51
|
Zhu FP, Han ZL, Duan JL, Shi XS, Wang TT, Sheng GP, Wang SG, Yuan XZ. A novel pathway for the anaerobic biotransformation of microcystin-LR using enrichment cultures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:1064-1070. [PMID: 30823335 DOI: 10.1016/j.envpol.2019.02.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/27/2019] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
Microcystin (MC) elimination is a global challenge that is necessary for the health of humans and ecosystems. Biodegradation of MC, one of the most environmental-friendly methods, had previously been focused on the aerobic condition. In this study, two enrichment cultures from Taihu sediments possessed high capacity for MC-leucine arginine (MC-LR) anaerobic biodegradation. Meanwhile, it was firstly found that MC-LR underwent similar degradation process under anaerobic conditions to that in aerobic condition. Furthermore, a novel degradation pathway, hydrolyzing of Ala-Mdha to form a new linear MC-LR intermediate, was proposed under anaerobic conditions. Combining MC-LR degradation with microbial community analysis, this study deduced that Candidatus Cloacamonas acidaminovorans str. Evry may play an important role in the degradation of MC-LR. These findings suggest an additional pathway involved in the environmental cycle of MC-LR, which implies that the biotransformation of MC-LR might play an important role in eliminating MC-LR in eutrophic lake sediments under anaerobic conditions.
Collapse
Affiliation(s)
- Fan-Ping Zhu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong Province, 266237, PR China
| | - Zhen-Lian Han
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province, 266101, PR China
| | - Jian-Lu Duan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong Province, 266237, PR China
| | - Xiao-Shuang Shi
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province, 266101, PR China
| | - Ting-Ting Wang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province, 266101, PR China
| | - Guo-Ping Sheng
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, 230026, China
| | - Shu-Guang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong Province, 266237, PR China
| | - Xian-Zheng Yuan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong Province, 266237, PR China.
| |
Collapse
|
52
|
Using Landsat and in situ data to map turbidity as a proxy of cyanobacteria in a hypereutrophic Mediterranean reservoir. ECOL INFORM 2019. [DOI: 10.1016/j.ecoinf.2019.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
53
|
Decline in Transparency of Lake Hongze from Long-Term MODIS Observations: Possible Causes and Potential Significance. REMOTE SENSING 2019. [DOI: 10.3390/rs11020177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transparency is an important indicator of water quality and the underwater light environment and is widely measured in water quality monitoring. Decreasing transparency occurs throughout the world and has become the primary water quality issue for many freshwater and coastal marine ecosystems due to eutrophication and other human activities. Lake Hongze is the fourth largest freshwater lake in China, providing water for surrounding cities and farms but experiencing significant water quality changes. However, there are very few studies about Lake Hongze’s transparency due to the lack of long-term monitoring data for the lake. To understand long-term trends, possible causes and potential significance of the transparency in Lake Hongze, an empirical model for estimating transparency (using Secchi disk depth: SDD) based on the moderate resolution image spectroradiometer (MODIS) 645-nm data was validated using an in situ dataset. Model mean absolute percentage and root mean square errors for the validation dataset were 27.7% and RMSE = 0.082 m, respectively, which indicates that the model performs well for SDD estimation in Lake Hongze without any adjustment of model parameters. Subsequently, 1785 cloud-free images were selected for use by the validated model to estimate SDDs of Lake Hongze in 2003–2017. The long-term change of SDD of Lake Hongze showed a decreasing trend from 2007 to 2017, with an average of 0.49 m, ranging from 0.57 m in 2007 to 0.42 m in 2016 (a decrease of 26.3%), which indicates that Lake Hongze experienced increased turbidity in the past 11 years. The loss of aquatic vegetation in the northern bays may be mainly affected by decreases of SDD. Increasing total suspended matter (TSM) concentration resulting from sand mining activities may be responsible for the decreasing trend of SDD.
Collapse
|
54
|
Ding Q, Liu K, Xu K, Sun R, Zhang J, Yin L, Pu Y. Further Understanding of Degradation Pathways of Microcystin-LR by an Indigenous Sphingopyxis sp. in Environmentally Relevant Pollution Concentrations. Toxins (Basel) 2018; 10:toxins10120536. [PMID: 30558170 PMCID: PMC6315713 DOI: 10.3390/toxins10120536] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/03/2018] [Accepted: 12/12/2018] [Indexed: 11/16/2022] Open
Abstract
Microcystin-LR (MC-LR) is the most widely distributed microcystin (MC) that is hazardous to environmental safety and public health, due to high toxicity. Microbial degradation is regarded as an effective and environment-friendly method to remove it, however, the performance of MC-degrading bacteria in environmentally relevant pollution concentrations of MC-LR and the degradation pathways remain unclear. In this study, one autochthonous bacterium, Sphingopyxis sp. m6 which exhibited high MC-LR degradation ability, was isolated from Lake Taihu, and the degrading characteristics in environmentally relevant pollution concentrations were demonstrated. In addition, degradation products were identified by utilizing the full scan mode of UPLC-MS/MS. The data illustrated that strain m6 could decompose MC-LR (1–50 μg/L) completely within 4 h. The degradation rates were significantly affected by temperatures, pH and MC-LR concentrations. Moreover, except for the typical degradation products of MC-LR (linearized MC-LR, tetrapeptide, and Adda), there were 8 different products identified, namely, three tripeptides (Adda-Glu-Mdha, Glu-Mdha-Ala, and Leu-MeAsp-Arg), three dipeptides (Glu-Mdha, Mdha-Ala, and MeAsp-Arg) and two amino acids (Leu, and Arg). To our knowledge, this is the first report of Mdha-Ala, MeAsp-Arg, and Leu as MC-LR metabolites. This study expanded microbial degradation pathways of MC-LR, which lays a foundation for exploring degradation mechanisms and eliminating the pollution of microcystins (MCs).
