51
|
A spectroscopic deciphering of the differential interaction behavior of alkaloid drugs with native B-DNA and protonated DNA. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
52
|
Tera M, Luedtke NW. Cross-linking cellular nucleic acids via a target-directing double click reagent. Methods Enzymol 2020; 641:433-457. [PMID: 32713534 DOI: 10.1016/bs.mie.2020.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bioorthogonal ligation reactions are powerful tools for characterizing DNA metabolism, DNA-protein binding interactions, and they even provide new leads for therapeutic strategies. Nucleoside analogs can deliver bioorthogonal functional groups into chromatin via cellular metabolic pathways, however, insufficient phosphorylation by endogenous kinases often limits the efficiency of their incorporation. Even when successfully metabolized into biopolymers, steric hindrance of the modified nucleotide by chromatin can inhibit subsequent click reactions. In this chapter, we describe methods that overcome these limitations. Nucleotide monophosphate triesterers can bypass the need for cellular nucleoside kinase activity and thereby enable efficient incorporation of azide groups into cellular DNA. Steric access to and modification of the azide groups within natively folded chromatin can then be accomplished using a bioorthogonal "intercalating reagent" comprised of a cationic Sondheimer diyne that reversibly intercalates into duplexes where it undergoes tandem, strain-promoted cross-linking of two azides to give DNA-DNA interstrand crosslinks or DNA-fluorophore conjugation, depending on the relative number and spatial orientation of the azide groups in the DNA.
Collapse
Affiliation(s)
- Masayuki Tera
- Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan.
| | | |
Collapse
|
53
|
Sun X, Sun G, Huang Y, Hao Y, Tang X, Zhang N, Zhao L, Zhong R, Peng Y. 3-Bromopyruvate regulates the status of glycolysis and BCNU sensitivity in human hepatocellular carcinoma cells. Biochem Pharmacol 2020; 177:113988. [PMID: 32330495 DOI: 10.1016/j.bcp.2020.113988] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/17/2020] [Indexed: 12/19/2022]
Abstract
Chloroethylnitrosoureas (CENUs) are bifunctional antitumor alkylating agents, which exert their antitumor activity through inducing the formation of dG-dC interstrand crosslinks (ICLs) within DNA double strand. However, the complex process of tumor biology enables tumor cells to escape the killing triggered by CENUs, as for instance with the detoxifying activity of O6-methylguanine DNA methyltransferase (MGMT) to accomplish DNA damage repair. Considering the fact that most tumor cells highly depend on aerobic glycolysis to provide energy for survival even in the presence of oxygen (Warburg effect), inhibition of aerobic glycolysis may be an attractive strategy to overcome the resistance and improve the chemotherapeutic effects of CENUs. Especially, 3-bromopyruvate (3-BrPA), a small molecule alkylating agent, has been emerged as an effective glycolytic inhibitor (energy blocker) in cancer treatment. In view of its tumor specificity and inhibition on cellular multiple targets, it is likely to reduce the chemoresistance when chemotherapeutic drugs are combined with 3-BrPA. In this study, we investigated the effects of 3-BrPA on the chemosensitivity of two human hepatocellular carcinoma (HCC) cell lines to the cytotoxic effects of l,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) and the underlying molecular mechanism. The sensitivity of SMMC-7721 and HepG2 cells to BCNU was significantly increased by 2 h pretreatment with micromolar dosage of 3-BrPA. Moreover, 3-BrPA decreased the cellular ATP and GSH levels, and extracellular lactate excreted by tumor cells, and the effects were more effective when 3-BrPA was combined with BCNU. Cellular hexokinase-II (HK-II) activity was also reduced after exposure to the treatment of 3-BrPA plus BCNU. Based on the above results, the effects of 3-BrPA on the formation of dG-dC ICLs induced by BCNU was investigated by stable isotope dilution high-performance liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). The results indicated that BCNU produced higher levels of dG-dC ICLs in SMMC-7721 and HepG2 cells pretreated with 3-BrPA compared to that without 3-BrPA pretreatment. Notably, in MGMT-deficient HepG2 cells, the levels of dG-dC ICLs were significantly higher than MGMT-proficient SMMC-7721 cells. In general, these findings revealed that 3-BrPA, as an effective glycolytic inhibitor, may be considered as a potential clinical chemosensitizer to optimize the therapeutic index of CENUs.
Collapse
Affiliation(s)
- Xiaodong Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, PR China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Yaxin Huang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Yuxing Hao
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Xiaoyu Tang
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Na Zhang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
54
|
Chen H, Cui Z, Hejazi L, Yao L, Walmsley SJ, Rizzo CJ, Turesky RJ. Kinetics of DNA Adducts and Abasic Site Formation in Tissues of Mice Treated with a Nitrogen Mustard. Chem Res Toxicol 2020; 33:988-998. [PMID: 32174110 DOI: 10.1021/acs.chemrestox.0c00012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nitrogen mustards (NM) are an important class of chemotherapeutic drugs used in the treatment of malignant tumors. The accepted mechanism of action of NM is through the alkylation of DNA bases. NM-adducts block DNA replication in cancer cells by forming cytotoxic DNA interstrand cross-links. We previously characterized several adducts formed by reaction of bis(2-chloroethyl)ethylamine (NM) with calf thymus (CT) DNA and the MDA-MB-231 mammary tumor cell line. The monoalkylated N7-guanine (NM-G) adduct and its cross-link (G-NM-G) were major lesions. The cationic NM-G undergoes a secondary reaction through depurination to form an apurinic (AP) site or reacts with hydroxide to yield the stable ring-opened N5-substituted formamidopyrimidine (NM-Fapy-G) adduct. Both of these lesions are mutagenic and may contribute to secondary tumor development, a major clinical limitation of NM chemotherapy. We established a kinetic model with NM-treated female mice and measured the rates of formation and removal of NM-DNA adducts and AP sites. We employed liquid chromatography-mass spectrometry (LC-MS) to measure NM-G, G-NM-G, and NM-Fapy-G adducts in liver, lung, and spleen over 168 h. NM-G reached a maximum level within 6 h in all organs and then rapidly declined. The G-NM-G cross-link and NM-FapyG were more persistent with half-lives over three-times longer than NM-G. We quantified AP site lesions in the liver and showed that NM treatment increased AP site levels by 3.7-fold over the basal levels at 6 h. The kinetics of AP site repair closely followed the rate of removal of NM-G; however, AP sites remained 1.3-fold above basal levels 168 h post-treatment with NM. Our data provide new insights into NM-induced DNA damage and biological processing in vivo. The quantitative measurement of the spectrum of NM adducts and AP sites can serve as biomarkers in the design and assessment of the efficacy of novel chemotherapeutic regimens.
Collapse
Affiliation(s)
| | | | | | | | | | - Carmelo J Rizzo
- Departments of Chemistry and Biochemistry, and Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37067, United States
| | | |
Collapse
|
55
|
Chen X, Sun Y, Wang S, Ying K, Xiao L, Liu K, Zuo X, He J. Identification of a novel structure-specific endonuclease AziN that contributes to the repair of azinomycin B-mediated DNA interstrand crosslinks. Nucleic Acids Res 2020; 48:709-718. [PMID: 31713613 PMCID: PMC7145581 DOI: 10.1093/nar/gkz1067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/11/2019] [Accepted: 10/30/2019] [Indexed: 11/25/2022] Open
Abstract
DNA interstrand crosslinks (ICLs) induced by the highly genotoxic agent azinomycin B (AZB) can cause severe perturbation of DNA structure and even cell death. However, Streptomyces sahachiroi, the strain that produces AZB, seems almost impervious to this danger because of its diverse and distinctive self-protection machineries. Here, we report the identification of a novel endonuclease-like gene aziN that contributes to drug self-protection in S. sahachiroi. AziN expression conferred AZB resistance on native and heterologous host strains. The specific binding reaction between AziN and AZB was also verified in accordance with its homology to drug binding proteins, but no drug sequestering and deactivating effects could be detected. Intriguingly, due to the high affinity with the drug, AziN was discovered to exhibit specific recognition and binding capacity with AZB-mediated ICL structures, further inducing DNA strand breakage. Subsequent in vitro assays demonstrated the structure-specific endonuclease activity of AziN, which cuts both damaged strands at specific sites around AZB-ICLs. Unravelling the nuclease activity of AziN provides a good entrance point to illuminate the complex mechanisms of AZB-ICL repair.
