51
|
Okamura TA, Tsubouchi K, Okada A, Onitsuka K. Polymerization of expanded l-amino acids containing terminal pyridyl groups by silver(I) ions in nonpolar solvent. Polym J 2022. [DOI: 10.1038/s41428-022-00645-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
52
|
Lippi M, Wadepohl H, Comba P, Cametti M. A Bispidine based CuII/ZnII Heterobimetallic Coordination Polymer. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Martina Lippi
- Politecnico di Milano Department of Chemistry, Materials and Chemical Engineering ITALY
| | - Hubert Wadepohl
- Heidelberg University Interdisciplinary Center of Scientific Computing GERMANY
| | - Peter Comba
- Heidelberg University Anorganisch-Chemisches Institut GERMANY
| | - Massimo Cametti
- Politecnico di Milano Dipartimento di Chimica, Materiali ed Ingegneria Chimica Via Luigi Mancinelli 7 20131 Milano ITALY
| |
Collapse
|
53
|
Benavides PA, Gordillo MA, Yadav A, Joaqui-Joaqui MA, Saha S. Pt(ii)-coordinated tricomponent self-assemblies of tetrapyridyl porphyrin and dicarboxylate ligands: are they 3D prisms or 2D bow-ties? Chem Sci 2022; 13:4070-4081. [PMID: 35440981 PMCID: PMC8985580 DOI: 10.1039/d1sc06533e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/22/2022] [Indexed: 12/24/2022] Open
Abstract
Thermodynamically favored simultaneous coordination of Pt(ii) corners with aza- and carboxylate ligands yields tricomponent coordination complexes with sophisticated structures and functions, which require careful structural characterization to paint accurate depiction of their structure-function relationships. Previous reports claimed that heteroleptic coordination of cis-(Et3P)2PtII with tetrapyridyl porphyrins (M'TPP, M' = Zn or H2) and dicarboxylate ligands (XDC) yielded 3D tetragonal prisms containing two horizontal M'TPP faces and four vertical XDC pillars connected by eight Pt(ii) corners, even though such structures were not supported by their 1H NMR data. Through extensive X-ray crystallographic and NMR studies, herein, we demonstrate that self-assembly of cis-(Et3P)2PtII, M'TPP, and four different XDC linkers having varied lengths and rigidities actually yields bow-tie (⋈)-shaped 2D [{cis-(Et3P)2Pt}4(M'TPP) (XDC)2]4+ complexes featuring a M'TPP core and two parallel XDC linkers connected by four heteroleptic PtII corners instead of 3D prisms. This happened because (i) irrespective of their length (∼7-11 Å) and rigidity, the XDC linkers intramolecularly bridged two adjacent pyridyl-N atoms of a M'TPP core via PtII corners instead of connecting two cofacial M'TPP ligands and (ii) bow-tie complexes are entropically favored over prisms. The electron-rich ZnTPP core of a representative bow-tie complex selectively formed a charge-transfer complex with highly π-acidic 1,4,5,8,9,12-hexaazatriphenylene-2,3,6,7,10,11-heaxacarbonitrile but not with a π-donor such as pyrene. Thus, this work not only produced novel M'TPP-based bow-tie complexes and demonstrated their selective π-acid recognition capability, but also underscored the importance of proper structural characterization of supramolecular assemblies to ensure accurate depiction of their structure-property relationships.
Collapse
Affiliation(s)
- Paola A Benavides
- Department of Chemistry, Clemson University Clemson South Carolina 29634 USA
| | - Monica A Gordillo
- Department of Chemistry, Clemson University Clemson South Carolina 29634 USA
| | - Ashok Yadav
- Department of Chemistry, Clemson University Clemson South Carolina 29634 USA
| | | | - Sourav Saha
- Department of Chemistry, Clemson University Clemson South Carolina 29634 USA
| |
Collapse
|
54
|
Shankar R, Dubey A, Jakhar E, Chauhan P, Kociok-Köhn G. Supramolecular Assemblies and Reversible De−/Rehydration in One−dimensional Dimethyltin Carboxylates. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ravi Shankar
- Indian Institute of Technology chemistry Hauz Khas 110016 New Delhi INDIA
| | | | - Ekta Jakhar
- Indian Institute of Technology Delhi Chemistry INDIA
| | | | | |
Collapse
|
55
|
Akbari M, Mirzaei M, Saljooghi AS, Sadeghzadeh S, Lotfian N, Aghamohammadi M, Notash B, Mague JT, Gomila RM, Frontera A. Energetic features of antiparallel stacking and hydrogen bonding interactions in two coordination complexes bearing 1,10-phenanthroline-2,9-dicarboxylic acid. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
56
|
Okuda S, Ousaka N, Iwata T, Ishida R, Urushima A, Suzuki N, Nagano S, Ikai T, Yashima E. Supramolecular Helical Assemblies of Dirhodium(II) Paddlewheels with 1,4-Diazabicyclo[2.2.2]octane: A Remarkable Substituent Effect on the Helical Sense Preference and Amplification of the Helical Handedness Excess of Metallo-Supramolecular Helical Polymers. J Am Chem Soc 2022; 144:2775-2792. [PMID: 35119857 DOI: 10.1021/jacs.1c12652] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We report unique coordination-driven supramolecular helical assemblies of a series of dirhodium(II) tetracarboxylate paddlewheels bearing chiral phenyl- or methyl-substituted amide-bound m-terphenyl residues with triethylene glycol monomethyl ether (TEG) or n-dodecyl tails through a 1:1 complexation with 1,4-diazabicyclo[2.2.2]octane (DABCO). The chiral dirhodium complexes with DABCO in CHCl3/n-hexane (1:1) form one-handed helical coordination polymers with a controlled propeller chirality at the m-terphenyl groups, which are stabilized by intermolecular hydrogen-bonding networks between the adjacent amide groups at the periphery mainly via a cooperative nucleation-elongation mechanism as supported by circular dichroism (CD), vibrational CD, and variable-temperature (VT) absorption and CD analyses. The VT visible-absorption titrations revealed the temperature-dependent changes in the degree of polymerization. The columnar supramolecular helical structures were elucidated by X-ray diffraction and atomic force microscopy. The helix sense of the homopolymer carrying the bulky phenyl and n-dodecyl substituents is opposite those of other chiral homopolymers despite having the same absolute configuration at the pendants. A remarkably strong "sergeants and soldiers" (S&S) effect was observed in most of the chiral/achiral copolymers, while the copolymers of the bulky chiral phenyl-substituted dirhodium complexes with n-dodecyl chains displayed an "abnormal" S&S effect accompanied by an inversion of the helix sense, which could be switched to a "normal" S&S effect by changing the solvent composition. A nonracemic dirhodium complex of 20% enantiomeric excess bearing the less bulky chiral methyl substituents with n-dodecyl chains assembled with DABCO to form an almost one-handed helix (the "majority rule" (MR) effect), whereas the three other nonracemic copolymers showed a weak MR effect.
