blocks complement C5 activation. Empiric therapeutic apheresis is also recommended in all forms of complement-mediated TMAs. The justification for therapeutic apheresis use in all forms of complement-mediated TMAs is that it can effectively remove the autoantibodies or mutated circulating complement regulators while replacing absent or defective complement regulators. Currently, therapeutic apheresis and eculizumab are the available treatment options for complement-mediated TMAs. In this paper, we review the evidence for the role of therapeutic apheresis in the management of complement-associated TMAs.
Collapse
Affiliation(s)
- Serkan Yıldız
- Dokuz Eylul University, Division of Nephrology, Department of Internal Medicine, Izmir, Turkey
| | - Fatih Demirkan
- Dokuz Eylul University, Division of Hematology, Department of Internal Medicine, 35340, Inciralti, Izmir, Turkey.
| |
Collapse
|
70
|
Luginbuehl V, Meier N, Kovar K, Rohrer J. Intracellular drug delivery: Potential usefulness of engineered Shiga toxin subunit B for targeted cancer therapy. Biotechnol Adv 2018; 36:613-623. [PMID: 29432805 DOI: 10.1016/j.biotechadv.2018.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/30/2018] [Accepted: 02/05/2018] [Indexed: 12/15/2022]
Abstract
A treasure trove of intracellular cancer drug targets remains hidden behind cell membranes. However, engineered pathogen-derived toxins such as Shiga toxins can deliver small or macromolecular drugs to specific intracellular organelles. After binding to ganglioglobotriaosylceramide (Gb3, CD77), the non-toxic subunit B (StxB) of the Shiga-holotoxin is endocytosed and delivers its payload by a unique retrograde trafficking pathway via the endoplasmic reticulum to the cytosol. This review provides an overview of biomedical applications of StxB-based drug delivery systems in targeted cancer diagnosis and therapy. Biotechnological production of the Stx-material is discussed from the perspective of developing efficacious and safe therapeutics.
Collapse
Affiliation(s)
- Vera Luginbuehl
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Grueental, P.O.X. 335, CH-8820 Waedenswil, Switzerland
| | - Nicolas Meier
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Grueental, P.O.X. 335, CH-8820 Waedenswil, Switzerland
| | - Karin Kovar
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Grueental, P.O.X. 335, CH-8820 Waedenswil, Switzerland
| | - Jack Rohrer
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Grueental, P.O.X. 335, CH-8820 Waedenswil, Switzerland.
| |
Collapse
|
71
|
Villringer S, Madl J, Sych T, Manner C, Imberty A, Römer W. Lectin-mediated protocell crosslinking to mimic cell-cell junctions and adhesion. Sci Rep 2018; 8:1932. [PMID: 29386533 PMCID: PMC5792463 DOI: 10.1038/s41598-018-20230-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/16/2018] [Indexed: 02/06/2023] Open
Abstract
Cell adhesion is a crucial feature of all multicellular organisms, as it allows cells to organise themselves into tissues to carry out specific functions. Here, we present a mimetic approach that uses multivalent lectins with opposing binding sites to crosslink glycan-functionalised giant unilamellar vesicles. The crosslinking process drives the progression from contact puncta into elongated protocellular junctions, which form the vesicles into polygonal clusters resembling tissues. Due to their carbohydrate specificity, different lectins can be engaged in parallel with both natural and synthetic glycoconjugates to generate complex interfaces with distinct lectin domains. In addition, the formation of protocellular junctions can be combined with adhesion to a functionalised support by other ligand-receptor interactions to render increased stability against fluid flow. Furthermore, we consider that adhesion is a complex process of attraction and repulsion by doping the vesicles with a PEG-modified lipid, and demonstrate a dose-dependent decrease of lectin binding and formation of protocellular junctions. We suggest that the engineering of prototissues through lectin-glycan interactions is an important step towards synthetic minimal tissues and in designing artificial systems to reconstruct the fundamental functions of biology.
Collapse
Affiliation(s)
- Sarah Villringer
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- Bioss - Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
| | - Josef Madl
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany.
- Bioss - Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany.
| | - Taras Sych
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- Bioss - Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technology (FIT), Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 67401, Illkirch Cedex, France
| | - Christina Manner
- Bioss - Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Focal Area of Infection Biology, Biozentrum, University of Basel, 4056, Basel, Switzerland
| | - Anne Imberty
- CNRS, CERMAV, Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Winfried Römer
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany.
- Bioss - Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany.
- Freiburg Center for Interactive Materials and Bioinspired Technology (FIT), Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany.
| |
Collapse
|
72
|
Chiricozzi E, Loberto N, Schiumarini D, Samarani M, Mancini G, Tamanini A, Lippi G, Dechecchi MC, Bassi R, Giussani P, Aureli M. Sphingolipids role in the regulation of inflammatory response: From leukocyte biology to bacterial infection. J Leukoc Biol 2018; 103:445-456. [PMID: 29345379 DOI: 10.1002/jlb.3mr0717-269r] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 10/13/2017] [Accepted: 11/07/2017] [Indexed: 12/14/2022] Open
Abstract
Sphingolipids (SLs) are amphiphilic molecules mainly associated with the external leaflet of eukaryotic plasma membrane, and are structural membrane components with key signaling properties. Since the beginning of the last century, a large number of papers described the involvement of these molecules in several aspects of cell physiology and pathology. Several lines of evidence support the critical role of SLs in inflammatory diseases, by acting as anti- or pro-inflammatory mediators. They are involved in control of leukocyte activation and migration, and are recognized as essential players in host response to pathogenic infection. We propose here a critical overview of current knowledge on involvement of different classes of SLs in inflammation, focusing on the role of simple and complex SLs in pathogen-mediated inflammatory response.
Collapse
Affiliation(s)
- Elena Chiricozzi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Nicoletta Loberto
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Domitilla Schiumarini
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Maura Samarani
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Giulia Mancini
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Anna Tamanini
- Laboratorio di Patologia Molecolare-Laboratorio Analisi, Dipartimento di Patologia e Diagnostica, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Giuseppe Lippi
- Sezione di Biochimica Clinica, Università degli Studi di Verona, Verona, Italy
| | - Maria Cristina Dechecchi
- Laboratorio di Patologia Molecolare-Laboratorio Analisi, Dipartimento di Patologia e Diagnostica, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Rosaria Bassi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Paola Giussani
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Massimo Aureli
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
73
|
Teske N, Sibold J, Schumacher J, Teiwes NK, Gleisner M, Mey I, Steinem C. Continuous Pore-Spanning Lipid Bilayers on Silicon Oxide-Coated Porous Substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:14175-14183. [PMID: 29148811 DOI: 10.1021/acs.langmuir.7b02727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A number of techniques has been developed and analyzed in recent years to generate pore-spanning membranes (PSMs). While quite a number of methods rely on nanoporous substrates, only a few use micrometer-sized pores to be able to individually resolve suspending membranes by means of fluorescence microscopy. To be able to produce PSMs on pores that are micrometer in size, an orthogonal functionalization strategy resulting in a hydrophilic surface is highly desirable. Here, we report on a method to prepare PSMs based on the evaporation of a thin layer of silicon monoxide on top of the porous substrate. PM-IRRAS experiments demonstrate that the final surface is composed of SiOx with 1 < x < 2. The hydrophilic surface turned out to be well suited to spread giant unilamellar vesicles forming PSMs. As the method does not rely on a gold coating as frequently used for orthogonal functionalization, fluorescence micrographs provide information not only from the freestanding membrane areas but also from the supported ones. The observation of the entire PSM area enabled us to observe phase-separation in these membranes on the freestanding and supported parts as well as protein binding and possible lipid reorganization of the membranes induced by binding of the protein Shiga toxin.