Collapse
Affiliation(s)
- Qin Ding
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Kaiyan Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Kai Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
55
|
Wang R, Tai Y, Wan X, Ruan W, Man Y, Wang J, Yang Y, Yang Y. Enhanced removal of Microcystis bloom and microcystin-LR using microcosm constructed wetlands with bioaugmentation of degrading bacteria. CHEMOSPHERE 2018; 210:29-37. [PMID: 29980069 DOI: 10.1016/j.chemosphere.2018.06.140] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 06/08/2023]
Abstract
The prevalence of cyanobacterial bloom (Cyano-bloom) and hepatotoxic microcystin (MC) pollution caused by eutrophication poses serious problems to aquatic ecosystems and public health. However, conventional water treatment technologies are inefficient for removing cyanotoxins. In this study, the performance of microcosm constructed wetlands (CWs) in the removal of Cyano-bloom, microcystin-LR (MC-LR), and nutrients was investigated following repeated loading of pollutants. The effects of plant and bioaugmentation of selected MC-LR degrading bacteria on removal efficiency, degrading gene mlrA abundance, and bacterial community structure were examined. More than 90% of the MC-LR and chlorophyll-a was eliminated by CWs after 3 d of hydraulic retention time (HRT) without a lag phase. No significant differences between planted and unplanted CWs were found in the MC-LR and Cyano-bloom removal and mlrA gene abundance. Nevertheless, the plants improved nutrient removal to reduce eutrophication. Bioaugmentation markedly enhanced the degradation of MC-LR from 16.7 μg L-1 to below the threshold value within 12 h, which could help shorten the HRT of CWs by increasing functional MC-LR degrading bacteria. In the soil of CWs, the following six bacterial genera with MC-LR-degrading potential were found: Sphingopyxis, Methylotenera, Pseudomonas, Methylosinus, Novosphingobium, and Sphingomonas. Among them, the first three also significantly proliferated in CWs with bioaugmentation during MC-LR degradation, indicating their high adaptability and MC-LR removal contribution. These results suggested that CWs could provide suitable conditions for MC-LR degrading microorganism proliferation, and CWs with bioaugmentation could be effective and practical measures for the remediation of eutrophication and MC pollution.
Collapse
Affiliation(s)
- Rui Wang
- Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| | - Yiping Tai
- Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| | - Xiang Wan
- Nanjing Institute of Geography and Limnology, The Chinese Academy of Sciences, Nanjing 210008, China
| | - Weifeng Ruan
- Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| | - Ying Man
- Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| | - Jiaxi Wang
- Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| | - Yufen Yang
- Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| | - Yang Yang
- Institute of Hydrobiology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China.
| |
Collapse
|
56
|
Li F, Peng Y, Fang W, Altermatt F, Xie Y, Yang J, Zhang X. Application of Environmental DNA Metabarcoding for Predicting Anthropogenic Pollution in Rivers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11708-11719. [PMID: 30211550 DOI: 10.1021/acs.est.8b03869] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Rivers are among the most threatened freshwater ecosystems, and anthropogenic activities are affecting both river structures and water quality. While assessing the organisms can provide a comprehensive measure of a river's ecological status, it is limited by the traditional morphotaxonomy-based biomonitoring. Recent advances in environmental DNA (eDNA) metabarcoding allow to identify prokaryotes and eukaryotes in one sequencing run, and could thus allow unprecedented resolution. Whether such eDNA-based data can be used directly to predict the pollution status of rivers as a complementation of environmental data remains unknown. Here we used eDNA metabarcoding to explore the main stressors of rivers along which community structure changes, and to identify the method's potential for predicting pollution status based on eDNA data. We showed that a broad range of taxa in bacterial, protistan, and metazoan communities could be profiled with eDNA. Nutrients were the main driving stressor affecting communities' structure, alpha diversity, and the ecological network. We specifically observed that the relative abundance of indicative OTUs was significantly correlated with nutrient levels. These OTUs data could be used to predict the nutrient status up to 79% accuracy on testing data sets. Thus, our study gives a novel approach to predicting the pollution status of rivers by eDNA data.