Collapse
Affiliation(s)
- Xiaorong Chen
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuedi Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shan Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kun Ying
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Le Xiao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kai Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuli Zuo
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
56
|
Rauf A, Shah A, Munawar KS, Ali S, Nawaz Tahir M, Javed M, Khan AM. Synthesis, physicochemical elucidation, biological screening and molecular docking studies of a Schiff base and its metal(II) complexes. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2017.09.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
57
|
Discovery of steroidal lactam conjugates of POPAM-NH2 with potent anticancer activity. Future Med Chem 2020; 12:19-35. [DOI: 10.4155/fmc-2019-0255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aim: Steroidal prodrugs of nitrogen mustards such as estramustine and prednimustine have proven effective anticancer agents in clinical use since the 1970s. In this work, we aimed to develop steroidal prodrugs of the novel nitrogen mustard POPAM-NH2. POPAM-NH2 is a melphalan analogue that was coupled with three different steroidal lactams. Methodology: The new conjugates were preclinically tested for anticancer activity against nine human and one rodent cancer experimental models, in vitro and in vivo. Results & conclusion: All the steroidal alkylators showed high antitumor activity, in vitro and in vivo, in the experimental systems tested. Moreover, these hybrid compounds showed by far superior anticancer activity compared with the alkylating agents, melphalan and POPAM-NH2.
Collapse
|
58
|
Karmakar S, Chatterjee S, Purkait K, Mukherjee A. A trans-dichloridoplatinum(II) complex of a monodentate nitrogen mustard: Synthesis, stability and cytotoxicity studies. J Inorg Biochem 2019; 204:110982. [PMID: 31911365 DOI: 10.1016/j.jinorgbio.2019.110982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/13/2019] [Accepted: 12/25/2019] [Indexed: 02/07/2023]
Abstract
A trans-dichloridoplatinum(II) complex, trans-[PtIICl2(L)(DMSO)] (1) of a monodentate nitrogen mustard, bis(2-chloroethyl)amine (L), was synthesized by the reaction of cis-[PtIICl2(DMSO)2] &L.HCl in presence of Et3N. 1 was characterised by NMR, FT-IR and elemental analysis. L is unstable in aqueous solution while 1 displayed moderate stability. In aqueous buffer solution of pD 7.4, 1 starts to loose L slowly upon dissolution and even after 48 h there is still intact/aquated complex present in solution. 1 interacts with the model nucleobase 9-ethyl guanine. The ligand L was non-toxic against MCF-7, A549, HepG2 & MIA PaCa-2 up to 200 μM. In contrast, the Pt(II) complex 1 showed an excellent IC50 (ca. 600 nM) against MIA PaCa-2 and also displayed good IC50 value (3-7 μM) against the other cancer cell lines probed. The in vitro cytotoxicity of 1 is better than cisplatin against each of the treated cancer cell lines and it is not affected by hypoxia as per the in vitro studies. Complex 1 displays higher cellular accumulation than cisplatin and arrests the cell cycle in both S & G2/M phase inducing apoptotic cell death. The G2/M phase arrest is dominant at higher concentrations. The depolarisation of mitochondria by 1 combined with activation of caspase-7 indicates apoptotic cell death. Complex 1 induces low hemolysis of human blood signifying excellent blood compatibility.
Collapse
Affiliation(s)
- Subhendu Karmakar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India; Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Saptarshi Chatterjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Kallol Purkait
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Arindam Mukherjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India.
| |
Collapse
|
59
|
Deshineni R, Velpula R, Koppu S, Pilli J, Chellamella G. One‐pot multi‐component synthesis of novel ethyl‐2‐(3‐((2‐(4‐(4‐aryl)thiazol‐2‐yl)hydrazono)methyl)‐4‐hydroxy/isobutoxyphenyl)‐4‐methylthiazole‐5‐carboxylate derivatives and evaluation of their in vitro antimicrobial activity. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
| | - Ravibabu Velpula
- Department of ChemistryNational Institute of Technology Warangal Telangana India
| | - Suneetha Koppu
- Department of ChemistryOsmania University Hyderabad Telangana India
| | - Jyothi Pilli
- Department of ChemistryOsmania University Hyderabad Telangana India
| | | |
Collapse
|
60
|
Reductive Activity and Mechanism of Hypoxia- Targeted AGT Inhibitors: An Experimental and Theoretical Investigation. Int J Mol Sci 2019; 20:ijms20246308. [PMID: 31847200 PMCID: PMC6941096 DOI: 10.3390/ijms20246308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 11/16/2022] Open
Abstract
O6-alkylguanine-DNA alkyltransferase (AGT) is the main cause of tumor cell resistance to DNA-alkylating agents, so it is valuable to design tumor-targeted AGT inhibitors with hypoxia activation. Based on the existing benchmark inhibitor O6-benzylguanine (O6-BG), four derivatives with hypoxia-reduced potential and their corresponding reduction products were synthesized. A reductase system consisting of glucose/glucose oxidase, xanthine/xanthine oxidase, and catalase were constructed, and the reduction products of the hypoxia-activated prodrugs under normoxic and hypoxic conditions were determined by high-performance liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). The results showed that the reduction products produced under hypoxic conditions were significantly higher than that under normoxic condition. The amount of the reduction product yielded from ANBP (2-nitro-6-(3-amino) benzyloxypurine) under hypoxic conditions was the highest, followed by AMNBP (2-nitro-6-(3-aminomethyl)benzyloxypurine), 2-NBP (2-nitro-6-benzyloxypurine), and 3-NBG (O6-(3-nitro)benzylguanine). It should be noted that although the levels of the reduction products of 2-NBP and 3-NBG were lower than those of ANBP and AMNBP, their maximal hypoxic/normoxic ratios were higher than those of the other two prodrugs. Meanwhile, we also investigated the single electron reduction mechanism of the hypoxia-activated prodrugs using density functional theory (DFT) calculations. As a result, the reduction of the nitro group to the nitroso was proven to be a rate-limiting step. Moreover, the 2-nitro group of purine ring was more ready to be reduced than the 3-nitro group of benzyl. The energy barriers of the rate-limiting steps were 34–37 kcal/mol. The interactions between these prodrugs and nitroreductase were explored via molecular docking study, and ANBP was observed to have the highest affinity to nitroreductase, followed by AMNBP, 2-NBP, and 3-NBG. Interestingly, the theoretical results were generally in a good agreement with the experimental results. Finally, molecular docking and molecular dynamics simulations were performed to predict the AGT-inhibitory activity of the four prodrugs and their reduction products. In summary, simultaneous consideration of reduction potential and hypoxic selectivity is necessary to ensure that such prodrugs have good hypoxic tumor targeting. This study provides insights into the hypoxia-activated mechanism of nitro-substituted prodrugs as AGT inhibitors, which may contribute to reasonable design and development of novel tumor-targeted AGT inhibitors.
Collapse
|
61
|
Unhooking of an interstrand cross-link at DNA fork structures by the DNA glycosylase NEIL3. DNA Repair (Amst) 2019; 86:102752. [PMID: 31923807 DOI: 10.1016/j.dnarep.2019.102752] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 01/06/2023]
Abstract
Interstrand DNA-DNA cross-links (ICLs) are generated by endogenous processes, drugs, and environmental toxins. Understanding the cellular pathways by which various ICLs are repaired is critical to understanding their biological effects. Recent studies showed that replication-dependent repair of an ICL derived from the reaction of an abasic (AP) site with an adenine residue (dA) on the opposing strand of duplex DNA proceeds via a novel mechanism in which the DNA glycosylase NEIL3 unhooks the ICL. Here we examined the ability of the glycosylase domain of murine NEIL3 (MmuNEIL3-GD) to unhook dA-AP ICLs. The enzyme selectively unhooks the dA-AP ICL located at the duplex/single-strand junction of splayed duplexes that model the strand-separated DNA at the leading edge of a replication fork. We show that the ability to unhook the dA-AP ICL is a specialized function of NEIL3 as this activity is not observed in other BER enzymes. Importantly, NEIL3 only unhooks the dA-AP ICL when the AP residue is located on what would be the leading template strand of a model replication fork. The same specificity for the leading template strand was observed with a 5,6-dihydrothymine monoadduct, demonstrating that this preference is a general feature of the glycosylase and independent of the type of DNA damage. Overall, the results show that the glycosylase domain of NEIL3, lacking the C-terminal NPL4 and GRF zinc finger motifs, is competent to unhook the dA-AP ICL in splayed substrates and independently enforces important substrate preferences on the repair process.
Collapse
|
62
|
Kurinomaru T, Kojima N, Kurita R. Sequential Assessment of Multiple Epigenetic Modifications of Cytosine in Whole Genomic DNA by Surface Plasmon Resonance. Anal Chem 2019; 91:13933-13939. [PMID: 31525025 DOI: 10.1021/acs.analchem.9b03423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Since the discovery of the active DNA demethylation pathway in mammals, numerous efforts have been made to distinguish epigenetic cytosine variants, including 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). However, the rapid discrimination of multiple cytosine variants in DNA remains challenging because the conventional assays require time-consuming DNA pretreatments, such as enzymatical digestion and chemical conversion. Here we demonstrated the high-throughput discrimination of four cytosine variants in DNA by using a sequential surface-plasmon-resonance (SPR)-based immunochemical assay. The target DNAs were biotinylated in one step with a bifunctional linker 1 and robustly immobilized on a streptavidin-coated sensor surface to hold them in place during an alkali washing designed to remove residual antibodies. By repeating the injection of antibodies and washing, we achieved a sequential assessment of cytosine variants in identical DNA and identified the yield of in vitro 5mC oxidation in genomic DNA by the ten-eleven translocation 1 (TET1) enzyme. These results demonstrated that our sequential SPR-based immunochemical assay was effective for evaluating multiple epigenetic modifications in a whole genome with a single row operation without time-consuming DNA pretreatments.
