51
|
Newe A, Rzeniewicz K, König M, Schroer CFE, Joachim J, Rey-Gallardo A, Marrink SJ, Deka J, Parsons M, Ivetic A. Serine Phosphorylation of L-Selectin Regulates ERM Binding, Clustering, and Monocyte Protrusion in Transendothelial Migration. Front Immunol 2019; 10:2227. [PMID: 31608057 PMCID: PMC6774396 DOI: 10.3389/fimmu.2019.02227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 09/03/2019] [Indexed: 12/15/2022] Open
Abstract
The migration of circulating leukocytes toward damaged tissue is absolutely fundamental to the inflammatory response, and transendothelial migration (TEM) describes the first cellular barrier that is breached in this process. Human CD14+ inflammatory monocytes express L-selectin, bestowing a non-canonical role in invasion during TEM. In vivo evidence supports a role for L-selectin in regulating TEM and chemotaxis, but the intracellular mechanism is poorly understood. The ezrin-radixin-moesin (ERM) proteins anchor transmembrane proteins to the cortical actin-based cytoskeleton and additionally act as signaling adaptors. During TEM, the L-selectin tail within transmigrating pseudopods interacts first with ezrin to transduce signals for protrusion, followed by moesin to drive ectodomain shedding of L-selectin to limit protrusion. Collectively, interaction of L-selectin with ezrin and moesin fine-tunes monocyte protrusive behavior in TEM. Using FLIM/FRET approaches, we show that ERM binding is absolutely required for outside-in L-selectin clustering. The cytoplasmic tail of human L-selectin contains two serine (S) residues at positions 364 and 367, and here we show that they play divergent roles in regulating ERM binding. Phospho-S364 blocks direct interaction with ERM, whereas molecular modeling suggests phospho-S367 likely drives desorption of the L-selectin tail from the inner leaflet of the plasma membrane to potentiate ERM binding. Serine-to-alanine mutagenesis of S367, but not S364, significantly reduced monocyte protrusive behavior in TEM under flow conditions. Our data propose a model whereby L-selectin tail desorption from the inner leaflet of the plasma membrane and ERM binding are two separable steps that collectively regulate protrusive behavior in TEM.
Collapse
Affiliation(s)
- Abigail Newe
- BHF Centre of Research Excellence, James Black Centre, King's College London, London, United Kingdom
| | - Karolina Rzeniewicz
- BHF Centre of Research Excellence, James Black Centre, King's College London, London, United Kingdom
| | - Melanie König
- Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, Netherlands
| | - Carsten F E Schroer
- Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, Netherlands
| | - Justin Joachim
- BHF Centre of Research Excellence, James Black Centre, King's College London, London, United Kingdom
| | - Angela Rey-Gallardo
- BHF Centre of Research Excellence, James Black Centre, King's College London, London, United Kingdom
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, Netherlands
| | - Jürgen Deka
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Aleksandar Ivetic
- BHF Centre of Research Excellence, James Black Centre, King's College London, London, United Kingdom
| |
Collapse
|
52
|
Gangliosides Destabilize Lipid Phase Separation in Multicomponent Membranes. Biophys J 2019; 117:1215-1223. [PMID: 31542224 DOI: 10.1016/j.bpj.2019.08.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/15/2019] [Accepted: 08/30/2019] [Indexed: 11/24/2022] Open
Abstract
Gangliosides (GMs) form an important class of lipids found in the outer leaflet of the plasma membrane. Typically, they colocalize with cholesterol and sphingomyelin in ordered membrane domains. However, detailed understanding of the lateral organization of GM-rich membranes is still lacking. To gain molecular insight, we performed molecular dynamics simulations of GMs in model membranes composed of coexisting liquid-ordered and liquid-disordered domains. We found that GMs indeed have a preference to partition into the ordered domains. At higher concentrations (>10 mol %), we observed a destabilizing effect of GMs on the phase coexistence. Further simulations with modified GMs show that the structure of the GM headgroup affects the phase separation, whereas the nature of the tail determines the preferential location. Together, our findings provide a molecular basis to understand the lateral organization of GM-rich membranes.
Collapse
|
53
|
Löpez CA, Vesselinov VV, Gnanakaran S, Alexandrov BS. Unsupervised Machine Learning for Analysis of Phase Separation in Ternary Lipid Mixture. J Chem Theory Comput 2019; 15:6343-6357. [PMID: 31476122 DOI: 10.1021/acs.jctc.9b00074] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
54
|
|
55
|
Miettinen MS, Lipowsky R. Bilayer Membranes with Frequent Flip-Flops Have Tensionless Leaflets. NANO LETTERS 2019; 19:5011-5016. [PMID: 31056917 PMCID: PMC6750870 DOI: 10.1021/acs.nanolett.9b01239] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/03/2019] [Indexed: 05/28/2023]
Abstract
Biomembranes are built up from lipid bilayers with two leaflets that typically differ in their lipid composition. Each lipid molecule stays within one leaflet of the bilayer before it undergoes a transition, or flip-flop, to the other leaflet. The corresponding flip-flop times are very different for different lipid species and vary over several orders of magnitude. Here, we use molecular dynamics simulations to elucidate the consequences of this separation of time scales for compositionally asymmetric bilayers. We first study bilayers with two lipid components that do not undergo flip-flops on the accessible time scales. In such a situation, one must distinguish a bilayer state in which both leaflets have the same preferred area from another state in which each leaflet is tensionless. However, when we add a third lipid component that undergoes frequent flip-flops, the bilayer relaxes toward the state with tensionless leaflets, not to the state with equal preferred leaflet areas. Furthermore, we show that bilayers with compositional asymmetry acquire a significant spontaneous curvature even if both leaflets are tensionless. Our results can be extended to lipid bilayers with a large number of lipid components provided at least one of these components undergoes frequent flip-flops. For cellular membranes containing lipid pumps, the leaflet tensions also depend on the rates of protein-induced flip-flops.
Collapse
|
56
|
Christensen M, Schiøtt B. Revealing a Dual Role of Ganglioside Lipids in the Aggregation of Membrane-Associated Islet Amyloid Polypeptide. J Membr Biol 2019; 252:343-356. [DOI: 10.1007/s00232-019-00074-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/09/2019] [Indexed: 12/31/2022]
|
57
|
Marrink SJ, Corradi V, Souza PC, Ingólfsson HI, Tieleman DP, Sansom MS. Computational Modeling of Realistic Cell Membranes. Chem Rev 2019; 119:6184-6226. [PMID: 30623647 PMCID: PMC6509646 DOI: 10.1021/acs.chemrev.8b00460] [Citation(s) in RCA: 435] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 12/15/2022]
Abstract
Cell membranes contain a large variety of lipid types and are crowded with proteins, endowing them with the plasticity needed to fulfill their key roles in cell functioning. The compositional complexity of cellular membranes gives rise to a heterogeneous lateral organization, which is still poorly understood. Computational models, in particular molecular dynamics simulations and related techniques, have provided important insight into the organizational principles of cell membranes over the past decades. Now, we are witnessing a transition from simulations of simpler membrane models to multicomponent systems, culminating in realistic models of an increasing variety of cell types and organelles. Here, we review the state of the art in the field of realistic membrane simulations and discuss the current limitations and challenges ahead.
Collapse
Affiliation(s)
- Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute & Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Valentina Corradi
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Paulo C.T. Souza
- Groningen
Biomolecular Sciences and Biotechnology Institute & Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Helgi I. Ingólfsson
- Biosciences
and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - D. Peter Tieleman
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Mark S.P. Sansom
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| |
Collapse
|
58
|
Kociurzynski R, Beck SD, Bouhon JB, Römer W, Knecht V. Binding of SV40's Viral Capsid Protein VP1 to Its Glycosphingolipid Receptor GM1 Induces Negative Membrane Curvature: A Molecular Dynamics Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3534-3544. [PMID: 30802059 DOI: 10.1021/acs.langmuir.8b03765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The binding of the pentameric capsid protein VP1 of simian virus 40 to its glycosphingolipid receptor GM1 is a key step for the entry of the virus into the host cell. Recent experimental studies have shown that the interaction of variants of soluble VP1 pentamers with giant unilamellar vesicles composed of GM1, DOPC, and cholesterol leads to the formation of tubular membrane invaginations to the inside of the vesicles, mimicking the initial steps of endocytosis. We have used coarse-grained and atomistic molecular dynamics (MD) simulations to study the interaction of VP1 with GM1/DOPC/cholesterol bilayers. In the presence of one VP1 protein, we monitor the formation of small local negative curvature and membrane thinning at the protein binding site as well as reduction of area per lipid. These membrane deformations are also observed under cholesterol-free conditions. However, here, the number of GM1 molecules attached to the VP1 binding pockets increases. The membrane curvature is slightly increased for asymmetric GM1 distribution that mimics conditions in vivo, compared to symmetric GM1 distributions which are often applied in experiments. Slightly smaller inward curvature was observed in atomistic control simulations. Binding of four VP1 proteins leads to an increase of the average intrinsic area per lipid in the protein binding leaflet. Membrane fluctuations appear to be the driving force of VP1 aggregation, as was previously shown for membrane-adhering particles because no VP1 aggregation is observed in the absence of a lipid membrane.
