51
|
Zhong J, Reinhardt CR, Hammes-Schiffer S. Role of Water in Proton-Coupled Electron Transfer between Tyrosine and Cysteine in Ribonucleotide Reductase. J Am Chem Soc 2022; 144:7208-7214. [PMID: 35426309 PMCID: PMC9197590 DOI: 10.1021/jacs.1c13455] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ribonucleotide reductase (RNR) catalyzes the reduction of ribonucleotides to deoxyribonucleotides and is critical for DNA synthesis and repair in all organisms. Its mechanism requires radical transfer along a ∼32 Å pathway through a series of proton-coupled electron transfer (PCET) steps. Previous simulations suggested that a glutamate residue (E623) mediates the PCET reaction between two stacked tyrosine residues (Y730 and Y731) through a proton relay mechanism. This work focuses on the adjacent PCET reaction between Y730 and a cysteine residue (C439). Quantum mechanical/molecular mechanical free energy simulations illustrate that when Y730 and Y731 are stacked, E623 stabilizes the radical on C439 through hydrogen bonding with the Y730 hydroxyl group. When Y731 is flipped away from Y730, a water molecule stabilizes the radical on C439 through hydrogen bonding with Y730 and lowers the free energy barrier for radical transfer from Y730 to C439 through electrostatic interactions with the transferring hydrogen but does not directly accept the proton. These simulations indicate that the conformational motions and electrostatic interactions of the tyrosines, cysteine, glutamate, and water strongly impact the thermodynamics and kinetics of these two coupled PCET reactions. Such insights are important for protein engineering efforts aimed at altering radical transfer in RNR.
Collapse
Affiliation(s)
- Jiayun Zhong
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Clorice R. Reinhardt
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, Connecticut 06520, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
52
|
Fuse H, Irie Y, Fuki M, Kobori Y, Kato K, Yamakata A, Higashi M, Mitsunuma H, Kanai M. Identification of a Self-Photosensitizing Hydrogen Atom Transfer Organocatalyst System. J Am Chem Soc 2022; 144:6566-6574. [PMID: 35357152 DOI: 10.1021/jacs.2c01705] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We developed organocatalyst systems to promote the cleavage of stable C-H bonds, such as formyl, α-hydroxy, and benzylic C-H bonds, through a hydrogen atom transfer (HAT) process without the use of exogenous photosensitizers. An electronically tuned thiophosphoric acid, 7,7'-OMe-TPA, was assembled with substrate or co-catalyst N-heteroaromatics through hydrogen bonding and π-π interactions to form electron donor-acceptor (EDA) complexes. Photoirradiation of the EDA complex induced stepwise, sequential single-electron transfer (SET) processes to generate a HAT-active thiyl radical. The first SET was from the electron-rich naphthyl group of 7,7'-OMe-TPA to the protonated N-heteroaromatics and the second proton-coupled SET (PCET) from the thiophosphoric acid moiety of 7,7'-OMe-TPA to the resulting naphthyl radical cation. Spectroscopic studies and theoretical calculations characterized the stepwise SET process mediated by short-lived intermediates. This organocatalytic HAT system was applied to four different carbon-hydrogen (C-H) functionalization reactions, hydroxyalkylation and alkylation of N-heteroaromatics, acceptorless dehydrogenation of alcohols, and benzylation of imines, with high functional group tolerance.
Collapse
Affiliation(s)
- Hiromu Fuse
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yu Irie
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Masaaki Fuki
- Molecular Photoscience Research Center, Kobe University, Kobe 657-8501, Japan.,Department of Chemistry, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Yasuhiro Kobori
- Molecular Photoscience Research Center, Kobe University, Kobe 657-8501, Japan.,Department of Chemistry, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Kosaku Kato
- Graduate School of Engineering, Toyota Technological Institute, Nagoya 468-8511, Japan
| | - Akira Yamakata
- Graduate School of Engineering, Toyota Technological Institute, Nagoya 468-8511, Japan
| | - Masahiro Higashi
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan.,Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8520, Japan
| | - Harunobu Mitsunuma
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
53
|
Park YJ, Jodts RJ, Slater JW, Reyes RM, Winton VJ, Montaser RA, Thomas PM, Dowdle WB, Ruiz A, Kelleher NL, Bollinger JM, Krebs C, Hoffman BM, Rosenzweig AC. A mixed-valent Fe(II)Fe(III) species converts cysteine to an oxazolone/thioamide pair in methanobactin biosynthesis. Proc Natl Acad Sci U S A 2022; 119:e2123566119. [PMID: 35320042 PMCID: PMC9060507 DOI: 10.1073/pnas.2123566119] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/23/2022] [Indexed: 11/18/2022] Open
Abstract
SignificanceMethanobactins (Mbns), copper-binding peptidic compounds produced by some bacteria, are candidate therapeutics for human diseases of copper overload. The paired oxazolone-thioamide bidentate ligands of methanobactins are generated from cysteine residues in a precursor peptide, MbnA, by the MbnBC enzyme complex. MbnBC activity depends on the presence of iron and oxygen, but the catalytically active form has not been identified. Here, we provide evidence that a dinuclear Fe(II)Fe(III) center in MbnB, which is the only representative of a >13,000-member protein family to be characterized, is responsible for this reaction. These findings expand the known roles of diiron enzymes in biology and set the stage for mechanistic understanding, and ultimately engineering, of the MbnBC biosynthetic complex.
Collapse
Affiliation(s)
- Yun Ji Park
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| | - Richard J. Jodts
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| | - Jeffrey W. Slater
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Reyvin M. Reyes
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| | - Valerie J. Winton
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| | - Rana A. Montaser
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| | - Paul M. Thomas
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| | - William B. Dowdle
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| | - Anahi Ruiz
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| | - Neil L. Kelleher
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| | - J. Martin Bollinger
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Carsten Krebs
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Brian M. Hoffman
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| | - Amy C. Rosenzweig
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| |
Collapse
|
54
|
Gibbs CA, Fedoretz-Maxwell BP, Warren JJ. On the roles of methionine and the importance of its microenvironments in redox metalloproteins. Dalton Trans 2022; 51:4976-4985. [PMID: 35253809 DOI: 10.1039/d1dt04387k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The amino acid residue methionine (Met) is commonly thought of as a ligand in redox metalloproteins, for example in cytochromes c and in blue copper proteins. However, the roles of Met can go beyond a simple ligand. The thioether functional group of Met allows it to be considered as a hydrophobic residue as well as one that is capable of weak dipolar interactions. In addition, the lone pairs on sulphur allow Met to interact with other groups, inluding the aforementioned metal ions. Because of its properties, Met can play diverse roles in metal coordination, fine tuning of redox reactions, or supporting protein structures. These roles are strongly influenced by the nature of the surrounding medium. Herein, we describe several common interactions between Met and surrounding aromatic amino acids and how they affect the physical properties of both copper and iron metalloproteins. While the importance of interactions between Met and other groups is established in biological systems, less is known about their roles in redox metalloproteins and our view is that this is an area that is ready for greater attention.
Collapse
Affiliation(s)
- Curtis A Gibbs
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby BC V5A 1S6, Canada.
| | | | - Jeffrey J Warren
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby BC V5A 1S6, Canada.
| |
Collapse
|
55
|
Park Y, Tian L, Kim S, Pabst TP, Kim J, Scholes GD, Chirik PJ. Visible-Light-Driven, Iridium-Catalyzed Hydrogen Atom Transfer: Mechanistic Studies, Identification of Intermediates, and Catalyst Improvements. JACS AU 2022; 2:407-418. [PMID: 35252990 PMCID: PMC8889617 DOI: 10.1021/jacsau.1c00460] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Indexed: 06/14/2023]
Abstract
The harvesting of visible light is a powerful strategy for the synthesis of weak chemical bonds involving hydrogen that are below the thermodynamic threshold for spontaneous H2 evolution. Piano-stool iridium hydride complexes are effective for the blue-light-driven hydrogenation of organic substrates and contra-thermodynamic dearomative isomerization. In this work, a combination of spectroscopic measurements, isotopic labeling, structure-reactivity relationships, and computational studies has been used to explore the mechanism of these stoichiometric and catalytic reactions. Photophysical measurements on the iridium hydride catalysts demonstrated the generation of long-lived excited states with principally metal-to-ligand charge transfer (MLCT) character. Transient absorption spectroscopic studies with a representative substrate, anthracene revealed a diffusion-controlled dynamic quenching of the MLCT state. The triplet state of anthracene was detected immediately after the quenching events, suggesting that triplet-triplet energy transfer initiated the photocatalytic process. The key role of triplet anthracene on the post-energy transfer step was further demonstrated by employing photocatalytic hydrogenation with a triplet photosensitizer and a HAT agent, hydroquinone. DFT calculations support a concerted hydrogen atom transfer mechanism in lieu of stepwise electron/proton or proton/electron transfer pathways. Kinetic monitoring of the deactivation channel established an inverse kinetic isotope effect, supporting reversible C(sp2)-H reductive coupling followed by rate-limiting ligand dissociation. Mechanistic insights enabled design of a piano-stool iridium hydride catalyst with a rationally modified supporting ligand that exhibited improved photostability under blue light irradiation. The complex also provided improved catalytic performance toward photoinduced hydrogenation with H2 and contra-thermodynamic isomerization.
Collapse
|
56
|
Odella E, Moore TA, Moore AL. Tuning the redox potential of tyrosine-histidine bioinspired assemblies. PHOTOSYNTHESIS RESEARCH 2022; 151:185-193. [PMID: 33432530 DOI: 10.1007/s11120-020-00815-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Photosynthesis powers our planet and is a source of inspiration for developing artificial constructs mimicking many aspects of the natural energy transducing process. In the complex machinery of photosystem II (PSII), the redox activity of the tyrosine Z (Tyrz) hydrogen-bonded to histidine 190 (His190) is essential for its functions. For example, the Tyrz-His190 pair provides a proton-coupled electron transfer (PCET) pathway that effectively competes against the back-electron transfer reaction and tunes the redox potential of the phenoxyl radical/phenol redox couple ensuring a high net quantum yield of photoinduced charge separation in PSII. Herein, artificial assemblies mimicking both the structural and redox properties of the Tyrz-His190 pair are described. The bioinspired constructs contain a phenol (Tyrz model) covalently linked to a benzimidazole (His190 model) featuring an intramolecular hydrogen bond which closely emulates the one observed in the natural counterpart. Incorporation of electron-withdrawing groups in the benzimidazole moiety systematically changes the intramolecular hydrogen bond strength and modifies the potential of the phenoxyl radical/phenol redox couple over a range of ~ 250 mV. Infrared spectroelectrochemistry (IRSEC) demonstrates the associated one-electron, one-proton transfer (E1PT) process upon electrochemical oxidation of the phenol. The present contribution provides insight regarding the factors controlling the redox potential of the phenol and highlights strategies for the design of futures constructs capable of transporting protons across longer distances while maintaining a high potential of the phenoxyl radical/phenol redox couple.