Collapse
Affiliation(s)
- Nelli Teske
- Institute of Organic and Biomolecular Chemistry, University of Göttingen , Tammannstraße 2, 37077 Göttingen, Germany
| | - Jeremias Sibold
- Institute of Organic and Biomolecular Chemistry, University of Göttingen , Tammannstraße 2, 37077 Göttingen, Germany
| | - Johannes Schumacher
- Institute of Organic and Biomolecular Chemistry, University of Göttingen , Tammannstraße 2, 37077 Göttingen, Germany
| | - Nikolas K Teiwes
- Institute of Organic and Biomolecular Chemistry, University of Göttingen , Tammannstraße 2, 37077 Göttingen, Germany
| | - Martin Gleisner
- Institute of Organic and Biomolecular Chemistry, University of Göttingen , Tammannstraße 2, 37077 Göttingen, Germany
| | - Ingo Mey
- Institute of Organic and Biomolecular Chemistry, University of Göttingen , Tammannstraße 2, 37077 Göttingen, Germany
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, University of Göttingen , Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
74
|
Johannes L. Shiga Toxin-A Model for Glycolipid-Dependent and Lectin-Driven Endocytosis. Toxins (Basel) 2017; 9:toxins9110340. [PMID: 29068384 PMCID: PMC5705955 DOI: 10.3390/toxins9110340] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/15/2017] [Accepted: 10/20/2017] [Indexed: 12/27/2022] Open
Abstract
The cellular entry of the bacterial Shiga toxin and the related verotoxins has been scrutinized in quite some detail. This is due to their importance as a threat to human health. At the same time, the study of Shiga toxin has allowed the discovery of novel molecular mechanisms that also apply to the intracellular trafficking of endogenous proteins at the plasma membrane and in the endosomal system. In this review, the individual steps that lead to Shiga toxin uptake into cells will first be presented from a purely mechanistic perspective. Membrane-biological concepts will be highlighted that are often still poorly explored, such as fluctuation force-driven clustering, clathrin-independent membrane curvature generation, friction-driven scission, and retrograde sorting on early endosomes. It will then be explored whether and how these also apply to other pathogens, pathogenic factors, and cellular proteins. The molecular nature of Shiga toxin as a carbohydrate-binding protein and that of its cellular receptor as a glycosylated raft lipid will be an underlying theme in this discussion. It will thereby be illustrated how the study of Shiga toxin has led to the proposal of the GlycoLipid-Lectin (GL-Lect) hypothesis on the generation of endocytic pits in processes of clathrin-independent endocytosis.
Collapse
Affiliation(s)
- Ludger Johannes
- Cellular and Chemical Biology Department, Institut Curie, PSL Research University, U1143 INSERM, UMR3666 CNRS, 26 rue d'Ulm, 75248 Paris CEDEX 05, France.
| |
Collapse
|
75
|
Patalag LJ, Sibold J, Schütte OM, Steinem C, Werz DB. Gb 3 Glycosphingolipids with Fluorescent Oligoene Fatty Acids: Synthesis and Phase Behavior in Model Membranes. Chembiochem 2017; 18:2171-2178. [PMID: 28941080 DOI: 10.1002/cbic.201700414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Indexed: 12/11/2022]
Abstract
Glycosphingolipids are involved in a number of physiological and pathophysiological processes, and they serve as receptors for a variety of bacterial toxins and viruses. To investigate their function in lipid membranes, fluorescently labeled glycosphingolipids are highly desirable. Herein, a synthetic route to access Gb3 glycosphingolipids with fluorescently labeled fatty acids, consisting of pentaene and hexaene moieties either at the terminus or in the middle of the acyl chain, has been developed. The fluorescent properties of the Gb3 derivatives were investigated in small unilamellar vesicles composed of a raft-like mixture. Phase-separated giant unilamellar vesicles (GUVs) allowed the quantification of the apparent partitioning coefficients of the Gb3 compounds by means of confocal fluorescence laser scanning microscopy. The determined partition coefficients demonstrate that the Gb3 derivatives are preferentially localized in the liquid-disordered (ld ) phase. To analyze whether the compounds behave like their physiological counterparts, Cy3-labeled (Cy: cyanine) Shiga toxin B subunits (STxB) were specifically bound to Gb3 -doped GUVs. However, the protein was favorably localized in the ld phase, in contrast to results reported for STxB bound to naturally occurring Gb3 , which is discussed in terms of the packing density of the lipids in the liquid-ordered (lo ) phase.
Collapse
Affiliation(s)
- Lukas J Patalag
- TU Braunschweig, Institut für Organische Chemie, Hagenring 30, 38106, Braunschweig, Germany
| | - Jeremias Sibold
- Georg-August-Universität Göttingen, Institut für Organische und Biomolekulare Chemie, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Ole M Schütte
- Georg-August-Universität Göttingen, Institut für Organische und Biomolekulare Chemie, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Claudia Steinem
- Georg-August-Universität Göttingen, Institut für Organische und Biomolekulare Chemie, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Daniel B Werz
- TU Braunschweig, Institut für Organische Chemie, Hagenring 30, 38106, Braunschweig, Germany
| |
Collapse
|
76
|
Hall G, Kurosawa S, Stearns-Kurosawa DJ. Shiga Toxin Therapeutics: Beyond Neutralization. Toxins (Basel) 2017; 9:toxins9090291. [PMID: 28925976 PMCID: PMC5618224 DOI: 10.3390/toxins9090291] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/15/2017] [Accepted: 09/15/2017] [Indexed: 01/04/2023] Open
Abstract
Ribotoxic Shiga toxins are the primary cause of hemolytic uremic syndrome (HUS) in patients infected with Shiga toxin-producing enterohemorrhagic Escherichia coli (STEC), a pathogen class responsible for epidemic outbreaks of gastrointestinal disease around the globe. HUS is a leading cause of pediatric renal failure in otherwise healthy children, resulting in a mortality rate of 10% and a chronic morbidity rate near 25%. There are currently no available therapeutics to prevent or treat HUS in STEC patients despite decades of work elucidating the mechanisms of Shiga toxicity in sensitive cells. The preclinical development of toxin-targeted HUS therapies has been hindered by the sporadic, geographically dispersed nature of STEC outbreaks with HUS cases and the limited financial incentive for the commercial development of therapies for an acute disease with an inconsistent patient population. The following review considers potential therapeutic targeting of the downstream cellular impacts of Shiga toxicity, which include the unfolded protein response (UPR) and the ribotoxic stress response (RSR). Outcomes of the UPR and RSR are relevant to other diseases with large global incidence and prevalence rates, thus reducing barriers to the development of commercial drugs that could improve STEC and HUS patient outcomes.