Collapse
Affiliation(s)
- Raisa Kociurzynski
- Faculty of Biology , Albert-Ludwigs-University Freiburg , Schänzlestraße 1 , 79104 Freiburg , Germany
- Freiburg Centre for Interactive Materials and Bioinspired Technologies , Albert-Ludwigs-University Freiburg , Georges-Köhler-Allee 105 , 79110 Freiburg , Germany
| | - Sophie D Beck
- Materials Theory , ETH Zürich , Wolfgang-Pauli-Straße 27 , CH-8093 Zürich , Switzerland
| | - Jean-Baptiste Bouhon
- Institute of Physics , Albert-Ludwigs-University Freiburg , Hermann-Herder-Straße 3 , 79104 Freiburg , Germany
| | - Winfried Römer
- Faculty of Biology , Albert-Ludwigs-University Freiburg , Schänzlestraße 1 , 79104 Freiburg , Germany
- Freiburg Centre for Interactive Materials and Bioinspired Technologies , Albert-Ludwigs-University Freiburg , Georges-Köhler-Allee 105 , 79110 Freiburg , Germany
- Signalling Resaerch Centers BIOSS and CIBSS , Albert-Ludwigs-University Freiburg , Schänzlestraße 18 , 79104 Freiburg , Germany
| | - Volker Knecht
- Freiburg Centre for Interactive Materials and Bioinspired Technologies , Albert-Ludwigs-University Freiburg , Georges-Köhler-Allee 105 , 79110 Freiburg , Germany
- Institute of Physics , Albert-Ludwigs-University Freiburg , Hermann-Herder-Straße 3 , 79104 Freiburg , Germany
- Signalling Resaerch Centers BIOSS and CIBSS , Albert-Ludwigs-University Freiburg , Schänzlestraße 18 , 79104 Freiburg , Germany
| |
Collapse
|
59
|
Stanishneva-Konovalova TB, Sokolova OS. Effects of PI(4,5)P 2 concentration on the F-BAR domain membrane binding as revealed by coarse-grained simulations. Proteins 2019; 87:561-568. [PMID: 30803020 DOI: 10.1002/prot.25678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 01/22/2019] [Accepted: 02/20/2019] [Indexed: 11/09/2022]
Abstract
Bin/Amphyphysin/Rvs (BAR) domain proteins form a key link between membrane remodeling and cytoskeleton dynamics. They are dimers that bind to membranes via electrostatic interactions with different preferences toward negatively charged lipids. In the present article, we examine the interactions of the F-BAR domain of nervous wreck (Nwk) with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 )-containing membranes using coarse-grained molecular dynamics. We demonstrated PI(4,5)P2 concentration effects, identified the sequence of events that underlies the protein binding and identified amino acids involved in protein-lipid interactions. Our simulations point out the primary role of the basic stretch at the tips of the dimer, which anchors the protein to the membrane and initiates the binding process. When the PI(4,5)P2 concentration is high, the protein stably associates with the membrane by its concave surface or by the opposite side. At low PI(4,5)P2 concentration, the former orientation becomes more favorable; also a state with only one tip bound is observed, due to the weaker attachment and more pronounced association/dissociation events. Our results provide a theoretical model that describes the lipid-binding behavior of Nwk observed in vitro.
Collapse
Affiliation(s)
| | - Olga S Sokolova
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
60
|
Jeong KB, Luo K, Lee H, Lim MC, Yu J, Choi SJ, Kim KB, Jeon TJ, Kim YR. Alpha-Hederin Nanopore for Single Nucleotide Discrimination. ACS NANO 2019; 13:1719-1727. [PMID: 30657663 DOI: 10.1021/acsnano.8b07797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Various types of biological and synthetic nanopores have been developed and utilized for the high-throughput investigation of individual biomolecules. Biological nanopores made with channel proteins are so far superior to solid-state ones in terms of sensitivity and reproducibility. However, the performance of a biological nanopore is dependent on the protein in the channel structure its dimensions are predetermined and are difficult to modify for broader applications. Here inspired by the cytotoxic mechanisms of a saponin derivative, alpha-hederin, we report a nonproteinaceous nanopore that can be formed spontaneously in a lipid membrane. We propose the pore-forming mechanism of alpha-hederin in a cholesterol-rich lipid membrane and a strategy to control the pore-forming rate by a lipid partitioning method. The small diameter and effective thickness of alpha-hederin nanopores enabled us to discriminate ssDNA homopolymers as well as four types of nucleotides, showing its potential as a DNA sequencing tool.
Collapse
Affiliation(s)
- Ki-Baek Jeong
- Graduate School of Biotechnology and Department of Food Science and Biotechnology , Kyung Hee University , Yongin 17104 , Republic of Korea
| | - Ke Luo
- Graduate School of Biotechnology and Department of Food Science and Biotechnology , Kyung Hee University , Yongin 17104 , Republic of Korea
| | - Hwankyu Lee
- Department of Chemical Engineering , Dankook University , Yongin 16891 , Republic of Korea
| | - Min-Cheol Lim
- Research Group of Food Safety , Korea Food Research Institute , 245, Nongsaengmyeong-ro , Iseo-myeon, Wanju-gun , Jeollabuk-do 55365 , Republic of Korea
| | - Jin Yu
- Department of Applied Food System, Major of Food Science & Technology , Seoul Women's University , Seoul 01797 , Republic of Korea
| | - Soo-Jin Choi
- Department of Applied Food System, Major of Food Science & Technology , Seoul Women's University , Seoul 01797 , Republic of Korea
| | - Ki-Bum Kim
- Department of Materials Science and Engineering , Seoul National University , Seoul 08826 , Republic of Korea
| | - Tae-Joon Jeon
- Department of Biological Engineering , Inha University , Incheon 22212 , Republic of Korea
| | - Young-Rok Kim
- Graduate School of Biotechnology and Department of Food Science and Biotechnology , Kyung Hee University , Yongin 17104 , Republic of Korea
| |
Collapse
|
61
|
Leonard AN, Wang E, Monje-Galvan V, Klauda JB. Developing and Testing of Lipid Force Fields with Applications to Modeling Cellular Membranes. Chem Rev 2019; 119:6227-6269. [DOI: 10.1021/acs.chemrev.8b00384] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
62
|
Wennberg CL, Narangifard A, Lundborg M, Norlén L, Lindahl E. Structural Transitions in Ceramide Cubic Phases during Formation of the Human Skin Barrier. Biophys J 2019. [PMID: 29539398 DOI: 10.1016/j.bpj.2017.12.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
The stratum corneum is the outermost layer of human skin and the primary barrier toward the environment. The barrier function is maintained by stacked layers of saturated long-chain ceramides, free fatty acids, and cholesterol. This structure is formed through a reorganization of glycosylceramide-based bilayers with cubic-like symmetry into ceramide-based bilayers with stacked lamellar symmetry. The process is accompanied by deglycosylation of glycosylceramides and dehydration of the skin barrier lipid structure. Using coarse-grained molecular dynamics simulation, we show the effects of deglycosylation and dehydration on bilayers of human skin glycosylceramides and ceramides, folded in three dimensions with cubic (gyroid) symmetry. Deglycosylation of glycosylceramides destabilizes the cubic lipid bilayer phase and triggers a cubic-to-lamellar phase transition. Furthermore, subsequent dehydration of the deglycosylated lamellar ceramide system closes the remaining pores between adjacent lipid layers and locally induces a ceramide chain transformation from a hairpin-like to a splayed conformation.
Collapse
Affiliation(s)
- Christian L Wennberg
- Department of Physics, Swedish e-Science Research Center, KTH Royal Institute of Technology, Stockholm, Sweden; ERCO Pharma AB, Science for Life Laboratory, Stockholm, Sweden
| | - Ali Narangifard
- ERCO Pharma AB, Science for Life Laboratory, Stockholm, Sweden; Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Magnus Lundborg
- ERCO Pharma AB, Science for Life Laboratory, Stockholm, Sweden
| | - Lars Norlén
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden; Dermatology Clinic, Karolinska University Hospital, Stockholm, Sweden.
| | - Erik Lindahl
- Department of Physics, Swedish e-Science Research Center, KTH Royal Institute of Technology, Stockholm, Sweden; Department of Biophysics and Biochemistry, Science for Life Laboratory, Stockholm University, Solna, Sweden.
| |
Collapse
|
63
|
Tuncer E, Bayramoglu B. Characterization of the self-assembly and size dependent structural properties of dietary mixed micelles by molecular dynamics simulations. Biophys Chem 2019; 248:16-27. [PMID: 30850307 DOI: 10.1016/j.bpc.2019.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/27/2019] [Accepted: 02/01/2019] [Indexed: 01/05/2023]
Abstract
The bile salts and phospholipids are secreted by the gallbladder to form dietary mixed micelles in which the solvation of poorly absorbed lipophilic drugs and nutraceuticals take place. A comprehensive understanding of the micellization and structure of the mixed micelles are crucial to design effective delivery systems for such substances. In this study, the evolution of the dietary mixed micelle formation under physiologically relevant concentrations and the dependence of structural properties on micelle size were investigated through coarse-grained molecular dynamics simulations. The MARTINI force field was used to model cholate and POPC as the representative bile salt and phospholipid, respectively. The micellization behavior was similar under both fasted and fed state concentrations. Total lipids concentration and the micelle size did not affect the internal structure of the micelles. All the micelles were slightly ellipsoidal in shape independent of their size. The extent of deviation from spherical geometry was found to depend on the micellar POPC/cholate ratio. We also found that the surface and core packing density of the micelles increased with micelle size. The former resulted in more perpendicular alignments of cholates with respect to the surface, while the latter resulted in an improved alignment of POPC tails with the radial direction and more uniform core density.
Collapse
Affiliation(s)
- Esra Tuncer
- İzmir Institute of Technology, Food Engineering Department, Gulbahce Campus,Urla, Izmir 35430, Turkey.
| | - Beste Bayramoglu
- İzmir Institute of Technology, Food Engineering Department, Gulbahce Campus,Urla, Izmir 35430, Turkey.
| |
Collapse
|
64
|
Tesei G, Vazdar M, Lund M. Coarse-grained model of titrating peptides interacting with lipid bilayers. J Chem Phys 2018; 149:244108. [PMID: 30599743 DOI: 10.1063/1.5058234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Molecular-level computer simulations of peptide aggregation, translocation, and protonation at and in biomembranes are impeded by the large time and length scales involved. We present a computationally efficient, coarse-grained, and solvent-free model for the interaction between lipid bilayers and peptides. The model combines an accurate description of mechanical membrane properties with a new granular representation of the dielectric mismatch between lipids and the aqueous phase. All-atom force fields can be easily mapped onto the coarse-grained model, and parameters for coarse-grained monopeptides accurately extrapolate to membrane permeation free energies for the corresponding dipeptides and tripeptides. Acid-base equilibria of titratable amino acid residues are further studied using a constant-pH ensemble, capturing protonation state changes upon membrane translocation. Important differences between histidine, lysine, and arginine are observed, which are in good agreement with experimental observations.