Collapse
Affiliation(s)
- Emmanuel Odella
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
| | - Thomas A Moore
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA
| | - Ana L Moore
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
| |
Collapse
|
57
|
Long MJC, Ly P, Aye Y. Still no Rest for the Reductases: Ribonucleotide Reductase (RNR) Structure and Function: An Update. Subcell Biochem 2022; 99:155-197. [PMID: 36151376 DOI: 10.1007/978-3-031-00793-4_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein we present a multidisciplinary discussion of ribonucleotide reductase (RNR), the essential enzyme uniquely responsible for conversion of ribonucleotides to deoxyribonucleotides. This chapter primarily presents an overview of this multifaceted and complex enzyme, covering RNR's role in enzymology, biochemistry, medicinal chemistry, and cell biology. It further focuses on RNR from mammals, whose interesting and often conflicting roles in health and disease are coming more into focus. We present pitfalls that we think have not always been dealt with by researchers in each area and further seek to unite some of the field-specific observations surrounding this enzyme. Our work is thus not intended to cover any one topic in extreme detail, but rather give what we consider to be the necessary broad grounding to understand this critical enzyme holistically. Although this is an approach we have advocated in many different areas of scientific research, there is arguably no other single enzyme that embodies the need for such broad study than RNR. Thus, we submit that RNR itself is a paradigm of interdisciplinary research that is of interest from the perspective of the generalist and the specialist alike. We hope that the discussions herein will thus be helpful to not only those wanting to tackle RNR-specific problems, but also those working on similar interdisciplinary projects centering around other enzymes.
Collapse
Affiliation(s)
- Marcus J C Long
- University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Biochemistry, UNIL, Epalinges, Switzerland
| | - Phillippe Ly
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- EPFL SB ISIC LEAGO, Lausanne, Switzerland
| | - Yimon Aye
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
- EPFL SB ISIC LEAGO, Lausanne, Switzerland.
| |
Collapse
|
58
|
Agarwal RG, Coste SC, Groff BD, Heuer AM, Noh H, Parada GA, Wise CF, Nichols EM, Warren JJ, Mayer JM. Free Energies of Proton-Coupled Electron Transfer Reagents and Their Applications. Chem Rev 2021; 122:1-49. [PMID: 34928136 DOI: 10.1021/acs.chemrev.1c00521] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We present an update and revision to our 2010 review on the topic of proton-coupled electron transfer (PCET) reagent thermochemistry. Over the past decade, the data and thermochemical formalisms presented in that review have been of value to multiple fields. Concurrently, there have been advances in the thermochemical cycles and experimental methods used to measure these values. This Review (i) summarizes those advancements, (ii) corrects systematic errors in our prior review that shifted many of the absolute values in the tabulated data, (iii) provides updated tables of thermochemical values, and (iv) discusses new conclusions and opportunities from the assembled data and associated techniques. We advocate for updated thermochemical cycles that provide greater clarity and reduce experimental barriers to the calculation and measurement of Gibbs free energies for the conversion of X to XHn in PCET reactions. In particular, we demonstrate the utility and generality of reporting potentials of hydrogenation, E°(V vs H2), in almost any solvent and how these values are connected to more widely reported bond dissociation free energies (BDFEs). The tabulated data demonstrate that E°(V vs H2) and BDFEs are generally insensitive to the nature of the solvent and, in some cases, even to the phase (gas versus solution). This Review also presents introductions to several emerging fields in PCET thermochemistry to give readers windows into the diversity of research being performed. Some of the next frontiers in this rapidly growing field are coordination-induced bond weakening, PCET in novel solvent environments, and reactions at material interfaces.
Collapse
Affiliation(s)
- Rishi G Agarwal
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Scott C Coste
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Benjamin D Groff
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Abigail M Heuer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Hyunho Noh
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Giovanny A Parada
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Department of Chemistry, The College of New Jersey, Ewing, New Jersey 08628, United States
| | - Catherine F Wise
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Eva M Nichols
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Jeffrey J Warren
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - James M Mayer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
59
|
Wang C, O'Hagan MP, Willner B, Willner I. Bioinspired Artificial Photosynthetic Systems. Chemistry 2021; 28:e202103595. [PMID: 34854505 DOI: 10.1002/chem.202103595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Indexed: 12/18/2022]
Abstract
Mimicking photosynthesis using artificial systems, as a means for solar energy conversion and green fuel generation, is one of the holy grails of modern science. This perspective presents recent advances towards developing artificial photosynthetic systems. In one approach, native photosystems are interfaced with electrodes to yield photobioelectrochemical cells that transform light energy into electrical power. This is exemplified by interfacing photosystem I (PSI) and photosystem II (PSII) as an electrically contacted assembly mimicking the native Z-scheme, and by the assembly of an electrically wired PSI/glucose oxidase biocatalytic conjugate on an electrode support. Illumination of the functionalized electrodes led to light-induced generation of electrical power, or to the generation of photocurrents using glucose as the fuel. The second approach introduces supramolecular photosensitizer nucleic acid/electron acceptor complexes as functional modules for effective photoinduced electron transfer stimulating the subsequent biocatalyzed generation of NADPH or the Pt-nanoparticle-catalyzed evolution of molecular hydrogen. Application of the DNA machineries for scaling-up the photosystems is demonstrated. A third approach presents the integration of artificial photosynthetic modules into dynamic nucleic acid networks undergoing reversible reconfiguration or dissipative transient operation in the presence of auxiliary triggers. Control over photoinduced electron transfer reactions and photosynthetic transformations by means of the dynamic networks is demonstrated.
Collapse
Affiliation(s)
- Chen Wang
- Institute of Chemistry, The Minerva Centre for Bio-Hybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michael P O'Hagan
- Institute of Chemistry, The Minerva Centre for Bio-Hybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bilha Willner
- Institute of Chemistry, The Minerva Centre for Bio-Hybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Itamar Willner
- Institute of Chemistry, The Minerva Centre for Bio-Hybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
60
|
Zhu Q, Nocera DG. Catalytic C(β)–O Bond Cleavage of Lignin in a One-Step Reaction Enabled by a Spin-Center Shift. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Qilei Zhu
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138−2902, United States
| | - Daniel G. Nocera
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138−2902, United States
| |
Collapse
|
61
|
Bin Mohd Yusof MS, Debnath T, Loh ZH. Observation of intra- and intermolecular vibrational coherences of the aqueous tryptophan radical induced by photodetachment. J Chem Phys 2021; 155:134306. [PMID: 34624987 DOI: 10.1063/5.0067335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The study of the photodetachment of amino acids in aqueous solution is pertinent to the understanding of elementary processes that follow the interaction of ionizing radiation with biological matter. In the case of tryptophan, the tryptophan radical that is produced by electron ejection also plays an important role in numerous redox reactions in biology, although studies of its ultrafast molecular dynamics are limited. Here, we employ femtosecond optical pump-probe spectroscopy to elucidate the ultrafast structural rearrangement dynamics that accompany the photodetachment of the aqueous tryptophan anion by intense, ∼5-fs laser pulses. The observed vibrational wave packet dynamics, in conjunction with density functional theory calculations, identify the vibrational modes of the tryptophan radical, which participate in structural rearrangement upon photodetachment. Aside from intramolecular vibrational modes, our results also point to the involvement of intermolecular modes that drive solvent reorganization about the N-H moiety of the indole sidechain. Our study offers new insight into the ultrafast molecular dynamics of ionized biomolecules and suggests that the present experimental approach can be extended to investigate the photoionization- or photodetachment-induced structural dynamics of larger biomolecules.
Collapse
Affiliation(s)
- Muhammad Shafiq Bin Mohd Yusof
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Tushar Debnath
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Zhi-Heng Loh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
62
|
Visible light enables catalytic formation of weak chemical bonds with molecular hydrogen. Nat Chem 2021; 13:969-976. [PMID: 34253889 DOI: 10.1038/s41557-021-00732-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 05/13/2021] [Indexed: 02/08/2023]
Abstract
The synthesis of weak chemical bonds at or near thermodynamic potential is a fundamental challenge in chemistry, with applications ranging from catalysis to biology to energy science. Proton-coupled electron transfer using molecular hydrogen is an attractive strategy for synthesizing weak element-hydrogen bonds, but the intrinsic thermodynamics presents a challenge for reactivity. Here we describe the direct photocatalytic synthesis of extremely weak element-hydrogen bonds of metal amido and metal imido complexes, as well as organic compounds with bond dissociation free energies as low as 31 kcal mol-1. Key to this approach is the bifunctional behaviour of the chromophoric iridium hydride photocatalyst. Activation of molecular hydrogen occurs in the ground state and the resulting iridium hydride harvests visible light to enable spontaneous formation of weak chemical bonds near thermodynamic potential with no by-products. Photophysical and mechanistic studies corroborate radical-based reaction pathways and highlight the uniqueness of this photodriven approach in promoting new catalytic chemistry.