Collapse
Affiliation(s)
- Feilong Li
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , P. R. China
| | - Ying Peng
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , P. R. China
| | - Wendi Fang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , P. R. China
| | - Florian Altermatt
- Department of Aquatic Ecology , Eawag: Swiss Federal Institute of Aquatic Science and Technology , Überlandstrasse 133 , CH-8600 Dübendorf , Switzerland
- Department of Evolutionary Biology and Environmental Studies , University of Zurich , Winterthurerstrasse 190 , 8057 Zürich , Switzerland
| | - Yuwei Xie
- Toxicology Centre , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5B3 , Canada
| | - Jianghua Yang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , P. R. China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , P. R. China
| |
Collapse
|
57
|
Zhang L, Lyu K, Wang N, Gu L, Sun Y, Zhu X, Wang J, Huang Y, Yang Z. Transcriptomic Analysis Reveals the Pathways Associated with Resisting and Degrading Microcystin in Ochromonas. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11102-11113. [PMID: 30176726 DOI: 10.1021/acs.est.8b03106] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Toxic Microcystis bloom is a tough environment problem worldwide. Microcystin is highly toxic and is an easily accumulated secondary metabolite of toxic Microcystis that threatens water safety. Biodegradation of microcystin by protozoan grazing is a promising and efficient biological method, but the mechanism in this process is still unclear. The present study aimed to identify potential pathways involved in resisting and degrading microcystin in flagellates through transcriptomic analyses. A total of 999 unigenes were significantly differentially expressed between treatments with flagellates Ochromonas fed on microcystin-producing Microcystis and microcystin-free Microcystis. These dysregulated genes were strongly associated with translation, carbohydrate metabolism, phagosome, and energy metabolism. Upregulated genes encoding peroxiredoxin, serine/threonine-protein phosphatase, glutathione S-transferase (GST), HSP70, and O-GlcNAc transferase were involved in resisting microcystin. In addition, genes encoding cathepsin and GST and genes related to inducing reactive oxygen species (ROS) were all upregulated, which highly probably linked with degrading microcystin in flagellates. The results of this study provided a better understanding of transcriptomic responses of flagellates to toxic Microcystis as well as highlighted a potential mechanism of biodegrading microcystin by flagellate Ochromonas, which served as a strong theoretical support for control of toxic microalgae by protozoans.
Collapse
Affiliation(s)
- Lu Zhang
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences , Nanjing Normal University , 1 Wenyuan Road , Nanjing 210023 , China
| | - Kai Lyu
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences , Nanjing Normal University , 1 Wenyuan Road , Nanjing 210023 , China
| | - Na Wang
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences , Nanjing Normal University , 1 Wenyuan Road , Nanjing 210023 , China
| | - Lei Gu
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences , Nanjing Normal University , 1 Wenyuan Road , Nanjing 210023 , China
| | - Yunfei Sun
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences , Nanjing Normal University , 1 Wenyuan Road , Nanjing 210023 , China
| | - Xuexia Zhu
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences , Nanjing Normal University , 1 Wenyuan Road , Nanjing 210023 , China
| | - Jun Wang
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences , Nanjing Normal University , 1 Wenyuan Road , Nanjing 210023 , China
| | - Yuan Huang
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences , Nanjing Normal University , 1 Wenyuan Road , Nanjing 210023 , China
| | - Zhou Yang
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences , Nanjing Normal University , 1 Wenyuan Road , Nanjing 210023 , China
- Department of Ecology, College of Life Science and Technology , Jinan University , Guangzhou 510632 , China
| |
Collapse
|
58
|
Lin L, Meng X, Li Q, Huang Z, Wang L, Lin K, Chen J, Crittenden J. Electrochemical oxidation of Microcystis aeruginosa using a Ti/RuO 2 anode: contributions of electrochemically generated chlorines and hydrogen peroxide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:27924-27934. [PMID: 30058039 DOI: 10.1007/s11356-018-2830-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
Electrochemical oxidation was proposed as a promising technology for algal control in drinking water treatment. To be effective, the electrogenerated oxidants should have long half-lives and could continually inhibit the growth of algae. In this study, we used the electrochemical system equipped with a Ti/RuO2 anode which focus on generating long half-life chlorines and H2O2. We explored the impact of electrical field and electrogenerated oxidants on algal inhibition, and we investigated the production of electrogenerated reactive species and their contributions to the inhibition of Microcystis aeruginosa (M. aeruginosa) in simulated surface water with low Cl- concentrations (< 18 mg/L). We developed a kinetic model to simulates the concentrations of chlorines and H2O2. The results showed that electrical field and electrogenerated oxidants were both important contributors to algal inhibition during electrochemical oxidation treatment. The Ti/RuO2 anode mainly generates chlorines and H2O2 from Cl- and water. During the electrolysis at current density of 20 mA/cm2, when initial Cl- concentrations increased from 0 to 18 mg/L (0-5.07 × 10-4 mol/L), the chlorines increased from 0 to 3.62 × 10-6 mol/L, and the H2O2 concentration decreased from 3.68 × 10-6 to 1.15 × 10-6 mol/L. Our model made decent predictions of other Cl- concentrations by comparing with experiment data which validated the rationality of this modeling approach. The electrogenerated chlorine species were more effective than H2O2 at an initial Cl- concentration of 18 mg/L.
Collapse
Affiliation(s)
- Li Lin
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430010, Hubei, China.
- Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, 430010, Hubei, China.
- Brook Byers Institute of Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Xiaoyang Meng
- Brook Byers Institute of Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Qingyun Li
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430010, Hubei, China
- Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, 430010, Hubei, China
| | - Zhuo Huang
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430010, Hubei, China
- Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, 430010, Hubei, China
| | - Linling Wang
- School of Environmental Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Ke Lin
- School of Mechanical Engineering, Shanghai JiaoTong University, Shanghai, 200240, China
| | - Jin Chen
- Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, 430010, Hubei, China.