Collapse
Affiliation(s)
- Gregory Hall
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Shinichiro Kurosawa
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Deborah J Stearns-Kurosawa
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
77
|
Bekier ME, Wang L, Li J, Huang H, Tang D, Zhang X, Wang Y. Knockout of the Golgi stacking proteins GRASP55 and GRASP65 impairs Golgi structure and function. Mol Biol Cell 2017; 28:2833-2842. [PMID: 28814501 PMCID: PMC5638586 DOI: 10.1091/mbc.e17-02-0112] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 08/07/2017] [Accepted: 08/09/2017] [Indexed: 11/24/2022] Open
Abstract
GRASP55 and GRASP65 were knocked out, and it was found that double knockout of GRASP proteins disperses the Golgi stack into single cisternae and tubulovesicular structures, accelerates protein trafficking, and impairs accurate glycosylation of proteins and lipids. Golgi reassembly stacking protein of 65 kDa (GRASP65) and Golgi reassembly stacking protein of 55 kDa (GRASP55) were originally identified as Golgi stacking proteins; however, subsequent GRASP knockdown experiments yielded inconsistent results with respect to the Golgi structure, indicating a limitation of RNAi-based depletion. In this study, we have applied the recently developed clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology to knock out GRASP55 and GRASP65, individually or in combination, in HeLa and HEK293 cells. We show that double knockout of GRASP proteins disperses the Golgi stack into single cisternae and tubulovesicular structures, accelerates protein trafficking, and impairs accurate glycosylation of proteins and lipids. These results demonstrate a critical role for GRASPs in maintaining the stacked structure of the Golgi, which is required for accurate posttranslational modifications in the Golgi. Additionally, the GRASP knockout cell lines developed in this study will be useful tools for studying the role of GRASP proteins in other important cellular processes.
Collapse
Affiliation(s)
- Michael E Bekier
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048
| | - Leibin Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048
| | - Jie Li
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048
| | - Haoran Huang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048
| | - Danming Tang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048
| | - Xiaoyan Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048 .,Department of Neurology, School of Medicine, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
78
|
Lapadula WJ, Ayub MJ. Ribosome Inactivating Proteins from an evolutionary perspective. Toxicon 2017; 136:6-14. [PMID: 28651991 DOI: 10.1016/j.toxicon.2017.06.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 01/13/2023]
Abstract
Ribosome Inactivating Proteins (RIPs) are rRNA N-glycosidases that inhibit protein synthesis through the elimination of a single adenine residue from 28S rRNA. Many of these toxins have been characterized in depth from a biochemical and molecular point of view. In addition, their potential use in medicine as highly selective toxins is being explored. In contrast, the evolutionary history of RIP encoding genes has remained traditionally underexplored. In recent years, accumulation of large genomic data has fueled research on this issue and revealed unexpected information about the origin and evolution of RIP toxins. In this review we summarize the current evidence available on the occurrence of different evolutionary mechanisms (gene duplication and losses, horizontal gene transfer, synthesis de novo and domain combination) involved in the evolution of the RIP gene family. Finally, we propose a revised nomenclature for RIP genes based on their evolutionary history.
Collapse
Affiliation(s)
- Walter Jesús Lapadula
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis, IMIBIO-SL-CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina.
| | - Maximiliano Juri Ayub
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis, IMIBIO-SL-CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina.
| |
Collapse
|
79
|
|
80
|
Jans A, Rosencrantz RR, Mandić AD, Anwar N, Boesveld S, Trautwein C, Moeller M, Sellge G, Elling L, Kuehne AJC. Glycan-Functionalized Microgels for Scavenging and Specific Binding of Lectins. Biomacromolecules 2017; 18:1460-1465. [PMID: 28257575 DOI: 10.1021/acs.biomac.6b01754] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lectins are proteins with a well-defined carbohydrate recognition domain. Many microbial proteins such as bacterial toxins possess lectin or lectin-like binding domains to interact with cell membranes that are decorated with glycan recognition motifs. We report a straightforward way to prepare monodisperse and biocompatible polyethylene glycol microgels, which carry glycan motifs for specific binding to lectins. The sugar-functionalized colloids exhibit a wide mesh size and a highly accessible volume. The microgels are prepared via drop-based microfluidics combined with radical polymerization. GSII and ECL are used as model lectins that bind specifically to the corresponding carbohydrates, namely, GlcNAc and LacNAc. LacNAc microgels bind ECL with a high capacity and high affinity (Kd ≈ 0.5 to 1 μM), suggesting multivalent binding of the lectin to the LacNAc-decorated flexible microgel network. Glycan-functionalized microgels present a useful tool for lectin scavenging in biomedical applications.
Collapse
Affiliation(s)
- Alexander Jans
- DWI - Leibniz Institute for Interactive Materials, RWTH Aachen University , Forckenbeckstraße 50, 52076 Aachen, Germany
| | - Ruben R Rosencrantz
- Laboratory for Biomaterials Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University , Pauwelsstr. 20, 52074 Aachen, Germany
| | - Ana D Mandić
- Department of Internal Medicine III, University Hospital, RWTH Aachen University , Pauwelsstr. 30, 52074 Aachen, Germany
| | - Naveed Anwar
- DWI - Leibniz Institute for Interactive Materials, RWTH Aachen University , Forckenbeckstraße 50, 52076 Aachen, Germany
| | - Sarah Boesveld
- Department of Internal Medicine III, University Hospital, RWTH Aachen University , Pauwelsstr. 30, 52074 Aachen, Germany
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital, RWTH Aachen University , Pauwelsstr. 30, 52074 Aachen, Germany
| | - Martin Moeller
- DWI - Leibniz Institute for Interactive Materials, RWTH Aachen University , Forckenbeckstraße 50, 52076 Aachen, Germany
| | - Gernot Sellge
- Department of Internal Medicine III, University Hospital, RWTH Aachen University , Pauwelsstr. 30, 52074 Aachen, Germany
| | - Lothar Elling
- Laboratory for Biomaterials Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University , Pauwelsstr. 20, 52074 Aachen, Germany
| | - Alexander J C Kuehne
- DWI - Leibniz Institute for Interactive Materials, RWTH Aachen University , Forckenbeckstraße 50, 52076 Aachen, Germany
| |
Collapse
|
81
|
Altered (neo-) lacto series glycolipid biosynthesis impairs α2-6 sialylation on N-glycoproteins in ovarian cancer cells. Sci Rep 2017; 7:45367. [PMID: 28358117 PMCID: PMC5371825 DOI: 10.1038/srep45367] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/15/2017] [Indexed: 12/16/2022] Open
Abstract
The (neo-) lacto series glycosphingolipids (nsGSLs) comprise of glycan epitopes that are present as blood group antigens, act as primary receptors for human pathogens and are also increasingly associated with malignant diseases. Beta-1, 3-N-acetyl-glucosaminyl-transferase 5 (B3GNT5) is suggested as the key glycosyltransferase for the biosynthesis of nsGSLs. In this study, we investigated the impact of CRISPR-Cas9 -mediated gene disruption of B3GNT5 (∆B3GNT5) on the expression of glycosphingolipids and N-glycoproteins by utilizing immunostaining and glycomics-based PGC-UHPLC-ESI-QTOF-MS/MS profiling. ∆B3GNT5 cells lost nsGSL expression coinciding with reduction of α2-6 sialylation on N-glycoproteins. In contrast, disruption of B4GALNT1, a glycosyltransferase for ganglio series GSLs did not affect α2-6 sialylation on N-glycoproteins. We further profiled all known
α2-6 sialyltransferase-encoding genes and showed that the loss of α2-6 sialylation is due to silencing of ST6GAL1 expression in ∆B3GNT5 cells. These results demonstrate that nsGSLs are part of a complex network affecting N-glycosylation in ovarian cancer cells.