Collapse
|
63
|
Sato S, Kudo F, Rohmer M, Eguchi T. Biochemical and Mutational Analysis of Radical S-Adenosyl-L-Methionine Adenosylhopane Synthase HpnH from Zymomonas mobilis Reveals that the Conserved Residue Cysteine-106 Reduces a Radical Intermediate and Determines the Stereochemistry. Biochemistry 2021; 60:2865-2874. [PMID: 34506710 DOI: 10.1021/acs.biochem.1c00536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Adenosylhopane is a crucial precursor of C35 hopanoids, which are believed to modulate the fluidity and permeability of bacterial cell membranes. Adenosylhopane is formed by a crosslinking reaction between diploptene and a 5'-deoxyadenosyl radical that is generated by the radical S-adenosyl-L-methionine (SAM) enzyme HpnH. We previously showed that HpnH from Streptomyces coelicolor A3(2) (ScHpnH) converts diploptene to (22R)-adenosylhopane. However, the mechanism of the stereoselective C-C bond formation was unclear. Thus, here, we performed biochemical and mutational analysis of another HpnH, from the ethanol-producing bacterium Zymomonas mobilis (ZmHpnH). Similar to ScHpnH, wild-type ZmHpnH afforded (22R)-adenosylhopane. Conserved cysteine and tyrosine residues were suggested as possible hydrogen sources to quench the putative radical reaction intermediate. A Cys106Ala mutant of ZmHpnH had one-fortieth the activity of the wild-type enzyme and yielded both (22R)- and (22S)-adenosylhopane along with some related byproducts. Radical trapping experiments with a spin-trapping agent supported the generation of a radical intermediate in the ZmHpnH-catalyzed reaction. We propose that the thiol of Cys106 stereoselectively reduces the radical intermediate generated at the C22 position by the addition of the 5'-deoxadenosyl radical to diploptene, to complete the reaction.
Collapse
Affiliation(s)
- Shusuke Sato
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Michel Rohmer
- Institut de Chimie de Strasbourg, Université de Strasbourg/CNRS, 4 rue Blaise Pascal, Strasbourg Cedex 67070, France
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
64
|
Tian G, Hao G, Chen X, Liu Y. Tyrosyl Radical-Mediated Sequential Oxidative Decarboxylation of Coproporphyrinogen III through PCET: Theoretical Insights into the Mechanism of Coproheme Decarboxylase ChdC. Inorg Chem 2021; 60:13539-13549. [PMID: 34382397 DOI: 10.1021/acs.inorgchem.1c01864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The peroxide-dependent coproheme decarboxylase ChdC from Geobacillus stearothermophilus catalyzes two key steps in the synthesis of heme b, i.e., two sequential oxidative decarboxylations of coproporphyrinogen III (coproheme III) at propionate groups P2 and P4. In the binding site of coproheme III, P2 and P4 are anchored by different residues (Tyr144, Arg217, and Ser222 for P2 and Tyr113, Lys148, and Trp156 for P4); however, strong experimental evidence supports that the generated Tyr144 radical acts as an unique intermediary for hydrogen atom transfer (HAT) from both reactive propionates. So far, the reaction details are still unclear. Herein, we carried out quantum mechanics/molecular mechanics calculations to explore the decarboxylation mechanism of coproheme III. In our calculations, the coproheme Cpd I, Fe(IV) = O coupled to a porphyrin radical cation (por•+) with four propionate groups, was used as a reactant model. Our calculations reveal that Tyr144 is directly involved in the decarboxylation of propionate group P2. First, the proton-coupled electron transfer (PCET) occurs from Tyr144 to P2, generating a Tyr144 radical, which then abstracts a hydrogen atom from the Cβ of P2. The β-H extraction was calculated to be the rate-limiting step of decarboxylation. It is the porphyrin radical cation (por•+) that makes the PCET from Tyr144 to P2 to be quite easy to initiate the decarboxylation. Finally, the electron transfers from the Cβ• through the porphyrin to the iron center, leading to the decarboxylation of P2. Importantly, the decarboxylation of P4 mediated by Lys148 was calculated to be very difficult, which suggests that after the P2 decarboxylation, the generated harderoheme III intermediate should rebind or rotate in the active site so that the propionate P4 occupies the binding site of P2, and Tyr144 again mediates the decarboxylation of P4. Thus, our calculations support the fact that Tyr144 is responsible for the decarboxylation of both P2 and P4.
Collapse
Affiliation(s)
- Ge Tian
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271000, China.,School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Gangping Hao
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Xiaohua Chen
- National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
65
|
Abstract
Radicals in biology, once thought to all be bad actors, are now known to play a central role in many enzymatic reactions. Of the known radical-based enzymes, ribonucleotide reductases (RNRs) are pre-eminent as they are essential in the biology of all organisms by providing the building blocks and controlling the fidelity of DNA replication and repair. Intense examination of RNRs has led to the development of new tools and a guiding framework for the study of radicals in biology, pointing the way to future frontiers in radical enzymology.
Collapse
Affiliation(s)
- JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 20139 USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 20139 USA
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138 USA
| | - Daniel G. Nocera
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138 USA
| |
Collapse
|
66
|
Bin Mohd Yusof MS, Lim YL, Loh ZH. Ultrafast vibrational wave packet dynamics of the aqueous tyrosyl radical anion induced by photodetachment. Phys Chem Chem Phys 2021; 23:18525-18534. [PMID: 34581329 DOI: 10.1039/d1cp02975d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ultrafast dynamics triggered by the photodetachment of the tyrosinate dianion in aqueous environment shed light on the elementary processes that accompany the interaction of ionizing radiation with biological matter. Photodetachment of the tryosinate dianion yields the tyrosyl radical anion, an important intermediate in biological redox reactions, although the study of its ultrafast dynamics is limited. Here, we utilize femtosecond optical pump-probe spectroscopy to investigate the ultrafast structural reorganization dynamics that follow the photodetachment of the tyrosinate dianion in aqueous solution. Photodetachment of the tyrosinate dianion leads to vibrational wave packet motion along seven vibrational modes that are coupled to the photodetachment process. The vibrational modes are assigned with the aid of density functional theory (DFT) calculations. Our results offer a glimpse of the elementary dynamics of ionized biomolecules and suggest the possibility of extending this approach to investigate the ionization-induced structural rearrangement of other aromatic amino acids and larger biomolecules.
Collapse
Affiliation(s)
- Muhammad Shafiq Bin Mohd Yusof
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| | - Yong Liang Lim
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| | - Zhi-Heng Loh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| |
Collapse
|
67
|
Morozova OB, Stass DV, Yurkovskaya AV. Kinetic evidence for the transiently shifted acidity constant of histidine linked to paramagnetic tyrosine probed by intramolecular electron transfer in oxidized peptides. Phys Chem Chem Phys 2021; 23:16698-16706. [PMID: 34338250 DOI: 10.1039/d1cp02408f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The kinetics of electron transfer (ET) from tyrosine (Tyr) to short-lived histidine (His) radicals in peptides of different structures was monitored using time-resolved chemically induced dynamic nuclear polarization (CIDNP) to follow the reduction of the His radicals using NMR detection of the diamagnetic hyperpolarized reaction products. In aqueous solution over a wide pH range, His radicals were generated in situ in the photo-induced reaction with the photosensitizer, 3,3',4,4'-tetracarboxy benzophenone. Model simulations of the CIDNP kinetics provided pH-dependent rate constants of intra- and intermolecular ET, and the pH dependencies of the reaction under study were interpreted in terms of protonation states of the reactants and the product, His with either protonated or neutral imidazole. In some cases, an increase of pKa of imidazole in the presence of the short-lived radical center at a nearby Tyr residue was revealed. Interpretation of the obtained pH dependencies made is possible to quantify the degree of paramagnetic shift of the acidity constant of the imidazole of the His residue in the peptides with a Tyr residue in its paramagnetic state, and to correlate this degree with the intramolecular ET rate constant - a higher intramolecular ET rate constant corresponded to a greater acidity constant shift.
Collapse
Affiliation(s)
- Olga B Morozova
- International Tomography Center, Institutskaya 3a, 630090 Novosibirsk, Russia.
| | | | | |
Collapse
|
68
|
Li X, Sun W, Qin X, Xie Y, Liu N, Luo X, Wang Y, Chen X. An interesting possibility of forming special hole stepping stones with high-stacking aromatic rings in proteins: three-π five-electron and four-π seven-electron resonance bindings. RSC Adv 2021; 11:26672-26682. [PMID: 35479969 PMCID: PMC9037495 DOI: 10.1039/d1ra05341h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/30/2021] [Indexed: 11/30/2022] Open
Abstract
Long-range hole transfer of proteins plays an important role in many biological processes of living organisms. Therefore, it is highly useful to examine the possible hole stepping stones, which can facilitate hole transfer in proteins. However, the structures of stepping stones are diverse because of the complexity of the protein structures. In the present work, we proposed a series of special stepping stones, which are instantaneously formed by three and four packing aromatic side chains of amino acids to capture a hole, corresponding to three-π five-electron (π:π∴π↔π∴π:π) and four-π seven-electron (π:π∴π:π↔π:π:π∴π) resonance bindings with appropriate binding energies. The aromatic amino acids include histidine (His), phenylalanine (Phe), tyrosine (Tyr) and tryptophan (Trp). The formations of these special stepping stones can effectively reduce the local ionization potential of the high π-stacking region to efficiently capture the migration hole. The quick formations and separations of them promote the efficient hole transfer in proteins. More interestingly, we revealed that a hole cannot delocalize over infinite aromatic rings along the high π-π packing structure at the same time and the micro-surroundings of proteins can modulate the formations of π:π∴π↔π∴π:π and π:π∴π:π↔π:π:π∴π bindings. These results may contribute a new avenue to better understand the potential hole transfer pathway in proteins.