Collapse
Affiliation(s)
- Shogo Okuda
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Naoki Ousaka
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan.,Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Takuya Iwata
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Riku Ishida
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Akio Urushima
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Nozomu Suzuki
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Shusaku Nagano
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Tomoyuki Ikai
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Eiji Yashima
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan.,Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
57
|
Ligand mediated structural diversity of copper(II)-azido moiety: Synthesis, structure and magnetic study. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
58
|
Fernandez-Bartolome E, Martinez-Martinez A, Resines-Urien E, Piñeiro-Lopez L, Costa JS. Reversible single-crystal-to-single-crystal transformations in coordination compounds induced by external stimuli. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
59
|
Tsuruoka T, Miyashita Y, Yoshino R, Fukuoka M, Hirao S, Takashima Y, Demessence A, Akamatsu K. Rational and site-selective formation of coordination polymers consisting of d 10 coinage metal ions with thiolate ligands using a metal ion-doped polymer substrate. RSC Adv 2022; 12:3716-3720. [PMID: 35425361 PMCID: PMC8979238 DOI: 10.1039/d2ra00269h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 11/21/2022] Open
Abstract
Here, we report an interfacial approach for fabricating coordination polymers (CPs) consisting of d10 coinage metal ions with thiolate ligands on a polymer substrate. It was found that CPs were selectively formed on the polymer substrate, resulting in the formation of CP-based thin films. In addition, utilizing a mixed metal ion-doped polymer substrate leads to the formation of mixed-metal CP-based films.
Collapse
Affiliation(s)
- Takaaki Tsuruoka
- Department of Nanobiochemistry, Frontiers of Innovative Research in Science and Technology (FIRST), Konan University 7-1-20 Minatojimaminami, Chuo-ku Kobe 650-0047 Japan
| | - Yuri Miyashita
- Department of Nanobiochemistry, Frontiers of Innovative Research in Science and Technology (FIRST), Konan University 7-1-20 Minatojimaminami, Chuo-ku Kobe 650-0047 Japan
| | - Ryuki Yoshino
- Department of Nanobiochemistry, Frontiers of Innovative Research in Science and Technology (FIRST), Konan University 7-1-20 Minatojimaminami, Chuo-ku Kobe 650-0047 Japan
| | - Myu Fukuoka
- Department of Nanobiochemistry, Frontiers of Innovative Research in Science and Technology (FIRST), Konan University 7-1-20 Minatojimaminami, Chuo-ku Kobe 650-0047 Japan
| | - Shoya Hirao
- Department of Nanobiochemistry, Frontiers of Innovative Research in Science and Technology (FIRST), Konan University 7-1-20 Minatojimaminami, Chuo-ku Kobe 650-0047 Japan
| | - Yohei Takashima
- Department of Nanobiochemistry, Frontiers of Innovative Research in Science and Technology (FIRST), Konan University 7-1-20 Minatojimaminami, Chuo-ku Kobe 650-0047 Japan
| | - Aude Demessence
- Univ Lyon, Université Claude Bernard Lyon 1, Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON), UMR 5256, CNRS Villeurbanne France
| | - Kensuke Akamatsu
- Department of Nanobiochemistry, Frontiers of Innovative Research in Science and Technology (FIRST), Konan University 7-1-20 Minatojimaminami, Chuo-ku Kobe 650-0047 Japan
| |
Collapse
|
60
|
0D+1D = 1D Zn-Orotate-Bimb Polyrotaxane Coordination Polymer: Synthesis, Structure, Thermogravimetric and Variable Temperature Luminescence Analysis. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
61
|
Zazouli S, Gruber N, Bulach V, Ferlay S, Jouaiti A. Design of coordination polymers based on combinations of 1,2-diphenylethane-1,2-diyl diisonicotinate with Cu( ii), Zn( ii), Cd( ii) and Co( ii). CrystEngComm 2022. [DOI: 10.1039/d2ce01001a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Five new supramolecular coordination polymers of different dimensionalities (L-Cu(acac)2, L-Cu(hfac)2, L-ZnCl2, L-CdI2 and L-CoCl2) based on the use of the flexible organic ligand L (1,2-diphenylethane-1,2-diyl diisonicotinate) are reported.
Collapse
Affiliation(s)
- Sofia Zazouli
- Laboratoire de Développement Durable, Faculté des Sciences et Techniques, Université Sultan Moulay Slimane, B.P. 523, 23000 Beni Mellal, Morocco
| | - Nathalie Gruber
- CNRS, CMC UMR 7140, Université de Strasbourg, F-67000 Strasbourg, France
| | - Véronique Bulach
- CNRS, CMC UMR 7140, Université de Strasbourg, F-67000 Strasbourg, France
| | - Sylvie Ferlay
- CNRS, CMC UMR 7140, Université de Strasbourg, F-67000 Strasbourg, France
| | - Abdelaziz Jouaiti
- CNRS, CMC UMR 7140, Université de Strasbourg, F-67000 Strasbourg, France
| |
Collapse
|
62
|
Biswas P, Datta HK, Dastidar P. Designing Coordination Polymers as Multi-drug-self-delivery System for Tuberculosis and Cancer Therapy: in vitro Viability and in vivo Toxicity Assessment. Biomater Sci 2022; 10:6201-6216. [PMID: 36097681 DOI: 10.1039/d2bm00752e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A proof of the concept for designing multi-drug-delivery system suitable for self-drug-delivery is disclosed. Simple coordination chemistry was employed to anchor two kinds of drugs namely isoniazid (IZ – anti-tuberculosis),...
Collapse
Affiliation(s)
- Protap Biswas
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India.
| | - Hemanta Kumar Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India.
| | - Parthasarathi Dastidar
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India.
| |
Collapse
|
63
|
Gupta G, Kim M, Singh N, Lee J, Lee CY. Pyrene and porphyrin-based Zn metal 1-D-polymer: synthesis, molecular structure, and photocatalytic property. Dalton Trans 2022; 51:4257-4261. [DOI: 10.1039/d2dt00299j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A zinc-based pyrene-porphyrin hybrid linear 1-D coordination polymer ZnPyrPorp with general formula [Zn(Pyr)(Porp)]n (Pyr = pyrene, Porp = tetraphenylporphyrin) was synthesized using a facile one-pot solvothermal method and fully characterized...
Collapse
|
64
|
Synthesis of two cationic Coordination polymers for the exploration of anion exchange properties. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
65
|
Han X, Tong J, Ding G, Sun C, Wang X, Su Z, Sun J, Wen LL, Shan GG. A low-dimensional N-rich coordination polymer as an effective fluorescence sensor for 2,4,6-trinitrophenol detection in an aqueous medium. NEW J CHEM 2022. [DOI: 10.1039/d1nj05748k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stable one-dimensional coordination polymer is used as a highly selective sensor for the detection of TNP.
Collapse
Affiliation(s)
- Xu Han
- School of Chemical and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Jialin Tong
- National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Polyoxometalate Science of Ministry of Education Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Guanyu Ding
- School of Chemical and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Chunyi Sun
- National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Polyoxometalate Science of Ministry of Education Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Xinlong Wang
- National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Polyoxometalate Science of Ministry of Education Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Zhongmin Su
- School of Chemical and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Jing Sun
- School of Chemical and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Li-Li Wen
- School of Chemical and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Guo-Gang Shan
- National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Polyoxometalate Science of Ministry of Education Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
66
|
Tian Z, Moorthy S, Xiang H, Peng P, You M, Zhang Q, Yang SY, Zhang YL, Wu D, Singh SKK, Shao D. Tuning chain topologies and magnetic anisotropy in one-dimensional cobalt(II) coordination polymers via distinct dicarboxylates. CrystEngComm 2022. [DOI: 10.1039/d2ce00437b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on a terpyridine derivative and two different dicarboxylate ligands, two new cobalt(II) coordination polymers, namely [Co(pytpy)(DClbdc)]n (1) and [Co(pytpy)(ndc)]n (2) (pytpy = 4'-(4-Pyridyl)-2,2':6',2''-terpyridine, H2DClbc = 2,5-Dichloroterephthalic acid, and H2ndc...