| | - John Crittenden
- Brook Byers Institute of Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
59
|
Wu X, Wu H, Wang S, Wang Y, Zhang R, Hu X, Ye J. Effect of propionamide on the growth of Microcystis flos-aquae colonies and the underlying physiological mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 630:526-535. [PMID: 29486445 DOI: 10.1016/j.scitotenv.2018.02.217] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/18/2018] [Accepted: 02/18/2018] [Indexed: 06/08/2023]
Abstract
Reducing the formation and growth of Microcystis colonies is an important prerequisite for the effective prevention and treatment of cyanobacterial blooms. Microcystis flos-aquae colonies was selected to investigate the potential of propionamide for use in controlling cyanobacterial blooms. Propionamide, one of the major allelochemicals in the root exudates of E. crassipes, was tested using different concentrations (0, 0.2, 1, and 2mgL-1) and dosing methods (one-time addition, semi-continuous addition, and continuous addition) to assess its effect on the growth of M. flos-aquae colonies. The results showed that in the presence of different concentrations of propionamide, the growth of M. flos-aquae colonies followed a logistic growth model, with a higher degree of fit at lower propionamide concentrations. With the semi-continuous addition of 2mgL-1 propionamide, the growth of M. flos-aquae colonies was markedly inhibited; the relative inhibition ratio of algal cells reached >90% at day 7 of co-culture, and the colonial form gradually disintegrated, transforming mainly into unicellular and bicellular forms and small colonies (average diameter<50μm). Following the semi-continuous addition of 2mgL-1 propionamide, the exopolysaccharide content, the chlorophyll-a concentration, and the maximum photochemical efficiency of photosystem II (Fv/Fm) trended downward in M. flos-aquae colonies, whereas the relative expression of the microcystin (MC) biosynthetic genes, mcyA and mcyH, was upregulated overall. Importantly, the synthesis of intracellular microcystin-LR (MC-LR) was decreased after an initial increase, and the extracellular MC-LR concentration did not differ significantly from that in the control group (p>0.05). Moreover, an acute toxicity test showed that 2mgL-1 propionamide was generally non-toxic to Daphnia magna. In conclusion, appropriate use of propionamide could effectively control the expansion of M. flos-aquae colonies without potential risks to the ecological safety of aquatic environments; therefore, propionamide can actually be used to regulate cyanobacterial blooms in natural waters.
Collapse
Affiliation(s)
- Xiang Wu
- Key Laboratory of Aquatic Resources Conservation and Development Technology Research, College of Life Sciences, Huzhou University, Huzhou City, Zhejiang Province 313000, China.
| | - Hao Wu
- Environmental Protection Monitoring Centre Station, Huzhou City, Zhejiang Province 313000, China
| | - Saijun Wang
- Key Laboratory of Aquatic Resources Conservation and Development Technology Research, College of Life Sciences, Huzhou University, Huzhou City, Zhejiang Province 313000, China
| | - Yimian Wang
- Key Laboratory of Aquatic Resources Conservation and Development Technology Research, College of Life Sciences, Huzhou University, Huzhou City, Zhejiang Province 313000, China
| | - Rongfei Zhang
- Key Laboratory of Aquatic Resources Conservation and Development Technology Research, College of Life Sciences, Huzhou University, Huzhou City, Zhejiang Province 313000, China
| | - Xiaobin Hu
- Key Laboratory of Aquatic Resources Conservation and Development Technology Research, College of Life Sciences, Huzhou University, Huzhou City, Zhejiang Province 313000, China
| | - Jinyun Ye
- Key Laboratory of Aquatic Resources Conservation and Development Technology Research, College of Life Sciences, Huzhou University, Huzhou City, Zhejiang Province 313000, China
| |
Collapse
|
60
|
Dynamics of phosphorus and bacterial phoX genes during the decomposition of Microcystis blooms in a mesocosm. PLoS One 2018; 13:e0195205. [PMID: 29723219 PMCID: PMC5933731 DOI: 10.1371/journal.pone.0195205] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/19/2018] [Indexed: 11/20/2022] Open
Abstract
Cyanobacterial blooms are a worldwide environmental problem and frequently occur in eutrophic lakes. Organophosphorus mineralization regulated by microbial alkaline phosphatase provides available nutrients for bloom regeneration. To uncover the dynamics of bacterial alkaline phosphatase activity and microbial backgrounds in relation to organophosphorus mineralization during the decomposition process of cyanobacterial blooms, the response of alkaline phosphatase PhoX-producing bacteria were explored using a 23-day mesocosm experiment with three varying densities of Microcystis biomass from eutrophic Lake Taihu. Our study found large amounts of soluble reactive phosphorus and dissolved organophosphorus were released into the lake water during the decomposition process. Bacterial alkaline phosphatase activity showed the peak values during days 5~7 in groups with different chlorophyll-a densities, and then all decreased dramatically to their initial experimental levels during the last stage of decomposition. Bacterial phoX abundances in the three experimental groups increased significantly along with the decomposition process, positively related to the dissolved organic carbon and organophosphorus released by the Microcystis blooms. The genotypes similar to the phoX genes of Alphaproteobacteria were dominant in all groups, whereas the genotypes most similar to the phoX genes of Betaproteobacteria and Cyanobacteria were also abundant in the low density (~15 μg L-1 chlorophyll-a) group. At the end of the decomposition process, the number of genotypes most similar to the phoX of Betaproteobacteria and Cyanobacteria increased in the medium (~150 μg L-1 chlorophyll-a) and high (~1500 μg L-1 chlorophyll-a) density groups. The released organophosphorus and increased bacterial phoX abundance after decomposition of Microcystis aggregates could potentially provide sufficient nutrients and biological conditions for algal proliferation and are probably related to the regeneration of Microcystis blooms in eutrophic lakes.