Collapse
Affiliation(s)
- Xin Li
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P.R. China
- National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University Chongqing 401331 P.R. China
| | - Weichao Sun
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P.R. China
- National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University Chongqing 401331 P.R. China
| | - Xin Qin
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P.R. China
- National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University Chongqing 401331 P.R. China
| | - Yuxin Xie
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P.R. China
- National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University Chongqing 401331 P.R. China
| | - Nian Liu
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P.R. China
- National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University Chongqing 401331 P.R. China
| | - Xin Luo
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P.R. China
- National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University Chongqing 401331 P.R. China
| | - Yuanying Wang
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P.R. China
- National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University Chongqing 401331 P.R. China
| | - Xiaohua Chen
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P.R. China
- National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University Chongqing 401331 P.R. China
| |
Collapse
|
69
|
Schell E, Nouairia G, Steiner E, Weber N, Lundin D, Loderer C. Structural determinants and distribution of phosphate specificity in ribonucleotide reductases. J Biol Chem 2021; 297:101008. [PMID: 34314684 PMCID: PMC8365446 DOI: 10.1016/j.jbc.2021.101008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/24/2022] Open
Abstract
Ribonucleotide reductases (RNRs) catalyze the reduction of ribonucleotides to the corresponding deoxyribonucleotides, the building blocks of DNA. RNRs are specific for either ribonucleoside diphosphates or triphosphates as substrates. As far as is known, oxygen-dependent class I RNRs (NrdAB) all reduce ribonucleoside diphosphates, and oxygen-sensitive class III RNRs (NrdD) are all ribonucleoside triphosphate reducers, whereas the adenosylcobalamin-dependent class II (NrdJ) contains both ribonucleoside diphosphate and triphosphate reducers. However, it is unknown how this specificity is conveyed by the active site of the enzymes and how this feature developed in RNR evolution. By structural comparison of the active sites in different RNRs, we identified the apical loop of the phosphate-binding site as a potential structural determinant of substrate specificity. Grafting two residues from this loop from a diphosphate- to a triphosphate-specific RNR caused a change in preference from ribonucleoside triphosphate to diphosphate substrates in a class II model enzyme, confirming them as the structural determinants of phosphate specificity. The investigation of the phylogenetic distribution of this motif in class II RNRs yielded a likely monophyletic clade with the diphosphate-defining motif. This indicates a single evolutionary-split event early in NrdJ evolution in which diphosphate specificity developed from the earlier triphosphate specificity. For those interesting cases where organisms contain more than one nrdJ gene, we observed a preference for encoding enzymes with diverse phosphate specificities, suggesting that this varying phosphate specificity confers a selective advantage.
Collapse
Affiliation(s)
- Eugen Schell
- Institute for Microbiology, Technische Universität Dresden, Dresden, Saxony, Germany
| | - Ghada Nouairia
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Elisabeth Steiner
- Institute for Microbiology, Technische Universität Dresden, Dresden, Saxony, Germany
| | - Niclas Weber
- Institute for Microbiology, Technische Universität Dresden, Dresden, Saxony, Germany
| | - Daniel Lundin
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Christoph Loderer
- Institute for Microbiology, Technische Universität Dresden, Dresden, Saxony, Germany.
| |
Collapse
|
70
|
Watson RA, Offenbacher AR, Barry BA. Detection of Catalytically Linked Conformational Changes in Wild-Type Class Ia Ribonucleotide Reductase Using Reaction-Induced FTIR Spectroscopy. J Phys Chem B 2021; 125:8362-8372. [PMID: 34289692 DOI: 10.1021/acs.jpcb.1c03038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The enzyme, ribonucleotide reductase (RNR), is essential for DNA synthesis in all cells. The class Ia Escherichia coli RNR consists of two dimeric subunits, α2 and β2, which form an active but unstable heterodimer of dimers, α2β2. The structure of the wild-type form of the enzyme has been challenging to study due to the instability of the catalytic complex. A long-range proton-coupled electron-transfer (PCET) pathway facilitates radical migration from the Y122 radical-diiron cofactor in the β subunit to an active site cysteine, C439, in the α subunit to initiate the RNR chemistry. The PCET reactions and active site chemistry are spectroscopically masked by a rate-limiting, conformational gate. Here, we present a reaction-induced Fourier transform infrared (RIFTIR) spectroscopic method to monitor the mechanism of the active, wild-type RNR α2β2 complex. This method is employed to obtain new information about conformational changes accompanying RNR catalysis, including the role of carboxylate interactions, deprotonation, and oxidation of active site cysteines, and a detailed description of reversible secondary structural changes. Labeling of tyrosine revealed a conformationally active tyrosine in the β subunit, assigned to Y356β, which is part of the intersubunit PCET pathway. New insights into the roles of the inhibitors, azidoUDP and dATP, and the sensitivity of RIFTIR spectroscopy to detect subtle conformational motions arising from protein allostery are also presented.
Collapse
Affiliation(s)
- Ryan Atlee Watson
- Department of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Adam R Offenbacher
- Department of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States.,Department of Chemistry, East Carolina University, Greenville, North Carolina, United States
| | - Bridgette A Barry
- Department of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States
| |
Collapse
|
71
|
Abstract
Electron-nuclear double resonance (ENDOR) measures the hyperfine interaction of magnetic nuclei with paramagnetic centers and is hence a powerful tool for spectroscopic investigations extending from biophysics to material science. Progress in microwave technology and the recent availability of commercial electron paramagnetic resonance (EPR) spectrometers up to an electron Larmor frequency of 263 GHz now open the opportunity for a more quantitative spectral analysis. Using representative spectra of a prototype amino acid radical in a biologically relevant enzyme, the [Formula: see text] in Escherichia coli ribonucleotide reductase, we developed a statistical model for ENDOR data and conducted statistical inference on the spectra including uncertainty estimation and hypothesis testing. Our approach in conjunction with 1H/2H isotopic labeling of [Formula: see text] in the protein unambiguously established new unexpected spectral contributions. Density functional theory (DFT) calculations and ENDOR spectral simulations indicated that these features result from the beta-methylene hyperfine coupling and are caused by a distribution of molecular conformations, likely important for the biological function of this essential radical. The results demonstrate that model-based statistical analysis in combination with state-of-the-art spectroscopy accesses information hitherto beyond standard approaches.
Collapse
|
72
|
Zhang S, Ruccolo S, Fryszkowska A, Klapars A, Marshall N, Strotman NA. Electrochemical Activation of Galactose Oxidase: Mechanistic Studies and Synthetic Applications. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shaoguang Zhang
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Serge Ruccolo
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Anna Fryszkowska
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Artis Klapars
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Nicholas Marshall
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Neil A. Strotman
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
73
|
Jiang V, Khare SD, Banta S. Computational structure prediction provides a plausible mechanism for electron transfer by the outer membrane protein Cyc2 from Acidithiobacillus ferrooxidans. Protein Sci 2021; 30:1640-1652. [PMID: 33969560 DOI: 10.1002/pro.4106] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022]
Abstract
Cyc2 is the key protein in the outer membrane of Acidithiobacillus ferrooxidans that mediates electron transfer between extracellular inorganic iron and the intracellular central metabolism. This cytochrome c is specific for iron and interacts with periplasmic proteins to complete a reversible electron transport chain. A structure of Cyc2 has not yet been characterized experimentally. Here we describe a structural model of Cyc2, and associated proteins, to highlight a plausible mechanism for the ferrous iron electron transfer chain. A comparative modeling protocol specific for trans membrane beta barrel (TMBB) proteins in acidophilic conditions (pH ~ 2) was applied to the primary sequence of Cyc2. The proposed structure has three main regimes: Extracellular loops exposed to low-pH conditions, a TMBB, and an N-terminal cytochrome-like region within the periplasmic space. The Cyc2 model was further refined by identifying likely iron and heme docking sites. This represents the first computational model of Cyc2 that accounts for the membrane microenvironment and the acidity in the extracellular matrix. This approach can be used to model other TMBBs which can be critical for chemolithotrophic microbial growth.
Collapse
Affiliation(s)
- Virginia Jiang
- Department of Chemical Engineering, Columbia University in the City of New York, New York, New York, USA
| | - Sagar D Khare
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Scott Banta
- Department of Chemical Engineering, Columbia University in the City of New York, New York, New York, USA
| |
Collapse
|
74
|
Reinhardt CR, Sayfutyarova ER, Zhong J, Hammes-Schiffer S. Glutamate Mediates Proton-Coupled Electron Transfer Between Tyrosines 730 and 731 in Escherichia coli Ribonucleotide Reductase. J Am Chem Soc 2021; 143:6054-6059. [PMID: 33856807 PMCID: PMC8500205 DOI: 10.1021/jacs.1c02152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ribonucleotide reductase (RNR) is an essential enzyme in DNA synthesis for all living organisms. It reduces ribonucleotides to the corresponding deoxyribonucleotides by a reversible radical transfer mechanism. The active form of E. coli Ia RNR is composed of two subunits, α and β, which form an active asymmetric α2β2 complex. The radical transfer pathway involves a series of proton-coupled electron transfer (PCET) reactions spanning α and β over ∼32 Å. Herein, quantum mechanical/molecular mechanical free energy simulations of PCET between tyrosine residues Y730 and Y731 are performed on the recently solved cryo-EM structure of the active α2β2 complex, which includes a pre-turnover α/β pair with an ordered PCET pathway and a post-turnover α'/β' pair. The free energy surfaces in both the pre- and post-turnover states are computed. According to the simulations, forward radical transfer from Y731 to Y730 is thermodynamically favored in the pre-turnover state, and backward radical transfer is favored in the post-turnover state, consistent with the reversible mechanism. E623, a glutamate residue that is near these tyrosines only in the pre-turnover state, is discovered to play a key role in facilitating forward radical transfer by thermodynamically stabilizing the radical on Y730 through hydrogen-bonding and electrostatic interactions and lowering the free energy barrier via a proton relay mechanism. Introduction of fluorinated Y731 exhibits expected thermodynamic trends without altering the basic mechanism. These simulations suggest that E623 influences the directionality of PCET between Y731 and Y730 and predict that mutation of E623 will impact catalysis.