Collapse
Affiliation(s)
- Giulio Tesei
- Division of Theoretical Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Mario Vazdar
- Division of Organic Chemistry and Biochemistry, Rudjer Bošković Institute, P.O. Box 180, HR-10002 Zagreb, Croatia
| | - Mikael Lund
- Division of Theoretical Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
65
|
Mamode Cassim A, Gouguet P, Gronnier J, Laurent N, Germain V, Grison M, Boutté Y, Gerbeau-Pissot P, Simon-Plas F, Mongrand S. Plant lipids: Key players of plasma membrane organization and function. Prog Lipid Res 2018; 73:1-27. [PMID: 30465788 DOI: 10.1016/j.plipres.2018.11.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 12/29/2022]
Abstract
The plasma membrane (PM) is the biological membrane that separates the interior of all cells from the outside. The PM is constituted of a huge diversity of proteins and lipids. In this review, we will update the diversity of molecular species of lipids found in plant PM. We will further discuss how lipids govern global properties of the plant PM, explaining that plant lipids are unevenly distributed and are able to organize PM in domains. From that observation, it emerges a complex picture showing a spatial and multiscale segregation of PM components. Finally, we will discuss how lipids are key players in the function of PM in plants, with a particular focus on plant-microbe interaction, transport and hormone signaling, abiotic stress responses, plasmodesmata function. The last chapter is dedicated to the methods that the plant membrane biology community needs to develop to get a comprehensive understanding of membrane organization in plants.
Collapse
Affiliation(s)
- Adiilah Mamode Cassim
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Paul Gouguet
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Julien Gronnier
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Nelson Laurent
- Agroécologie, AgroSup Dijon, INRA, University of Bourgogne Franche-Comté, F-21000 Dijon, ERL 6003 CNRS, Dijon, France
| | - Véronique Germain
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Magali Grison
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Yohann Boutté
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Patricia Gerbeau-Pissot
- Agroécologie, AgroSup Dijon, INRA, University of Bourgogne Franche-Comté, F-21000 Dijon, ERL 6003 CNRS, Dijon, France
| | - Françoise Simon-Plas
- Agroécologie, AgroSup Dijon, INRA, University of Bourgogne Franche-Comté, F-21000 Dijon, ERL 6003 CNRS, Dijon, France.
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France.
| |
Collapse
|
66
|
Oakes V, Domene C. Capturing the Molecular Mechanism of Anesthetic Action by Simulation Methods. Chem Rev 2018; 119:5998-6014. [DOI: 10.1021/acs.chemrev.8b00366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Victoria Oakes
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Carmen Domene
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
67
|
Goossens K, De Winter H. Molecular Dynamics Simulations of Membrane Proteins: An Overview. J Chem Inf Model 2018; 58:2193-2202. [PMID: 30336018 DOI: 10.1021/acs.jcim.8b00639] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Simulations of membrane proteins have been rising in popularity in the past decade. Advancements in technology and force fields made it possible to simulate behavior of membrane proteins. Membrane protein simulations can now be used as supporting evidence for experimental findings, for elucidating protein mechanisms, and validating protein crystal structures. Unrelated to experimental data, these simulations can also serve to investigate larger scale processes like protein sorting, protein-membrane interactions, and more. In this review, the history as well as the state-of-the-art methodologies in membrane protein simulations will be summarized. An emphasis will be put on how to set up the system and on the current models for the different components of the simulation system. An overview of the available tools for membrane protein simulation will be given, and current limitations and prospects will also be discussed.
Collapse
Affiliation(s)
- Kenneth Goossens
- Department of Pharmaceutical Sciences, Laboratory of Medicinal Chemistry , University of Antwerp , Universiteitsplein 1 , 2610 Wilrijk , Belgium
| | - Hans De Winter
- Department of Pharmaceutical Sciences, Laboratory of Medicinal Chemistry , University of Antwerp , Universiteitsplein 1 , 2610 Wilrijk , Belgium
| |
Collapse
|
68
|
Podewitz M, Wang Y, Gkeka P, von Grafenstein S, Liedl KR, Cournia Z. Phase Diagram of a Stratum Corneum Lipid Mixture. J Phys Chem B 2018; 122:10505-10521. [DOI: 10.1021/acs.jpcb.8b07200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Maren Podewitz
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Yin Wang
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Paraskevi Gkeka
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
| | - Susanne von Grafenstein
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Klaus R. Liedl
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Zoe Cournia
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
| |
Collapse
|
69
|
Kirsch SA, Kugemann A, Carpaneto A, Böckmann RA, Dietrich P. Phosphatidylinositol-3,5-bisphosphate lipid-binding-induced activation of the human two-pore channel 2. Cell Mol Life Sci 2018; 75:3803-3815. [PMID: 29705952 PMCID: PMC11105763 DOI: 10.1007/s00018-018-2829-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/29/2018] [Accepted: 04/23/2018] [Indexed: 11/24/2022]
Abstract
Mammalian two-pore channels (TPCs) are activated by the low-abundance membrane lipid phosphatidyl-(3,5)-bisphosphate (PI(3,5)P2) present in the endo-lysosomal system. Malfunction of human TPC1 or TPC2 (hTPC) results in severe organellar storage diseases and membrane trafficking defects. Here, we compared the lipid-binding characteristics of hTPC2 and of the PI(3,5)P2-insensitive TPC1 from the model plant Arabidopsis thaliana. Combination of simulations with functional analysis of channel mutants revealed the presence of an hTPC2-specific lipid-binding pocket mutually formed by two channel regions exposed to the cytosolic side of the membrane. We showed that PI(3,5)P2 is simultaneously stabilized by positively charged amino acids (K203, K204, and K207) in the linker between transmembrane helices S4 and S5 and by S322 in the cytosolic extension of S6. We suggest that PI(3,5)P2 cross links two parts of the channel, enabling their coordinated movement during channel gating.
Collapse
Affiliation(s)
- Sonja A Kirsch
- Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Kugemann
- Molecular Plant Physiology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Armando Carpaneto
- Institute of Biophysics, National Research Council, Genoa, Italy
- Department of Earth, Environment and Life Sciences-DISTAV, University of Genoa, Genoa, Italy
| | - Rainer A Böckmann
- Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Petra Dietrich
- Molecular Plant Physiology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
70
|
Gronnier J, Gerbeau-Pissot P, Germain V, Mongrand S, Simon-Plas F. Divide and Rule: Plant Plasma Membrane Organization. TRENDS IN PLANT SCIENCE 2018; 23:899-917. [PMID: 30174194 DOI: 10.1016/j.tplants.2018.07.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/09/2018] [Accepted: 07/13/2018] [Indexed: 05/24/2023]
Abstract
Since the publication of the fluid mosaic as a relevant model for biological membranes, accumulating evidence has revealed the outstanding complexity of the composition and organization of the plant plasma membrane (PM). Powerful new methodologies have uncovered the remarkable multiscale and multicomponent heterogeneity of PM subcompartmentalization, and this is emerging as a general trait with different features and properties. It is now evident that the dynamics of such a complex organization are intrinsically related to signaling pathways that regulate key physiological processes. Listing and linking recent progress in precisely qualifying these heterogeneities will help to draw an integrated picture of the plant PM. Understanding the key principles governing such a complex dynamic organization will contribute to deciphering the crucial role of the PM in cell physiology.
Collapse
Affiliation(s)
- Julien Gronnier
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche (UMR) 5200, Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux, Bordeaux, France; Present address: Laboratory of Cyril Zipfel, Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Patricia Gerbeau-Pissot
- Agroécologie, Institut National Supérieur des Sciences Agronomiques, de l'Alimentation, et de l'Environnement (AgroSup) Dijon, CNRS, Institut National de la Recherche Agronomique (INRA), Université Bourgogne Franche-Comté, Dijon, France
| | - Véronique Germain
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche (UMR) 5200, Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux, Bordeaux, France
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche (UMR) 5200, Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux, Bordeaux, France; These authors contributed equally to this work
| | - Françoise Simon-Plas
- Agroécologie, Institut National Supérieur des Sciences Agronomiques, de l'Alimentation, et de l'Environnement (AgroSup) Dijon, CNRS, Institut National de la Recherche Agronomique (INRA), Université Bourgogne Franche-Comté, Dijon, France; These authors contributed equally to this work.
| |
Collapse
|
71
|
Carpenter TS, López CA, Neale C, Montour C, Ingólfsson HI, Di Natale F, Lightstone FC, Gnanakaran S. Capturing Phase Behavior of Ternary Lipid Mixtures with a Refined Martini Coarse-Grained Force Field. J Chem Theory Comput 2018; 14:6050-6062. [DOI: 10.1021/acs.jctc.8b00496] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Timothy S. Carpenter
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | | | | | - Cameron Montour
- Biochemistry and Molecular Biology Department, Georgetown University, Washington, DC 20057, United States
| | - Helgi I. Ingólfsson
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Francesco Di Natale
- Applications, Simulations, and Quality Division, Computation Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Felice C. Lightstone
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | | |
Collapse
|
72
|
Barbé L, Le Moullac-Vaidye B, Echasserieau K, Bernardeau K, Carton T, Bovin N, Nordgren J, Svensson L, Ruvoën-Clouet N, Le Pendu J. Histo-blood group antigen-binding specificities of human rotaviruses are associated with gastroenteritis but not with in vitro infection. Sci Rep 2018; 8:12961. [PMID: 30154494 PMCID: PMC6113245 DOI: 10.1038/s41598-018-31005-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/10/2018] [Indexed: 12/30/2022] Open
Abstract
Human strains of rotavirus A (RVAs) recognize fucosylated glycans belonging to histo-blood group antigens (HBGAs) through their spike protein VP8*. Lack of these ligands due to genetic polymorphisms is associated with resistance to gastroenteritis caused by P[8] genotype RVAs. With the aim to delineate the contribution of HBGAs in the process, we analyzed the glycan specificity of VP8* proteins from various P genotypes. Binding to saliva of VP8* from P[8] and P[4] genotypes required expression of both FUT2 and FUT3 enzymes, whilst binding of VP8* from the P[14] genotype required FUT2 and A enzymes. We further defined a glycan motif, GlcNAcβ3Galβ4GlcNAc, recognized by P[6] clinical strains. Conversion into Lewis antigens by the FUT3 enzyme impaired recognition, explaining their lower binding to saliva of Lewis positive phenotype. In addition, the presence of neutralizing antibodies was associated with the presence of the FUT2 wild type allele in sera from young healthy adults. Nonetheless, in vitro infection of transformed cell lines was independent of HBGAs expression, indicating that HBGAs are not human RV receptors. The match between results from saliva-based binding assays and the epidemiological data indicates that the polymorphism of human HBGAs controls susceptibility to RVAs, although the exact mechanism remains unclear.