Collapse
|
67
|
Alexandrov EV, Shevchenko AP, Nekrasova NA, Blatov VA. Topological methods for analysis and design of coordination polymers. RUSSIAN CHEMICAL REVIEWS 2022. [DOI: 10.1070/rcr5032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
68
|
Puškarić A, Dunatov M, Jerić I, Sabljić I, Androš Dubraja L. Room temperature ferroelectric copper( ii) coordination polymers based on amino acid hydrazide ligands. NEW J CHEM 2022. [DOI: 10.1039/d1nj05746d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work brings into focus the superior coordination properties and facile applicability of amino acid hydrazide ligands for the design of molecular magnets and molecular ferroelectrics.
Collapse
Affiliation(s)
- Andreas Puškarić
- Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Marko Dunatov
- Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Ivanka Jerić
- Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Igor Sabljić
- Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-756 51 Uppsala, Sweden
| | | |
Collapse
|
69
|
Enríquez-Cabrera A, Getzner L, Salmon L, Routaboul L, Bousseksou A. Post-synthetic modification mechanism for 1D spin crossover coordination polymers. NEW J CHEM 2022. [DOI: 10.1039/d2nj04015h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Suitable solvent os crucial to achieve a quantitative PSM reaction. Then, this method is not restricted to porous materials.
Collapse
Affiliation(s)
| | - Livia Getzner
- LCC, CNRS, 205 route de Narbonne, 31077 Toulouse, France
| | - Lionel Salmon
- LCC, CNRS, 205 route de Narbonne, 31077 Toulouse, France
| | | | | |
Collapse
|
70
|
Zhao C, Meng S, Chan HN, Wang X, Li HW, Chan MCW. Saccharide‐Functionalized Poly(Zn‐salphen)‐alt‐(m‐ and p‐phenyleneethynylene)s as Dynamic Helical Metallopolymers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202115712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chao Zhao
- City University of Hong Kong Chemistry HONG KONG
| | | | - Hei-Nga Chan
- The Chinese University of Hong Kong Chemistry HONG KONG
| | - Xueli Wang
- Hong Kong Baptist University Chemistry HONG KONG
| | - Hung-Wing Li
- The Chinese University of Hong Kong Chemistry HONG KONG
| | - Michael C. W. Chan
- City University of Hong Kong Department of Chemistry Tat Chee Avenue - Kowloon HONG KONG
| |
Collapse
|
71
|
Zhao C, Meng S, Chan HN, Wang X, Li HW, Chan MCW. Saccharide-Functionalized Poly(Zn-salphen)-alt-(m- and p-phenyleneethynylene)s as Dynamic Helical Metallopolymers. Angew Chem Int Ed Engl 2021; 61:e202115712. [PMID: 34968004 DOI: 10.1002/anie.202115712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Indexed: 11/08/2022]
Abstract
The study of metallopolymers with controllable helical sense remains in its infancy. We report arabinose-functionalized (Zn-salphen)-based conjugated polymers that display mirror-image circular dichroism spectra for L- and D-sugar sidechains respectively, signifying ordered (helical) coiling of the polymer backbone with opposite screw-sense preferences. The observation of different spectroscopic behavior and Cotton effects for a variety of solvents (in a reversible manner) and temperatures, ascribed to changes in the extent of intrachain (Zn⋅⋅⋅O(salphen) and π-stacking) interactions between Zn-salphen moieties, thus indicate the flexible, responsive and dynamic nature of the folded helical conformation in these systems. An application study signifying that activity can be governed by the structure and helical sense of the polymer is described.
Collapse
Affiliation(s)
- Chao Zhao
- City University of Hong Kong, Chemistry, HONG KONG
| | | | - Hei-Nga Chan
- The Chinese University of Hong Kong, Chemistry, HONG KONG
| | - Xueli Wang
- Hong Kong Baptist University, Chemistry, HONG KONG
| | - Hung-Wing Li
- The Chinese University of Hong Kong, Chemistry, HONG KONG
| | - Michael C W Chan
- City University of Hong Kong, Department of Chemistry, Tat Chee Avenue, -, Kowloon, HONG KONG
| |
Collapse
|
72
|
Jin M, Ando R, Ito H. Distinct Fold-Mode Formation of Crystalline Cu(I) Helical Coordination Polymers with Alternation of the Solid-State Emission Using Shape of the Counter Anions. Inorg Chem 2021; 61:3-9. [PMID: 34913681 DOI: 10.1021/acs.inorgchem.1c02725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One-dimensional cationic coordination polymers have been a promising platform for designing solid-state physical properties through diverse coordination geometries. In particular, the folding mode of the coordination polymers that form a helical structure directly determines the metal-centered coordination environment. Herein, we report N-heterocyclic carbene (NHC) Cu(I) cationic coordination polymers with pyrazine as the linker, which construct a 4-fold or 3-fold helical column in luminescent crystals using octahedral anions (SbF6- and PF6-) or a tetrahedral anion (BF4-), respectively. Single-crystal XRD studies revealed that the folding modes depend on the structural shape of the counteranions, which form H-F interactions between ligands and anions. Indeed, the folding mode change from 4-fold to 3-fold by including a different shape of the counteranions, resulting in red-shifted emission from approximately 580 to 687 nm, which is difficult to modulate in the solid state.