Collapse
|
61
|
Yang Y, Hou J, Wang P, Wang C, Miao L, Ao Y, Wang X, Lv B, You G, Liu Z, Shao Y. The effects of extracellular polymeric substances on magnetic iron oxide nanoparticles stability and the removal of microcystin-LR in aqueous environments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 148:89-96. [PMID: 29031879 DOI: 10.1016/j.ecoenv.2017.10.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 09/30/2017] [Accepted: 10/06/2017] [Indexed: 06/07/2023]
Abstract
The behaviors of nanoparticles rely on the aqueous condition such as natural organic matter (NOM). Therefore the presence of NOM would influence the interaction of nanoparticles with other substances possibly. Here, microcystin-LR (MC-LR) adsorption on iron oxide nanoparticles (IONPs) was studied in an aqueous solution with different types of NOM, including extracellular polymeric substances (EPS) from cyanobacteria and alginic acid sodium salt (AASS) from brown algae. Results revealed that EPS played an important role in stabilizing IONPs and in the toxin adsorption efficiency. The stability of IONPs was heavily depended on the concentration and type of NOM, which can affect the surface charge of IONPs significantly in solution. The enhanced stability of IONPs was due to the electrostatic interactions. Adsorption kinetics and isotherm studies confirmed that NOM can affect the IONPs' adsorption efficiency, and pseudo-second-order kinetics better explained this process. The removal efficiency for MC-LR decreased in the presence of NOM (Control > EPS-M1 > AASS > EPS-M9), indicating that NOM and MC-LR compete for limited adsorption sites. The presence of NOM in a eutrophic environment stabilized the IONPs while inhibiting the MC-LR removal efficiency. This investigation emphasized the negative effect of cyanobacterial EPS on the removal of microcystins when using magnetic separation technology. And this results could also be used to model the transportation of iron minerals carrying toxic substances in aqueous environment.
Collapse
Affiliation(s)
- Yangyang Yang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Yanhui Ao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Xun Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Bowen Lv
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Zhilin Liu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Yongxu Shao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| |
Collapse
|
62
|
|
63
|
Duan H, Tao M, Loiselle SA, Zhao W, Cao Z, Ma R, Tang X. MODIS observations of cyanobacterial risks in a eutrophic lake: Implications for long-term safety evaluation in drinking-water source. WATER RESEARCH 2017; 122:455-470. [PMID: 28624729 DOI: 10.1016/j.watres.2017.06.022] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/06/2017] [Accepted: 06/07/2017] [Indexed: 05/22/2023]
Abstract
The occurrence and related risks from cyanobacterial blooms have increased world-wide over the past 40 years. Information on the abundance and distribution of cyanobacteria is fundamental to support risk assessment and management activities. In the present study, an approach based on Empirical Orthogonal Function (EOF) analysis was used to estimate the concentrations of chlorophyll a (Chla) and the cyanobacterial biomarker pigment phycocyanin (PC) using data from the MODerate resolution Imaging Spectroradiometer (MODIS) in Lake Chaohu (China's fifth largest freshwater lake). The approach was developed and tested using fourteen years (2000-2014) of MODIS images, which showed significant spatial and temporal variability of the PC:Chla ratio, an indicator of cyanobacterial dominance. The results had unbiased RMS uncertainties of <60% for Chla ranging between 10 and 300 μg/L, and unbiased RMS uncertainties of <65% for PC between 10 and 500 μg/L. Further analysis showed the importance of nutrient and climate conditions for this dominance. Low TN:TP ratios (<29:1) and elevated temperatures were found to influence the seasonal shift of phytoplankton community. The resultant MODIS Chla and PC products were then used for cyanobacterial risk mapping with a decision tree classification model. The resulting Water Quality Decision Matrix (WQDM) was designed to assist authorities in the identification of possible intake areas, as well as specific months when higher frequency monitoring and more intense water treatment would be required if the location of the present intake area remained the same. Remote sensing cyanobacterial risk mapping provides a new tool for reservoir and lake management programs.
Collapse
Affiliation(s)
- Hongtao Duan
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Min Tao
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Steven Arthur Loiselle
- Dipartimento Farmaco Chimico Tecnologico, CSGI, University of Siena, 53100, Siena, Italy
| | - Wei Zhao
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing, 210042, China
| | - Zhigang Cao
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Ronghua Ma
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiaoxian Tang
- Monitoring Station of Chaohu Lake Management Authority, Chaohu, 238000, China
| |
Collapse
|
64
|
Zhou B, Shang M, Wang G, Feng L, Shan K, Liu X, Wu L, Zhang X. Remote estimation of cyanobacterial blooms using the risky grade index (RGI) and coverage area index (CAI): a case study in the Three Gorges Reservoir, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:19044-19056. [PMID: 28660506 DOI: 10.1007/s11356-017-9544-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/13/2017] [Indexed: 06/07/2023]
Abstract
Harmful cyanobacterial blooms are exemplified as a major environmental concern due to producing toxin, and have generated a serious threat to public health. Knowledge on the spatial-temporal distribution of cyanobacterial blooms is therefore crucial for public health organizations and environmental agencies. In this study, field data and charge coupled device (CCD) image were collected in Lakes Gaoyang and Hanfeng of the Three Gorges Reservoir (TGR), China. We conducted the risky grade index (RGI) and coverage area index to develop a feasible estimation framework of cyanobacterial blooms. First, the close relationships between CCD reflectance spectral indices and water quality parameters were constructed based on water optical classification. Then, a regional algorithm for the RGI classification was established by density peaks. Finally, our proposed algorithm was applied to investigate dynamics of cyanobacterial blooms in the two lakes from 6-year series of CCD images. Encouraging results demonstrated that satellite remote sensing in conjunction with field observation can aid in the estimation of cyanobacterial blooms in the TGR.