Collapse
Affiliation(s)
- Laure Barbé
- CRCINA, Inserm, Université d'Angers, Université de Nantes, Nantes, France
| | | | - Klara Echasserieau
- CRCINA, Inserm, Université d'Angers, Université de Nantes, Nantes, France
- Plateforme P2R « Production de protéines recombinantes », SFR Sante F. Bonamy-IRS-UN, Université de Nantes, INSERM, CNRS, CHU Nantes, Nantes, France
| | - Karine Bernardeau
- CRCINA, Inserm, Université d'Angers, Université de Nantes, Nantes, France
- Plateforme P2R « Production de protéines recombinantes », SFR Sante F. Bonamy-IRS-UN, Université de Nantes, INSERM, CNRS, CHU Nantes, Nantes, France
| | | | - Nicolai Bovin
- Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Johan Nordgren
- Division of Molecular Virology, Medical Faculty, University of Linköping, Linköping, Sweden
| | - Lennart Svensson
- Division of Molecular Virology, Medical Faculty, University of Linköping, Linköping, Sweden
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| | - Nathalie Ruvoën-Clouet
- CRCINA, Inserm, Université d'Angers, Université de Nantes, Nantes, France
- Oniris, Ecole Nationale Vétérinaire, Agroalimentaire et de l'Alimentation, Nantes, France
| | - Jacques Le Pendu
- CRCINA, Inserm, Université d'Angers, Université de Nantes, Nantes, France.
| |
Collapse
|
73
|
Navarro-Retamal C, Bremer A, Ingólfsson HI, Alzate-Morales J, Caballero J, Thalhammer A, González W, Hincha DK. Folding and Lipid Composition Determine Membrane Interaction of the Disordered Protein COR15A. Biophys J 2018; 115:968-980. [PMID: 30195939 DOI: 10.1016/j.bpj.2018.08.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/27/2018] [Accepted: 08/13/2018] [Indexed: 01/02/2023] Open
Abstract
Plants from temperate climates, such as the model plant Arabidopsis thaliana, are challenged with seasonal low temperatures that lead to increased freezing tolerance in fall in a process termed cold acclimation. Among other adaptations, this involves the accumulation of cold-regulated (COR) proteins, such as the intrinsically disordered chloroplast-localized protein COR15A. Together with its close homolog COR15B, it stabilizes chloroplast membranes during freezing. COR15A folds into amphipathic α-helices in the presence of high concentrations of low-molecular-mass crowders or upon dehydration. Under these conditions, the (partially) folded protein binds peripherally to membranes. In our study, we have used coarse-grained molecular dynamics simulations to elucidate the details of COR15A-membrane binding and its effects on membrane structure and dynamics. Simulation results indicate that at least partial folding of COR15A and the presence of highly unsaturated galactolipids in the membranes are necessary for efficient membrane binding. The bound protein is stabilized on the membrane by interactions of charged and polar amino acids with galactolipid headgroups and by interactions of hydrophobic amino acids with the upper part of the fatty acyl chains. Experimentally, the presence of liposomes made from a mixture of lipids mimicking chloroplast membranes induces additional folding in COR15A under conditions of partial dehydration, in agreement with the simulation results.
Collapse
Affiliation(s)
- Carlos Navarro-Retamal
- Center for Bioinformatics and Molecular Simulations, Universidad de Talca, Casilla, Talca, Chile
| | - Anne Bremer
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Helgi I Ingólfsson
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, AG Groningen, The Netherlands
| | - Jans Alzate-Morales
- Center for Bioinformatics and Molecular Simulations, Universidad de Talca, Casilla, Talca, Chile
| | - Julio Caballero
- Center for Bioinformatics and Molecular Simulations, Universidad de Talca, Casilla, Talca, Chile
| | - Anja Thalhammer
- Physikalische Biochemie, Universität Potsdam, Potsdam, Germany
| | - Wendy González
- Center for Bioinformatics and Molecular Simulations, Universidad de Talca, Casilla, Talca, Chile; Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Talca, Casilla, Talca, Chile
| | - Dirk K Hincha
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany.
| |
Collapse
|
74
|
A Thermodynamic Funnel Drives Bacterial Lipopolysaccharide Transfer in the TLR4 Pathway. Structure 2018; 26:1151-1161.e4. [DOI: 10.1016/j.str.2018.04.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/29/2017] [Accepted: 04/10/2018] [Indexed: 12/21/2022]
|
75
|
Dai X, Wang R, Wu Z, Guo S, Yang C, Ma L, Chen L, Shi X, Qiao Y. Permeation-enhancing effects and mechanisms of borneol and menthol on ligustrazine: A multiscale study using in vitro and coarse-grained molecular dynamics simulation methods. Chem Biol Drug Des 2018; 92:1830-1837. [PMID: 29923687 DOI: 10.1111/cbdd.13350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/30/2018] [Accepted: 06/04/2018] [Indexed: 11/29/2022]
Abstract
Borneol (BO) and menthol (MEN) are two widely used natural permeation enhancers in the transdermal drug delivery system. In previous studies, their permeation enhancement effects and mechanisms of action on the hydrophobic drug osthole (logP = 3.8) and hydrophilic drug 5-fluorouracil (logP = -0.9) have been studied. In this study, ligustrazine (LTZ), whose logP is 1.3, was used as a model drug to provide a comprehensive understanding of the influence of its logP on the permeation-enhancing effects of BO and MEN. Both BO and MEN enhanced the permeation of LTZ through the skin stratum corneum, as determined using the modified Franz diffusion cell experiment. The enhancement mechanisms were illustrated by coarse-grained molecular dynamics simulations as follows: at low concentrations, the enhancing ratio of MEN was higher than that of BO because of the stronger perturbation effects of MEN on the lipid bilayer, making it looser and facilitating LTZ diffusion. However, at high concentrations, in addition to the diffusion mechanism, BO induced the formation of water channels to improve the permeation of LTZ; however, MEN had no significant effects through this mechanism. Their results were different from those found with osthole and 5-fluorouracil and have been discussed in this study.
Collapse
Affiliation(s)
- Xingxing Dai
- Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of TCM-information Engineer of State Administration of TCM, Beijing, China.,Beijing Key Laboratory of Manufacturing Process Control and Quality Evaluation of Chinese Medicine, Beijing, China
| | - Ran Wang
- Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of TCM-information Engineer of State Administration of TCM, Beijing, China.,Beijing Key Laboratory of Manufacturing Process Control and Quality Evaluation of Chinese Medicine, Beijing, China
| | - Zhimin Wu
- Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of TCM-information Engineer of State Administration of TCM, Beijing, China.,Beijing Key Laboratory of Manufacturing Process Control and Quality Evaluation of Chinese Medicine, Beijing, China
| | - Shujuan Guo
- Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of TCM-information Engineer of State Administration of TCM, Beijing, China.,Beijing Key Laboratory of Manufacturing Process Control and Quality Evaluation of Chinese Medicine, Beijing, China
| | - Chang Yang
- Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of TCM-information Engineer of State Administration of TCM, Beijing, China.,Beijing Key Laboratory of Manufacturing Process Control and Quality Evaluation of Chinese Medicine, Beijing, China
| | - Lina Ma
- Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of TCM-information Engineer of State Administration of TCM, Beijing, China.,Beijing Key Laboratory of Manufacturing Process Control and Quality Evaluation of Chinese Medicine, Beijing, China
| | - Liping Chen
- Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of TCM-information Engineer of State Administration of TCM, Beijing, China.,Beijing Key Laboratory of Manufacturing Process Control and Quality Evaluation of Chinese Medicine, Beijing, China
| | - Xinyuan Shi
- Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of TCM-information Engineer of State Administration of TCM, Beijing, China.,Beijing Key Laboratory of Manufacturing Process Control and Quality Evaluation of Chinese Medicine, Beijing, China
| | - Yanjiang Qiao
- Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of TCM-information Engineer of State Administration of TCM, Beijing, China.,Beijing Key Laboratory of Manufacturing Process Control and Quality Evaluation of Chinese Medicine, Beijing, China
| |
Collapse
|
76
|
Wewer CR, Khandelia H. Different footprints of the Zika and dengue surface proteins on viral membranes. SOFT MATTER 2018; 14:5615-5621. [PMID: 29932192 DOI: 10.1039/c8sm00223a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The flavivirus Zika virus (ZV) became an international emergency within two years of its outbreak in the Americas. Dengue virus (DENV), which is also a flavivirus, causes significant clinical harm in equatorial regions. A common feature amongst flaviviruses like ZV and DENV is an icosahedral shell of exactly 180 copies of the envelope (E) and membrane (M) proteins anchored in a lipid membrane, which engulfs the viral RNA and capsid proteins. Host recognition by both ZV and DENV is linked to the presence of phosphatidylserine (PS) and phosphatidylethanolamine (PE) lipids in the viral lipidome. Glycosylation of Asn residues on the Zika E protein may be linked to ZV induced neuropathies. We carry out coarse grained molecular dynamics simulations of the E3M3 hexamer embedded in the ZV and DENV lipidomes, and we show that the proteins have a significantly different lipid footprint in the viral lipidome. PE lipids in DENV and PS lipids in ZV enrich near the protein hexamer. We attribute the difference to a higher number of cationic amino acids in the ZV M protein. We also show that the three glycosylation sites on ZV, but not on DENV, are conformationally variant. Our data shed new light on the lipid interactions, and thus the host recognition mechanisms of the two viruses, which may be molecular determinants of the neuropathies caused by the ZV.