Collapse
Affiliation(s)
- Mingoo Jin
- Division of Applied Chemistry and Frontier Chemistry Center (FCC), Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan.,Institution for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Rempei Ando
- Division of Applied Chemistry and Frontier Chemistry Center (FCC), Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Hajime Ito
- Division of Applied Chemistry and Frontier Chemistry Center (FCC), Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan.,Institution for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
73
|
Liu YH, Huang KT, Chen WC, Li YW, Ke WM, Ho BR, Hsu MC, Li YH, Shieh M. Structure-Property Relationships of Inorganic-Organic Hybrid Semiconducting Se-Fe-Cu-CO Polymers. Inorg Chem 2021; 60:18270-18282. [PMID: 34767721 DOI: 10.1021/acs.inorgchem.1c02902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel family of inorganic-organic-hybrid SeFe3(CO)9-dipyridyl two- and one-dimensional Cu polymers was synthesized via the three-component liquid-assisted grinding (LAG) of [Cu(MeCN)4]+, inorganic cluster [SeFe3(CO)9]2- (1), and rigid conjugated dipyridyls 4,4'-dipyridyl (dpy) and 1,2-bis(4-pyridyl)ethylene (bpee) or flexible conjugation-interrupted dipyridyls 1,2-bis(4-pyridyl)ethane (bpea) and 1,3-bis(4-pyridyl)propane (bpp). They included a cluster-linked 2D polymer, [(μ4-Se)Fe3(CO)9Cu2(MeCN)(dpy)1.5]n (1-dpy-2D), a cluster-pendant 1D chain, [(μ3-Se)Fe3(CO)9Cu2(dpy)3]n (1-dpy-1D), cluster-blocked 1D polymers, [(μ3-Se)Fe3(CO)9Cu2(L)]n (1-L-1D, L = bpee, bpea), and a cluster-linked 2D polymer, [(μ4-Se)Fe3(CO)9Cu2(bpp)2]n (1-bpp-2D). The reversible dimensionality transformations of these three types of polymers accompanied by the change in coordination modes of 1 were achieved by the LAG addition of 1/[Cu(MeCN)4]+ or dipyridyl ligands. These polymers were found to possess tunable low-energy gaps (1.49-1.72 eV) that increased in the order regarding their structural features: cluster-linked 1-dpy-2D and 1-bpp-2D, cluster-blocked 1-bpea-1D and 1-bpee-1D, and cluster-pendant 1-dpy-1D and [(μ3-Se)Fe3(CO)9Cu2(L)2.5]n (L = bpee, 1-bpee-2D; bpea, 1-bpea-2D), indicative of the importance of the participation of cluster 1. The measured electrical conductivities of 1-bpp-2D, 1-bpea-1D, and 1-dpy-1D were 3.13 × 10-7, 2.92 × 10-7, and 2.30 × 10-7 S·cm-1, respectively, which were parallel for the trend in their energy gaps, revealing semiconducting behaviors, supported by XPS, XANES, and DFT calculations. The surprising semiconductivity of the conjugation-interrupted bpp-linked 1-bpp-2D was mainly ascribed to electron transport via C-H···O(carbonyl) hydrogen bonds and aromatic C-H···π contacts within its closely packed 2D layers. Water-/light-stable polymers 1-bpp-2D, 1-bpea-2D, and 1-dpy-1D were also demonstrated to exhibit excellent pseudo-first-order photodegradation toward nitroaromatics and organic dyes, where cluster-linked polymer 1-bpp-2D performed the best, as predicted by its structural features and narrow energy gap.
Collapse
Affiliation(s)
- Yu-Hsin Liu
- Department of Chemistry, National Taiwan Normal University, Taipei 116325, Taiwan, Republic of China
| | - Kai-Ting Huang
- Department of Chemistry, National Taiwan Normal University, Taipei 116325, Taiwan, Republic of China
| | - Wei-Cheng Chen
- Department of Chemistry, National Taiwan Normal University, Taipei 116325, Taiwan, Republic of China
| | - Yu-Wei Li
- Department of Chemistry, National Taiwan Normal University, Taipei 116325, Taiwan, Republic of China
| | - Wei-Ming Ke
- Department of Chemistry, National Taiwan Normal University, Taipei 116325, Taiwan, Republic of China
| | - Biing-Ruey Ho
- Department of Chemistry, National Taiwan Normal University, Taipei 116325, Taiwan, Republic of China
| | - Ming-Chi Hsu
- Department of Chemistry, National Taiwan Normal University, Taipei 116325, Taiwan, Republic of China
| | - Yu-Huei Li
- Department of Chemistry, National Taiwan Normal University, Taipei 116325, Taiwan, Republic of China
| | - Minghuey Shieh
- Department of Chemistry, National Taiwan Normal University, Taipei 116325, Taiwan, Republic of China
| |
Collapse
|
74
|
Zhang G, Zhu X, Zhang L, Wang T, Zhang X, Li Y, Fan F, Fu Y. Dual Reactivity Induced Structure Transformation of Coordination Polymers in Solid State. CHEM LETT 2021. [DOI: 10.1246/cl.210475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Gang Zhang
- College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Xingyu Zhu
- College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Liying Zhang
- College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Tieqiang Wang
- College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Xuemin Zhang
- College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Yunong Li
- College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Fuqiang Fan
- College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Yu Fu
- College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| |
Collapse
|
75
|
Li L, Duan H, Qian J. Crystal structure of poly[bis(μ2-2,6-bis(1-imidazoly)pyridine-κ2
N,N′)-bis(thiocyanato-κ1
N)copper(II)] dithiocyanate, C24H18CuN12S2. Z KRIST-NEW CRYST ST 2021. [DOI: 10.1515/ncrs-2021-0369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C24H18CuN12S2, monoclinic, P21/c (no. 4), a = 11.038(2) Å, b = 8.9312(18) Å, c = 16.083(5) Å, β = 125.66(2)°, V = 1288.2(6) Å3, Z = 2, R
gt
(F) = 0.0265, wR
ref
(F
2) = 0.0974, T = 293 K.
Collapse
Affiliation(s)
- Lu Li
- School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang , Jiangsu 212013 , P. R. China
| | - Huajian Duan
- School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang , Jiangsu 212013 , P. R. China
| | - Jun Qian
- School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang , Jiangsu 212013 , P. R. China
| |
Collapse
|
76
|
Wu LQ, Xu Y, Hou T, Jia JG, Huang XD, Weng GG, Bao SS, Zheng LM. Controllable Macroscopic Chirality of Coordination Polymers through pH and Anion-Mediated Weak Interactions. Chemistry 2021; 27:16722-16734. [PMID: 34632663 DOI: 10.1002/chem.202102954] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Indexed: 12/25/2022]
Abstract
Helical architectures with controllable helical sense bias have recently attracted considerable interest for mimicking biological helices and developing novel chiral materials. Coordination polymers (CPs), composed of metal ion nodes and organic linkers, are intriguing systems showing tunable structures and functions. However, CPs with helical morphologies have rarely been explored so far. Particularly, chirality inversion through external stimulus has not been achieved in helical CPs. In this work, we carried out an in-depth investigation on the self-assembly of 1D gadolinium(III) phosphonate CPs using GdX3 (X=Cl, Br, I) and Gd(RSO3 ) (R=CH3 , C6 H5 , CF3 ) as metal sources and R-(1-phenylethylamino)methyl phosphonic acid (R-pempH2 ) as ligand. Superhelices were formed by precise control of the interchain interactions through different intercalated anions. Furthermore, the twisting direction of superhelices could be controlled by synergistic effect of anions and pH. This study may provide a new route to fabricate helical nanostructures of CPs with a desirable chiral sense and help understand the inner mechanism of the self-assembly process of macroscopic helical structures of molecular systems.