Collapse
Affiliation(s)
- Takaaki Kurinomaru
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , 1-8-31 Midorigaoka , Ikeda , Osaka 563-8577 , Japan
| | - Naoshi Kojima
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) and DAILAB/DAICENTER , Tsukuba Central 6, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8566 , Japan
| | - Ryoji Kurita
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) and DAILAB/DAICENTER , Tsukuba Central 6, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8566 , Japan
| |
Collapse
|
63
|
Wróbel A, Kolesińska B, Frączyk J, Kamiński ZJ, Tankiewicz-Kwedlo A, Hermanowicz J, Czarnomysy R, Maliszewski D, Drozdowska D. Synthesis and cellular effects of novel 1,3,5-triazine derivatives in DLD and Ht-29 human colon cancer cell lines. Invest New Drugs 2019; 38:990-1002. [PMID: 31520321 PMCID: PMC7340680 DOI: 10.1007/s10637-019-00838-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/12/2019] [Indexed: 11/30/2022]
Abstract
This study provides new information on the cellular effects of 1,3,5-triazine nitrogen mustards with different peptide groups in DLD and Ht-29 human colon cancer cell lines. A novel series of 2,4,6-trisubstituted 1,3,5-triazine derivatives bearing 2-chloroethyl and oligopeptide moieties was designed and synthesized. The most cytotoxic derivative was triazine with an Ala-Ala-OMe substituent on the ring (compound 7b). This compound induced time- and dose-dependent cytotoxicity in the DLD-1 and HT-29 colon cancer cell lines. The triazine derivative furthermore induced apoptosis through intracellular signaling pathway attenuation. Compound 7b may be a candidate for further evaluation as a chemotherapeutic agent against colorectal cancer.
Collapse
Affiliation(s)
- Agnieszka Wróbel
- Department of Organic Chemistry, Medical University of Bialystok, Białystok, Poland
| | - Beata Kolesińska
- Institute of Organic Chemistry, Lodz University of Technology, Lodz, Poland
| | - Justyna Frączyk
- Institute of Organic Chemistry, Lodz University of Technology, Lodz, Poland
| | | | - Anna Tankiewicz-Kwedlo
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Białystok, Poland
| | - Justyna Hermanowicz
- Department of Clinical Pharmacy, Medical University of Bialystok, Bialystok, Poland
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Bialystok, Poland
| | - Dawid Maliszewski
- Department of Organic Chemistry, Medical University of Bialystok, Białystok, Poland
| | - Danuta Drozdowska
- Department of Organic Chemistry, Medical University of Bialystok, Białystok, Poland.
| |
Collapse
|
64
|
Nejad MI, Guo X, Housh K, Nel C, Yang Z, Price NE, Wang Y, Gates KS. Preparation and Purification of Oligodeoxynucleotide Duplexes Containing a Site-Specific, Reduced, Chemically Stable Covalent Interstrand Cross-Link Between a Guanine Residue and an Abasic Site. Methods Mol Biol 2019; 1973:163-175. [PMID: 31016701 DOI: 10.1007/978-1-4939-9216-4_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Methods for the preparation of DNA duplexes containing interstrand covalent cross-links may facilitate research in the fields of biochemistry, molecular biology, nanotechnology, and materials science. Here we report methods for the synthesis and isolation of DNA duplexes containing a site-specific, chemically stable, reduced covalent interstrand cross-link between a guanine residue and an abasic site. The method uses experimental techniques and equipment that are common in most biochemical laboratories and inexpensive, commercially available oligonucleotides and reagents.
Collapse
Affiliation(s)
| | - Xu Guo
- Department of Chemistry, University of Missouri, Columbia, MO, USA
| | - Kurt Housh
- Department of Chemistry, University of Missouri, Columbia, MO, USA
| | - Christopher Nel
- Department of Chemistry, University of Missouri, Columbia, MO, USA
| | - Zhiyu Yang
- Department of Chemistry, University of Missouri, Columbia, MO, USA
| | - Nathan E Price
- Department of Chemistry, University of California Riverside, Riverside, CA, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California Riverside, Riverside, CA, USA
| | - Kent S Gates
- Department of Chemistry, University of Missouri, Columbia, MO, USA. .,Department of Biochemistry, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
65
|
Sambol M, Ester K, Landgraf S, Mihaljević B, Cindrić M, Kralj M, Basarić N. Competing photochemical reactions of bis-naphthols and their photoinduced antiproliferative activity. Photochem Photobiol Sci 2019; 18:1197-1211. [PMID: 30820496 DOI: 10.1039/c8pp00532j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The photophysical properties and photochemical reactivities of a series of bis-naphthols 4a-4e and bis-anthrols 5a and 5e were investigated by preparative irradiation in CH3OH, fluorescence spectroscopy and laser flash photolysis (LFP). Methanolysis taking place via photodehydration (bis-naphthols: ΦR = 0.04-0.05) is in competition with symmetry breaking charge separation (SB-CS). The SB-CS gave rise to radical ions that were detected for 4a and 4e by LFP. Photodehydration gave quinone methides (QMs) that were also detected by LFP (λmax = 350 nm, τ ≈ 1-2 ms). In the aqueous solvent, excited state proton transfer (ESPT) competes with the abovementioned processes, giving rise to naphtholates, but the process is inefficient and can only be observed in the buffered aqueous solution at pH > 7. Since the dehydration of bis-naphthols delivers QMs, their potential antiproliferative activity was investigated by an MTT test on three human cancer cell lines (NCI-H1299, lung carcinoma; MCF-7, breast adenocarcinoma; and SUM159, pleomorphic breast carcinoma). Cells were treated with 4 or 5 with or without irradiation (350 nm). An enhancement of the activity (up to 10-fold) was observed upon irradiation, which may be associated with QM formation. However, these QMs do not cross-link DNA. The activity is most likely associated with the alkylation of proteins present in the cell cytoplasm, as evidenced by photoinduced alkylation of bovine and human serum albumins by 4a.
Collapse
Affiliation(s)
- Matija Sambol
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia.
| | | | | | | | | | | | | |
Collapse
|
66
|
Charak S, Shandilya M, Mehrotra R. RNA targeting by an anthracycline drug: spectroscopic and in silico evaluation of epirubicin interaction with tRNA. J Biomol Struct Dyn 2019; 38:1761-1771. [PMID: 31084352 DOI: 10.1080/07391102.2019.1617786] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Anthracyclines are putative anticancer agents used to treat a wide range of cancers. Among these anthracyclines, epirubicin is derived from the doxorubicin by the subtle difference in the orientation of C4-hydroxyl group at sugar molecule. Epirubicin has great significance as it has propitious anticancer potential with lesser cardiotoxicity and faster elimination from the body. The present study is done to understand the molecular aspect of epirubicin binding to tRNA. We have used various spectroscopic techniques like Fourier transform infrared spectroscopy (FTIR), absorption spectroscopy and circular dichroism to illustrate the binding sites, the extent of binding and conformational changes associated with tRNA after interacting with epirubicin. From infrared studies, we infer that epirubicin interacts with guanine and uracil bases of tRNA. Results obtained from infrared and CD studies suggest that epirubicin complexation with tRNA does not result in any conformational change in tRNA structure. Binding constant (2.1 × 103 M-1) calculated from the absorbance data illustrates that epirubicin has a weak interaction with tRNA molecule. These spectroscopic results like the binding site of epirubicin and binding energy of epirubicin-tRNA complex were also verified by the molecular docking. Results of the present study provide information that aids in the development of efficient RNA targeted drugs from the existing drugs by certain chemical modification in their structure resulting in lesser side effects and better efficacy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sonika Charak
- Physico Mechanical Metrology Division, CSIR-National Physical Laboratory, New Delhi, India
| | - Manish Shandilya
- Amity School of Applied Sciences, Amity University Haryana, Gurgaon, India
| | - Ranjana Mehrotra
- Physico Mechanical Metrology Division, CSIR-National Physical Laboratory, New Delhi, India
| |
Collapse
|
67
|
Emerging Technologies in Mass Spectrometry-Based DNA Adductomics. High Throughput 2019; 8:ht8020013. [PMID: 31091740 PMCID: PMC6630665 DOI: 10.3390/ht8020013] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/19/2019] [Accepted: 05/09/2019] [Indexed: 12/11/2022] Open
Abstract
The measurement of DNA adducts, the covalent modifications of DNA upon the exposure to the environmental and dietary genotoxicants and endogenously produced electrophiles, provides molecular evidence for DNA damage. With the recent improvements in the sensitivity and scanning speed of mass spectrometry (MS) instrumentation, particularly high-resolution MS, it is now feasible to screen for the totality of DNA damage in the human genome through DNA adductomics approaches. Several MS platforms have been used in DNA adductomic analysis, each of which has its strengths and limitations. The loss of 2′-deoxyribose from the modified nucleoside upon collision-induced dissociation is the main transition feature utilized in the screening of DNA adducts. Several advanced data-dependent and data-independent scanning techniques originated from proteomics and metabolomics have been tailored for DNA adductomics. The field of DNA adductomics is an emerging technology in human exposure assessment. As the analytical technology matures and bioinformatics tools become available for analysis of the MS data, DNA adductomics can advance our understanding about the role of chemical exposures in DNA damage and disease risk.