Collapse
Affiliation(s)
- Christian R Wewer
- MEMPHYS: Center for Biomembrane Physics, Department of Physics Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark.
| | | |
Collapse
|
77
|
Kindlein M, Elts E, Briesen H. Phospholipids in chocolate: Structural insights and mechanistic explanations of rheological behavior by coarse-grained molecular dynamics simulations. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2018.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
78
|
Corradi V, Mendez-Villuendas E, Ingólfsson HI, Gu RX, Siuda I, Melo MN, Moussatova A, DeGagné LJ, Sejdiu BI, Singh G, Wassenaar TA, Delgado Magnero K, Marrink SJ, Tieleman DP. Lipid-Protein Interactions Are Unique Fingerprints for Membrane Proteins. ACS CENTRAL SCIENCE 2018; 4:709-717. [PMID: 29974066 PMCID: PMC6028153 DOI: 10.1021/acscentsci.8b00143] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Indexed: 05/08/2023]
Abstract
Cell membranes contain hundreds of different proteins and lipids in an asymmetric arrangement. Our current understanding of the detailed organization of cell membranes remains rather elusive, because of the challenge to study fluctuating nanoscale assemblies of lipids and proteins with the required spatiotemporal resolution. Here, we use molecular dynamics simulations to characterize the lipid environment of 10 different membrane proteins. To provide a realistic lipid environment, the proteins are embedded in a model plasma membrane, where more than 60 lipid species are represented, asymmetrically distributed between the leaflets. The simulations detail how each protein modulates its local lipid environment in a unique way, through enrichment or depletion of specific lipid components, resulting in thickness and curvature gradients. Our results provide a molecular glimpse of the complexity of lipid-protein interactions, with potentially far-reaching implications for our understanding of the overall organization of real cell membranes.
Collapse
Affiliation(s)
- Valentina Corradi
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Eduardo Mendez-Villuendas
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Helgi I. Ingólfsson
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Ruo-Xu Gu
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Iwona Siuda
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Manuel N. Melo
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Anastassiia Moussatova
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Lucien J. DeGagné
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Besian I. Sejdiu
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Gurpreet Singh
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Tsjerk A. Wassenaar
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Karelia Delgado Magnero
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - D. Peter Tieleman
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
- E-mail:
| |
Collapse
|
79
|
Dasgupta R, Miettinen MS, Fricke N, Lipowsky R, Dimova R. The glycolipid GM1 reshapes asymmetric biomembranes and giant vesicles by curvature generation. Proc Natl Acad Sci U S A 2018; 115:5756-5761. [PMID: 29760097 PMCID: PMC5984512 DOI: 10.1073/pnas.1722320115] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The ganglioside GM1 is present in neuronal membranes at elevated concentrations with an asymmetric spatial distribution. It is known to generate curvature and can be expected to strongly influence the neuron morphology. To elucidate these effects, we prepared giant vesicles with GM1 predominantly present in one leaflet of the membrane, mimicking the asymmetric GM1 distribution in neuronal membranes. Based on pulling inward and outward tubes, we developed a technique that allowed the direct measurement of the membrane spontaneous curvature. Using vesicle electroporation and fluorescence intensity analysis, we were able to quantify the GM1 asymmetry across the membrane and to subsequently estimate the local curvature generated by the molecule in the bilayer. Molecular-dynamics simulations confirm the experimentally determined dependence of the membrane spontaneous curvature as a function of GM1 asymmetry. GM1 plays a crucial role in connection with receptor proteins. Our results on curvature generation of GM1 point to an additional important role of this ganglioside, namely in shaping neuronal membranes.
Collapse
Affiliation(s)
- Raktim Dasgupta
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Markus S Miettinen
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Nico Fricke
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Reinhard Lipowsky
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Rumiana Dimova
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| |
Collapse
|
80
|
Sych T, Mély Y, Römer W. Lipid self-assembly and lectin-induced reorganization of the plasma membrane. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170117. [PMID: 29632269 PMCID: PMC5904303 DOI: 10.1098/rstb.2017.0117] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2018] [Indexed: 01/10/2023] Open
Abstract
The plasma membrane represents an outstanding example of self-organization in biology. It plays a vital role in protecting the integrity of the cell interior and regulates meticulously the import and export of diverse substances. Its major building blocks are proteins and lipids, which self-assemble to a fluid lipid bilayer driven mainly by hydrophobic forces. Even if the plasma membrane appears-globally speaking-homogeneous at physiological temperatures, the existence of specialized nano- to micrometre-sized domains of raft-type character within cellular and synthetic membrane systems has been reported. It is hypothesized that these domains are the origin of a plethora of cellular processes, such as signalling or vesicular trafficking. This review intends to highlight the driving forces of lipid self-assembly into a bilayer membrane and the formation of small, transient domains within the plasma membrane. The mechanisms of self-assembly depend on several factors, such as the lipid composition of the membrane and the geometry of lipids. Moreover, the dynamics and organization of glycosphingolipids into nanometre-sized clusters will be discussed, also in the context of multivalent lectins, which cluster several glycosphingolipid receptor molecules and thus create an asymmetric stress between the two membrane leaflets, leading to tubular plasma membrane invaginations.This article is part of the theme issue 'Self-organization in cell biology'.
Collapse
Affiliation(s)
- Taras Sych
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-University Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technology (FIT), Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch Cedex, France
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch Cedex, France
| | - Winfried Römer
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-University Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technology (FIT), Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
81
|
Wan M, Gao L, Fang W. Implicit-solvent dissipative particle dynamics force field based on a four-to-one coarse-grained mapping scheme. PLoS One 2018; 13:e0198049. [PMID: 29795682 PMCID: PMC5967728 DOI: 10.1371/journal.pone.0198049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/12/2018] [Indexed: 11/30/2022] Open
Abstract
A new set of efficient solvent-free dissipative particle dynamics (DPD) force fields was developed for phospholipids and peptides. To enhance transferability, this model maps around four heavy atoms and their connected hydrogen atoms into a coarse-grained elementary bead based on functional group. The effective hybrid potential between any pair of beads is composed of a short-range repulsive soft-core potential that directly adopts the form of an explicit-solvent DPD model and a long-range attractive hydrophobic potential. The parameters of the attractive potentials for lipid molecules were obtained by fitting the explicit-solvent DPD simulation of one bead of any type in a water box, then finely tuning it until the bilayer membrane properties obtained in the explicit-solvent model were matched. These parameters were further extended to amino acids according to bead type. The structural and elastic properties of bilayer membranes, free energy profiles for a lipid flip-flop and amino acid analogues translocating across the membrane, and membrane pore formation induced by antimicrobial peptides obtained from this solvent-free DPD force field considerably agreed with the explicit-solvent DPD results. Importantly, the efficiency of this method is guaranteed to accelerate the assembly of vesicles composed of several thousand lipids by up to 50-fold, rendering the experimental liposome dynamics as well as membrane-peptide interactions feasible at accessible computational expense.
Collapse
Affiliation(s)
- Mingwei Wan
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Lianghui Gao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
- * E-mail:
| | - Weihai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| |
Collapse
|
82
|
Couallier E, Riaublanc A, David Briand E, Rousseau B. Molecular simulation of the water-triolein-oleic acid mixture: Local structure and thermodynamic properties. J Chem Phys 2018; 148:184702. [DOI: 10.1063/1.5021753] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- E. Couallier
- GEPEA, CNRS UMR 6144, 37 Boulevard de l’Université, BP 406, 44602 Saint-Nazaire Cedex, France
| | - A. Riaublanc
- INRA BIA, Rue de la Géraudière, BP 71627, 44 316 Nantes Cedex 3, France
| | - E. David Briand
- INRA BIA, Rue de la Géraudière, BP 71627, 44 316 Nantes Cedex 3, France
| | - B. Rousseau
- LCP, CNRS UMR 8000, Université Paris Sud, 310 Rue Michel Magat, 91400 Orsay, France
| |
Collapse
|
83
|
Mafi A, Abbina S, Kalathottukaren MT, Morrissey JH, Haynes C, Kizhakkedathu JN, Pfaendtner J, Chou KC. Design of Polyphosphate Inhibitors: A Molecular Dynamics Investigation on Polyethylene Glycol-Linked Cationic Binding Groups. Biomacromolecules 2018. [PMID: 29539260 DOI: 10.1021/acs.biomac.8b00327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Inorganic polyphosphate (polyP) released by human platelets has recently been shown to activate blood clotting and identified as a potential target for the development of novel antithrombotics. Recent studies have shown that polymers with cationic binding groups (CBGs) inhibit polyP and attenuate thrombosis. However, a good molecular-level understanding of the binding mechanism is lacking for further drug development. While molecular dynamics (MD) simulation can provide molecule-level information, the time scale required to simulate these large biomacromolecules makes classical MD simulation impractical. To overcome this challenge, we employed metadynamics simulations with both all-atom and coarse-grained force fields. The force field parameters for polyethylene glycol (PEG) conjugated CBGs and polyP were developed to carry out coarse-grained MD simulations, which enabled simulations of these large biomacromolecules in a reasonable time scale. We found that the length of the PEG tail does not impact the interaction between the (PEG) n-CBG and polyP. As expected, increasing the number of the charged tertiary amine groups in the head group strengthens its binding to polyP. Our simulation shows that (PEG) n-CBG initially form aggregates, mostly with the PEG in the core and the hydrophilic CBG groups pointing toward water; then the aggregates approach the polyP and sandwich the polyP to form a complex. We found that the binding of (PEG) n-CBG remains intact against various lengths of polyP. Binding thermodynamics for two of the (PEG) n-CBG/polyP systems simulated were measured by isothermal titration calorimetry to confirm the key finding of the simulations that the length PEG tail does not influence ligand binding to polyP.