Collapse
Affiliation(s)
- Lan-Qing Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Yan Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China.,Institute of Information Engineering, Suqian College, Suqian, 223800, China
| | - Ting Hou
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Jia-Ge Jia
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Xin-Da Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Guo-Guo Weng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Song-Song Bao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
77
|
Zhao Q, Zhu D, Zhou X, Li SH, Sun X, Cui J, Fan Z, Guo M, Zhao J, Teng B, Cheng B. Conductive One-Dimensional Coordination Polymers with Tunable Selectivity for the Oxygen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52960-52966. [PMID: 34705428 DOI: 10.1021/acsami.1c16121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Conductive materials involving nonprecious metal coordination complexes as electrocatalysts for the oxygen reduction reaction (ORR) have received increasing attention in recent years. Herein, we reported efficient ORR electrocatalysts containing M-S2N2 sites with tunable selectivity based on simple one-dimensional (1D) coordination polymers (CPs). The 1D CPs were synthesized from M(OAc)2 and 2,5-diamino-1,4-benzenedithiol (DABDT) by a solvent thermal method. Due to their good electrical conductivities (10-6-10-2 S cm-1), the 1D CPs could be used as ORR catalysts in low catalytic amounts without the addition of carbon materials. Cobalt-based CPs showed a well-organized structure of nanosheets with Co-S2N2 sites exposed and exhibited remarkable electrocatalytic ORR activity (Eonset = 0.93 V vs reversible hydrogen electrode (RHE), E1/2 = 0.82 V, n = 3.85, JL = 5.22 mA cm-2, Tafel slope of 63 mV dec-1) in alkaline media. However, nickel-based CPs favored a 2e- ORR process with ∼87% H2O2 selectivity and an Eonset of 0.78 V. This work provides new opportunities for the construction of ORR catalysts based on conductive nonprecious metal CPs.
Collapse
Affiliation(s)
- Qian Zhao
- College of Chemical Engineering and Materials Science, College of Sciences, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Di Zhu
- College of Chemical Engineering and Materials Science, College of Sciences, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Xun Zhou
- College of Chemical Engineering and Materials Science, College of Sciences, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Sheng-Hua Li
- College of Chemical Engineering and Materials Science, College of Sciences, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Xuyang Sun
- SINOPEC Shanghai Research Institute of Petrochemical Technology, Shanghai 201208, P. R. China
| | - Jing Cui
- SINOPEC Shanghai Research Institute of Petrochemical Technology, Shanghai 201208, P. R. China
| | - Zhi Fan
- College of Chemical Engineering and Materials Science, College of Sciences, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Minjie Guo
- College of Chemical Engineering and Materials Science, College of Sciences, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Jin Zhao
- College of Chemical Engineering and Materials Science, College of Sciences, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Botao Teng
- College of Chemical Engineering and Materials Science, College of Sciences, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| | - Bowen Cheng
- College of Chemical Engineering and Materials Science, College of Sciences, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
| |
Collapse
|
78
|
Khan S, Akhtaruzzaman, Medishetty R, Ekka A, Mir MH. Mechanical Motion in Crystals Triggered by Solid State Photochemical [2+2] Cycloaddition Reaction. Chem Asian J 2021; 16:2806-2816. [PMID: 34355513 DOI: 10.1002/asia.202100807] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/05/2021] [Indexed: 11/09/2022]
Abstract
Some special crystals respond to light by jumping, scattering or bursting just like popping of popcorn kernels on a hot surface. This rare phenomenon is called the photosalient (PS) effect. Molecular level control over the arrangement of light-responsive molecules in microscopic crystals for macroscale deformation or mechanical motion offers the possibility of using light to control smart material structures across the length scales. Photochemical [2+2] cycloaddition has recently emerged as a promising route to obtain photoswitchable structures and a wide variety of frameworks, but such reaction in crystals leading to macroscopic mechanical motion is relatively less explored. Study of chemistry of such novel soft crystals for the generation of smart materials is an imperative task. This minireview highlights recent advances in solid-state [2+2] cycloaddition in crystals to induce macroscale mechanical motion and thereby transduction of light into kinetic energy.
Collapse
Affiliation(s)
- Samim Khan
- Department of Chemistry, Aliah University, New Town, Kolkata, 700 156, India
| | - Akhtaruzzaman
- Department of Chemistry, Aliah University, New Town, Kolkata, 700 156, India
| | | | - Akansha Ekka
- Department of Chemistry, IIT Bhilai, Sejbahar, Raipur, Chhattisgarh, 492015, India
| | | |
Collapse
|
79
|
Yang DD, Zheng HW, Liang QF, Wu M, Li JB, Duan R, Jiang FB, Zheng XJ. A Multistimuli Responsive Crystalline Cd(II)-Viologen Coordination Polymer with Single-Crystal-Single-Crystal Transformation. Inorg Chem 2021; 60:13500-13509. [PMID: 34403261 DOI: 10.1021/acs.inorgchem.1c01832] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
It is necessary to develop stable and fast multistimuli responsive materials due to the growing demand in our daily life. In this work, a new viologen-based Cd-complex (1) exhibits multiple thermochromic and photochromic behaviors through 10 states with 7 colors. For example, it responds to both Cu Kα/Mo Kα X-ray sources and UV dual light quickly with a color change from colorless to dark blue (1X) (Cu Kα/Mo Kα X-ray sources) and cyan (1-UV) (UV light), respectively. Interestingly, it exhibits a three-step coloration phenomenon when heated, which is unprecedented in viologen compounds. Crystal 1 undergoes a color change to pink, blue, and brown under 130, 180, and 240 °C, respectively. In addition, upon fumigation, both 1P and 1Q undergo a decoloration process to colorless (1K) and yellow (1T), respectively. Four more states (1P, 1K, 1T, and 1O) obtained via dehydration-hydration treatment are all photochromic. More importantly, via single-crystal-single-crystal transformation (SC-SC), the photochromic and thermochromic behaviors of 1 were investigated from the molecular level, which is also rather rare for thermochromic species. The detailed electron donor and the pathways for electron transfer were clearly given according to the results of crystal structure. The colorful states upon external stimuli may be attributed to the multiple pathways for electron transfer.
Collapse
Affiliation(s)
- Dong-Dong Yang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Han-Wen Zheng
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Qiong-Fang Liang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Min Wu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Jia-Bin Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Ran Duan
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Fu-Bin Jiang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Xiang-Jun Zheng
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| |
Collapse
|
80
|
Barakat A, El‐Faham A, Haukka M, Al‐Majid AM, Soliman SM. s
‐Triazine pincer ligands: Synthesis of their metal complexes, coordination behavior, and applications. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6317] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Assem Barakat
- Department of Chemistry, College of Science King Saud University PO Box 2455 Riyadh 11451 Saudi Arabia
- Department of Chemistry, Faculty of Science Alexandria University PO Box 426, Ibrahimia Alexandria 21321 Egypt
| | - Ayman El‐Faham
- Department of Chemistry, College of Science King Saud University PO Box 2455 Riyadh 11451 Saudi Arabia
- Department of Chemistry, Faculty of Science Alexandria University PO Box 426, Ibrahimia Alexandria 21321 Egypt
| | - Matti Haukka
- Department of Chemistry University of Jyväskylä PO Box 35 Jyväskylä FI‐40014 Finland
| | | | - Saied M. Soliman
- Department of Chemistry, Faculty of Science Alexandria University PO Box 426, Ibrahimia Alexandria 21321 Egypt
| |
Collapse
|
81
|
Notash B, Farhadi Rodbari M, Gallo G, Dinnebier R. Humidity-Induced Structural Transformation in Pseudopolymorph Coordination Polymers. Inorg Chem 2021; 60:9212-9223. [PMID: 34048237 DOI: 10.1021/acs.inorgchem.1c01360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Three cadmium coordination polymers, namely, {[CdL(OAc)2](C2H5OH)}n (1), {[CdL(OAc)2](CH3CN)}n (2), and [CdL(OAc)2(H2O)]n (3), were synthesized by an exoditopic 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene Schiff base ligand (L) and cadmium acetate in the presence of different solvent systems. Single-crystal X-ray diffraction, powder X-ray diffraction, and thermogravimetric analysis showed that 1D ladder pseudopolymorphic compounds (1 and 2) transformed to the solvent-free 1D linear compound 3 through a rare case of water absorption from air at room temperature. Interestingly, compound 3 was transformed to compound 1 through a dissolution-recrystallization structural transformation process. The results illustrated that solvents and humidity have an important role in the formation of pseudopolymorphs with the same or different structural motifs.