Collapse
Affiliation(s)
- Clorice R. Reinhardt
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, Connecticut 06520
| | - Elvira R. Sayfutyarova
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520
| | - Jiayun Zhong
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520
| |
Collapse
|
75
|
Lin ZP, Al Zouabi NN, Xu ML, Bowen NE, Wu TL, Lavi ES, Huang PH, Zhu YL, Kim B, Ratner ES. In silico screening identifies a novel small molecule inhibitor that counteracts PARP inhibitor resistance in ovarian cancer. Sci Rep 2021; 11:8042. [PMID: 33850183 PMCID: PMC8044145 DOI: 10.1038/s41598-021-87325-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
Poly ADP-ribose polymerase (PARP) inhibitors are promising targeted therapy for epithelial ovarian cancer (EOC) with BRCA mutations or defective homologous recombination (HR) repair. However, reversion of BRCA mutation and restoration of HR repair in EOC lead to PARP inhibitor resistance and reduced clinical efficacy of PARP inhibitors. We have previously shown that triapine, a small molecule inhibitor of ribonucleotide reductase (RNR), impaired HR repair and sensitized HR repair-proficient EOC to PARP inhibitors. In this study, we performed in silico screening of small molecule libraries to identify novel compounds that bind to the triapine-binding pocket on the R2 subunit of RNR and inhibit RNR in EOC cells. Following experimental validation of selected top-ranking in silico hits for inhibition of dNTP and DNA synthesis, we identified, DB4, a putative RNR pocket-binding inhibitor markedly abrogated HR repair and sensitized BRCA-wild-type EOC cells to the PARP inhibitor olaparib. Furthermore, we demonstrated that the combination of DB4 and olaparib deterred the progression of BRCA-wild type EOC xenografts and significantly prolonged the survival time of tumor-bearing mice. Herein we report the discovery of a putative small molecule inhibitor of RNR and HR repair for combination with PARP inhibitors to treat PARP inhibitor-resistant and HR repair-proficient EOC.
Collapse
Affiliation(s)
- Z Ping Lin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA.
| | - Nour N Al Zouabi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Mark L Xu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Nicole E Bowen
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Terence L Wu
- Yale West Campus Analytical Core, Yale University, West Haven, CT, 06516, USA
| | - Ethan S Lavi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Pamela H Huang
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Yong-Lian Zhu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Baek Kim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Drug Discovery, Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Elena S Ratner
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
76
|
Tyburski R, Liu T, Glover SD, Hammarström L. Proton-Coupled Electron Transfer Guidelines, Fair and Square. J Am Chem Soc 2021; 143:560-576. [PMID: 33405896 PMCID: PMC7880575 DOI: 10.1021/jacs.0c09106] [Citation(s) in RCA: 266] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Indexed: 12/23/2022]
Abstract
Proton-coupled electron transfer (PCET) reactions are fundamental to energy transformation reactions in natural and artificial systems and are increasingly recognized in areas such as catalysis and synthetic chemistry. The interdependence of proton and electron transfer brings a mechanistic richness of reactivity, including various sequential and concerted mechanisms. Delineating between different PCET mechanisms and understanding why a particular mechanism dominates are crucial for the design and optimization of reactions that use PCET. This Perspective provides practical guidelines for how to discern between sequential and concerted mechanisms based on interpretations of thermodynamic data with temperature-, pressure-, and isotope-dependent kinetics. We present new PCET-zone diagrams that show how a mechanism can switch or even be eliminated by varying the thermodynamic (ΔGPT° and ΔGET°) and coupling strengths for a PCET system. We discuss the appropriateness of asynchronous concerted PCET to rationalize observations in organic reactions, and the distinction between hydrogen atom transfer and other concerted PCET reactions. Contemporary issues and future prospects in PCET research are discussed.
Collapse
Affiliation(s)
- Robin Tyburski
- Ångström
Laboratory, Department of Chemistry, Uppsala
University, Box 523, SE75120 Uppsala, Sweden
| | - Tianfei Liu
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599-3290, United States
| | - Starla D. Glover
- Ångström
Laboratory, Department of Chemistry, Uppsala
University, Box 523, SE75120 Uppsala, Sweden
| | - Leif Hammarström
- Ångström
Laboratory, Department of Chemistry, Uppsala
University, Box 523, SE75120 Uppsala, Sweden
| |
Collapse
|
77
|
Tang WK, Mu X, Li M, Martens J, Berden G, Oomens J, Chu IK, Siu CK. Formation of n → π + interaction facilitating dissociative electron transfer in isolated tyrosine-containing molecular peptide radical cations. Phys Chem Chem Phys 2021; 22:21393-21402. [PMID: 32940309 DOI: 10.1039/d0cp00533a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Long-range electron transfer in proteins can be rationalized as a sequential short-distance electron-hopping processes via amino acid residues having low ionization energy as relay stations. Tyrosine residues can serve as such redox-active intermediates through one-electron oxidation to form a π-radical cation at its phenol side chain. An electron transfer from a vicinal functional group to this π-electron hole completes an elementary step of charge migration. However, transient oxidized/reduced intermediates formed at those relay stations during electron transfer processes have not been observed. In this study, formation of analog reactive intermediates via electron donor-acceptor coupling is observed by using IRMPD action spectroscopy. An elementary charge migration at the molecular level in model tyrosine-containing peptide radical cations [M]˙+ in the gas phase is revealed with its unusual Cα-Cβ bond cleavage at the side chain of the N-terminal residue. This reaction is induced by the radical character of the N-terminal amino group (-NH2˙+) resulting from an n → π+ interaction between the nonbonding electron pair of NH2 (n) and the π-electron hole at the Tyr side chain (π+). The formation of -NH2˙+ is supported by the IRMPD spectrum showing a characteristic NH2 scissor vibration coupled with Tyr side-chain stretches at 1577 cm-1. This n → π+ interaction facilitates a dissociative electron transfer with NH2 as the relay station. The occurrence of this side-chain cleavage may be an indicator of the formation of reactive conformers featuring the n → π+ interaction.
Collapse
Affiliation(s)
- Wai Kit Tang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, China.
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Berg N, Bergwinkl S, Nuernberger P, Horinek D, Gschwind RM. Extended Hydrogen Bond Networks for Effective Proton-Coupled Electron Transfer (PCET) Reactions: The Unexpected Role of Thiophenol and Its Acidic Channel in Photocatalytic Hydroamidations. J Am Chem Soc 2021; 143:724-735. [DOI: 10.1021/jacs.0c08673] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Nele Berg
- Institute of Organic Chemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Sebastian Bergwinkl
- Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Patrick Nuernberger
- Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Dominik Horinek
- Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Ruth M. Gschwind
- Institute of Organic Chemistry, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
79
|
Computing Proton-Coupled Redox Potentials of Fluorotyrosines in a Protein Environment. J Phys Chem B 2020; 125:128-136. [PMID: 33378205 DOI: 10.1021/acs.jpcb.0c09974] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The oxidation of tyrosine to form the neutral tyrosine radical via proton-coupled electron transfer is essential for a wide range of biological processes. The precise measurement of the proton-coupled redox potentials of tyrosine (Y) in complex protein environments is challenging mainly because of the highly oxidizing and reactive nature of the radical state. Herein, a computational strategy is presented for predicting proton-coupled redox potentials in a protein environment. In this strategy, both the reduced Y-OH and oxidized Y-O• forms of tyrosine are sampled with molecular dynamics using a molecular mechanical force field. For a large number of conformations, a quantum mechanical/molecular mechanical (QM/MM) electrostatic embedding scheme is used to compute the free-energy differences between the reduced and oxidized forms, including the zero-point energy and entropic contributions as well as the impact of the protein electrostatic environment. This strategy is applied to a series of fluorinated tyrosine derivatives embedded in a de novo α-helical protein denoted as α3Y. The force fields for both the reduced and oxidized forms of these noncanonical fluorinated tyrosine residues are parameterized for general use. The calculated relative proton-coupled redox potentials agree with experimentally measured values with a mean unsigned error of 24 mV. Analysis of the simulations illustrates that hydrogen-bonding interactions between tyrosine and water increase the redox potentials by ∼100-250 mV, with significant variations because of the fluctuating protein environment. This QM/MM approach enables the calculation of proton-coupled redox potentials of tyrosine and other residues such as tryptophan in a variety of protein systems.
Collapse
|
80
|
Chen CC, Min J, Zhang L, Yang Y, Yu X, Guo RT. Advanced Understanding of the Electron Transfer Pathway of Cytochrome P450s. Chembiochem 2020; 22:1317-1328. [PMID: 33232569 DOI: 10.1002/cbic.202000705] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/24/2020] [Indexed: 11/08/2022]
Abstract
Cytochrome P450s are heme-thiolate enzymes that participate in carbon source assimilation, natural compound biosynthesis and xenobiotic metabolism in all kingdoms of life. P450s can catalyze various reactions by using a wide range of organic compounds, thus exhibiting great potential in biotechnological applications. The catalytic reactions of P450s are driven by electron equivalents that are sourced from pyridine nucleotides and delivered by cognate or matching redox partners (RPs). The electron transfer (ET) route from RPs to P450s involves one or more redox center-containing domains. As the rate of ET is one of the main determinants of P450 efficacy, an in-depth understanding of the P450 ET pathway should increase our knowledge of these important enzymes and benefit their further applications. Here, the various P450 RP systems along with current understanding of their ET routes will be reviewed. Notably, state-of-the-art structural studies of the two main types of self-sufficient P450 will also be summarized.
Collapse
Affiliation(s)
- Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources Hubei Key Laboratory of Industrial Biotechnology School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Jian Min
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources Hubei Key Laboratory of Industrial Biotechnology School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Lilan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources Hubei Key Laboratory of Industrial Biotechnology School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Yu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources Hubei Key Laboratory of Industrial Biotechnology School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Xuejing Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources Hubei Key Laboratory of Industrial Biotechnology School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources Hubei Key Laboratory of Industrial Biotechnology School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, P. R. China
| |
Collapse
|
81
|
Cui C, Greene BL, Kang G, Drennan CL, Stubbe J, Nocera DG. Gated Proton Release during Radical Transfer at the Subunit Interface of Ribonucleotide Reductase. J Am Chem Soc 2020; 143:176-183. [PMID: 33353307 DOI: 10.1021/jacs.0c07879] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The class Ia ribonucleotide reductase of Escherichia coli requires strict regulation of long-range radical transfer between two subunits, α and β, through a series of redox-active amino acids (Y122•[β] ↔ W48?[β] ↔ Y356[β] ↔ Y731[α] ↔ Y730[α] ↔ C439[α]). Nowhere is this more precarious than at the subunit interface. Here, we show that the oxidation of Y356 is regulated by proton release involving a specific residue, E52[β], which is part of a water channel at the subunit interface for rapid proton transfer to the bulk solvent. An E52Q variant is incapable of Y356 oxidation via the native radical transfer pathway or non-native photochemical oxidation, following photosensitization by covalent attachment of a photo-oxidant at position 355[β]. Substitution of Y356 for various FnY analogues in an E52Q-photoβ2, where the side chain remains deprotonated, recovered photochemical enzymatic turnover. Transient absorption and emission data support the conclusion that Y356 oxidation requires E52 for proton management, suggesting its essential role in gating radical transport across the protein-protein interface.