Collapse
Affiliation(s)
- Botian Zhou
- Chongqing Key Laboratory of Big Data and Intelligent Computing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Mingsheng Shang
- Chongqing Key Laboratory of Big Data and Intelligent Computing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Guoyin Wang
- Chongqing Key Laboratory of Big Data and Intelligent Computing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Li Feng
- Chongqing Collaborative Innovation Center of Big Data Application in Eco-Environmental Remote Sensing, Chongqing Academy of Environmental Science, Chongqing, 401147, China
| | - Kun Shan
- Chongqing Key Laboratory of Big Data and Intelligent Computing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Xiangnan Liu
- School of Information Engineering, China University of Geosciences, Beijing, 100083, China
| | - Ling Wu
- School of Information Engineering, China University of Geosciences, Beijing, 100083, China
| | - Xuerui Zhang
- Chongqing Key Laboratory of Big Data and Intelligent Computing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
| |
Collapse
|
65
|
Jin Y, Pei H, Hu W, Zhu Y, Xu H, Ma C, Sun J, Li H. A promising application of chitosan quaternary ammonium salt to removal of Microcystis aeruginosa cells from drinking water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 583:496-504. [PMID: 28126284 DOI: 10.1016/j.scitotenv.2017.01.104] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/14/2017] [Accepted: 01/16/2017] [Indexed: 06/06/2023]
Abstract
This work was aimed toward studying the new application of chitosan quaternary ammonium salt (HTCC), a water-soluble chitosan derivative, on removal of Microcystis aeruginosa (M. aeruginosa) cells during HTCC coagulation and floc storage. Results showed that all cells were removed without damage under optimum coagulation conditions: HTCC dosage 1.5mg/L, rapid mixing for 0.5min at 5.04g and slow mixing for 30min at 0.20g. The high removal efficiency was due to the large size and compact structure of flocs formed by HTCC, which readily settled. During floc storage, HTCC could induce production of reactive oxygen species (ROS), which would accelerate M. aeruginosa cell lysis. But the flocs, into which the cells aggregated, could protect cells from cellular oxidative damage caused by ROS, thus keeping the cells intact for a longer time.
Collapse
Affiliation(s)
- Yan Jin
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Haiyan Pei
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan, 250061, China.
| | - Wenrong Hu
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan, 250061, China
| | - Yaowen Zhu
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Hangzhou Xu
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Chunxia Ma
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Jiongming Sun
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Hongmin Li
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
66
|
Zhang L, Gu L, Wei Q, Zhu X, Wang J, Wang X, Yang Z. High temperature favors elimination of toxin-producing Microcystis and degradation of microcystins by mixotrophic Ochromonas. CHEMOSPHERE 2017; 172:96-102. [PMID: 28064124 DOI: 10.1016/j.chemosphere.2016.12.146] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/27/2016] [Accepted: 12/28/2016] [Indexed: 06/06/2023]
Abstract
This study aimed to investigate the influence of temperature on the ability of the mixotrophic flagellate Ochromonas to eliminate a toxic Microcystis population and degrade microcystins. We exposed Microcystis to cultures with or without Ochromonas YZ1 at 20, 25, and 30 °C for 10 days. Results showed that increased temperature promoted the growth of Ochromonas YZ1 and Microcystis, with the latter achieving high abundance without grazing. With increased temperature, Ochromonas YZ1 clearance rate increased, and Microcystis populations were earlier eliminated. Importantly, Ochromonas YZ1 degraded both intracellular and extracellular microcystins by grazing effects. The reduction ratios of Microcystis abundances and microcystins were both approximately 100% after 6 days at high temperature. In addition, more microcystins were released outside at 20 °C than at the higher temperatures. Overall, this study showed that high temperature favors elimination of toxin-producing Microcystis and degradation of microcystins by mixotrophic Ochromonas.
Collapse
Affiliation(s)
- Lu Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Lei Gu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Qian Wei
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Xuexia Zhu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Jun Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Xiaojun Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
67
|
Zhao Y, Cao Q, He Y, Xue Q, Xie L, Yan Y. Impairment of endoplasmic reticulum is involved in β-cell dysfunction induced by microcystin-LR. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 223:587-594. [PMID: 28162804 DOI: 10.1016/j.envpol.2017.01.061] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 01/02/2017] [Accepted: 01/21/2017] [Indexed: 06/06/2023]
Abstract
Microcystins (MCs) widely distributed in freshwaters have posed a significant risk to human health. Previous studies have demonstrated that exposure to MC-LR impairs pancreatic islet function, however, the underlying mechanisms still remain unclear. In the present study, we explored the role of endoplasmic reticulum (ER) impairment in β-cell dysfunction caused by MC-LR. The result showed that MC-LR modified ER morphology evidenced by increased ER amount and size at low doses (15, 30 or 60 μM) and vacuolar and dilated ER ultrastructure at high doses (100 or 200 μM). Also, insulin content showed increased at 15 or 30 μM but declined at 60, 100, or 200 μM, which was highly accordant with ER morphological alteration. Transcriptomic analysis identified a number of factors and several pathways associated with ER protein processing, ER stress, apoptosis, and diabetes mellitus in the cells treated with MC-LR compared with non-treated cells. Furthermore, MC-LR-induced ER stress significantly promoted the expression of PERK/eIF2α and their downstream targets (ATF4, CHOP, and Gadd34), which indicates that PERK-eIF2α-ATF4 pathway is involved in MC-LR-induced insulin deficiency. These results suggest that ER impairment is an important contributor to MC-LR-caused β-cell failure and provide a new insight into the association between MCs contamination and the occurrence of human diseases.