Collapse
Affiliation(s)
- Behrouz Notash
- Department of Inorganic Chemistry and Catalysis, Shahid Beheshti University, 19839 69411, Tehran, Iran
| | - Mona Farhadi Rodbari
- Department of Inorganic Chemistry and Catalysis, Shahid Beheshti University, 19839 69411, Tehran, Iran
| | - Gianpiero Gallo
- Max Planck Institute for Solid State Research, Heisenberg strasse 1, D-70569 Stuttgart, Germany.,Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II 132, Fiscano 84084, Salerno, Italy
| | - Robert Dinnebier
- Max Planck Institute for Solid State Research, Heisenberg strasse 1, D-70569 Stuttgart, Germany
| |
Collapse
|
82
|
Enríquez‐Cabrera A, Ridier K, Salmon L, Routaboul L, Bousseksou A. Complete and Versatile Post‐Synthetic Modification on Iron‐Triazole Spin Crossover Complexes: A Relevant Material Elaboration Method. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Alejandro Enríquez‐Cabrera
- CNRS Laboratoire de Chimie de Coordination (LCC) 205 route de Narbonne, BP44099 Toulouse Cedex 4 31077 France
| | - Karl Ridier
- CNRS Laboratoire de Chimie de Coordination (LCC) 205 route de Narbonne, BP44099 Toulouse Cedex 4 31077 France
| | - Lionel Salmon
- CNRS Laboratoire de Chimie de Coordination (LCC) 205 route de Narbonne, BP44099 Toulouse Cedex 4 31077 France
| | - Lucie Routaboul
- CNRS Laboratoire de Chimie de Coordination (LCC) 205 route de Narbonne, BP44099 Toulouse Cedex 4 31077 France
| | - Azzedine Bousseksou
- CNRS Laboratoire de Chimie de Coordination (LCC) 205 route de Narbonne, BP44099 Toulouse Cedex 4 31077 France
| |
Collapse
|
83
|
Multi-dimensional copper(I) and silver (I) coordination polymers assembled with a pyridyl bis-urea macrocyclic ligand. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
84
|
Rodríguez-Cid L, Qian W, Iribarra-Araya J, Etcheverry-Berríos Á, Martínez-Olmos E, Choquesillo-Lazarte D, Sañudo EC, Roubeau O, López-Periago AM, González-Campo A, Planas JG, Soler M, Domingo C, Aliaga-Alcalde N. Broadening the scope of high structural dimensionality nanomaterials using pyridine-based curcuminoids. Dalton Trans 2021; 50:7056-7064. [PMID: 33949538 PMCID: PMC8145613 DOI: 10.1039/d1dt00708d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a new heteroditopic ligand (3pyCCMoid) that contains the typical skeleton of a curcuminoid (CCMoid) decorated with two 3-pyridyl groups. The coordination of 3pyCCMoid with ZnII centres results in a set of novel coordination polymers (CPs) that display different architectures and dimensionalities (from 1D to 3D). Our work analyses how synthetic methods and slight changes in the reaction conditions affect the formation of the final materials. Great efforts have been devoted toward understanding the coordination entities that provide high dimensional systems, with emphasis on the characterization of 2D materials, including analyses of different types of substrates, stability and exfoliation in water. Here, we foresee the great use of CCMoids in the field of CPs and emphasize 3pyCCMoid as a new-born linker.
Collapse
Affiliation(s)
- Laura Rodríguez-Cid
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus Universitari, 08193 Bellaterra, Spain.
| | - Wenjie Qian
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus Universitari, 08193 Bellaterra, Spain.
| | - Joseline Iribarra-Araya
- Department of Chemical Engineering, Biotechnology and Materials, Faculty of Physical and Mathematical Sciences, University of Chile, Beauchef 851, Santiago, 837.0415, Chile.
| | - Álvaro Etcheverry-Berríos
- Department of Chemical Engineering, Biotechnology and Materials, Faculty of Physical and Mathematical Sciences, University of Chile, Beauchef 851, Santiago, 837.0415, Chile.
| | - Eulalia Martínez-Olmos
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus Universitari, 08193 Bellaterra, Spain.
| | - Duane Choquesillo-Lazarte
- Laboratorio de Estudios Cristalográficos, IACT, CSIC-Universidad de Granada, Avda. de las Palmeras 4, 18100 - Armilla, Granada, Spain
| | - Eva Carolina Sañudo
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, C/Martí i Franqués 1-11, 08028 Barcelona, Spain and Institut de Nanociència i Nanotecnologia. Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
| | - Olivier Roubeau
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC and Universidad de Zaragoza, Plaza San Francisco s/n, 50009 Zaragoza, Spain
| | - Ana María López-Periago
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus Universitari, 08193 Bellaterra, Spain.
| | - Arántzazu González-Campo
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus Universitari, 08193 Bellaterra, Spain.
| | - José G Planas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus Universitari, 08193 Bellaterra, Spain.
| | - Mònica Soler
- Department of Chemical Engineering, Biotechnology and Materials, Faculty of Physical and Mathematical Sciences, University of Chile, Beauchef 851, Santiago, 837.0415, Chile.
| | - Concepción Domingo
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus Universitari, 08193 Bellaterra, Spain.
| | - Núria Aliaga-Alcalde
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus Universitari, 08193 Bellaterra, Spain. and ICREA - Institució Catalana de Recerca i Estudis Avançats, Passeig Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
85
|
de Oliveira Maciel JW, Lemes MA, Valdo AK, Rabelo R, Martins FT, Queiroz Maia LJ, de Santana RC, Lloret F, Julve M, Cangussu D. Europium(III), Terbium(III), and Gadolinium(III) Oxamato-Based Coordination Polymers: Visible Luminescence and Slow Magnetic Relaxation. Inorg Chem 2021; 60:6176-6190. [PMID: 33861078 DOI: 10.1021/acs.inorgchem.0c03226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reaction of aqueous solutions of EuIII, TbIII, and GdIII ions with Na2Hpcpa [H3pcpa = N-(4-carboxyphenyl)oxamic acid] afforded three new isostructural oxamate-containing lanthanide(III) coordination polymers of general formula {LnIII2(Hpcpa)3(H2O)5·H2O}n [Ln = Eu (1),Tb (2), and Gd(3)]. Their structure is made up of neutral zigzag chains running parallel to the [101] direction where double syn-syn carboxylate(oxamate)-bridged dilanthanide(III) pairs (Ln1 and Ln2) are linked by three Hpcpa2- ligands, one of them with the μ-κ2O,O':κO″ coordination mode and the other two with the μ3-κ2O,O':κO″:κO'''. Additionally, two of those chains are interlinked through hydrogen bonding and π-π type interactions, resulting in a porous structure with channels where water molecules are hosted. The emission properties of 1 and 2 are evaluated as a function of the temperature, exhibiting an emission in red and green, respectively. The external quantum yield for 2 is approximately 7 times that obtained for 1, indicating that the oxamate ligand is a better sensitizer for TbIII ions. The temperature dependence of the dc magnetic properties of 1-3 reveals a different magnetic behavior depending on the nature of the LnIII ion. A continuous decrease of χMT occurs for 1 upon cooling, and finally χMT tends to vanish, as expected for the thermal depopulation of the six magnetic 7FJ excited states (J = 1-6) of the EuIII ion with a nonmagnetic 7F0 ground state. χMT for 2 decreases sharply with decreasing the temperature due to the depopulation of the splitted mJ levels of the 7F7 ground state of the magnetically anisotropic TbIII ion. A very weak antiferromagnetic interaction between the magnetically isotropic GdIII ions across the double carboxylate(oxamate) bridge is responsible for the small decrease of χMT at low temperatures for 3. The dynamic (ac) magnetic properties of 2 and 3 reveal a slow magnetic relaxation with very incipient frequency-dependent χM″ signals below 6.0 K (2) and frequency-dependent χM″ peaks below 10.0 K (3) under nonzero applied dc magnetic fields, being thus new examples of field-induced single molecule magnets (SMMs).