Collapse
|
82
|
Kavaliauskiene S, Dyve Lingelem AB, Skotland T, Sandvig K. Protection against Shiga Toxins. Toxins (Basel) 2017; 9:E44. [PMID: 28165371 PMCID: PMC5331424 DOI: 10.3390/toxins9020044] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 12/12/2022] Open
Abstract
Shiga toxins consist of an A-moiety and five B-moieties able to bind the neutral glycosphingolipid globotriaosylceramide (Gb3) on the cell surface. To intoxicate cells efficiently, the toxin A-moiety has to be cleaved by furin and transported retrogradely to the Golgi apparatus and to the endoplasmic reticulum. The enzymatically active part of the A-moiety is then translocated to the cytosol, where it inhibits protein synthesis and in some cell types induces apoptosis. Protection of cells can be provided either by inhibiting binding of the toxin to cells or by interfering with any of the subsequent steps required for its toxic effect. In this article we provide a brief overview of the interaction of Shiga toxins with cells, describe some compounds and conditions found to protect cells against Shiga toxins, and discuss whether they might also provide protection in animals and humans.
Collapse
Affiliation(s)
- Simona Kavaliauskiene
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, N-0379 Oslo, Norway.
- Center for Cancer Biomedicine, Faculty of Medicine, Oslo University Hospital, N-0379 Oslo, Norway.
| | - Anne Berit Dyve Lingelem
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, N-0379 Oslo, Norway.
- Center for Cancer Biomedicine, Faculty of Medicine, Oslo University Hospital, N-0379 Oslo, Norway.
| | - Tore Skotland
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, N-0379 Oslo, Norway.
- Center for Cancer Biomedicine, Faculty of Medicine, Oslo University Hospital, N-0379 Oslo, Norway.
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, N-0379 Oslo, Norway.
- Center for Cancer Biomedicine, Faculty of Medicine, Oslo University Hospital, N-0379 Oslo, Norway.
- Department of Biosciences, University of Oslo, N-0316 Oslo, Norway.
| |
Collapse
|
83
|
Zhang P, Paszkiewicz E, Wang Q, Sadowska JM, Kitov PI, Bundle DR, Ling CC. Clustering of PK-trisaccharides on amphiphilic cyclodextrin reveals unprecedented affinity for the Shiga-like toxin Stx2. Chem Commun (Camb) 2017; 53:10528-10531. [DOI: 10.1039/c7cc06299k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Amphiphilic cyclodextrin-based PK-glycoarrays show remarkable binding avidity and selectivity for Stx2 in solid phase assay formats.
Collapse
Affiliation(s)
- Ping Zhang
- Alberta Glycomics Centre
- Department of Chemistry
- University of Calgary
- Calgary
- T2N 1N4 Canada
| | - Eugenia Paszkiewicz
- Alberta Glycomics Centre
- Department of Chemistry
- University of Alberta
- Edmonton
- T6G 2G2 Canada
| | - Qifang Wang
- Alberta Glycomics Centre
- Department of Chemistry
- University of Calgary
- Calgary
- T2N 1N4 Canada
| | - Joanna M. Sadowska
- Alberta Glycomics Centre
- Department of Chemistry
- University of Alberta
- Edmonton
- T6G 2G2 Canada
| | - Pavel I. Kitov
- Alberta Glycomics Centre
- Department of Chemistry
- University of Alberta
- Edmonton
- T6G 2G2 Canada
| | - David R. Bundle
- Alberta Glycomics Centre
- Department of Chemistry
- University of Alberta
- Edmonton
- T6G 2G2 Canada
| | - Chang-Chun Ling
- Alberta Glycomics Centre
- Department of Chemistry
- University of Calgary
- Calgary
- T2N 1N4 Canada
| |
Collapse
|
84
|
Abstract
Molecular replacement is a method for solving the crystallographic phase problem using an atomic model for the target structure. State-of-the-art methods have moved the field significantly from when it was first envisaged as a method for solving cases of high homology and completeness between a model and target structure. Improvements brought about by application of maximum likelihood statistics mean that various errors in the model and pathologies in the data can be accounted for, so that cases hitherto thought to be intractable are standardly solvable. As a result, molecular replacement phasing now accounts for the lion's share of structures deposited in the Protein Data Bank. However, there will always be cases at the fringes of solvability. I discuss here the approaches that will help tackle challenging molecular replacement cases.
Collapse
Affiliation(s)
- Airlie J McCoy
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK.
| |
Collapse
|
85
|
Müller SK, Wilhelm I, Schubert T, Zittlau K, Imberty A, Madl J, Eierhoff T, Thuenauer R, Römer W. Gb3-binding lectins as potential carriers for transcellular drug delivery. Expert Opin Drug Deliv 2016; 14:141-153. [PMID: 27935765 DOI: 10.1080/17425247.2017.1266327] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVES Epithelial cell layers as well as endothelia forming the blood-brain barrier can drastically reduce the efficiency of drug targeting. Our goal was to investigate lectins recognizing the glycosphingolipid globotriaosylceramide (Gb3) for their potential as carriers for transcytotic drug delivery. METHODS We utilized an in vitro model based on Madin-Darby canine kidney cells transfected with Gb3 synthase to characterize transcytosis of the Gb3-binding lectins LecA from Pseudomonas aeruginosa and the B-subunit of Shiga toxin (StxB). RESULTS Both lectins were rapidly transcytosed from the apical to the basolateral plasma membrane and vice versa. Whereas StxB proceeded on retrograde and transcytotic routes, LecA avoided retrograde transport. This differential trafficking could be explained by our observation that LecA and StxB segregated into different domains during endocytosis. Furthermore, inhibiting the small GTPase Rab11a, which organizes trafficking through apical recycling endosomes, blocked basolateral to apical transcytosis of both lectins. CONCLUSIONS Gb3-binding lectins are promising candidates for transcytotic drug delivery. Our findings highlight that LecA and StxB, which both bind Gb3 but exhibit dissimilar valence and molecular structures of their carbohydrate binding sites and can take divergent intracellular trafficking routes. This opens up the possibility of developing tailor-made glycosphingolipid-binding carrier lectins, which take optimized trafficking pathways.