Collapse
|
68
|
Kurinomaru T, Kojima N, Kurita R. Immobilization of DNA on Biosensing Devices with Nitrogen Mustard-Modified Linkers. ACTA ACUST UNITED AC 2019; 77:e85. [PMID: 31038292 DOI: 10.1002/cpnc.85] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Immobilization of DNA is an important step in relation to DNA-based biosensors and bioassays with multiple applications. This unit describes synthesis and applications of novel bifunctional linker molecules containing nitrogen mustard and one of two types of functional groups: cyclic disulfide or biotin. Two ways of immobilizing DNA on a surface are described. With the first method, a bifunctional alkylating linker molecule is first reacted with the target DNA to form alkylated DNA and then immobilized on a specific surface. With the second method, the bifunctional alkylating linker molecule is first attached to the surface, and then the target DNA is immobilized through an alkylating reaction with a nitrogen mustard moiety. We have also achieved immunochemical detection and quantification of 5-methylcytosine in a target DNA immobilized by the above methods. The methods for immobilization of intact DNA using novel bifunctional linker molecules are applicable to a wide range of biological analysis techniques. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Takaaki Kurinomaru
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Japan
| | - Naoshi Kojima
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) and DAILAB/DAICENTER, Tsukuba, Japan
| | - Ryoji Kurita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) and DAILAB/DAICENTER, Tsukuba, Japan
| |
Collapse
|
69
|
Carraro C, Francke A, Sosic A, Kohl F, Helbing T, De Franco M, Fabris D, Göttlich R, Gatto B. Behind the Mirror: Chirality Tunes the Reactivity and Cytotoxicity of Chloropiperidines as Potential Anticancer Agents. ACS Med Chem Lett 2019; 10:552-557. [PMID: 30996795 PMCID: PMC6466835 DOI: 10.1021/acsmedchemlett.8b00580] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/13/2019] [Indexed: 12/18/2022] Open
Abstract
![]()
The
pressing demand for sustainable antitumor drugs prompted us
to investigate 3-chloropiperidines as potential mustard-based anticancer
agents. In this study, an explorative set of variously decorated monofunctional
3-chloropiperidines (M-CePs) was efficiently synthesized through a
fast and affordable route providing high yields of pure racemates
and enantiomers. Consistently with their reactivity, M-CePs were demonstrated
to alkylate DNA in vitro. On a panel of carcinoma
cell lines, M-CePs exhibited low nanomolar cytotoxicity indexes, which
showed their remarkable activity against pancreatic cancer cells and
in all cases performed strikingly better than the chlorambucil control.
Very interestingly, stereochemistry modulated the activity of M-CePs
in unexpected ways, pointing to additional molecular mechanisms of
action beyond the direct damage of genomic DNA. This encouraging combination
of efficacy and sustainability suggests they are valid candidates
for anticancer agent development.
Collapse
Affiliation(s)
- Caterina Carraro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Francesco Marzolo 5, 35131 Padova, Italy
| | - Alexander Francke
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Alice Sosic
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Francesco Marzolo 5, 35131 Padova, Italy
| | - Franziska Kohl
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Francesco Marzolo 5, 35131 Padova, Italy
| | - Tim Helbing
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Michele De Franco
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Francesco Marzolo 5, 35131 Padova, Italy
| | - Daniele Fabris
- Departments of Chemistry and Biological Sciences, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Richard Göttlich
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Barbara Gatto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Francesco Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
70
|
Investigation on the cytotoxic effects of nitrogen-mustard-derived Schiff bases. Studies on the reactivity of the N-mustard pharmacophoric group. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.10.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
71
|
Emamian S, Domingo LR, Ríos-Gutiérrez M, Zahedi E, Hosseini SJ. Aziridination of Aromatic Aldimines Through Stabilized Ammonium Ylides: A Molecular Electron Density Theory Study. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801763] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Saeedreza Emamian
- Chemistry Department; Shahrood Branch; Islamic Azad University; Shahrood Iran
| | - Luis R. Domingo
- Department of Organic Chemistry; University of Valencia; Dr Moliner 50 46100 Burjassot, Valencia Spain
| | - Mar Ríos-Gutiérrez
- Department of Organic Chemistry; University of Valencia; Dr Moliner 50 46100 Burjassot, Valencia Spain
| | - Ehsan Zahedi
- Chemistry Department; Shahrood Branch; Islamic Azad University; Shahrood Iran
| | | |
Collapse
|
72
|
Wang S, Ding J, Liu P, Xie S, Xie D, Zhang M, Cheng F. Theoretical studies on the purine radical induced purine-purine type intrastrand cross-links. Org Biomol Chem 2019; 17:892-897. [PMID: 30629064 DOI: 10.1039/c8ob02882f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
At the density functional theory (DFT) level, addition reactions between the guanine-8-yl radical and its 3'/5' neighboring purine deoxynucleosides forming the purine-purine type intrastrand cross-links were studied. It is found that addition of the guanine-8-yl radical to the C8 site of its 5' neighboring deoxyguanosine or deoxyadenosine is a two-step reaction consisting of a structurally relatively unfavourable conformational transformation step, while the corresponding 3' C8 addition is straightforward and kinetically more efficient. The 3' C8 preference of the guanine-8-yl radical additions indicates the existence of an obvious sequence effect, which is completely opposite to that observed in the formation of pyrimidine radicals induced DNA intrastrand cross-links. The detrimental effects from steric hindrance and stabilizing weak interactions make these addition reactions markedly suppressed in double stranded DNA. This work broadens our knowledge about the possible types of DNA intrastrand cross-links.
Collapse
Affiliation(s)
- Shoushan Wang
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
73
|
Krętowski R, Drozdowska D, Kolesińska B, Kamiński Z, Frączyk J, Cechowska-Pasko M. The cellular effects of novel triazine nitrogen mustards in glioblastoma LBC3, LN-18 and LN-229 cell lines. Invest New Drugs 2019; 37:984-993. [PMID: 30645699 PMCID: PMC6736897 DOI: 10.1007/s10637-018-0712-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/10/2018] [Indexed: 01/20/2023]
Abstract
1,3,5-triazine is an important heterocyclic skeleton for mono, two or three 2-chloroethylamine groups. The study presented here provides novel information on cellular effects of 1,3,5-triazine with mono, two or three 2-chloroethylamine groups in glioblastoma LBC3, LN-18 and LN-229 cell lines. In our study, the most cytotoxic effect was observed in 1,3,5-triazine with three 2-chloroethylamine groups (12f compound). It has been demonstrated that 12f induce time- and dose-dependent cytotoxicity in all investigated glioma cell lines. Apart from that in glioblastoma cells, treated with 12f compound, we noticed strong induction of apoptosis. In conclusion, this research provides novel information concerning cellular effects of apoptosis in LBC3, LN-18 and LN-229 cell lines. Moreover, we suggest that 12f compound may be a candidate for further evaluation as an effective chemotherapeutic agent for human glioblastoma cells.
Collapse
Affiliation(s)
- Rafał Krętowski
- Department of Pharmaceutical Biochemistry, Medical University of Bialystok, Bialystok, Poland
| | - Danuta Drozdowska
- Department of Organic Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Beata Kolesińska
- Institute of Organic Chemistry, Technical University of Lodz, Lodz, Poland
| | - Zbigniew Kamiński
- Institute of Organic Chemistry, Technical University of Lodz, Lodz, Poland
| | - Justyna Frączyk
- Institute of Organic Chemistry, Technical University of Lodz, Lodz, Poland
| | | |
Collapse
|
74
|
Jankowski W, Bregier-Jarzebowska R, Gasowska A, Hoffmann M. Experimental and computational studies of noncovalent interactions in the metal-free ternary Lys–tn–ATP system. NEW J CHEM 2019. [DOI: 10.1039/c9nj03291f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Noncovalent interactions have been studied with the use of experimental (potentiometric and spectroscopic measurements) and computational (Molecular Modeling and DFT) studies in a lysine, 1,3-diaminopropane and adenosine-5′-triphosphate system.