Collapse
Affiliation(s)
| | - Maykon Alves Lemes
- Instituto de Química, Universidade Federal de Goiás, Goiânia, Goiás, Brazil, 74690-900
| | - Ana Karoline Valdo
- Instituto de Química, Universidade Federal de Goiás, Goiânia, Goiás, Brazil, 74690-900.,Instituto Federal de Educação, Ciência e Tecnologia Goiano, Iporá, Goiás, Brazil, 76200-000
| | - Renato Rabelo
- Departament de Química Inorgànica/Instituto de Ciencia Molecular (ICMol), Facultat de Química de la Universitat de València, València, Paterna, Spain, 46980
| | - Felipe Terra Martins
- Instituto de Química, Universidade Federal de Goiás, Goiânia, Goiás, Brazil, 74690-900
| | | | | | - Francesc Lloret
- Departament de Química Inorgànica/Instituto de Ciencia Molecular (ICMol), Facultat de Química de la Universitat de València, València, Paterna, Spain, 46980
| | - Miguel Julve
- Departament de Química Inorgànica/Instituto de Ciencia Molecular (ICMol), Facultat de Química de la Universitat de València, València, Paterna, Spain, 46980
| | - Danielle Cangussu
- Instituto de Química, Universidade Federal de Goiás, Goiânia, Goiás, Brazil, 74690-900
| |
Collapse
|
86
|
Self-assembled H-bonded supramolecular interactions in monomeric complex [Mg(H2O)6].L2.2bipy.H2O; [LH = 2-amino-5-nitrobenzoic acid, bipy = 4,4′-bipyridine]]]]: Joint theoretical calculations and Hirshfeld surface analysis. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
87
|
Gupta M, Vittal JJ. Control of interpenetration and structural transformations in the interpenetrated MOFs. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213789] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
88
|
Rosales-Vázquez LD, Dorazco-González A, Sánchez-Mendieta V. Efficient chemosensors for toxic pollutants based on photoluminescent Zn(ii) and Cd(ii) metal-organic networks. Dalton Trans 2021; 50:4470-4485. [PMID: 33877166 DOI: 10.1039/d0dt04403b] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Optical sensors with high sensitivity and selectivity, as important analytical tools for chemical and environmental research, can be realized by straightforward synthesis of luminescent one-, two- and three-dimensional Zn(ii) and Cd(ii) crystalline coordination arrays (CPs and MOFs). In these materials with emission centers typically based on charge transfer and intraligand emissions, the quantitative detection of specific analytes, as pesticides or anions, is probed by monitoring real-time changes in their photoluminescence and color emission properties. Pesticides/herbicides have extensive uses in agriculture and household applications. Also, a large amount of metal salts of cyanide is widely used in several industrial processes such as mining and plastic manufacturing. Acute or chronic exposure to these compounds can produce high levels of toxicity in humans, animals and plants. Due to environmental concerns associated with the accumulation of these noxious species in food products and water supplies, there is an urgent and growing need to develop direct, fast, accurate and low-cost sensing methodologies. In this critical frontier, we discuss the effective strategies, chemical stability, luminescence properties, sensitivity and selectivity of recently developed hybrid Zn(ii)/Cd(ii)-organic materials with analytical applications in the direct sensing of pesticides, herbicides and cyanide ions in the aqueous phase and organic solvents.
Collapse
Affiliation(s)
- Luis D Rosales-Vázquez
- Instituto de Química, Universidad Nacional Autónoma de México. Circuito Exterior, Ciudad Universitaria, Ciudad de Mexico, 04510, Mexico.
| | | | | |
Collapse
|
89
|
Mohamadhoseini M, Mohamadnia Z. Supramolecular self-healing materials via host-guest strategy between cyclodextrin and specific types of guest molecules. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213711] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
90
|
Elsayed Moussa M, Shelyganov PA, Seidl M, Peresypkina E, Berg N, Gschwind RM, Balázs G, Schiller J, Scheer M. Mixed Organometallic-Organic Hybrid Assemblies Based on the Diarsene Complex [Cp 2 Mo 2 (CO) 4 (μ,η 2 -As 2 )], Ag I Salts and N-Donor Organic Molecules. Chemistry 2021; 27:5028-5034. [PMID: 33400327 PMCID: PMC7986401 DOI: 10.1002/chem.202100027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Indexed: 02/04/2023]
Abstract
The reaction of the organometallic diarsene complex [Cp2 Mo2 (CO)4 (η2 -As2 )] (1) with Ag[Al{OC(CF3 )3 }4 ] (Ag[TEF]) yielded the AgI monomer [Ag(η2 -1)3 ][TEF] (2). This compound exhibits dynamic behavior in solution, which allows directed selective synthesis of unprecedented organometallic-organic hybrid assemblies upon its reaction with N-donor organic molecules by a stepwise pathway, which is supported by DFT calculations. Accordingly, the reaction of 2 with 2,2'-bipyrimidine (L1) yielded the dicationic molecular compound [{(η2 -1)2 Ag}2 (μ-L1)][TEF]2 (3) or the 1D polymer [{(η2 -1)Ag}(μ-L1)]n [TEF]n (4) depending on the ratio of the reactants. However, its reactions with the pyridine-based linkers 4,4'-bipyridine (L2), 1,2-bis(4-pyridyl)ethylene (L3) and 1,2-bis(4-pyridyl)ethyne (L4) allowed the formation of the 2D polymers [{(η2 -1)Ag}2 (μ-Lx)3 ]n [TEF]2n [Lx=L2 (5), L3 (6), L4 (7), respectively]. Additionally, this concept was extended to step-by-step one-pot reactions of 1, [Ag(CH3 CN)3 ][Al{OC(CF3 )2 (CCl3 )}4 ] ([Ag(CH3 CN)3 ][TEFCl ]) and linkers L2-L4 to produce the 2D polymers [{(η2 -1)Ag}2 (μ,Lx)3 ]n [TEFCl ]2n [Lx=L2 (8), L3 (9), L4 (10), respectively].