Collapse
Affiliation(s)
- Stefan K Müller
- a Faculty of Biology , Albert-Ludwigs-University Freiburg , Freiburg , Germany.,b BIOSS - Centre for Biological Signalling Studies , Albert-Ludwigs-University Freiburg , Freiburg , Germany
| | - Isabel Wilhelm
- a Faculty of Biology , Albert-Ludwigs-University Freiburg , Freiburg , Germany.,b BIOSS - Centre for Biological Signalling Studies , Albert-Ludwigs-University Freiburg , Freiburg , Germany.,c Spemann Graduate School of Biology and Medicine , Albert-Ludwigs University of Freiburg , Freiburg , Germany
| | - Thomas Schubert
- a Faculty of Biology , Albert-Ludwigs-University Freiburg , Freiburg , Germany.,b BIOSS - Centre for Biological Signalling Studies , Albert-Ludwigs-University Freiburg , Freiburg , Germany
| | - Katharina Zittlau
- a Faculty of Biology , Albert-Ludwigs-University Freiburg , Freiburg , Germany.,b BIOSS - Centre for Biological Signalling Studies , Albert-Ludwigs-University Freiburg , Freiburg , Germany
| | - Anne Imberty
- d Centre de Recherches sur les Macromolécules Végétales, UPR5301 , CNRS and Université Grenoble Alpes , Grenoble , France
| | - Josef Madl
- a Faculty of Biology , Albert-Ludwigs-University Freiburg , Freiburg , Germany.,b BIOSS - Centre for Biological Signalling Studies , Albert-Ludwigs-University Freiburg , Freiburg , Germany.,c Spemann Graduate School of Biology and Medicine , Albert-Ludwigs University of Freiburg , Freiburg , Germany
| | - Thorsten Eierhoff
- a Faculty of Biology , Albert-Ludwigs-University Freiburg , Freiburg , Germany.,b BIOSS - Centre for Biological Signalling Studies , Albert-Ludwigs-University Freiburg , Freiburg , Germany
| | - Roland Thuenauer
- a Faculty of Biology , Albert-Ludwigs-University Freiburg , Freiburg , Germany.,b BIOSS - Centre for Biological Signalling Studies , Albert-Ludwigs-University Freiburg , Freiburg , Germany
| | - Winfried Römer
- a Faculty of Biology , Albert-Ludwigs-University Freiburg , Freiburg , Germany.,b BIOSS - Centre for Biological Signalling Studies , Albert-Ludwigs-University Freiburg , Freiburg , Germany.,c Spemann Graduate School of Biology and Medicine , Albert-Ludwigs University of Freiburg , Freiburg , Germany
| |
Collapse
|
86
|
Prasanna X, Jafurulla M, Sengupta D, Chattopadhyay A. The ganglioside GM1 interacts with the serotonin 1A receptor via the sphingolipid binding domain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2818-2826. [DOI: 10.1016/j.bbamem.2016.08.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 07/18/2016] [Accepted: 08/18/2016] [Indexed: 12/24/2022]
|
87
|
Goto T, Tsuji M, Kanemaru K, Yokoigawa K. Adsorption of Shiga Toxin to Poly-γ-Glutamate Precipitated. J Food Sci 2016; 81:M2977-M2981. [PMID: 27792838 DOI: 10.1111/1750-3841.13540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 06/13/2016] [Accepted: 09/20/2016] [Indexed: 11/30/2022]
Abstract
We screened foods containing indigestible ingredients in the ability to adsorb Shiga toxin (Stx). When 5 mg of foods and dietary fibers such as dry vegetables and inulin were mixed and incubated with 0.5 mL of Stx solution (100 ng/mL) containing 0.5% bovine serum albumin, both Stx1 and Stx2 seemed to be adsorbed by only a fermented food, natto (a traditional Japanese food prepared from steamed soybeans by the biological action of Bacillus subtilis). We purified the Stx-adsorbing substance from natto by extraction with H2 O, acid treatment, Proteinase K treatment, and an ion exchange chromatography. The purified substance showed an average molecular mass of about 600 kDa. We identified it as poly-γ-glutamate (PGA) by amino acid analysis of its hydrolysate and peptide analysis after its treatment with Proteinase K. Purified PGA (MW: molecular weight = about 600 kDa) was considered to adsorb both Stx1 and Stx2 when we separated adsorbed and unadsorbed Stxs (MW = about 72 kDa) by an ultrafiltration method with a centrifugal filter unit (MWCO: molecular weight cut-off = 100 K). However, PGA with the ability to adsorb Stx was an insoluble form precipitated in the filter unit during centrifugation. PGA precipitated beyond the saturated density was also confirmed to well adsorb both Stx1 and Stx2 by an equilibrated dialysis method. To the best of our knowledge, this is the 1st report on food-adsorbing Stx.
Collapse
Affiliation(s)
- Tsukie Goto
- Graduate School of Integrated Arts and Sciences, Tokushima Univ, 1-1 Minamijosanjima-cho, Tokushima, 770-8502, Japan.,Dept. of Science for Human Health, Junior College, Shikoku Univ, 123-1 Ebisuno, Furukawa, Ojin-cho, Tokushima, 771-1192, Japan
| | - Makiko Tsuji
- Kobe Women's Junior College, Chuo-ku, Kobe, 650-0046, Japan
| | - Kaori Kanemaru
- Graduate School of Integrated Arts and Sciences, Tokushima Univ, 1-1 Minamijosanjima-cho, Tokushima, 770-8502, Japan
| | - Kumio Yokoigawa
- Graduate School of Integrated Arts and Sciences, Tokushima Univ, 1-1 Minamijosanjima-cho, Tokushima, 770-8502, Japan
| |
Collapse
|
88
|
Glycosphingolipid-Protein Interaction in Signal Transduction. Int J Mol Sci 2016; 17:ijms17101732. [PMID: 27754465 PMCID: PMC5085762 DOI: 10.3390/ijms17101732] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/04/2016] [Accepted: 10/10/2016] [Indexed: 12/31/2022] Open
Abstract
Glycosphingolipids (GSLs) are a class of ceramide-based glycolipids essential for embryo development in mammals. The synthesis of specific GSLs depends on the expression of distinctive sets of GSL synthesizing enzymes that is tightly regulated during development. Several reports have described how cell surface receptors can be kept in a resting state or activate alternative signalling events as a consequence of their interaction with GSLs. Specific GSLs, indeed, interface with specific protein domains that are found in signalling molecules and which act as GSL sensors to modify signalling responses. The regulation exerted by GSLs on signal transduction is orthogonal to the ligand–receptor axis, as it usually does not directly interfere with the ligand binding to receptors. Due to their properties of adjustable production and orthogonal action on receptors, GSLs add a new dimension to the control of the signalling in development. GSLs can, indeed, dynamically influence progenitor cell response to morphogenetic stimuli, resulting in alternative differentiation fates. Here, we review the available literature on GSL–protein interactions and their effects on cell signalling and development.
Collapse
|
89
|
Affinity-Based Screening of Tetravalent Peptides Identifies Subtype-Selective Neutralizers of Shiga Toxin 2d, a Highly Virulent Subtype, by Targeting a Unique Amino Acid Involved in Its Receptor Recognition. Infect Immun 2016; 84:2653-61. [PMID: 27382021 DOI: 10.1128/iai.00149-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/24/2016] [Indexed: 12/11/2022] Open
Abstract
Shiga toxin (Stx), a major virulence factor of enterohemorrhagic Escherichia coli (EHEC), can be classified into two subgroups, Stx1 and Stx2, each consisting of various closely related subtypes. Stx2 subtypes Stx2a and Stx2d are highly virulent and linked with serious human disorders, such as acute encephalopathy and hemolytic-uremic syndrome. Through affinity-based screening of a tetravalent peptide library, we previously developed peptide neutralizers of Stx2a in which the structure was optimized to bind to the B-subunit pentamer. In this study, we identified Stx2d-selective neutralizers by targeting Asn16 of the B subunit, an amino acid unique to Stx2d that plays an essential role in receptor binding. We synthesized a series of tetravalent peptides on a cellulose membrane in which the core structure was exactly the same as that of peptides in the tetravalent library. A total of nine candidate motifs were selected to synthesize tetravalent forms of the peptides by screening two series of the tetravalent peptides. Five of the tetravalent peptides effectively inhibited the cytotoxicity of Stx2a and Stx2d, and notably, two of the peptides selectively inhibited Stx2d. These two tetravalent peptides bound to the Stx2d B subunit with high affinity dependent on Asn16. The mechanism of binding to the Stx2d B subunit differed from that of binding to Stx2a in that the peptides covered a relatively wide region of the receptor-binding surface. Thus, this highly optimized screening technique enables the development of subtype-selective neutralizers, which may lead to more sophisticated treatments of infections by Stx-producing EHEC.