Collapse
Affiliation(s)
- Yanyan Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, PR China
| | - Qing Cao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, PR China
| | - Yaojia He
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China
| | - Qingju Xue
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, PR China
| | - Liqiang Xie
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, PR China.
| | - Yunjun Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China.
| |
Collapse
|
68
|
Yang J, Zhang X, Xie Y, Song C, Sun J, Zhang Y, Giesy JP, Yu H. Ecogenomics of Zooplankton Community Reveals Ecological Threshold of Ammonia Nitrogen. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:3057-3064. [PMID: 28191935 DOI: 10.1021/acs.est.6b05606] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Communities of zooplankton can be adversely affected by contamination resulting from human activities. Yet understanding the influence of water quality on zooplankton under field-conditions is hindered by traditional labor-intensive approaches that are prone to incomplete or uncertain taxonomic determinations. Here, for the first time, an eco-genomic approach, based on genetic diversity in the mitochondrial cytochrome c oxidase I (COI) region of DNA of zooplankton was used to develop a site-specific, water quality criterion (WQC) for ammonia (NH3). Ammonia has been recognized as a primary stressor in the catchment of the large, eutrophic Tai Lake, China. Nutrients, especially NH3 and nitrite (NO3-) had more significant effects on structure of the zooplankton community than did other environmental factors. Abundances of rotifers increased along a gradient of increasing concentrations of total ammonia nitrogen (TAN), while abundances of copepods and cladocera decreased. A novel, rapid, species sensitivity distribution (SSD) approach based on operational taxonomic units (OTUs) was established to develop a WQC for NH3. The WQC based on OTUs was consistent with the WQC based on the traditional morphology taxonomy approach. This genetics-based SSD approach could be a useful tool for monitoring for status and trends in species composition and deriving ecological criteria and an efficient biomonitoring tool to protect local aquatic ecosystems in virtually any aquatic ecosystem.
Collapse
Affiliation(s)
- Jianghua Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, Jiangsu 210023, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, Jiangsu 210023, China
| | - Yuwei Xie
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, Jiangsu 210023, China
| | - Chao Song
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, Jiangsu 210023, China
| | - Jingying Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, Jiangsu 210023, China
| | - Yong Zhang
- Jiangsu Environmental Monitoring Center , Nanjing, Jiangsu 210000, China
| | - John P Giesy
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, Jiangsu 210023, China
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5B3, Canada
- School of Biological Sciences, University of Hong Kong , SAR, China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, Jiangsu 210023, China
| |
Collapse
|
69
|
Long-term MODIS observations of cyanobacterial dynamics in Lake Taihu: Responses to nutrient enrichment and meteorological factors. Sci Rep 2017; 7:40326. [PMID: 28074871 PMCID: PMC5225474 DOI: 10.1038/srep40326] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/05/2016] [Indexed: 11/08/2022] Open
Abstract
We developed and validated an empirical model for estimating chlorophyll a concentrations (Chla) in Lake Taihu to generate a long-term Chla and algal bloom area time series from MODIS-Aqua observations for 2003 to 2013. Then, based on the long-term time series data, we quantified the responses of cyanobacterial dynamics to nutrient enrichment and climatic conditions. Chla showed substantial spatial and temporal variability. In addition, the annual mean cyanobacterial surface bloom area exhibited an increasing trend across the entire lake from 2003 to 2013, with the exception of 2006 and 2007. High air temperature and phosphorus levels in the spring can prompt cyanobacterial growth, and low wind speeds and low atmospheric pressure levels favor cyanobacterial surface bloom formation. The sensitivity of cyanobacterial dynamics to climatic conditions was found to vary by region. Our results indicate that temperature is the most important factor controlling Chla inter-annual variability followed by phosphorus and that air pressure is the most important factor controlling cyanobacterial surface bloom formation followed by wind speeds in Lake Taihu.
Collapse
|
70
|
Affiliation(s)
- Junguo Ma
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Xiaoyu Li
- College of Life Science, Henan Normal University, Xinxiang, China
| |
Collapse
|
71
|
Zhang Y, Shi K, Liu J, Deng J, Qin B, Zhu G, Zhou Y. Meteorological and hydrological conditions driving the formation and disappearance of black blooms, an ecological disaster phenomena of eutrophication and algal blooms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 569-570:1517-1529. [PMID: 27396313 DOI: 10.1016/j.scitotenv.2016.06.244] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/30/2016] [Accepted: 06/30/2016] [Indexed: 06/06/2023]
Abstract
Potentially toxic black blooms can disrupt drinking water treatment plants and have fatal effects on aquatic ecosystems; therefore, lake management is required to determine whether conditions are favorable for the formation and disappearance of black blooms in water supply sources. Long-term climate background, short-term thresholds of meteorological and hydrological conditions, and the duration of harmful algal blooms (HABs) were investigated as factors affecting the formation and disappearance of black blooms in hyper-eutrophic Lake Taihu. Long-term climate warming (0.31°C/decade), decreases in wind speed (0.26m/s per decade) and air pressure (0.16hPa/decade), and the increase in the meteorological index of black blooms (3.6days/decade) in Lake Taihu over the past 51years provided climate conditions conducive to the formation and occurrence of black blooms. A total of 16 black bloom events with an area larger than 0.1km(2) were observed from 2007 to 2014. Several critical thresholds for short-term meteorological and hydrological conditions were determined for the formation of black blooms, including a five-day average air temperature above 25°C, a five-day average wind speed <2.6m/s, average precipitation of five consecutive days close to 0, and continuous HAB accumulation for >5days. Heavy precipitation events, sudden cooling, and large wind disturbances were the driving factors of black blooms' disappearance. The use of a coupling model that combines the remote sensing of HABs with environmental, meteorological, and hydrological observations could permit an adequate and timely response to black blooms in drinking water sources.