Collapse
Affiliation(s)
- Amirhossein Mafi
- Department of Chemistry , University of British Columbia , Vancouver , BC V6T 1Z1 , Canada
| | | | | | - James H Morrissey
- Department of Biological Chemistry , University of Michigan Medical School , Ann Arbor , Michigan 48109 , United States
| | | | | | - Jim Pfaendtner
- Department of Chemical Engineering , University of Washington , Seattle , Washington 98195 , United States
| | - Keng C Chou
- Department of Chemistry , University of British Columbia , Vancouver , BC V6T 1Z1 , Canada
| |
Collapse
|
84
|
Su J, Thomas AS, Grabietz T, Landgraf C, Volkmer R, Marrink SJ, Williams C, Melo MN. The N-terminal amphipathic helix of Pex11p self-interacts to induce membrane remodelling during peroxisome fission. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1292-1300. [PMID: 29501607 DOI: 10.1016/j.bbamem.2018.02.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/07/2018] [Accepted: 02/27/2018] [Indexed: 10/17/2022]
Abstract
Pex11p plays a crucial role in peroxisome fission. Previously, it was shown that a conserved N-terminal amphipathic helix in Pex11p, termed Pex11-Amph, was necessary for peroxisomal fission in vivo while in vitro studies revealed that this region alone was sufficient to bring about tubulation of liposomes with a lipid consistency resembling the peroxisomal membrane. However, molecular details of how Pex11-Amph remodels the peroxisomal membrane remain unknown. Here we have combined in silico, in vitro and in vivo approaches to gain insights into the molecular mechanisms underlying Pex11-Amph activity. Using molecular dynamics simulations, we observe that Pex11-Amph peptides form linear aggregates on a model membrane. Furthermore, we identify mutations that disrupted this aggregation in silico, which also abolished the peptide's ability to remodel liposomes in vitro, establishing that Pex11p oligomerisation plays a direct role in membrane remodelling. In vivo studies revealed that these mutations resulted in a strong reduction in Pex11 protein levels, indicating that these residues are important for Pex11p function. Taken together, our data demonstrate the power of combining in silico techniques with experimental approaches to investigate the molecular mechanisms underlying Pex11p-dependent membrane remodelling.
Collapse
Affiliation(s)
- Juanjuan Su
- Molecular Dynamics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Ann S Thomas
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Tanja Grabietz
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Christiane Landgraf
- Institut für Medizinische Immunologie, Charité-Universitätsmedizin Berlin, 10115 Berlin, Germany
| | - Rudolf Volkmer
- Institut für Medizinische Immunologie, Charité-Universitätsmedizin Berlin, 10115 Berlin, Germany; Leibniz-Institut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Siewert J Marrink
- Molecular Dynamics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Chris Williams
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Manuel N Melo
- Molecular Dynamics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
85
|
Goronzy I, Rawle RJ, Boxer SG, Kasson PM. Cholesterol enhances influenza binding avidity by controlling nanoscale receptor clustering. Chem Sci 2018; 9:2340-2347. [PMID: 29520318 PMCID: PMC5839467 DOI: 10.1039/c7sc03236f] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 01/23/2018] [Indexed: 12/16/2022] Open
Abstract
Influenza virus infects cells by binding to sialylated glycans on the cell surface. While the chemical structure of these glycans determines hemagglutinin-glycan binding affinity, bimolecular affinities are weak, so binding is avidity-dominated and driven by multivalent interactions. Here, we show that membrane spatial organization can control viral binding. Using single-virus fluorescence microscopy, we demonstrate that the sterol composition of the target membrane enhances viral binding avidity in a dose-dependent manner. Binding shows a cooperative dependence on concentration of receptors for influenza virus, as would be expected for a multivalent interaction. Surprisingly, the ability of sterols to promote viral binding is independent of their ability to support liquid-liquid phase separation in model systems. We develop a molecular explanation for this observation via molecular dynamics simulations, where we find that cholesterol promotes small-scale clusters of glycosphingolipid receptors. We propose a model whereby cholesterol orders the monomeric state of glycosphingolipid receptors, reducing the entropic penalty of receptor association and thus favoring multimeric complexes without phase separation. This model explains how cholesterol and other sterols control the spatial organization of membrane receptors for influenza and increase viral binding avidity. A natural consequence of this finding is that local cholesterol concentration in the plasma membrane of cells may alter the binding avidity of influenza virions. Furthermore, our results demonstrate a form of cholesterol-dependent membrane organization that does not involve lipid rafts, suggesting that cholesterol's effect on cell membrane heterogeneity is likely the interplay of several different factors.
Collapse
Affiliation(s)
- I. N. Goronzy
- Department of Chemistry , Stanford University , Stanford CA 94305 , USA .
| | - R. J. Rawle
- Department of Molecular Physiology and Biomedical Engineering , University of Virginia , Box 800886 , Charlottesville , VA 22908 , USA .
| | - S. G. Boxer
- Department of Chemistry , Stanford University , Stanford CA 94305 , USA .
| | - P. M. Kasson
- Department of Molecular Physiology and Biomedical Engineering , University of Virginia , Box 800886 , Charlottesville , VA 22908 , USA .
- Science for Life Laboratory , Department of Cell and Molecular Biology , Uppsala University , Sweden
| |
Collapse
|
86
|
Van Eerden FJ, Melo MN, Frederix PWJM, Marrink SJ. Prediction of Thylakoid Lipid Binding Sites on Photosystem II. Biophys J 2018; 113:2669-2681. [PMID: 29262360 PMCID: PMC5770566 DOI: 10.1016/j.bpj.2017.09.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/11/2017] [Accepted: 09/29/2017] [Indexed: 11/20/2022] Open
Abstract
The thylakoid membrane has a unique lipid composition, consisting mostly of galactolipids. These thylakoid lipids have important roles in photosynthesis. Here, we investigate to what extent these lipids bind specifically to the Photosystem II complex. To this end, we performed coarse-grain MD simulations of the Photosystem II complex embedded in a thylakoid membrane with realistic composition. Based on >85 μs simulation time, we find that monogalactosyldiacylglycerol and sulfoquinovosyldiacylglycerol lipids are enriched in the annular shell around the protein, and form distinct binding sites. From the analysis of residue contacts, we conclude that electrostatic interactions play an important role in stabilizing these binding sites. Furthermore, we find that chlorophyll a has a prevalent role in the coordination of the lipids. In addition, we observe lipids to diffuse in and out of the plastoquinone exchange cavities, allowing exchange of cocrystallized lipids with the bulk membrane and suggesting a more open nature of the plastoquinone exchange cavity. Together, our data provide a wealth of information on protein-lipid interactions for a key protein in photosynthesis.
Collapse
Affiliation(s)
- Floris J Van Eerden
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands.
| | - Manuel N Melo
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Pim W J M Frederix
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
87
|
Ingólfsson HI, Carpenter TS, Bhatia H, Bremer PT, Marrink SJ, Lightstone FC. Computational Lipidomics of the Neuronal Plasma Membrane. Biophys J 2017; 113:2271-2280. [PMID: 29113676 PMCID: PMC5700369 DOI: 10.1016/j.bpj.2017.10.017] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 01/18/2023] Open
Abstract
Membrane lipid composition varies greatly within submembrane compartments, different organelle membranes, and also between cells of different cell stage, cell and tissue types, and organisms. Environmental factors (such as diet) also influence membrane composition. The membrane lipid composition is tightly regulated by the cell, maintaining a homeostasis that, if disrupted, can impair cell function and lead to disease. This is especially pronounced in the brain, where defects in lipid regulation are linked to various neurological diseases. The tightly regulated diversity raises questions on how complex changes in composition affect overall bilayer properties, dynamics, and lipid organization of cellular membranes. Here, we utilize recent advances in computational power and molecular dynamics force fields to develop and test a realistically complex human brain plasma membrane (PM) lipid model and extend previous work on an idealized, "average" mammalian PM. The PMs showed both striking similarities, despite significantly different lipid composition, and interesting differences. The main differences in composition (higher cholesterol concentration and increased tail unsaturation in brain PM) appear to have opposite, yet complementary, influences on many bilayer properties. Both mixtures exhibit a range of dynamic lipid lateral inhomogeneities ("domains"). The domains can be small and transient or larger and more persistent and can correlate between the leaflets depending on lipid mixture, Brain or Average, as well as on the extent of bilayer undulations.
Collapse
Affiliation(s)
- Helgi I Ingólfsson
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate
| | - Timothy S Carpenter
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate
| | - Harsh Bhatia
- Center for Applied Scientific Computing (CASC), Computational Directorate, Lawrence Livermore National Laboratory, Livermore, California
| | - Peer-Timo Bremer
- Center for Applied Scientific Computing (CASC), Computational Directorate, Lawrence Livermore National Laboratory, Livermore, California
| | - Siewert J Marrink
- Groningen Biomolecular Science and Biotechnology Institute and the Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Felice C Lightstone
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate.
| |
Collapse
|
88
|
Schmalhorst PS, Deluweit F, Scherrers R, Heisenberg CP, Sikora M. Overcoming the Limitations of the MARTINI Force Field in Simulations of Polysaccharides. J Chem Theory Comput 2017; 13:5039-5053. [DOI: 10.1021/acs.jctc.7b00374] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Felix Deluweit
- Wyatt Technology Europe, Hochstraße
18, 56307 Dernbach, Germany
| | - Roger Scherrers
- Wyatt Technology Europe, Hochstraße
18, 56307 Dernbach, Germany
| | | | - Mateusz Sikora
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| |
Collapse
|
89
|
Gronnier J, Crowet JM, Habenstein B, Nasir MN, Bayle V, Hosy E, Platre MP, Gouguet P, Raffaele S, Martinez D, Grelard A, Loquet A, Simon-Plas F, Gerbeau-Pissot P, Der C, Bayer EM, Jaillais Y, Deleu M, Germain V, Lins L, Mongrand S. Structural basis for plant plasma membrane protein dynamics and organization into functional nanodomains. eLife 2017; 6:e26404. [PMID: 28758890 PMCID: PMC5536944 DOI: 10.7554/elife.26404] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/13/2017] [Indexed: 12/31/2022] Open
Abstract
Plasma Membrane is the primary structure for adjusting to ever changing conditions. PM sub-compartmentalization in domains is thought to orchestrate signaling. Yet, mechanisms governing membrane organization are mostly uncharacterized. The plant-specific REMORINs are proteins regulating hormonal crosstalk and host invasion. REMs are the best-characterized nanodomain markers via an uncharacterized moiety called REMORIN C-terminal Anchor. By coupling biophysical methods, super-resolution microscopy and physiology, we decipher an original mechanism regulating the dynamic and organization of nanodomains. We showed that targeting of REMORIN is independent of the COP-II-dependent secretory pathway and mediated by PI4P and sterol. REM-CA is an unconventional lipid-binding motif that confers nanodomain organization. Analyses of REM-CA mutants by single particle tracking demonstrate that mobility and supramolecular organization are critical for immunity. This study provides a unique mechanistic insight into how the tight control of spatial segregation is critical in the definition of PM domain necessary to support biological function.