Collapse
|
90
|
Bhatia S, Camacho LC, Haag R. Pathogen Inhibition by Multivalent Ligand Architectures. J Am Chem Soc 2016; 138:8654-66. [DOI: 10.1021/jacs.5b12950] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sumati Bhatia
- Institut
für Chemie
und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Luis Cuellar Camacho
- Institut
für Chemie
und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Rainer Haag
- Institut
für Chemie
und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| |
Collapse
|
91
|
Pezeshkian W, Hansen AG, Johannes L, Khandelia H, Shillcock JC, Kumar PBS, Ipsen JH. Membrane invagination induced by Shiga toxin B-subunit: from molecular structure to tube formation. SOFT MATTER 2016; 12:5164-5171. [PMID: 27070906 DOI: 10.1039/c6sm00464d] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The bacterial Shiga toxin is composed of an enzymatically active A-subunit, and a receptor-binding homopentameric B-subunit (STxB) that mediates intracellular toxin trafficking. Upon STxB-mediated binding to the glycolipid globotriaosylceramide (Gb3) at the plasma membrane of target cells, Shiga toxin is internalized by clathrin-dependent and independent endocytosis. The formation of tubular membrane invaginations is an essential step in the clathrin-independent STxB uptake process. However, the mechanism by which STxB induces these invaginations has remained unclear. Using a combination of all-atom molecular dynamics and Monte Carlo simulations we show that the molecular architecture of STxB enables the following sequence of events: the Gb3 binding sites on STxB are arranged such that tight avidity-based binding results in a small increment of local curvature. Membrane-mediated clustering of several toxin molecules then creates a tubular membrane invagination that drives toxin entry into the cell. This mechanism requires: (1) a precise molecular architecture of the STxB binding sites; (2) a fluid bilayer in order for the tubular invagination to form. Although, STxB binding to the membrane requires specific interactions with Gb3 lipids, our study points to a generic molecular design principle for clathrin-independent endocytosis of nanoparticles.
Collapse
Affiliation(s)
- W Pezeshkian
- Center for Biomembrane Physics (MEMPHYS), Department of Physics, Chemistry and Pharmacy (FKF), University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | | | | | | | | | | | | |
Collapse
|
92
|
AB5 Preassembly Is Not Required for Shiga Toxin Activity. J Bacteriol 2016; 198:1621-1630. [PMID: 27002129 DOI: 10.1128/jb.00918-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/15/2016] [Indexed: 01/19/2023] Open
Abstract
UNLABELLED Shiga toxin (Stx)-producing Escherichia coli (STEC) is a major cause of foodborne illness, including the life-threatening complication hemolytic-uremic syndrome. The German outbreak in 2011 resulted in nearly 4,000 cases of infection, with 54 deaths. Two forms of Stx, Stx1 and Stx2, differ in potency, and subtype Stx2a is most commonly associated with fatal human disease. Stx is considered to be an AB5 toxin. The single A (enzymatically active) subunit inhibits protein synthesis by cleaving a catalytic adenine from the eukaryotic rRNA. The B (binding) subunit forms a homopentamer and mediates cellular association and toxin internalization by binding to the glycolipid globotriaosylceramide (Gb3). Both subunits are essential for toxicity. Here we report that unlike other AB5 toxin family members, Stx is produced by STEC as unassembled A and B subunits. A preformed AB5 complex is not required for cellular toxicity or in vivo toxicity to mice, and toxin assembly likely occurs at the cell membrane. We demonstrate that disruption of A- and B-subunit association by use of A-subunit peptides that lack enzymatic activity can protect mice from lethal doses of toxin. Currently, no treatments have been proven to be effective for hemolytic-uremic syndrome. Our studies demonstrate that agents that interfere with A- and B-subunit assembly may have therapeutic potential. Shiga toxin (Stx) produced by pathogenic Escherichia coli is considered to be an AB5 heterohexamer; however, no known mechanisms ensure AB5 assembly. Stx released by E. coli is not in the AB5 conformation and assembles at the receptor interface. Thus, unassembled Stx can impart toxicity. This finding shows that preventing AB5 assembly is a potential treatment for Stx-associated illnesses. IMPORTANCE Complications due to Shiga toxin are frequently fatal, and at present, supportive care is the only treatment option. Furthermore, antibiotic treatment is contraindicated due to the ability of antibiotics to amplify bacterial expression of Shiga toxin. We report, contrary to prevailing assumptions, that Shiga toxin produced by STEC circulates as unassembled A and B subunits at concentrations that are lethal to mice. Similar to the case for anthrax toxin, assembly occurs on receptors expressed on the surfaces of mammalian target cells. Disruption of Shiga toxin assembly by use of A-subunit peptides that lack enzymatic activity protects mice from lethal challenge with Shiga toxin, suggesting a new approach for development of therapeutics.
Collapse
|
93
|
Zhang C, Hao H, Yu Y, Kong D, Chen S, Jiang H, Yuan Y, Zheng Y, Yang M, Jiang Y. Structural basis of the interaction between the meningitis pathogen Streptococcus suis adhesin Fhb and its human receptor. FEBS Lett 2016; 590:1384-92. [PMID: 27086582 DOI: 10.1002/1873-3468.12174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 11/07/2022]
Abstract
The recently identified Streptococcus suis adhesin factor H-binding protein (Fhb) targets the host cellular receptor glycolipid GbO3 through its N terminus. However, it is unclear how Fhb interacts with its receptor. Here, we determined the complex structure of factor H-binding protein receptor-binding domain (Fhb RBD) with Gb2, an analog of its receptor, revealing that Gb2 binds in a pocket of the β sandwich core domain. We identified the key residues for Fhb RBD receptor binding using mutagenesis and isothermal titration calorimetry. Mutagenesis analyses indicated that Fhb binds to Gb2 mainly through hydrogen and hydrophobic interactions. Our findings provided structural insights into the Fhb-mediated host-pathogen interactions of S. suis.
Collapse
Affiliation(s)
- Chunmao Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, China
| | - Huaijie Hao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, China
| | - You Yu
- Key Laboratory for Protein Sciences of Ministry of Education, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Decong Kong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, China
| | - Shaolong Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, China
| | - Hua Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, China
| | - Yuan Yuan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, China
| | - Yuling Zheng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, China
| | - Maojun Yang
- Key Laboratory for Protein Sciences of Ministry of Education, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yongqiang Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, China
| |
Collapse
|
94
|
Mejías MP, Hiriart Y, Lauché C, Fernández-Brando RJ, Pardo R, Bruballa A, Ramos MV, Goldbaum FA, Palermo MS, Zylberman V. Development of camelid single chain antibodies against Shiga toxin type 2 (Stx2) with therapeutic potential against Hemolytic Uremic Syndrome (HUS). Sci Rep 2016; 6:24913. [PMID: 27118524 PMCID: PMC4847011 DOI: 10.1038/srep24913] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/07/2016] [Indexed: 12/12/2022] Open
Abstract
Shiga toxin (Stx)-producing Escherichia coli (STEC) infections are implicated in the development of the life-threatening Hemolytic Uremic Syndrome (HUS). Despite the magnitude of the social and economic problems caused by STEC infections, no licensed vaccine or effective therapy is presently available for human use. Single chain antibodies (VHH) produced by camelids exhibit several advantages in comparison with conventional antibodies, making them promising tools for diagnosis and therapy. In the present work, the properties of a recently developed immunogen, which induces high affinity and protective antibodies against Stx type 2 (Stx2), were exploited to develop VHHs with therapeutic potential against HUS. We identified a family of VHHs against the B subunit of Stx2 (Stx2B) that neutralize Stx2 in vitro at subnanomolar concentrations. One VHH was selected and was engineered into a trivalent molecule (two copies of anti-Stx2B VHH and one anti-seroalbumin VHH). The resulting molecule presented extended in vivo half-life and high therapeutic activity, as demonstrated in three different mouse models of Stx2-toxicity: a single i.v. lethal dose of Stx2, several i.v. incremental doses of Stx2 and intragastrical STEC infection. This simple antitoxin agent should offer new therapeutic options for treating STEC infections to prevent or ameliorate HUS outcome.