Collapse
Affiliation(s)
- W. Jankowski
- Faculty of Chemistry
- Adam Mickiewicz University
- 61-614 Poznan
- Poland
| | | | - A. Gasowska
- Faculty of Chemistry
- Adam Mickiewicz University
- 61-614 Poznan
- Poland
| | - M. Hoffmann
- Faculty of Chemistry
- Adam Mickiewicz University
- 61-614 Poznan
- Poland
| |
Collapse
|
75
|
Karmakar S, Maji M, Mukherjee A. Modulation of the reactivity of nitrogen mustards by metal complexation: approaches to modify their therapeutic properties. Dalton Trans 2019; 48:1144-1160. [DOI: 10.1039/c8dt04503h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Metal complexation of nitrogen mustards shows promise with an ability to control the mustards’ reactivity, perform selective hypoxia activation, overcome resistance, and control GSH deactivation.
Collapse
Affiliation(s)
- Subhendu Karmakar
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur-741246
- India
| | - Moumita Maji
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur-741246
- India
| | - Arindam Mukherjee
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur-741246
- India
| |
Collapse
|
76
|
Peczkowski GR, Craven PGE, Stead D, Simpkins NS. 2,7-Diazabicyclo[2.2.1]heptanes: novel asymmetric access and controlled bridge-opening. Chem Commun (Camb) 2019; 55:4214-4217. [DOI: 10.1039/c8cc10263e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Organocatalysed asymmetric Michael additions of substituted triketopiperazines to enones afford products in high yield and enantiomeric ratio (er). Further modification delivers products possessing natural product (NP) scaffolds including diazabicyclo[2.2.1]heptane, prolinamide and harmicine.
Collapse
Affiliation(s)
| | | | - Darren Stead
- Medicinal Chemistry, Oncology, IMED Biotech Unit
- Cambridge
- UK
| | | |
Collapse
|
77
|
Xu Y, Wei H, Chen J, Gao K. A thiol-inducible and quick-response DNA cross-linking agent. Bioorg Med Chem Lett 2019; 29:281-283. [DOI: 10.1016/j.bmcl.2018.11.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/14/2018] [Accepted: 11/18/2018] [Indexed: 12/11/2022]
|
78
|
Dai LL, Li DD, Zhao XM, Zhi S, Shen HS, Yang ZB. Synthesis and Antitumor Effect of Sophoridine Derivatives Bearing an Acyclic Aryloxy Phosphoramidate Mustard Functionality. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3413] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lin-Lin Dai
- Tianjin Institute of Medical and Pharmaceutical Sciences; Tianjin 300020 China
| | - Dong-Dong Li
- Tianjin Institute of Medical and Pharmaceutical Sciences; Tianjin 300020 China
| | - Xiu-Mei Zhao
- Tianjin Institute of Medical and Pharmaceutical Sciences; Tianjin 300020 China
| | - Shuang Zhi
- Tianjin Institute of Medical and Pharmaceutical Sciences; Tianjin 300020 China
| | - Hong-Sheng Shen
- Tianjin Institute of Medical and Pharmaceutical Sciences; Tianjin 300020 China
| | - Zi-Bo Yang
- Tianjin Institute of Medical and Pharmaceutical Sciences; Tianjin 300020 China
| |
Collapse
|
79
|
Copp W, O'Flaherty DK, Wilds CJ. Covalent capture of OGT's active site using engineered human-E. coli chimera and intrastrand DNA cross-links. Org Biomol Chem 2018; 16:9053-9058. [PMID: 30430154 DOI: 10.1039/c8ob02453g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
O 6-Alkylguanine DNA alkyltransferases (AGTs) are proteins found in most organisms whose role is to remove alkylation damage from the O6- and O4-positions of 2'-deoxyguanosine (dG) and thymidine (dT), respectively. Variations in active site residues between AGTs from different organisms leads to differences in repair proficiency: The human variant (hAGT) has a proclivity for removal of alkyl groups at the O6-position of guanine and the E. coli OGT protein has activity towards the O4-position of thymine. A chimeric protein (hOGT) that our laboratory has engineered with twenty of the active site residues mutated in hAGT to those found in OGT, exhibited activity towards a broader range of substrates relative to native OGT. Among the substrates that the hOGT protein was found to act upon was interstrand cross-linked DNA connected by an alkylene linkage at the O6-position of dG to the complementary strand. In the present study the activity of hOGT towards DNA containing alkylene intrastrand cross-links (IaCL) at the O6- and O4-positions respectively of dG and dT, which lack a phosphodiester linkage between the connected residues, was evaluated. The hOGT protein exhibited proficiency at removal of an alkylene linkage at the O6-atom of dG but the O4-position of dT was refractory to protein activity. The activity of the chimeric hOGT protein towards these IaCLs to prepare well defined DNA-protein cross-linked conjugates will enable mechanistic and high resolution structural studies to address the differences observed in the repair adeptness of O4-alkylated dT by the OGT protein relative to other AGT variants.
Collapse
Affiliation(s)
- William Copp
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec H4B1R6, Canada.
| | | | | |
Collapse
|
80
|
Sun G, Fan T, Sun X, Hao Y, Cui X, Zhao L, Ren T, Zhou Y, Zhong R, Peng Y. In Silico Prediction of O⁶-Methylguanine-DNA Methyltransferase Inhibitory Potency of Base Analogs with QSAR and Machine Learning Methods. Molecules 2018; 23:E2892. [PMID: 30404161 PMCID: PMC6278368 DOI: 10.3390/molecules23112892] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/04/2018] [Accepted: 11/06/2018] [Indexed: 12/24/2022] Open
Abstract
O⁶-methylguanine-DNA methyltransferase (MGMT), a unique DNA repair enzyme, can confer resistance to DNA anticancer alkylating agents that modify the O⁶-position of guanine. Thus, inhibition of MGMT activity in tumors has a great interest for cancer researchers because it can significantly improve the anticancer efficacy of such alkylating agents. In this study, we performed a quantitative structure activity relationship (QSAR) and classification study based on a total of 134 base analogs related to their ED50 values (50% inhibitory concentration) against MGMT. Molecular information of all compounds were described by quantum chemical descriptors and Dragon descriptors. Genetic algorithm (GA) and multiple linear regression (MLR) analysis were combined to develop QSAR models. Classification models were generated by seven machine-learning methods based on six types of molecular fingerprints. Performances of all developed models were assessed by internal and external validation techniques. The best QSAR model was obtained with Q²Loo = 0.83, R² = 0.87, Q²ext = 0.67, and R²ext = 0.69 based on 84 compounds. The results from QSAR studies indicated topological charge indices, polarizability, ionization potential (IP), and number of primary aromatic amines are main contributors for MGMT inhibition of base analogs. For classification studies, the accuracies of 10-fold cross-validation ranged from 0.750 to 0.885 for top ten models. The range of accuracy for the external test set ranged from 0.800 to 0.880 except for PubChem-Tree model, suggesting a satisfactory predictive ability. Three models (Ext-SVM, Ext-Tree and Graph-RF) showed high and reliable predictive accuracy for both training and external test sets. In addition, several representative substructures for characterizing MGMT inhibitors were identified by information gain and substructure frequency analysis method. Our studies might be useful for further study to design and rapidly identify potential MGMT inhibitors.
Collapse
Affiliation(s)
- Guohui Sun
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Tengjiao Fan
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Xiaodong Sun
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Yuxing Hao
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Xin Cui
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Ting Ren
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Yue Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 2A Nanwei Road, Beijing 100050, China.
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment & Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
81
|
Hu F, Xu S, Liu B. Photosensitizers with Aggregation-Induced Emission: Materials and Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801350. [PMID: 30066341 DOI: 10.1002/adma.201801350] [Citation(s) in RCA: 493] [Impact Index Per Article: 70.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/30/2018] [Indexed: 05/21/2023]
Abstract
Photodynamic therapy is arising as a noninvasive treatment modality for cancer and other diseases. One of the key factors to determine the therapeutic function is the efficiency of photosensitizers (PSs). Opposed to traditional PSs, which show quenched fluorescence and reduced singlet oxygen production in the aggregate state, PSs with aggregation-induced emission (AIE) exhibit enhanced fluorescence and strong photosensitization ability in nanoparticles. Here, the design principles of AIE PSs and their biomedical applications are discussed in detail, starting with a summary of traditional PSs, followed by a comparison between traditional and AIE PSs to highlight the various design strategies and unique features of the latter. Subsequently, the applications of AIE PSs in photodynamic cancer cell ablation, bacteria killing, and image-guided therapy are discussed using charged AIE PSs, AIE PS molecular probes, and AIE PS nanoparticles as examples. These studies have demonstrated the great potential of AIE PSs as effective theranostic agents to treat tumor or bacterial infection. This review hopefully will spur more research interest in AIE PSs for future translational research.