Collapse
Affiliation(s)
- Julien Gronnier
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche UMR 5200, CNRS, Université de BordeauxBordeauxFrance
| | - Jean-Marc Crowet
- Laboratoire de Biophysique Moléculaire aux InterfacesGX ABT, Université de LiègeGemblouxBelgium
| | - Birgit Habenstein
- Institute of Chemistry and Biology of Membranes and Nanoobjects (UMR5248 CBMN), CNRS, Université de Bordeaux, Institut Polytechnique BordeauxPessacFrance
| | - Mehmet Nail Nasir
- Laboratoire de Biophysique Moléculaire aux InterfacesGX ABT, Université de LiègeGemblouxBelgium
| | - Vincent Bayle
- Laboratoire Reproduction et Développement des PlantesUniversité de Lyon, ENS de Lyon, Université Claude Bernard Lyon 1LyonFrance
| | - Eric Hosy
- Interdisciplinary Institute for Neuroscience, CNRS, University of BordeauxBordeauxFrance
| | - Matthieu Pierre Platre
- Laboratoire Reproduction et Développement des PlantesUniversité de Lyon, ENS de Lyon, Université Claude Bernard Lyon 1LyonFrance
| | - Paul Gouguet
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche UMR 5200, CNRS, Université de BordeauxBordeauxFrance
| | | | - Denis Martinez
- Institute of Chemistry and Biology of Membranes and Nanoobjects (UMR5248 CBMN), CNRS, Université de Bordeaux, Institut Polytechnique BordeauxPessacFrance
| | - Axelle Grelard
- Institute of Chemistry and Biology of Membranes and Nanoobjects (UMR5248 CBMN), CNRS, Université de Bordeaux, Institut Polytechnique BordeauxPessacFrance
| | - Antoine Loquet
- Institute of Chemistry and Biology of Membranes and Nanoobjects (UMR5248 CBMN), CNRS, Université de Bordeaux, Institut Polytechnique BordeauxPessacFrance
| | - Françoise Simon-Plas
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, ERL 6003 CNRSDijonFrance
| | - Patricia Gerbeau-Pissot
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, ERL 6003 CNRSDijonFrance
| | - Christophe Der
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, ERL 6003 CNRSDijonFrance
| | - Emmanuelle M Bayer
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche UMR 5200, CNRS, Université de BordeauxBordeauxFrance
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des PlantesUniversité de Lyon, ENS de Lyon, Université Claude Bernard Lyon 1LyonFrance
| | - Magali Deleu
- Laboratoire de Biophysique Moléculaire aux InterfacesGX ABT, Université de LiègeGemblouxBelgium
| | - Véronique Germain
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche UMR 5200, CNRS, Université de BordeauxBordeauxFrance
| | - Laurence Lins
- Laboratoire de Biophysique Moléculaire aux InterfacesGX ABT, Université de LiègeGemblouxBelgium
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire (LBM), Unité Mixte de Recherche UMR 5200, CNRS, Université de BordeauxBordeauxFrance
| |
Collapse
|
90
|
Ricci CG, Li B, Cheng LT, Dzubiella J, McCammon JA. "Martinizing" the Variational Implicit Solvent Method (VISM): Solvation Free Energy for Coarse-Grained Proteins. J Phys Chem B 2017; 121:6538-6548. [PMID: 28613904 PMCID: PMC5740479 DOI: 10.1021/acs.jpcb.7b04113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Solvation is a fundamental driving force in many biological processes including biomolecular recognition and self-assembly, not to mention protein folding, dynamics, and function. The variational implicit solvent method (VISM) is a theoretical tool currently developed and optimized to estimate solvation free energies for systems of very complex topology, such as biomolecules. VISM's theoretical framework makes it unique because it couples hydrophobic, van der Waals, and electrostatic interactions as a functional of the solvation interface. By minimizing this functional, VISM produces the solvation interface as an output of the theory. In this work, we push VISM to larger scale applications by combining it with coarse-grained solute Hamiltonians adapted from the MARTINI framework, a well-established mesoscale force field for modeling large-scale biomolecule assemblies. We show how MARTINI-VISM (MVISM) compares with atomistic VISM (AVISM) for a small set of proteins differing in size, shape, and charge distribution. We also demonstrate MVISM's suitability to study the solvation properties of an interesting encounter complex, barnase-barstar. The promising results suggest that coarse-graining the protein with the MARTINI force field is indeed a valuable step to broaden VISM's and MARTINI's applications in the near future.
Collapse
Affiliation(s)
- Clarisse G Ricci
- Department of Pharmacology and Department of Chemistry & Biochemistry, Howard Hughes Medical Institute, National Biomedical Computation Resource, University of California at San Diego , La Jolla, California 92093, United States
| | - Bo Li
- Department of Mathematics and Quantitative Biology Graduate Program, University of California at San Diego , La Jolla, California 92093, United States
| | - Li-Tien Cheng
- Department of Mathematics and Quantitative Biology Graduate Program, University of California at San Diego , La Jolla, California 92093, United States
| | - Joachim Dzubiella
- Institut für Physik, Humboldt-Universität zu Berlin, D-12849, Berlin, Germany, and Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin , D-14109, Berlin, Germany
| | - J Andrew McCammon
- Department of Pharmacology and Department of Chemistry & Biochemistry, Howard Hughes Medical Institute, National Biomedical Computation Resource, University of California at San Diego , La Jolla, California 92093, United States
| |
Collapse
|
91
|
Van Eerden FJ, Melo MN, Frederix PWJM, Periole X, Marrink SJ. Exchange pathways of plastoquinone and plastoquinol in the photosystem II complex. Nat Commun 2017; 8:15214. [PMID: 28489071 PMCID: PMC5436218 DOI: 10.1038/ncomms15214] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/01/2017] [Indexed: 11/09/2022] Open
Abstract
Plastoquinone (PLQ) acts as an electron carrier between photosystem II (PSII) and the cytochrome b6f complex. To understand how PLQ enters and leaves PSII, here we show results of coarse grained molecular dynamics simulations of PSII embedded in the thylakoid membrane, covering a total simulation time of more than 0.5 ms. The long time scale allows the observation of many spontaneous entries of PLQ into PSII, and the unbinding of plastoquinol (PLQol) from the complex. In addition to the two known channels, we observe a third channel for PLQ/PLQol diffusion between the thylakoid membrane and the PLQ binding sites. Our simulations point to a promiscuous diffusion mechanism in which all three channels function as entry and exit channels. The exchange cavity serves as a PLQ reservoir. Our simulations provide a direct view on the exchange of electron carriers, a key step of the photosynthesis machinery.
Collapse
Affiliation(s)
- Floris J Van Eerden
- Groningen Biomolecular Sciences and Biotechnology Institute &Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Manuel N Melo
- Groningen Biomolecular Sciences and Biotechnology Institute &Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Pim W J M Frederix
- Groningen Biomolecular Sciences and Biotechnology Institute &Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Xavier Periole
- Groningen Biomolecular Sciences and Biotechnology Institute &Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute &Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
92
|
Kanduč M, Schlaich A, de Vries AH, Jouhet J, Maréchal E, Demé B, Netz RR, Schneck E. Tight cohesion between glycolipid membranes results from balanced water-headgroup interactions. Nat Commun 2017; 8:14899. [PMID: 28367975 PMCID: PMC5382269 DOI: 10.1038/ncomms14899] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 02/07/2017] [Indexed: 01/20/2023] Open
Abstract
Membrane systems that naturally occur as densely packed membrane stacks contain high amounts of glycolipids whose saccharide headgroups display multiple small electric dipoles in the form of hydroxyl groups. Experimentally, the hydration repulsion between glycolipid membranes is of much shorter range than that between zwitterionic phospholipids whose headgroups are dominated by a single large dipole. Using solvent-explicit molecular dynamics simulations, here we reproduce the experimentally observed, different pressure-versus-distance curves of phospholipid and glycolipid membrane stacks and show that the water uptake into the latter is solely driven by the hydrogen bond balance involved in non-ideal water/sugar mixing. Water structuring effects and lipid configurational perturbations, responsible for the longer-range repulsion between phospholipid membranes, are inoperative for the glycolipids. Our results explain the tight cohesion between glycolipid membranes at their swelling limit, which we here determine by neutron diffraction, and their unique interaction characteristics, which are essential for the biogenesis of photosynthetic membranes. Glycolipids are commonly found in densely stacked biological membranes, which show unusually strong self-cohesion compared to phospholipid membranes. Here, the authors attribute this phenomenon to the lack of long-range repulsion between glycolipid membranes, a consequence of the headgroup architecture.