Collapse
Affiliation(s)
- Chang Cui
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Brandon L Greene
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Gyunghoon Kang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 20139, United States.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 20139, United States
| | - Catherine L Drennan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 20139, United States.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 20139, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 20139, United States.,Fellow, Bio-inspired Solar Energy Program, Canadian Institute for Advanced Research, Toronto, Ontario M5G 1M1, Canada
| | - JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 20139, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 20139, United States
| | - Daniel G Nocera
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
82
|
Gualandi A, Nenov A, Marchini M, Rodeghiero G, Conti I, Paltanin E, Balletti M, Ceroni P, Garavelli M, Cozzi PG. Tailored Coumarin Dyes for Photoredox Catalysis: Calculation, Synthesis, and Electronic Properties. ChemCatChem 2020. [DOI: 10.1002/cctc.202001690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Andrea Gualandi
- Dipartimento di Chimica “G. Ciamician” Alma Mater Studiorum – Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Artur Nenov
- Dipartimento di Chimica Industriale “T. Montanari” Alma Mater Studiorum – Università di Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Marianna Marchini
- Dipartimento di Chimica “G. Ciamician” Alma Mater Studiorum – Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Giacomo Rodeghiero
- Dipartimento di Chimica “G. Ciamician” Alma Mater Studiorum – Università di Bologna Via Selmi 2 40126 Bologna Italy
- Cyanagen Srl Via Stradelli Guelfi 40/C 40138 Bologna Italy
| | - Irene Conti
- Dipartimento di Chimica Industriale “T. Montanari” Alma Mater Studiorum – Università di Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Ettore Paltanin
- Dipartimento di Chimica Industriale “T. Montanari” Alma Mater Studiorum – Università di Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Matteo Balletti
- Dipartimento di Chimica “G. Ciamician” Alma Mater Studiorum – Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Paola Ceroni
- Dipartimento di Chimica “G. Ciamician” Alma Mater Studiorum – Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Marco Garavelli
- Dipartimento di Chimica Industriale “T. Montanari” Alma Mater Studiorum – Università di Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Pier Giorgio Cozzi
- Dipartimento di Chimica “G. Ciamician” Alma Mater Studiorum – Università di Bologna Via Selmi 2 40126 Bologna Italy
| |
Collapse
|
83
|
Yang JY, Kerr TA, Wang XS, Barlow JM. Reducing CO2 to HCO2– at Mild Potentials: Lessons from Formate Dehydrogenase. J Am Chem Soc 2020; 142:19438-19445. [DOI: 10.1021/jacs.0c07965] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jenny Y. Yang
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Tyler A. Kerr
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Xinran S. Wang
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Jeffrey M. Barlow
- Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
84
|
Reinhardt CR, Li P, Kang G, Stubbe J, Drennan CL, Hammes-Schiffer S. Conformational Motions and Water Networks at the α/β Interface in E. coli Ribonucleotide Reductase. J Am Chem Soc 2020; 142:13768-13778. [PMID: 32631052 DOI: 10.1021/jacs.0c04325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ribonucleotide reductases (RNRs) catalyze the conversion of all four ribonucleotides to deoxyribonucleotides and are essential for DNA synthesis in all organisms. The active form of E. coli Ia RNR is composed of two homodimers that form the active α2β2 complex. Catalysis is initiated by long-range radical translocation over a ∼32 Å proton-coupled electron transfer (PCET) pathway involving Y356β and Y731α at the interface. Resolving the PCET pathway at the α/β interface has been a long-standing challenge due to the lack of structural data. Herein, molecular dynamics simulations based on a recently solved cryogenic-electron microscopy structure of an active α2β2 complex are performed to examine the structure and fluctuations of interfacial water, as well as the hydrogen-bonding interactions and conformational motions of interfacial residues along the PCET pathway. Our free energy simulations reveal that Y731 is able to sample both a flipped-out conformation, where it points toward the interface to facilitate interfacial PCET with Y356, and a stacked conformation with Y730 to enable collinear PCET with this residue. Y356 and Y731 exhibit hydrogen-bonding interactions with interfacial water molecules and, in some conformations, share a bridging water molecule, suggesting that the primary proton acceptor for PCET from Y356 and from Y731 is interfacial water. The conformational flexibility of Y731 and the hydrogen-bonding interactions of both Y731 and Y356 with interfacial water and hydrogen-bonded water chains appear critical for effective radical translocation along the PCET pathway. These simulations are consistent with biochemical and spectroscopic data and provide previously unattainable atomic-level insights into the fundamental mechanism of RNR.
Collapse
Affiliation(s)
- Clorice R Reinhardt
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven Connecticut 06520, United States
| | - Pengfei Li
- Department of Chemistry, Yale University, New Haven Connecticut 06520, United States
| | - Gyunghoon Kang
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge Massachusetts 02139, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge Massachusetts 02139, United States
| | - JoAnne Stubbe
- Department of Biology, Massachusetts Institute of Technology, Cambridge Massachusetts 02139, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge Massachusetts 02139, United States
| | - Catherine L Drennan
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge Massachusetts 02139, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge Massachusetts 02139, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge Massachusetts 02139, United States.,Fellow, Bio-inspired Solar Energy Program, Canadian Institute for Advanced Research (CIFAR), Toronto, ON M5G 1M1, Canada
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, New Haven Connecticut 06520, United States.,Fellow, Bio-inspired Solar Energy Program, Canadian Institute for Advanced Research (CIFAR), Toronto, ON M5G 1M1, Canada
| |
Collapse
|
85
|
Koronkiewicz B, Swierk J, Regan K, Mayer JM. Shallow Distance Dependence for Proton-Coupled Tyrosine Oxidation in Oligoproline Peptides. J Am Chem Soc 2020; 142:12106-12118. [PMID: 32510937 PMCID: PMC7545454 DOI: 10.1021/jacs.0c01429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have explored the kinetic effect of increasing electron transfer (ET) distance in a biomimetic, proton-coupled electron-transfer (PCET) system. Biological ET often occurs simultaneously with proton transfer (PT) in order to avoid the high-energy, charged intermediates resulting from the stepwise transfer of protons and electrons. These concerted proton-electron-transfer (CPET) reactions are implicated in numerous biological ET pathways. In many cases, PT is coupled to long-range ET. While many studies have shown that the rate of ET is sensitive to the distance between the electron donor and acceptor, extensions to biological CPET reactions are sparse. The possibility of a unique ET distance dependence for CPET reactions deserves further exploration, as this could have implications for how we understand biological ET. We therefore explored the ET distance dependence for the CPET oxidation of tyrosine in a model system. We prepared a series of metallopeptides with a tyrosine separated from a Ru(bpy)32+ complex by an oligoproline bridge of increasing length. Rate constants for intramolecular tyrosine oxidation were measured using the flash-quench transient absorption technique in aqueous solutions. The rate constants for tyrosine oxidation decreased by 125-fold with three added proline residues between tyrosine and the oxidant. By comparison, related intramolecular ET rate constants in very similar constructs were reported to decrease by 4-5 orders of magnitude over the same number of prolines. The observed shallow distance dependence for tyrosine oxidation is proposed to originate in part from the requirement for stronger oxidants, leading to a smaller hole-transfer effective tunneling barrier height. The shallow distance dependence observed here and extensions to distance-dependent CPET reactions have potential implications for long-range charge transfers.
Collapse
Affiliation(s)
- Brian Koronkiewicz
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - John Swierk
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Kevin Regan
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - James M Mayer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
86
|
Ferousi C, Majer SH, DiMucci IM, Lancaster KM. Biological and Bioinspired Inorganic N-N Bond-Forming Reactions. Chem Rev 2020; 120:5252-5307. [PMID: 32108471 PMCID: PMC7339862 DOI: 10.1021/acs.chemrev.9b00629] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The metallobiochemistry underlying the formation of the inorganic N-N-bond-containing molecules nitrous oxide (N2O), dinitrogen (N2), and hydrazine (N2H4) is essential to the lifestyles of diverse organisms. Similar reactions hold promise as means to use N-based fuels as alternative carbon-free energy sources. This review discusses research efforts to understand the mechanisms underlying biological N-N bond formation in primary metabolism and how the associated reactions are tied to energy transduction and organismal survival. These efforts comprise studies of both natural and engineered metalloenzymes as well as synthetic model complexes.
Collapse
Affiliation(s)
- Christina Ferousi
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Sean H Majer
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Ida M DiMucci
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
87
|
Ravichandran K, Olshansky L, Nocera DG, Stubbe J. Subunit Interaction Dynamics of Class Ia Ribonucleotide Reductases: In Search of a Robust Assay. Biochemistry 2020; 59:1442-1453. [PMID: 32186371 PMCID: PMC7160020 DOI: 10.1021/acs.biochem.0c00001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ribonucleotide reductases (RNRs) catalyze the conversion of nucleotides (NDP) to deoxynucleotides (dNDP), in part, by controlling the ratios and quantities of dNTPs available for DNA replication and repair. The active form of Escherichia coli class Ia RNR is an asymmetric α2β2 complex in which α2 contains the active site and β2 contains the stable diferric-tyrosyl radical cofactor responsible for initiating the reduction chemistry. Each dNDP is accompanied by disulfide bond formation. We now report that, under in vitro conditions, β2 can initiate turnover in α2 catalytically under both "one" turnover (no external reductant, though producing two dCDPs) and multiple turnover (with an external reductant) assay conditions. In the absence of reductant, rapid chemical quench analysis of a reaction of α2, substrate, and effector with variable amounts of β2 (1-, 10-, and 100-fold less than α2) yields 3 dCDP/α2 at all ratios of α2:β2 with a rate constant of 8-9 s-1, associated with a rate-limiting conformational change. Stopped-flow fluorescence spectroscopy with a fluorophore-labeled β reveals that the rate constants for subunit association (163 ± 7 μM-1 s-1) and dissociation (75 ± 10 s-1) are fast relative to turnover, consistent with catalytic β2. When assaying in the presence of an external reducing system, the turnover number is dictated by the ratio of α2:β2, their concentrations, and the concentration and nature of the reducing system; the rate-limiting step can change from the conformational gating to a step or steps involving disulfide rereduction, dissociation of the inhibited α4β4 state, or both. The issues encountered with E. coli RNR are likely of importance in all class I RNRs and are central to understanding the development of screening assays for inhibitors of these enzymes.