Collapse
Affiliation(s)
- Fang Hu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Shidang Xu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
82
|
Chen W, Fan H, Balakrishnan K, Wang Y, Sun H, Fan Y, Gandhi V, Arnold LA, Peng X. Discovery and Optimization of Novel Hydrogen Peroxide Activated Aromatic Nitrogen Mustard Derivatives as Highly Potent Anticancer Agents. J Med Chem 2018; 61:9132-9145. [PMID: 30247905 DOI: 10.1021/acs.jmedchem.8b00559] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We describe several new aromatic nitrogen mustards with various aromatic substituents and boronic esters that can be activated with H2O2 to efficiently cross-link DNA. In vitro studies demonstrated the anticancer potential of these compounds at lower concentrations than those of other clinically used chemotherapeutics, such as melphalan and chlorambucil. In particular, compound 10, bearing an amino acid ester chain, is selectively cytotoxic toward breast cancer and leukemia cells that have inherently high levels of reactive oxygen species. Importantly, 10 was 10-14-fold more efficacious than melphalan and chlorambucil for triple-negative breast-cancer (TNBC) cells. Similarly, 10 is more toxic toward primary chronic-lymphocytic-leukemia cells than either chlorambucil or the lead compound, 9. The introduction of an amino acid side chain improved the solubility and permeability of 10. Furthermore, 10 inhibited the growth of TNBC tumors in xenografted mice without obvious signs of general toxicity, making this compound an ideal drug candidate for clinical development.
Collapse
Affiliation(s)
- Wenbing Chen
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery , University of Wisconsin, Milwaukee , 3210 North Cramer Street , Milwaukee , Wisconsin 53211 , United States
| | - Heli Fan
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery , University of Wisconsin, Milwaukee , 3210 North Cramer Street , Milwaukee , Wisconsin 53211 , United States
| | - Kumudha Balakrishnan
- Department of Experimental Therapeutics , MD Anderson Cancer Center , Houston , Texas 77030 , United States
| | | | | | | | - Varsha Gandhi
- Department of Experimental Therapeutics , MD Anderson Cancer Center , Houston , Texas 77030 , United States
| | - Leggy A Arnold
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery , University of Wisconsin, Milwaukee , 3210 North Cramer Street , Milwaukee , Wisconsin 53211 , United States
| | - Xiaohua Peng
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery , University of Wisconsin, Milwaukee , 3210 North Cramer Street , Milwaukee , Wisconsin 53211 , United States
| |
Collapse
|
83
|
Abstract
The success of platinum-based anticancer agents has motivated the exploration of novel metal-based drugs for several decades, whereas problems such as drug-resistance and systemic toxicity hampered their clinical applications and efficacy. Stimuli-responsiveness of some metal complexes offers a good opportunity for designing site-specific prodrugs to maximize the therapeutic efficacy and minimize the side effect of metallodrugs. This review presents a comprehensive and up-to-date overview on the therapeutic stimuli-responsive metallodrugs that have appeared in the past two decades, where stimuli such as redox, pH, enzyme, light, temperature, and so forth were involved. The compounds are classified into three major categories based on the nature of stimuli, that is, endo-stimuli-responsive metallodrugs, exo-stimuli-responsive metallodrugs, and dual-stimuli-responsive metallodrugs. Representative examples of each type are discussed in terms of structure, response mechanism, and potential medical applications. In the end, future opportunities and challenges in this field are tentatively proposed. With diverse metal complexes being introduced, the foci of this review are pointed to platinum and ruthenium complexes.
Collapse
Affiliation(s)
- Xiaohui Wang
- College of Chemistry and Molecular Engineering , Nanjing Tech University , Nanjing 211816 , P. R. China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , P. R. China
| | - Suxing Jin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , P. R. China
| | - Nafees Muhammad
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , P. R. China
| |
Collapse
|
84
|
Kojima N, Suda T, Kurinomaru T, Kurita R. Immobilization of DNA with nitrogen mustard-biotin conjugate for global epigenetic analysis. Anal Chim Acta 2018; 1043:107-114. [PMID: 30392657 DOI: 10.1016/j.aca.2018.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/03/2018] [Accepted: 09/05/2018] [Indexed: 12/01/2022]
Abstract
We report the quantitative analysis of 5-methylcytosine, a representative epigenetic modification in genomic DNA, with an enzyme-linked immunosorbent assay (ELISA). We synthesized a novel hetero-bifunctional linker molecule consisting of nitrogen mustard and biotin to capture DNA on the surface of biosensing devices. The molecule can successfully immobilize genomic DNA on a streptavidin coated 96-well microplate, which was then employed for immunochemical epigenetic assessment. We achieved the sensitive and quantitative detection of 5-mC in genomic DNA samples. The CpG methylation ratios obtained from our system for mouse brain and mouse small intestine genomes were 79% and 82%, respectively. These numbers are in good agreement with the previously reported methylation ratio of 75-85%, which was identified by whole genome bisulfite sequencing. Accordingly, the present technology using our novel bifunctional linker molecule provides a fast, easy, and inexpensive method for epigenetic assessment, without the need for any conventional bisulfite treatment, polymerase chain reaction (PCR), or sequencing.
Collapse
Affiliation(s)
- Naoshi Kojima
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) and DAILAB, DAICENTER, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Tomomi Suda
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) and DAILAB, DAICENTER, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Takaaki Kurinomaru
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan
| | - Ryoji Kurita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) and DAILAB, DAICENTER, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| |
Collapse
|
85
|
Novel Sophoridine Derivatives Bearing Phosphoramide Mustard Moiety Exhibit Potent Antitumor Activities In Vitro and In Vivo. Molecules 2018; 23:molecules23081960. [PMID: 30082625 PMCID: PMC6222802 DOI: 10.3390/molecules23081960] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 12/13/2022] Open
Abstract
Novel mustard functionalized sophoridine derivatives were synthesized and evaluated for their cytotoxicity against of a panel of various cancer cell lines. They were shown to be more sensitive to S180 and H22 tumor cells with IC50 values ranging from 1.01–3.65 μM, and distinctly were more cytotoxic to cancer cells than normal cell L929. In addition, compounds 7a, 7c, and 7e displayed moderate tumor suppression without apparent organ toxicity in vivo against mice bearing H22 liver tumors. Furthermore, they arrested tumor cells in the G1 phase and induced cellular apoptosis. Their potential binding modes with DNA-Top I complex have also been investigated.
Collapse
|
86
|
Rycenga HB, Long DT. The evolving role of DNA inter-strand crosslinks in chemotherapy. Curr Opin Pharmacol 2018; 41:20-26. [PMID: 29679802 PMCID: PMC6108900 DOI: 10.1016/j.coph.2018.04.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/13/2018] [Accepted: 04/03/2018] [Indexed: 01/08/2023]
Abstract
DNA crosslinking agents make up a broad class of chemotherapy agents that target rapidly dividing cancer cells by disrupting DNA synthesis. These drugs differ widely in both chemical structure and biological effect. In cells, crosslinking agents can form multiple types of DNA lesions with varying efficiencies. Inter-strand crosslinks (ICLs) are considered to be the most cytotoxic lesion, creating a covalent roadblock to replication and transcription. Despite over 50 years in the clinic, the use of crosslinking agents that specialize in the formation of ICLs remains limited, largely due to high toxicity in patients. Current ICL-based therapeutics have focused on late-stage and drug-resistant tumors, or localized treatments that limit exposure. In this article, we review the development of clinical crosslinking agents, our understanding of how cells respond to different lesions, and the potential to improve ICL-based chemotherapeutics in the future.
Collapse
Affiliation(s)
- Halley B Rycenga
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - David T Long
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
87
|
Fan H, Sun H, Peng X. Substituents Have a Large Effect on Photochemical Generation of Benzyl Cations and DNA Cross-Linking. Chemistry 2018; 24:7671-7682. [DOI: 10.1002/chem.201705929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Heli Fan
- Department of Chemistry and Biochemistry; University of Wisconsin-Milwaukee; 3210 N. Cramer Street Milwaukee Wisconsin 53211 USA
| | - Huabing Sun
- Department of Chemistry and Biochemistry; University of Wisconsin-Milwaukee; 3210 N. Cramer Street Milwaukee Wisconsin 53211 USA
| | - Xiaohua Peng
- Department of Chemistry and Biochemistry; University of Wisconsin-Milwaukee; 3210 N. Cramer Street Milwaukee Wisconsin 53211 USA
- Milwaukee Institute for Drug Discovery; University of Wisconsin-Milwaukee; 3210 N. Cramer Street Milwaukee Wisconsin 53211 USA
| |
Collapse
|
88
|
Ye J, Farrington CR, Millard JT. Polymerase bypass of N7-guanine monoadducts of cisplatin, diepoxybutane, and epichlorohydrin. Mutat Res 2018; 809:6-12. [PMID: 29579534 PMCID: PMC5962418 DOI: 10.1016/j.mrfmmm.2018.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/31/2018] [Accepted: 03/05/2018] [Indexed: 06/08/2023]
Abstract
DNA oligonucleotides containing site-specific N7-guanine monoadducts of cisplatin, diepoxybutane, and epichlorohydrin were used as templates for DNA synthesis by two bacterial DNA polymerases and human polymerase β. These polymerases were able to bypass the lesions effectively, although the efficiency was decreased, with inhibition increasing with the size of the lesion. Fidelity of incorporation was essentially unaltered, suggesting that N7-guanine monoadducts do not significantly contribute to the mutational spectra of these agents.