Collapse
Affiliation(s)
- Maria P Mejías
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental, (IMEX), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), P. De Melo 3081, Ciudad de Buenos Aires, (C1425AUM), Argentina
| | - Yanina Hiriart
- INMUNOVA S.A., Av. Patricias Argentinas 435 - Ciudad de Buenos Aires, (C1405BWE), Argentina.,Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, Av. Patricias Argentinas 435 - Ciudad de Buenos Aires. (C1405BWE), Argentina
| | - Constanza Lauché
- INMUNOVA S.A., Av. Patricias Argentinas 435 - Ciudad de Buenos Aires, (C1405BWE), Argentina.,Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, Av. Patricias Argentinas 435 - Ciudad de Buenos Aires. (C1405BWE), Argentina
| | - Romina J Fernández-Brando
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental, (IMEX), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), P. De Melo 3081, Ciudad de Buenos Aires, (C1425AUM), Argentina
| | - Romina Pardo
- INMUNOVA S.A., Av. Patricias Argentinas 435 - Ciudad de Buenos Aires, (C1405BWE), Argentina.,Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, Av. Patricias Argentinas 435 - Ciudad de Buenos Aires. (C1405BWE), Argentina
| | - Andrea Bruballa
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental, (IMEX), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), P. De Melo 3081, Ciudad de Buenos Aires, (C1425AUM), Argentina
| | - María V Ramos
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental, (IMEX), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), P. De Melo 3081, Ciudad de Buenos Aires, (C1425AUM), Argentina
| | - Fernando A Goldbaum
- INMUNOVA S.A., Av. Patricias Argentinas 435 - Ciudad de Buenos Aires, (C1405BWE), Argentina.,Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, Av. Patricias Argentinas 435 - Ciudad de Buenos Aires. (C1405BWE), Argentina
| | - Marina S Palermo
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental, (IMEX), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), P. De Melo 3081, Ciudad de Buenos Aires, (C1425AUM), Argentina
| | - Vanesa Zylberman
- INMUNOVA S.A., Av. Patricias Argentinas 435 - Ciudad de Buenos Aires, (C1405BWE), Argentina.,Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, Av. Patricias Argentinas 435 - Ciudad de Buenos Aires. (C1405BWE), Argentina
| |
Collapse
|
95
|
Liao JH, Chien CTH, Wu HY, Huang KF, Wang I, Ho MR, Tu IF, Lee IM, Li W, Shih YL, Wu CY, Lukyanov PA, Hsu STD, Wu SH. A Multivalent Marine Lectin from Crenomytilus grayanus Possesses Anti-cancer Activity through Recognizing Globotriose Gb3. J Am Chem Soc 2016; 138:4787-95. [PMID: 27010847 DOI: 10.1021/jacs.6b00111] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In this study, we report the structure and function of a lectin from the sea mollusk Crenomytilus grayanus collected from the sublittoral zone of Peter the Great Bay of the Sea of Japan. The crystal structure of C. grayanus lectin (CGL) was solved to a resolution of 1.08 Å, revealing a β-trefoil fold that dimerizes into a dumbbell-shaped quaternary structure. Analysis of the crystal CGL structures bound to galactose, galactosamine, and globotriose Gb3 indicated that each CGL can bind three ligands through a carbohydrate-binding motif involving an extensive histidine- and water-mediated hydrogen bond network. CGL binding to Gb3 is further enhanced by additional side-chain-mediated hydrogen bonds in each of the three ligand-binding sites. NMR titrations revealed that the three binding sites have distinct microscopic affinities toward galactose and galactosamine. Cell viability assays showed that CGL recognizes Gb3 on the surface of breast cancer cells, leading to cell death. Our findings suggest the use of this lectin in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Jiahn-Haur Liao
- Institute of Biological Chemistry, Academia Sinica , Taipei 11529, Taiwan
| | - Chih-Ta Henry Chien
- Institute of Biological Chemistry, Academia Sinica , Taipei 11529, Taiwan.,Department of Chemistry, National Taiwan University , Taipei 106, Taiwan
| | - Han-Ying Wu
- Institute of Biological Chemistry, Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica , Taipei 115, Taiwan.,Department of Chemistry, National Tsing Hua University , Hsinchu 30043, Taiwan
| | - Kai-Fa Huang
- Institute of Biological Chemistry, Academia Sinica , Taipei 11529, Taiwan
| | - Iren Wang
- Institute of Biological Chemistry, Academia Sinica , Taipei 11529, Taiwan
| | - Meng-Ru Ho
- Institute of Biological Chemistry, Academia Sinica , Taipei 11529, Taiwan
| | - I-Fan Tu
- Institute of Biological Chemistry, Academia Sinica , Taipei 11529, Taiwan
| | - I-Ming Lee
- Institute of Biochemical Science, National Taiwan University , Taipei 106, Taiwan
| | - Wei Li
- Key Laboratory of Aquatic Products Processing and Utilization of Liaoning Province, Dalian Ocean University , Dalian 116023, P.R. China
| | - Yu-Ling Shih
- Institute of Biological Chemistry, Academia Sinica , Taipei 11529, Taiwan
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica , Taipei 11529, Taiwan
| | - Pavel A Lukyanov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences , Vladivostok 690022, Russian Federation
| | - Shang-Te Danny Hsu
- Institute of Biological Chemistry, Academia Sinica , Taipei 11529, Taiwan.,Institute of Biological Chemistry, Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica , Taipei 115, Taiwan.,Institute of Biochemical Science, National Taiwan University , Taipei 106, Taiwan
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica , Taipei 11529, Taiwan.,Department of Chemistry, National Taiwan University , Taipei 106, Taiwan.,Institute of Biological Chemistry, Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica , Taipei 115, Taiwan.,Institute of Biochemical Science, National Taiwan University , Taipei 106, Taiwan
| |
Collapse
|
96
|
Bernedo-Navarro RA, Yano T. Phage display and Shiga toxin neutralizers. Toxicon 2016; 113:60-9. [DOI: 10.1016/j.toxicon.2016.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 02/03/2016] [Accepted: 02/11/2016] [Indexed: 02/01/2023]
|
97
|
Schütte OM, Patalag LJ, Weber LMC, Ries A, Römer W, Werz DB, Steinem C. 2-Hydroxy Fatty Acid Enantiomers of Gb3 Impact Shiga Toxin Binding and Membrane Organization. Biophys J 2016; 108:2775-8. [PMID: 26083916 DOI: 10.1016/j.bpj.2015.05.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/04/2015] [Accepted: 05/12/2015] [Indexed: 11/29/2022] Open
Abstract
Shiga toxin subunit B (STxB) binding to its cellular receptor Gb3 leads to the formation of protein-lipid clusters and bending of the membrane. A newly developed synthetic route allowed synthesizing the biologically most relevant Gb3-C24:1 2OH species with both, the natural (Gb3-R) as well as the unnatural (Gb3-S) configuration of the 2OH group. The derivatives bind STxB with identical nanomolar affinity, while the propensity to induce membrane tubules in giant unilamellar vesicles is more pronounced for Gb3-S. Fluorescence and atomic force microscopy images of phase-separated supported membranes revealed differences in the lateral organization of the protein on the membrane. Gb3-R favorably induces large and tightly packed protein clusters, while a lower protein density is found on Gb3-S doped membranes.