Collapse
Affiliation(s)
- Kanchana Ravichandran
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Lisa Olshansky
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138
| | - Daniel G. Nocera
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138
| | - JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| |
Collapse
|
88
|
Tyson KJ, Davis AN, Norris JL, Bartolotti LJ, Hvastkovs EG, Offenbacher AR. Impact of Local Electrostatics on the Redox Properties of Tryptophan Radicals in Azurin: Implications for Redox-Active Tryptophans in Proton-Coupled Electron Transfer. J Phys Chem Lett 2020; 11:2408-2413. [PMID: 32134666 DOI: 10.1021/acs.jpclett.0c00614] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tyrosine and tryptophan play critical roles in facilitating proton-coupled electron transfer (PCET) processes essential to life. The local protein environment is anticipated to modulate the thermodynamics of amino acid radicals to achieve controlled, unidirectional PCET. Herein, square-wave voltammetry was employed to investigate the electrostatic effects on the redox properties of tryptophan in two variants of the protein azurin. Each variant contains a single redox-active tryptophan, W48 or W108, in a unique and buried protein environment. These tryptophan residues exhibit reversible square-wave voltammograms. A Pourbaix plot, representing the reduction potentials versus pH, is presented for the non-H-bonded W48, which has potentials comparable to those of tryptophan in solution. The reduction potentials of W108 are seen to be increased by more than 100 mV across the same pH range. Molecular dynamics shows that, despite its buried indole ring, the N-H of W108 hydrogen bonds with a water cluster, while W48 is completely excluded from interactions with water or polar groups. These redox properties provide insight into the role of the protein in tuning the reactivity of tryptophan radicals, a requirement for controlled biological PCET.
Collapse
Affiliation(s)
- Kristin J Tyson
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| | - Amanda N Davis
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| | - Jessica L Norris
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| | - Libero J Bartolotti
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| | - Eli G Hvastkovs
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| | - Adam R Offenbacher
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| |
Collapse
|
89
|
Odella E, Mora SJ, Wadsworth BL, Goings JJ, Gervaldo MA, Sereno LE, Groy TL, Gust D, Moore TA, Moore GF, Hammes-Schiffer S, Moore AL. Proton-coupled electron transfer across benzimidazole bridges in bioinspired proton wires. Chem Sci 2020; 11:3820-3828. [PMID: 34122850 PMCID: PMC8152432 DOI: 10.1039/c9sc06010c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Designing molecular platforms for controlling proton and electron movement in artificial photosynthetic systems is crucial to efficient catalysis and solar energy conversion. The transfer of both protons and electrons during a reaction is known as proton-coupled electron transfer (PCET) and is used by nature in myriad ways to provide low overpotential pathways for redox reactions and redox leveling, as well as to generate bioenergetic proton currents. Herein, we describe theoretical and electrochemical studies of a series of bioinspired benzimidazole-phenol (BIP) derivatives and a series of dibenzimidazole-phenol (BI2P) analogs with each series bearing the same set of terminal proton-accepting (TPA) groups. The set of TPAs spans more than 6 pKa units. These compounds have been designed to explore the role of the bridging benzimidazole(s) in a one-electron oxidation process coupled to intramolecular proton translocation across either two (the BIP series) or three (the BI2P series) acid/base sites. These molecular constructs feature an electrochemically active phenol connected to the TPA group through a benzimidazole-based bridge, which together with the phenol and TPA group form a covalent framework supporting a Grotthuss-type hydrogen-bonded network. Infrared spectroelectrochemistry demonstrates that upon oxidation of the phenol, protons translocate across this well-defined hydrogen-bonded network to a TPA group. The experimental data show the benzimidazole bridges are non-innocent participants in the PCET process in that the addition of each benzimidazole unit lowers the redox potential of the phenoxyl radical/phenol couple by 60 mV, regardless of the nature of the TPA group. Using a series of hypothetical thermodynamic steps, density functional theory calculations correctly predicted the dependence of the redox potential of the phenoxyl radical/phenol couple on the nature of the final protonated species and provided insight into the thermodynamic role of dibenzimidazole units in the PCET process. This information is crucial for developing molecular “dry proton wires” with these moieties, which can transfer protons via a Grotthuss-type mechanism over long distances without the intervention of water molecules. Experimental and theoretical methods characterize the thermodynamics of electrochemically driven proton-coupled electron transfer processes in bioinspired constructs involving multiple proton translocations over Grotthus-type proton wires.![]()
Collapse
Affiliation(s)
- Emmanuel Odella
- School of Molecular Sciences, Arizona State University Tempe Arizona 85287-1604 USA
| | - S Jimena Mora
- School of Molecular Sciences, Arizona State University Tempe Arizona 85287-1604 USA
| | - Brian L Wadsworth
- School of Molecular Sciences, Arizona State University Tempe Arizona 85287-1604 USA
| | - Joshua J Goings
- Department of Chemistry, Yale University New Haven Connecticut 06520-8107 USA
| | - Miguel A Gervaldo
- Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto Agencia Postal No 3 5800 Río Cuarto Córdoba Argentina
| | - Leonides E Sereno
- Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto Agencia Postal No 3 5800 Río Cuarto Córdoba Argentina
| | - Thomas L Groy
- School of Molecular Sciences, Arizona State University Tempe Arizona 85287-1604 USA
| | - Devens Gust
- School of Molecular Sciences, Arizona State University Tempe Arizona 85287-1604 USA
| | - Thomas A Moore
- School of Molecular Sciences, Arizona State University Tempe Arizona 85287-1604 USA
| | - Gary F Moore
- School of Molecular Sciences, Arizona State University Tempe Arizona 85287-1604 USA
| | | | - Ana L Moore
- School of Molecular Sciences, Arizona State University Tempe Arizona 85287-1604 USA
| |
Collapse
|
90
|
Li S, Chen W, Hu X, Feng F. Self-Assembly of Albumin and [FeFe]-Hydrogenase Mimics for Photocatalytic Hydrogen Evolution. ACS APPLIED BIO MATERIALS 2020; 3:2482-2488. [DOI: 10.1021/acsabm.0c00194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shuyi Li
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Weijian Chen
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiantao Hu
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fude Feng
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
91
|
Drienovská I, Roelfes G. Expanding the enzyme universe with genetically encoded unnatural amino acids. Nat Catal 2020. [DOI: 10.1038/s41929-019-0410-8] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
92
|
Offenbacher AR, Barry BA. A Proton Wire Mediates Proton Coupled Electron Transfer from Hydroxyurea and Other Hydroxamic Acids to Tyrosyl Radical in Class Ia Ribonucleotide Reductase. J Phys Chem B 2020; 124:345-354. [PMID: 31904962 DOI: 10.1021/acs.jpcb.9b08587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proton-coupled electron transfer (PCET) is fundamental to many important biological reactions, including solar energy conversion and DNA synthesis. For example, class Ia ribonucleotide reductases (RNRs) contain a tyrosyl radical-diiron cofactor with one aspartate ligand, D84. The tyrosyl radical, Y122•, in the β2 subunit acts as a radical initiator and oxidizes an active site cysteine in the α2 subunit. A transient quaternary α2/β2 complex is induced by substrate and effector binding. The hydroxamic acid, hydroxyurea (HU), reduces Y122• in a PCET reaction involving an electron and proton. This reaction is associated with the loss of activity, a conformational change at Y122, and a change in hydrogen bonding to the Fe1 ligand, D84. Here, we use isotopic labeling, solvent isotope exchange, proton inventories, and reaction-induced Fourier transform infrared (RIFT-IR) spectroscopy to show that the PCET reactions of hydroxamic acids are associated with a characteristic spectrum, which is assignable to electrostatic changes at nonligating aspartate residues. Notably, RIFT-IR spectroscopy reveals this characteristic spectrum when the effects of HU, hydroxylamine, and N-methylhydroxylamine are compared. A large solvent isotope effect is observed for each of the hydroxamic acid reactions, and proton inventories predict that the reactions are associated with the transfer of multiple protons in the transition state. The reduction of Y122• with 4-methoxyphenol does not lead to these characteristic carboxylate shifts and is associated with only a small solvent isotope effect. In addition to studies of the effects of hydroxamic acids on β2 alone, the reactions involving the quaternary α2β2 complex were also investigated. HU treatment of the quaternary complex, α2/β2/ATP/CDP, leads to a similar carboxylate shift spectrum, as observed with β2 alone. The use of globally labeled 13C chimeras (13C α2, 13C β2) confirms the assignment. Because the spectrum is sensitive to 13C β2 labeling, but not 13C α2 labeling, the quaternary complex spectrum is assigned to electrostatic changes in β2 carboxylate groups. Examination of the β2 X-ray structure reveals a hydrogen-bonded network leading from the protein surface to Y122. This predicted network includes nonligating aspartates, glutamate ligands to the iron cluster, and predicted crystallographically resolved water molecules. The network is similar when class Ia RNR structures from Escherichia coli, human, and mouse are compared. We propose that the PCET reactions of hydroxamic acids are mediated by a hydrogen-bonded proton wire in the β2 subunit.