Collapse
Affiliation(s)
- Jiayu Ye
- Department of Chemistry, Colby College, Waterville, ME 04901, United States
| | | | - Julie T Millard
- Department of Chemistry, Colby College, Waterville, ME 04901, United States.
| |
Collapse
|
89
|
Kurinomaru T, Kojima N, Kurita R. An alkylating immobilization linker for immunochemical epigenetic assessment. Chem Commun (Camb) 2018; 53:8308-8311. [PMID: 28686257 DOI: 10.1039/c7cc02883k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A bifunctional linker molecule containing nitrogen mustard and a cyclic disulfide group has been developed for the covalent immobilization of intact DNA, which allows quantitative analysis of epigenomic modification in immobilized DNA using SPR-based immune sensing.
Collapse
Affiliation(s)
- Takaaki Kurinomaru
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) and DAILAB, Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | | | | |
Collapse
|
90
|
Sett R, Sen S, Paul BK, Guchhait N. How Does Nanoconfinement within a Reverse Micelle Influence the Interaction of Phenazinium-Based Photosensitizers with DNA? ACS OMEGA 2018; 3:1374-1385. [PMID: 31458466 PMCID: PMC6641382 DOI: 10.1021/acsomega.7b01820] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/17/2018] [Indexed: 06/10/2023]
Abstract
The major focus of the present work lies in exploring the influence of nanoconfinement within aerosol-OT (AOT) reverse micelles on the binding interaction of two phenazinium-based photosensitizers, namely, phenosafranin (PSF) and safranin-O (SO), with the DNA duplex. Circular dichroism and dynamic light-scattering studies reveal the condensation of DNA within the reverse micellar interior (transformation of the B-form of native DNA to ψ-form). Our results unveil a remarkable effect of the degree of hydration of the reverse micellar core on the stability of the stacking interaction (intercalation) of the drugs (PSF and SO) into DNA; increasing size of the water nanopool (that is, w 0) accompanies decreasing curvature of the DNA duplex structure with the consequent effect of increasing stabilization of the drug:DNA intercalation. The marked differences in the dynamical aspects of the interaction scenario following encapsulation within the reverse micellar core and the subsequent dependence on the size of the water nanopool are also meticulously explored. The differential degrees of steric interactions offered by the drug molecules (presence of methyl substitutions on the planar phenazinium ring in SO) are also found to affect the extent of intercalation of the drugs to DNA. In this context, it is imperative to state that the water pool of the reverse micellar core is often argued to approach bulk-like properties of water with increasing micellar size (typically w 0 ≥ 10), so that deviation from the bulk water properties is likely to be minimized in large reverse micelles (w 0 ≥ 10). On the contrary, our results (particularly quantitative elucidation of micropolarity and dynamical aspects of the interaction) explicitly demonstrate that the bulk-like behavior of the nanoconfined water is not truly achieved even in large reverse micelles.
Collapse
Affiliation(s)
- Riya Sett
- Department
of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Swagata Sen
- Department
of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Bijan K. Paul
- Department
of Chemistry, Mahadevananda Mahavidyalaya, Barrackpore, Kolkata 700120, India
| | - Nikhil Guchhait
- Department
of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
91
|
Fang K, Dong G, Wang H, He S, Wu S, Wang W, Sheng C. Improving the Potency of Cancer Immunotherapy by Dual Targeting of IDO1 and DNA. ChemMedChem 2017; 13:30-36. [PMID: 29205945 DOI: 10.1002/cmdc.201700666] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/04/2017] [Indexed: 01/21/2023]
Abstract
Herein we report the first exploration of a dual-targeting drug design strategy to improve the efficacy of small-molecule cancer immunotherapy. New hybrids of indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors and DNA alkylating nitrogen mustards that respectively target IDO1 and DNA were rationally designed. As the first-in-class examples of such molecules, they were found to exhibit significantly enhanced anticancer activity in vitro and in vivo with low toxicity. This proof-of-concept study has established a critical step toward the development of a novel and effective immunotherapy for the treatment of cancers.
Collapse
Affiliation(s)
- Kun Fang
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P.R. China.,Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, P.R. China
| | - Guoqiang Dong
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, P.R. China
| | - Hongyu Wang
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, P.R. China
| | - Shipeng He
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Shanchao Wu
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, P.R. China
| | - Wei Wang
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P.R. China.,Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM, 87131-0001, USA
| | - Chunquan Sheng
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, P.R. China
| |
Collapse
|
92
|
Klingelfus T, Lirola J, Oya Silva L, Disner G, Vicentini M, Nadaline M, Robles J, Trein L, Voigt C, Silva de Assis H, Mela M, Leme D, Cestari M. Acute and long-term effects of trophic exposure to silver nanospheres in the central nervous system of a neotropical fish Hoplias intermedius. Neurotoxicology 2017; 63:146-154. [DOI: 10.1016/j.neuro.2017.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 01/22/2023]
|
93
|
Altering Residue 134 Confers an Increased Substrate Range of Alkylated Nucleosides to the E. coli OGT Protein. Molecules 2017; 22:molecules22111948. [PMID: 29137116 PMCID: PMC6150290 DOI: 10.3390/molecules22111948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/01/2017] [Accepted: 11/08/2017] [Indexed: 01/20/2023] Open
Abstract
O6-Alkylguanine-DNA alkyltransferases (AGTs) are proteins responsible for the removal of mutagenic alkyl adducts at the O6-atom of guanine and O4-atom of thymine. In the current study we set out to understand the role of the Ser134 residue in the Escherichia coli AGT variant OGT on substrate discrimination. The S134P mutation in OGT increased the ability of the protein to repair both O6-adducts of guanine and O4-adducts of thymine. However, the S134P variant was unable, like wild-type OGT, to repair an interstrand cross-link (ICL) bridging two O6-atoms of guanine in a DNA duplex. When compared to the human AGT protein (hAGT), the S134P OGT variant displayed reduced activity towards O6-alkylation but a much broader substrate range for O4-alkylation damage reversal. The role of residue 134 in OGT is similar to its function in the human homolog, where Pro140 is crucial in conferring on hAGT the capability to repair large adducts at the O6-position of guanine. Finally, a method to generate a covalent conjugate between hAGT and a model nucleoside using a single-stranded oligonucleotide substrate is demonstrated.
Collapse
|
94
|
Hu F, Yuan Y, Mao D, Wu W, Liu B. Smart activatable and traceable dual-prodrug for image-guided combination photodynamic and chemo-therapy. Biomaterials 2017; 144:53-59. [DOI: 10.1016/j.biomaterials.2017.08.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 08/13/2017] [Accepted: 08/14/2017] [Indexed: 01/19/2023]
|
95
|
Minko IG, Rizzo CJ, Lloyd RS. Mutagenic potential of nitrogen mustard-induced formamidopyrimidine DNA adduct: Contribution of the non-canonical α-anomer. J Biol Chem 2017; 292:18790-18799. [PMID: 28972137 DOI: 10.1074/jbc.m117.802520] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/15/2017] [Indexed: 12/14/2022] Open
Abstract
Nitrogen mustards (NMs) are DNA-alkylating compounds that represent the earliest anticancer drugs. However, clinical use of NMs is limited because of their own mutagenic properties. The mechanisms of NM-induced mutagenesis remain unclear. The major product of DNA alkylation by NMs is a cationic NM-N7-dG adduct that can yield the imidazole ring-fragmented lesion, N5-NM-substituted formamidopyrimidine (NM-Fapy-dG). Characterization of this adduct is complicated because it adopts different conformations, including both a canonical β- and an unnatural α-anomeric configuration. Although formation of NM-Fapy-dG in cellular DNA has been demonstrated, its potential role in NM-induced mutagenesis is unknown. Here, we created site-specifically modified single-stranded vectors for replication in primate (COS7) or Escherichia coli cells. In COS7 cells, NM-Fapy-dG caused targeted mutations, predominantly G → T transversions, with overall frequencies of ∼11-12%. These frequencies were ∼2-fold higher than that induced by 8-oxo-dG adduct. Replication in E. coli was essentially error-free. To elucidate the mechanisms of bypass of NM-Fapy-dG, we performed replication assays in vitro with a high-fidelity DNA polymerase, Saccharomyces cerevisiae polymerase (pol) δ. It was found that pol δ could catalyze high-fidelity synthesis past NM-Fapy-dG, but only on a template subpopulation, presumably containing the β-anomeric adduct. Consistent with the low mutagenic potential of the β-anomer in vitro, the mutation frequency was significantly reduced when conditions for vector preparation were modified to favor this configuration. Collectively, these data implicate the α-anomer as a major contributor to NM-Fapy-dG-induced mutagenesis in primate cells.