Collapse
Affiliation(s)
- Ole M Schütte
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany
| | - Lukas J Patalag
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany; Institute of Organic Chemistry, Technical University Braunschweig, Braunschweig, Germany
| | - Lucas M C Weber
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany
| | - Annika Ries
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany
| | - Winfried Römer
- Faculty of Biology and BIOSS-Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Daniel B Werz
- Institute of Organic Chemistry, Technical University Braunschweig, Braunschweig, Germany
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany.
| |
Collapse
|
98
|
Shiga Toxins as Multi-Functional Proteins: Induction of Host Cellular Stress Responses, Role in Pathogenesis and Therapeutic Applications. Toxins (Basel) 2016; 8:toxins8030077. [PMID: 26999205 PMCID: PMC4810222 DOI: 10.3390/toxins8030077] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 02/25/2016] [Accepted: 02/29/2016] [Indexed: 12/17/2022] Open
Abstract
Shiga toxins (Stxs) produced by Shiga toxin-producing bacteria Shigella dysenteriae serotype 1 and select serotypes of Escherichia coli are primary virulence factors in the pathogenesis of hemorrhagic colitis progressing to potentially fatal systemic complications, such as hemolytic uremic syndrome and central nervous system abnormalities. Current therapeutic options to treat patients infected with toxin-producing bacteria are limited. The structures of Stxs, toxin-receptor binding, intracellular transport and the mode of action of the toxins have been well defined. However, in the last decade, numerous studies have demonstrated that in addition to being potent protein synthesis inhibitors, Stxs are also multifunctional proteins capable of activating multiple cell stress signaling pathways, which may result in apoptosis, autophagy or activation of the innate immune response. Here, we briefly present the current understanding of Stx-activated signaling pathways and provide a concise review of therapeutic applications to target tumors by engineering the toxins.
Collapse
|
99
|
Read RJ, McCoy AJ. A log-likelihood-gain intensity target for crystallographic phasing that accounts for experimental error. Acta Crystallogr D Struct Biol 2016; 72:375-87. [PMID: 26960124 PMCID: PMC4784668 DOI: 10.1107/s2059798315013236] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/09/2015] [Indexed: 11/10/2022] Open
Abstract
The crystallographic diffraction experiment measures Bragg intensities; crystallographic electron-density maps and other crystallographic calculations in phasing require structure-factor amplitudes. If data were measured with no errors, the structure-factor amplitudes would be trivially proportional to the square roots of the intensities. When the experimental errors are large, and especially when random errors yield negative net intensities, the conversion of intensities and their error estimates into amplitudes and associated error estimates becomes nontrivial. Although this problem has been addressed intermittently in the history of crystallographic phasing, current approaches to accounting for experimental errors in macromolecular crystallography have numerous significant defects. These have been addressed with the formulation of LLGI, a log-likelihood-gain function in terms of the Bragg intensities and their associated experimental error estimates. LLGI has the correct asymptotic behaviour for data with large experimental error, appropriately downweighting these reflections without introducing bias. LLGI abrogates the need for the conversion of intensity data to amplitudes, which is usually performed with the French and Wilson method [French & Wilson (1978), Acta Cryst. A35, 517-525], wherever likelihood target functions are required. It has general applicability for a wide variety of algorithms in macromolecular crystallography, including scaling, characterizing anisotropy and translational noncrystallographic symmetry, detecting outliers, experimental phasing, molecular replacement and refinement. Because it is impossible to reliably recover the original intensity data from amplitudes, it is suggested that crystallographers should always deposit the intensity data in the Protein Data Bank.
Collapse
Affiliation(s)
- Randy J. Read
- Department of Haematology, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, England
| | - Airlie J. McCoy
- Department of Haematology, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, England
| |
Collapse
|
100
|
Lai RC, Tan SS, Yeo RWY, Choo ABH, Reiner AT, Su Y, Shen Y, Fu Z, Alexander L, Sze SK, Lim SK. MSC secretes at least 3 EV types each with a unique permutation of membrane lipid, protein and RNA. J Extracell Vesicles 2016; 5:29828. [PMID: 26928672 PMCID: PMC4770866 DOI: 10.3402/jev.v5.29828] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 01/17/2016] [Accepted: 01/21/2016] [Indexed: 12/23/2022] Open
Abstract
Mesenchymal stem cell (MSC), a widely used adult stem cell candidate for regenerative medicine, has been shown to exert some of its therapeutic effects through the secretion of extracellular vesicles (EVs). These homogenously sized EVs of 100–150 ηm exhibited many exosome-like biophysical and biochemical properties and carry both proteins and RNAs. Recently, exosome-associated proteins in this MSC EV preparation were found to segregate primarily to those EVs that bind cholera toxin B chain (CTB), a GM1 ganglioside-specific ligand, and pulse-chase experiments demonstrated that these EVs have endosomal origin and carried many of the exosome-associated markers. Here, we report that only a fraction of the MSC EV proteome was found in CTB-bound EVs. Using Annexin V (AV) and Shiga toxin B subunit (ST) with affinities for phosphatidylserine and globotriaosylceramide, respectively, AV- and a ST-binding EV were identified. CTB-, AV- and ST–binding EVs all carried actin. However, the AV-binding EVs carried low or undetectable levels of the exosome-associated proteins. Only the ST-binding EVs carried RNA and EDA-containing fibronectin. Proteins in AV-binding EVs were also different from those released by apoptotic MSCs. CTB- and AV-binding activities were localized to the plasma membrane and cytoplasm of MSCs, while ST-binding activity was localized to the nucleus. Together, this study demonstrates that cells secrete many types of EVs. Specifically, MSCs secrete at least 3 types. They can be differentially isolated based on their affinities for membrane lipid-binding ligands. As the subcellular sites of the binding activities of these ligands and cargo load are different for each EV type, they are likely to have a different biogenesis pathway and possibly different functions.
Collapse
Affiliation(s)
| | | | | | - Andre Boon Hwa Choo
- A*STAR Bioprocessing Technology Institute, Singapore.,Department of Biomedical Engineering, Faculty of Engineering, NUS, Singapore
| | - Agnes T Reiner
- BioSensor Technologies, AIT-Austrian Institute of Technology GmbH, Vienna, Austria
| | - Yan Su
- A*STAR Genome Institute of Singapore, Singapore
| | - Yang Shen
- A*STAR Genome Institute of Singapore, Singapore
| | - Zhiyan Fu
- A*STAR Genome Institute of Singapore, Singapore
| | | | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Sai Kiang Lim
- A*STAR Institute of Medical Biology, Singapore.,Department of Surgery, YLL School of Medicine, NUS, Singapore;
| |
Collapse
|