Collapse
Affiliation(s)
| | - Pavel A. Shelyganov
- Institut für Anorganische ChemieUniversität Regensburg93040RegensburgGermany
| | - Michael Seidl
- Institut für Anorganische ChemieUniversität Regensburg93040RegensburgGermany
| | - Eugenia Peresypkina
- Institut für Anorganische ChemieUniversität Regensburg93040RegensburgGermany
| | - Nele Berg
- Institut für Organische ChemieUniversität Regensburg93040RegensburgGermany
| | - Ruth M. Gschwind
- Institut für Organische ChemieUniversität Regensburg93040RegensburgGermany
| | - Gábor Balázs
- Institut für Anorganische ChemieUniversität Regensburg93040RegensburgGermany
| | - Jana Schiller
- Institut für Anorganische ChemieUniversität Regensburg93040RegensburgGermany
| | - Manfred Scheer
- Institut für Anorganische ChemieUniversität Regensburg93040RegensburgGermany
| |
Collapse
|
91
|
|
92
|
|
93
|
Chakraborty G, Park IH, Medishetty R, Vittal JJ. Two-Dimensional Metal-Organic Framework Materials: Synthesis, Structures, Properties and Applications. Chem Rev 2021; 121:3751-3891. [PMID: 33630582 DOI: 10.1021/acs.chemrev.0c01049] [Citation(s) in RCA: 291] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Gouri Chakraborty
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - In-Hyeok Park
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, South Korea
| | | | - Jagadese J. Vittal
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
94
|
Ultrasound-Assisted Synthesis and Crystal Structure of Novel 2D Cd (II) Metal–Organic Coordination Polymer with Nitrite End Stop Ligand as a Precursor for Preparation of CdO Nanoparticles. CRYSTALS 2021. [DOI: 10.3390/cryst11020197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the present research, a sonochemical approach was applied to prepare new cadmium(II) coordination 2D polymer, [Cd(L)(NO2)2]n (L = 1,2-bis(1-(pyridin-3-yl)ethylidene)hydrazine) and structurally characterized with various spectroscopic techniques including XRD, elemental analysis, SEM, and IR spectroscopy. The coordination number of cadmium (II) ions is seven (CdN2O5) by two nitrogen atoms from two organic Schiff base ligand and five oxygen of nitrite anions. The 2D sheet structures ended by nitrite anions and the nitrite anion displayed the end-stop role. The comprehensive system showed a three-dimensional structure with several weak interactions. The high-intensity ultrasound is regarded as an easy, environmentally-friendly, and flexible synthetic instrument for the compounds of coordination. CdO NPs was obtained by thermolysing 1 at 180 °C with oleic acid (as a surfactant). Further, the size and morphology of the produced CdO nanoparticles were investigated through SEM.
Collapse
|
95
|
[Zn2Ac2(μ-Ac)2(bpymb)]n (Ac, acetate; bpymb, 1,4-bis(4-pyridylmethyl)benzene), a 2D coordination polymer obtained with a flexible N,N’-ditopic bipyridine linker. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
96
|
Usman M, Khan RA, Khan MR, Abul Farah M, BinSharfan II, Alharbi W, Shaik JP, Parine NR, Alsalme A, Tabassum S. A novel biocompatible formate bridged 1D-Cu(ii) coordination polymer induces apoptosis selectively in human lung adenocarcinoma (A549) cells. Dalton Trans 2021; 50:2253-2267. [PMID: 33506238 DOI: 10.1039/d0dt03782f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Copper compounds are promising candidates for next-generation metal anticancer drugs. Therefore, we synthesized and characterized a formate bridged 1D coordination polymer [Cu(L)(HCOO)2]n, (L = 2-methoxy-6-methyl-3-((quinolin-8-ylimino)methyl)chroman-4-ol), PCU1, wherein the Cu(ii) center adopts a square pyramidal coordination environment with adjacent CuCu distances of 5.28 Å. Primarily, in vitro DNA interaction studies revealed a metallopolymer which possesses high DNA binding propensity and cleaves DNA via the oxidative pathway. We further analysed its potential on cancerous cells MCF-7, HeLa, A549, and two non-tumorigenic cells HEK293 and HBE. The selective cytotoxicity potential of PCU1 against A549 cells driven us to examine the mechanistic pathways comprehensively by carrying out various assays viz, cell cycle arrest, Annexin V-FTIC/PI assay, autophagy, intercellular localization, mitochondrial membrane potential 'MMP', antiproliferative assay, and gene expression of TGF-β and MMP-2.
Collapse
Affiliation(s)
- Mohammad Usman
- Department of Chemistry, Aligarh Muslim University, Aligarh-202002, India.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Tong H, Liu W. Highly Stable Three-Dimensional Silver (I) Chloride Cluster Based Coordination Polymer and Its Dye Removal Properties. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-01993-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
98
|
Abstract
Dynamic macroscopic behaviour of single crystals of coordination polymers when subjected to light, heat, and mechanical force.
Collapse
Affiliation(s)
| | - Jagadese J. Vittal
- Department of Chemistry, National University of Singapore, Singapore 117543
| |
Collapse
|
99
|
Fugu MB, Coley J, Dickinson IF, Orton JB, Klooster W, Gleeson MP, Jones LF. Slight ligand modifications within multitopic linear hydroxamates promotes connectivity differences in Cu( ii) 1-D coordination polymers. CrystEngComm 2021. [DOI: 10.1039/d1ce00807b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Two novel hydroxamic acids have been used in constructing two 1-D coordination polymers. Slight structural differences promote connectivity changes upon Cu(ii) metalation as rationalised using DFT calculations and Hirschfeld surface analysis.
Collapse
Affiliation(s)
- Mohammed B. Fugu
- School of Natural Sciences, Bangor University, Bangor, Wales, LL57 2DG, UK
| | - Joe Coley
- School of Physical, Biological and Forensic Sciences, University of Wolverhampton, Wulfruna Street, Wolverhampton, England, WV1 1LY, UK
| | | | - James B. Orton
- UK National Crystallographic Service, Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, England, SO17 1BJ, UK
| | - Wim Klooster
- UK National Crystallographic Service, Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, England, SO17 1BJ, UK
| | - M. Paul Gleeson
- School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Leigh F. Jones
- School of Natural Sciences, Bangor University, Bangor, Wales, LL57 2DG, UK
- School of Physical, Biological and Forensic Sciences, University of Wolverhampton, Wulfruna Street, Wolverhampton, England, WV1 1LY, UK
| |
Collapse
|
100
|
Kumar G, Kumar G, Gupta R. Effect of pyridyl donors from organic ligands versus metalloligands on material design. Inorg Chem Front 2021. [DOI: 10.1039/d0qi00768d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This review illustrates designs and structures of various coordination frameworks constructed using assorted organic ligands and metalloligands offering pyridyl donors to evaluate the impact of flexibility versus rigidity on material design.
Collapse
Affiliation(s)
- Girijesh Kumar
- Department of Chemistry & Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh-160014
- India
| | - Gulshan Kumar
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| | - Rajeev Gupta
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| |
Collapse
|