Collapse
Affiliation(s)
- Adam R Offenbacher
- Department of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States.,Department of Chemistry , East Carolina University , Greenville , North Carolina 27858 , United States
| | - Bridgette A Barry
- Department of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|
93
|
Morozova OB. Reduction of Transient Histidine Radicals by Tyrosine: Influence of the Protonation State of Reactants. Chemphyschem 2020; 21:43-50. [PMID: 31709709 DOI: 10.1002/cphc.201901020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Indexed: 11/07/2022]
Abstract
The role of tyrosine radicals as mediators of electron transfer reactions in enzymes is well established, as is the involvement of histidine as a binding partner. But how environmental factors affect these reactions remains poorly explored. In the study presented here, kinetic data on the influence of the protonation state of the reactants on the reduction of transient histidine radicals by tyrosine were obtained in neutral and basic aqueous solution (pH 6-12) using time-resolved chemically induced dynamic nuclear polarization (CIDNP). The histidine radicals were generated in the photo-induced reaction with the photosensitizer 3,3',4,4'-tetracarboxy benzophenone. From model simulations of the detected CIDNP kinetics, pH dependent second-order rate constants of the reduction of histidine radicals were obtained for four possible combinations of the amino acids and their N-acetyl derivatives, and also for the systems histidine-phenylalanine dipeptide/N-acetyl tyrosine, and N-acetyl histidine/tyrosine-glutamine dipeptide. The pH dependences of the rate constant of the reduction reaction are explained accounting for the protonation states of reactants, and also protonation state of the equilibrium form of the product - reduced form of histidine radical, which is histidine with neutral or a positively charged imidazole.
Collapse
Affiliation(s)
- Olga B Morozova
- International Tomography Center, Institutskaya 3a, 630090, Novosibirsk, Russia.,Novosibirsk State University, Pirogova 2, 630090, Novosibirsk, Russia
| |
Collapse
|
94
|
Yu J, Horsley JR, Abell AD. Unravelling electron transfer in peptide-cation complexes: a model for mimicking redox centres in proteins. Phys Chem Chem Phys 2020; 22:8409-8417. [DOI: 10.1039/d0cp00635a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We provide evidence that bound zinc promotes electron transfer in a peptide by changing the electronic properties of the peptide.
Collapse
Affiliation(s)
- Jingxian Yu
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Institute of Photonics and Advanced Sensing (IPAS)
- Department of Chemistry
- The University of Adelaide
- Adelaide
| | - John R. Horsley
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Institute of Photonics and Advanced Sensing (IPAS)
- Department of Chemistry
- The University of Adelaide
- Adelaide
| | - Andrew D. Abell
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Institute of Photonics and Advanced Sensing (IPAS)
- Department of Chemistry
- The University of Adelaide
- Adelaide
| |
Collapse
|
95
|
D'Amore L, Belpassi L, Klein JEMN, Swart M. Spin-resolved charge displacement analysis as an intuitive tool for the evaluation of cPCET and HAT scenarios. Chem Commun (Camb) 2020; 56:12146-12149. [DOI: 10.1039/d0cc04995f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The spin-resolved version of the charge displacement function is introduced as an intuitive tool for differentiating between hydrogen-atom transfer and concerted proton-coupled electron transfer.
Collapse
Affiliation(s)
- Lorenzo D'Amore
- IQCC and Dept. Chem
- Universitat de Girona
- Campus Montilivi
- 17003 Girona
- Spain
| | - Leonardo Belpassi
- Istituto di Scienze e Tecnologie Chimiche del CNR (SCITEC-CNR) c/o Università degli Studi di Perugia
- Via Elce di Sotto 8
- 06123 Perugia
- Italy
| | - Johannes E. M. N. Klein
- Molecular Inorganic Chemistry
- Stratingh Institute for Chemistry
- Faculty of Science and Engineering
- University of Groningen
- Groningen
| | - Marcel Swart
- IQCC and Dept. Chem
- Universitat de Girona
- Campus Montilivi
- 17003 Girona
- Spain
| |
Collapse
|
96
|
Yee EF, Dzikovski B, Crane BR. Tuning Radical Relay Residues by Proton Management Rescues Protein Electron Hopping. J Am Chem Soc 2019; 141:17571-17587. [PMID: 31603693 DOI: 10.1021/jacs.9b05715] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Transient tyrosine and tryptophan radicals play key roles in the electron transfer (ET) reactions of photosystem (PS) II, ribonucleotide reductase (RNR), photolyase, and many other proteins. However, Tyr and Trp are not functionally interchangeable, and the factors controlling their reactivity are often unclear. Cytochrome c peroxidase (CcP) employs a Trp191•+ radical to oxidize reduced cytochrome c (Cc). Although a Tyr191 replacement also forms a stable radical, it does not support rapid ET from Cc. Here we probe the redox properties of CcP Y191 by non-natural amino acid substitution, altering the ET driving force and manipulating the protic environment of Y191. Higher potential fluorotyrosine residues increase ET rates marginally, but only addition of a hydrogen bond donor to Tyr191• (via Leu232His or Glu) substantially alters activity by increasing the ET rate by nearly 30-fold. ESR and ESEEM spectroscopies, crystallography, and pH-dependent ET kinetics provide strong evidence for hydrogen bond formation to Y191• by His232/Glu232. Rate measurements and rapid freeze quench ESR spectroscopy further reveal differences in radical propagation and Cc oxidation that support an increased Y191• formal potential of ∼200 mV in the presence of E232. Hence, Y191 inactivity results from a potential drop owing to Y191•+ deprotonation. Incorporation of a well-positioned base to accept and donate back a hydrogen bond upshifts the Tyr• potential into a range where it can effectively oxidize Cc. These findings have implications for the YZ/YD radicals of PS II, hole-hopping in RNR and cryptochrome, and engineering proteins for long-range ET reactions.
Collapse
Affiliation(s)
- Estella F Yee
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Boris Dzikovski
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States.,National Biomedical Center for Advanced ESR Technologies (ACERT) , Cornell University , Ithaca , New York 14850 , United States
| | - Brian R Crane
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
97
|
Samanta D, Saha P, Ghosh P. Proton-Coupled Oxidation of Aldimines and Stabilization of H-Bonded Phenoxyl Radical-Phenol Skeletons. Inorg Chem 2019; 58:15060-15077. [DOI: 10.1021/acs.inorgchem.9b01568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Debasish Samanta
- Department of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata 700103, India
| | - Pinaki Saha
- Department of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata 700103, India
| | - Prasanta Ghosh
- Department of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata 700103, India
| |
Collapse
|
98
|
Sayfutyarova ER, Lam YC, Hammes-Schiffer S. Strategies for Enhancing the Rate Constant of C-H Bond Cleavage by Concerted Proton-Coupled Electron Transfer. J Am Chem Soc 2019; 141:15183-15189. [PMID: 31464122 DOI: 10.1021/jacs.9b06849] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recently selective C-H bond cleavage under mild conditions with weak oxidants was reported for fluorenyl-benzoates. This mechanism is based on multi-site concerted proton-coupled electron transfer (PCET) involving intermolecular electron transfer to an outer-sphere oxidant coupled to intramolecular proton transfer to a well-positioned proton acceptor. The electron transfer driving force depends predominantly on the oxidant, and the proton transfer driving force depends mainly on the basicity of the carboxylate, which is influenced by the substituent on the benzoate fragment. Experiments showed that the rate constants are much more sensitive to the carboxylate basicity than to the redox potential of the oxidant. Herein a vibronically nonadiabatic PCET theory is used to explain how changing the driving force for the electron and proton transfer components of the reaction through varying the oxidant and the substituent, respectively, impacts the PCET rate constant. In addition to increasing the driving force for proton transfer, enhancing the basicity of the carboxylate also decreases the equilibrium proton donor-acceptor distance, thereby facilitating the sampling of shorter proton donor-acceptor distances. This additional effect arising from the strong dependence of proton transfer on the proton donor-acceptor distance provides an explanation for the greater sensitivity of the rate constant to the carboxylate basicity than to the redox potential of the oxidant. These fundamental insights have broad implications for developing new strategies to activate C-H bonds, specifically by designing systems with shorter equilibrium proton donor-acceptor distances.
Collapse
Affiliation(s)
- Elvira R Sayfutyarova
- Department of Chemistry , Yale University , 225 Prospect Street , New Haven , Connecticut 06520 , United States
| | - Yan-Choi Lam
- Department of Chemistry , Yale University , 225 Prospect Street , New Haven , Connecticut 06520 , United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry , Yale University , 225 Prospect Street , New Haven , Connecticut 06520 , United States
| |
Collapse
|
99
|
North ML, Wilcox DE. Shift from Entropic Cu 2+ Binding to Enthalpic Cu + Binding Determines the Reduction Thermodynamics of Blue Copper Proteins. J Am Chem Soc 2019; 141:14329-14339. [PMID: 31433629 DOI: 10.1021/jacs.9b06836] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The enthalpic and entropic components of Cu2+ and Cu+ binding to the blue copper protein azurin have been quantified with isothermal titration calorimetry (ITC) measurements and analysis, providing the first such experimental values for Cu+ binding to a protein. The high affinity of azurin for Cu2+ is entirely due to a very favorable binding entropy, while its even higher affinity for Cu+ is due to a favorable binding enthalpy and entropy. The binding thermodynamics provide insight into bond enthalpies at the blue copper site and entropic contributions from desolvation and proton displacement. These values were used in thermodynamic cycles to determine the enthalpic and entropic contributions to the free energy of reduction and thus the reduction potential. The reduction thermodynamics obtained with this method are in good agreement with previous results from temperature-dependent electrochemical measurements. The calorimetry method, however, provides new insight into contributions from the initial (oxidized) and final (reduced) states of the reduction. Since ITC measurements quantify the protons that are displaced upon metal binding, the proton transfer that is coupled with electron transfer is also determined with this method. Preliminary results for Cu2+ and Cu+ binding to the Phe114Pro variant of azurin demonstrate the insight about protein tuning of the reduction potential that is provided by the binding thermodynamics of each metal oxidation state.
Collapse
Affiliation(s)
- Molly L North
- Department of Chemistry , Dartmouth College , Hanover , New Hampshire 03755 , United States
| | - Dean E Wilcox
- Department of Chemistry , Dartmouth College , Hanover , New Hampshire 03755 , United States
| |
Collapse
|
100
|
The interaction between methionine and two aromatic amino acids is an abundant and multifunctional motif in proteins. Arch Biochem Biophys 2019; 672:108053. [DOI: 10.1016/j.abb.2019.07.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/08/2019] [Accepted: 07/24/2019] [Indexed: 12/29/2022]
|