Collapse
Affiliation(s)
- Matej Kanduč
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin, Germany.,Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Alexander Schlaich
- Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Alex H de Vries
- Groningen Biomolecular Sciences and Biotechnology (GBB) Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRA, Université Grenoble Alpes, CEA Grenoble, 17 rue des Martyrs, F-38000 Grenoble, France
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRA, Université Grenoble Alpes, CEA Grenoble, 17 rue des Martyrs, F-38000 Grenoble, France
| | - Bruno Demé
- Institut Laue-Langevin, 71 avenue des Martyrs, F-38042 Grenoble Cedex 9, France
| | - Roland R Netz
- Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Emanuel Schneck
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, D-14476 Potsdam, Germany
| |
Collapse
|
93
|
Yang S, Ding H, Wang R, Dai X, Shi X, Qiao Y. Molecular dynamics simulation studies of transmembrane transport of chemical components in Chinese herbs and the function of platycodin D in a biological membrane. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2017. [DOI: 10.1016/j.jtcms.2017.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
94
|
Herzog FA, Braun L, Schoen I, Vogel V. Structural Insights How PIP2 Imposes Preferred Binding Orientations of FAK at Lipid Membranes. J Phys Chem B 2017; 121:3523-3535. [DOI: 10.1021/acs.jpcb.6b09349] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Florian A. Herzog
- Laboratory of Applied
Mechanobiology,
Department of Health Sciences and Technology, ETH Zürich, 8093 Zürich, Switzerland
| | - Lukas Braun
- Laboratory of Applied
Mechanobiology,
Department of Health Sciences and Technology, ETH Zürich, 8093 Zürich, Switzerland
| | - Ingmar Schoen
- Laboratory of Applied
Mechanobiology,
Department of Health Sciences and Technology, ETH Zürich, 8093 Zürich, Switzerland
| | - Viola Vogel
- Laboratory of Applied
Mechanobiology,
Department of Health Sciences and Technology, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
95
|
Ma H, Cummins DD, Edelstein NB, Gomez J, Khan A, Llewellyn MD, Picudella T, Willsey SR, Nangia S. Modeling Diversity in Structures of Bacterial Outer Membrane Lipids. J Chem Theory Comput 2017; 13:811-824. [DOI: 10.1021/acs.jctc.6b00856] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Huilin Ma
- Department of Biomedical
and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Daniel D. Cummins
- Department of Biomedical
and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Natalie Brooke Edelstein
- Department of Biomedical
and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Jerry Gomez
- Department of Biomedical
and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Aliza Khan
- Department of Biomedical
and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Masud Dikita Llewellyn
- Department of Biomedical
and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Tara Picudella
- Department of Biomedical
and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Sarah Rose Willsey
- Department of Biomedical
and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Shikha Nangia
- Department of Biomedical
and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
96
|
Manna M, Javanainen M, Monne HMS, Gabius HJ, Rog T, Vattulainen I. Long-chain GM1 gangliosides alter transmembrane domain registration through interdigitation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:870-878. [PMID: 28143757 DOI: 10.1016/j.bbamem.2017.01.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/02/2017] [Accepted: 01/27/2017] [Indexed: 12/25/2022]
Abstract
Extracellular and cytosolic leaflets in cellular membranes are distinctly different in lipid composition, yet they contribute together to signaling across the membranes. Here we consider a mechanism based on long-chain gangliosides for coupling the extracellular and cytosolic membrane leaflets together. Based on atomistic molecular dynamics simulations, we find that long-chain GM1 in the extracellular leaflet exhibits a strong tendency to protrude into the opposing bilayer leaflet. This interdigitation modulates the order in the cytosolic monolayer and thereby strengthens the interaction and coupling across a membrane. Coarse-grained simulations probing longer time scales in large membrane systems indicate that GM1 in the extracellular leaflet modulates the phase behavior in the cytosolic monolayer. While short-chain GM1 maintains phase-symmetric bilayers with a strong membrane registration effect, the situation is altered with long-chain GM1. Here, the significant interdigitation induced by long-chain GM1 modulates the behavior in the cytosolic GM1-free leaflet, weakening and slowing down the membrane registration process. The observed physical interaction mechanism provides a possible means to mediate or foster transmembrane communication associated with signal transduction.
Collapse
Affiliation(s)
- Moutusi Manna
- Department of Physics, Tampere University of Technology, P. O. Box 692, FI- 33101 Tampere, Finland
| | - Matti Javanainen
- Department of Physics, Tampere University of Technology, P. O. Box 692, FI- 33101 Tampere, Finland; Department of Physics, POB 64, FI-00014 University of Helsinki, Finland
| | - Hector Martinez-Seara Monne
- Department of Physics, Tampere University of Technology, P. O. Box 692, FI- 33101 Tampere, Finland; Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, CZ-16610, Prague, Czech Republic
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig Maximilian University, D-80539 Munchen, Germany
| | - Tomasz Rog
- Department of Physics, Tampere University of Technology, P. O. Box 692, FI- 33101 Tampere, Finland; Department of Physics, POB 64, FI-00014 University of Helsinki, Finland
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology, P. O. Box 692, FI- 33101 Tampere, Finland; Department of Physics, POB 64, FI-00014 University of Helsinki, Finland; MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
97
|
Yuan C, Li S, Zou Q, Ren Y, Yan X. Multiscale simulations for understanding the evolution and mechanism of hierarchical peptide self-assembly. Phys Chem Chem Phys 2017; 19:23614-23631. [DOI: 10.1039/c7cp01923h] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Multiscale molecular simulations that combine and systematically link several hierarchies can provide insights into the evolution and dynamics of hierarchical peptide self-assembly from the molecular level to the mesoscale.
Collapse
Affiliation(s)
- Chengqian Yuan
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Shukun Li
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Qianli Zou
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Ying Ren
- Center for Mesoscience
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| |
Collapse
|
98
|
Yang S, Wang R, Wan G, Wu Z, Guo S, Dai X, Shi X, Qiao Y. A Multiscale Study on the Penetration Enhancement Mechanism of Menthol to Osthole. J Chem Inf Model 2016; 56:2234-2242. [PMID: 27768312 DOI: 10.1021/acs.jcim.6b00232] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Menthol is a widely used penetration enhancer in clinical medicine due to its high efficiency and relative safety. However, details of the penetration enhancement mechanism of menthol on the molecular level is rarely involved in the discussion. In this work, the penetration enhancement (PE) mechanism of menthol is explored by a multiscale method containing molecular dynamics simulations, in vitro penetration experiments, and transmission electron microscopy. Osthole is chosen to be the tested drug due to its common use in external preparations and because it often accompanies menthol as a PE in the preparations. The results show that menthol in each testing concentration can impair the lipid packing of stratum corneum (SC) and promote osthole permeating into SC, and the penetration promoting effect has an optimal concentration. At a low concentration, menthol causes the bilayer to relax with a reduction in thickness and increment in the lipid headgroup area. At a high concentration, menthol destroys the bilayer structure of SC and causes lipids to form a reversed micelle structure. The penetration enhancement mechanism of menthol is characterized mainly by the disruption of the highly ordered SC lipid in low concentrations and an improvement in the partitioning of drugs into the SC in high concentrations. The results can provide some assistance for additional studies and applications of menthol as a penetration enhancer.
Collapse
Affiliation(s)
- Shufang Yang
- Beijing University of Chinese Medicine , Beijing 100102, China.,Key Laboratory of TCM-information Engineer of State Administration of TCM, Beijing 100102, China
| | - Ran Wang
- School of Traditional Chinese Medicine, Capital Medical University , Beijing 100069, China
| | - Guang Wan
- Beijing University of Chinese Medicine , Beijing 100102, China.,School of Traditional Chinese Medicine, Capital Medical University , Beijing 100069, China
| | - Zhimin Wu
- Beijing University of Chinese Medicine , Beijing 100102, China.,Key Laboratory of TCM-information Engineer of State Administration of TCM, Beijing 100102, China
| | - Shujuan Guo
- Beijing University of Chinese Medicine , Beijing 100102, China
| | - Xingxing Dai
- Beijing University of Chinese Medicine , Beijing 100102, China.,Key Laboratory of TCM-information Engineer of State Administration of TCM, Beijing 100102, China
| | - Xinyuan Shi
- Beijing University of Chinese Medicine , Beijing 100102, China.,Key Laboratory of TCM-information Engineer of State Administration of TCM, Beijing 100102, China
| | - Yanjiang Qiao
- Beijing University of Chinese Medicine , Beijing 100102, China.,Key Laboratory of TCM-information Engineer of State Administration of TCM, Beijing 100102, China
| |
Collapse
|
99
|
Prasanna X, Jafurulla M, Sengupta D, Chattopadhyay A. The ganglioside GM1 interacts with the serotonin 1A receptor via the sphingolipid binding domain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2818-2826. [DOI: 10.1016/j.bbamem.2016.08.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 07/18/2016] [Accepted: 08/18/2016] [Indexed: 12/24/2022]
|
100
|
Gu RX, Ingólfsson HI, de Vries AH, Marrink SJ, Tieleman DP. Ganglioside-Lipid and Ganglioside-Protein Interactions Revealed by Coarse-Grained and Atomistic Molecular Dynamics Simulations. J Phys Chem B 2016; 121:3262-3275. [PMID: 27610460 PMCID: PMC5402298 DOI: 10.1021/acs.jpcb.6b07142] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gangliosides are glycolipids in which an oligosaccharide headgroup containing one or more sialic acids is connected to a ceramide. Gangliosides reside in the outer leaflet of the plasma membrane and play a crucial role in various physiological processes such as cell signal transduction and neuronal differentiation by modulating structures and functions of membrane proteins. Because the detailed behavior of gangliosides and protein-ganglioside interactions are poorly known, we investigated the interactions between the gangliosides GM1 and GM3 and the proteins aquaporin (AQP1) and WALP23 using equilibrium molecular dynamics simulations and potential of mean force calculations at both coarse-grained (CG) and atomistic levels. In atomistic simulations, on the basis of the GROMOS force field, ganglioside aggregation appears to be a result of the balance between hydrogen bond interactions and steric hindrance of the headgroups. GM3 clusters are slightly larger and more ordered than GM1 clusters due to the smaller headgroup of GM3. The different structures of GM1 and GM3 clusters from atomistic simulations are not observed at the CG level based on the Martini model, implying a difference in driving forces for ganglioside interactions in atomistic and CG simulations. For protein-ganglioside interactions, in the atomistic simulations, GM1 lipids bind to specific sites on the AQP1 surface, whereas they are depleted from WALP23. In the CG simulations, the ganglioside binding sites on the AQP1 surface are similar, but ganglioside aggregation and protein-ganglioside interactions are more prevalent than in the atomistic simulations. Using the polarizable Martini water model, results were closer to the atomistic simulations. Although experimental data for validation is lacking, we proposed modified Martini parameters for gangliosides to more closely mimic the sizes and structures of ganglioside clusters observed at the atomistic level.
Collapse
Affiliation(s)
- Ruo-Xu Gu
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary , 2500 University Drive, N.W., Calgary, Alberta T2N 1N4, Canada
| | - Helgi I Ingólfsson
- Groningen Biomolecular Sciences and Biotechnology (GBB) Institute and Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Alex H de Vries
- Groningen Biomolecular Sciences and Biotechnology (GBB) Institute and Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology (GBB) Institute and Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - D Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary , 2500 University Drive, N.W., Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|