Collapse
Affiliation(s)
- Irina G Minko
- From the Oregon Institute of Occupational Health Sciences and
| | - Carmelo J Rizzo
- the Departments of Chemistry and Biochemistry, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| | - R Stephen Lloyd
- From the Oregon Institute of Occupational Health Sciences and .,the Departments of Molecular and Medical Genetics and Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon 97239 and
| |
Collapse
|
96
|
Pajic M, Blatter S, Guyader C, Gonggrijp M, Kersbergen A, Küçükosmanoğlu A, Sol W, Drost R, Jonkers J, Borst P, Rottenberg S. Selected Alkylating Agents Can Overcome Drug Tolerance of G 0-like Tumor Cells and Eradicate BRCA1-Deficient Mammary Tumors in Mice. Clin Cancer Res 2017; 23:7020-7033. [PMID: 28821557 DOI: 10.1158/1078-0432.ccr-17-1279] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/08/2017] [Accepted: 08/14/2017] [Indexed: 11/16/2022]
Abstract
Purpose: We aimed to characterize and target drug-tolerant BRCA1-deficient tumor cells that cause residual disease and subsequent tumor relapse.Experimental Design: We studied responses to various mono- and bifunctional alkylating agents in a genetically engineered mouse model for BRCA1/p53-mutant breast cancer. Because of the large intragenic deletion of the Brca1 gene, no restoration of BRCA1 function is possible, and therefore, no BRCA1-dependent acquired resistance occurs. To characterize the cell-cycle stage from which Brca1-/-;p53-/- mammary tumors arise after cisplatin treatment, we introduced the fluorescent ubiquitination-based cell-cycle indicator (FUCCI) construct into the tumor cells.Results: Despite repeated sensitivity to the MTD of platinum drugs, the Brca1-mutated mammary tumors are not eradicated, not even by a frequent dosing schedule. We show that relapse comes from single-nucleated cells delaying entry into the S-phase. Such slowly cycling cells, which are present within the drug-naïve tumors, are enriched in tumor remnants. Using the FUCCI construct, we identified nonfluorescent G0-like cells as the population most tolerant to platinum drugs. Intriguingly, these cells are more sensitive to the DNA-crosslinking agent nimustine, resulting in an increased number of multinucleated cells that lack clonogenicity. This is consistent with our in vivo finding that the nimustine MTD, among several alkylating agents, is the most effective in eradicating Brca1-mutated mouse mammary tumors.Conclusions: Our data show that targeting G0-like cells is crucial for the eradication of BRCA1/p53-deficient tumor cells. This can be achieved with selected alkylating agents such as nimustine. Clin Cancer Res; 23(22); 7020-33. ©2017 AACR.
Collapse
Affiliation(s)
- Marina Pajic
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.,The Kinghorn Cancer Centre, The Garvan Institute of Medical Research, Sydney, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, New South Wales, Australia
| | - Sohvi Blatter
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Charlotte Guyader
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Maaike Gonggrijp
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ariena Kersbergen
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Aslι Küçükosmanoğlu
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Wendy Sol
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Rinske Drost
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Piet Borst
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sven Rottenberg
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland. .,Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
97
|
Matsumoto S, Iida K, Murata A, Denawa M, Hagiwara M, Nakatani K. Synthetic ligand promotes gene expression by affecting GC sequence in promoter. Bioorg Med Chem Lett 2017; 27:3391-3394. [PMID: 28610980 DOI: 10.1016/j.bmcl.2017.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/18/2017] [Accepted: 06/02/2017] [Indexed: 10/19/2022]
Abstract
A naphthyridine carbamate tetramer (NCT8) is a synthetic compound, which selectively binds to nucleic acids containing CGG/CGG sequence. Although NCT8 is a promising compound for a wide range of DNA and RNA based biotechnology such as modulation of specific gene expression, little is known about its behavior in human cells. In the present study, we investigated the changes induced in gene expression by NCT8. Genes differentially expressed in the presence of NCT8 in HeLa cells were identified by whole-transcriptome analysis. The whole-transcriptome analysis showed that NCT8 significantly induced up-regulation of specific genes, whose promoter region has GC-rich sequence.
Collapse
Affiliation(s)
- Saki Matsumoto
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research, Osaka University, Osaka 567-0047, Japan
| | - Kei Iida
- Medical Research Support Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Asako Murata
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research, Osaka University, Osaka 567-0047, Japan
| | - Masatsugu Denawa
- Medical Research Support Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Masatoshi Hagiwara
- Medical Research Support Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan.
| | - Kazuhiko Nakatani
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research, Osaka University, Osaka 567-0047, Japan.
| |
Collapse
|
98
|
Gillingham D, Geigle S, Anatole von Lilienfeld O. Properties and reactivity of nucleic acids relevant to epigenomics, transcriptomics, and therapeutics. Chem Soc Rev 2017; 45:2637-55. [PMID: 26992131 DOI: 10.1039/c5cs00271k] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Developments in epigenomics, toxicology, and therapeutic nucleic acids all rely on a precise understanding of nucleic acid properties and chemical reactivity. In this review we discuss the properties and chemical reactivity of each nucleobase and attempt to provide some general principles for nucleic acid targeting or engineering. For adenine-thymine and guanine-cytosine base pairs, we review recent quantum chemical estimates of their Watson-Crick interaction energy, π-π stacking energies, as well as the nuclear quantum effects on tautomerism. Reactions that target nucleobases have been crucial in the development of new sequencing technologies and we believe further developments in nucleic acid chemistry will be required to deconstruct the enormously complex transcriptome.
Collapse
Affiliation(s)
- Dennis Gillingham
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, Basel, CH-4056, Switzerland.
| | - Stefanie Geigle
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, Basel, CH-4056, Switzerland.
| | | |
Collapse
|
99
|
Conjugation of platinum(IV) complexes with chlorambucil to overcome cisplatin resistance via a "joint action" mode toward DNA. Eur J Med Chem 2017; 137:167-175. [PMID: 28586717 DOI: 10.1016/j.ejmech.2017.05.056] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 12/31/2022]
Abstract
Two platinum(IV) complexes were designed and prepared by conjugation of cisplatin and oxaliplatin units with a DNA-damaging agent, chlorambucil, respectively. By taking a joint action to enhance the damage of DNA, the conjugates displayed potent antitumor activity against all the tested cancer cell lines comparable to cisplatin and oxaliplatin, and notably could overcome cisplatin resistance at certain degree. Complex 4, a hybrid of cisplatin and chlorambucil, arrested the cell cycle at the S and G2 phases, distinctive from those of cisplatin and oxaliplatin. Apoptosis studies revealed that complex 4 could induce cell apoptosis significantly in both SGC7901 and SGC7901/CDDP cells. Moreover, further investigation indicated that complex 4 suppressed the drug resistance by the improvement of the platinum uptake and the inhibition of PRAP-1 protein. These results show that the "joint action" on DNA is an effective strategy to overcome cisplatin resistance.
Collapse
|
100
|
Abstract
DNA glycosylases are important editing enzymes that protect genomic stability by excising chemically modified nucleobases that alter normal DNA metabolism. These enzymes have been known only to initiate base excision repair of small adducts by extrusion from the DNA helix. However, recent reports have described both vertebrate and microbial DNA glycosylases capable of unhooking highly toxic interstrand cross-links (ICLs) and bulky minor groove adducts normally recognized by Fanconi anemia and nucleotide excision repair machinery, although the mechanisms of these activities are unknown. Here we report the crystal structure of Streptomyces sahachiroi AlkZ (previously Orf1), a bacterial DNA glycosylase that protects its host by excising ICLs derived from azinomycin B (AZB), a potent antimicrobial and antitumor genotoxin. AlkZ adopts a unique fold in which three tandem winged helix-turn-helix motifs scaffold a positively charged concave surface perfectly shaped for duplex DNA. Through mutational analysis, we identified two glutamine residues and a β-hairpin within this putative DNA-binding cleft that are essential for catalytic activity. Additionally, we present a molecular docking model for how this active site can unhook either or both sides of an AZB ICL, providing a basis for understanding the mechanisms of base excision repair of ICLs. Given the prevalence of this protein fold in pathogenic bacteria, this work also lays the foundation for an emerging role of DNA repair in bacteria-host pathogenesis.
Collapse
|