Collapse
Affiliation(s)
- Yunlin Zhang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Kun Shi
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Junjie Liu
- Jiangsu Hydrology and Water Resources Investigation Bureau, Nanjing 210029, China
| | - Jianming Deng
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Boqiang Qin
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Guangwei Zhu
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongqiang Zhou
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
72
|
Zhou Q, Zhang Y, Lin D, Shan K, Luo Y, Zhao L, Tan Z, Song L. The relationships of meteorological factors and nutrient levels with phytoplankton biomass in a shallow eutrophic lake dominated by cyanobacteria, Lake Dianchi from 1991 to 2013. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:15616-15626. [PMID: 27130340 DOI: 10.1007/s11356-016-6748-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 04/22/2016] [Indexed: 06/05/2023]
Abstract
Long-term interannual (1991-2013) and monthly (1999-2013) data were analyzed to elucidate the effects of meteorological factors and nutrient levels on phytoplankton biomass in the cyanobacteria-dominated Waihai basin of Lake Dianchi. The interannual ln(chl. a) exhibited positive correlations with the mean air temperature, mean minimum air temperature, and mean maximum air temperature; in addition, a positive relationship between Δln(chl. a) and ΔTP was observed throughout the period. Additionally, ln(chl. a) exhibited a positive correlation with the TP concentration, negative correlations with the sunshine hours and wind speed during the dry season, and positive correlations with the TN and TP concentrations during the rainy season. Furthermore, TP was the most influential factor affecting cyanobacterial bloom dynamics throughout the entire period and during the dry season, and TN and TP were the most important factors during the rainy season, as determined by relative importance analysis. The results of this study based on interannual analysis demonstrated that both meteorological factors and nutrient levels have important roles in controlling cyanobacterial bloom dynamics. The relative importance of these factors may change according to precipitation patterns. Thus, climate change regulation and eutrophication management should be considered in strategies for bloom control. Decreasing the TP load should be prioritized throughout the entire period and during the dry season, and decreasing the TN and TP loads should be considered initially during the rainy season. In addition, further studies of more frequent and complete data acquired over a longer period of time should be conducted in the future.
Collapse
Affiliation(s)
- Qichao Zhou
- Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake-Watershed, Yunnan Institute of Environmental Science (Kunming China International Research Center for Plateau Lake), Kunming, 650034, China
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yunlin Zhang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Dunmei Lin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Kun Shan
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Yu Luo
- Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake-Watershed, Yunnan Institute of Environmental Science (Kunming China International Research Center for Plateau Lake), Kunming, 650034, China
| | - Lei Zhao
- Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake-Watershed, Yunnan Institute of Environmental Science (Kunming China International Research Center for Plateau Lake), Kunming, 650034, China
| | - Zhiwei Tan
- Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake-Watershed, Yunnan Institute of Environmental Science (Kunming China International Research Center for Plateau Lake), Kunming, 650034, China
| | - Lirong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
73
|
Ding Y, Qin B, Xu H, Wang X. Effects of sediment and turbulence on alkaline phosphatase activity and photosynthetic activity of phytoplankton in the shallow hyper-eutrophic Lake Taihu, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:16183-16193. [PMID: 27151245 DOI: 10.1007/s11356-016-6786-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/28/2016] [Indexed: 06/05/2023]
Abstract
Sediments play important roles, as nutrient reservoir, especially in shallow lake ecosystem. The water column of large shallow lakes is often stable but also disturbed by turbulence causing resuspension of sediments. While considerable research has been carried out to investigate the influence of sediment resuspension on nutrient release, fewer studies have been done to understand the contribution of alkaline phosphatase activity (APA) in water as a response to the two conditions (turbulence and stability). Also, effects of the two lake conditions on photosynthetic efficiency of phytoplankton are still poorly understood. This study will evaluate the effect of these two conditions on photosynthetic efficiency and APA. Sediments used in the indoor experiments were collected from Zhushan Bay in Lake Taihu. Turbulence was generated by rotors to simulate the strong wind-induced disturbance in Lake Taihu. Results of the experiments showed that TN and TP in the stable and episodically turbulent conditions were not significantly different, with TN ranging from 1.34 to 1.90 mg/L and TP from 0.08 to 0.18 mg/L. Whereas, the soluble reactive phosphorus in the episodically turbulent condition was significantly higher than in the stable condition. Episodic turbulence could enhance P cycling by resuspending sediment-associated P, which alleviated algal P limitation. In stable conditions, P deficiency induced the production of high APA, which enhanced the availability of P. Although episodic turbulence could also cause increased algal biomass, photosynthetic efficiency of the algae was also affected not only by the nutrients but also by many other factors, especially light availability. Our results suggest that episodic turbulence is an important driver of biogeochemical cycling in large shallow hypertrophic lake ecosystem.
Collapse
Affiliation(s)
- Yanqing Ding
- School of Resources and Geosciences, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China
| | - Boqiang Qin
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu, China.
| | - Hai Xu
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu, China
| | - Xiaodong Wang
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai, 200092, China
| |
Collapse
|
74
|
Huang H, Xiao X, Lin F, Grossart HP, Nie Z, Sun L, Xu C, Shi J. Continuous-release beads of natural allelochemicals for the long-term control of cyanobacterial growth: Preparation, release dynamics and inhibitory effects. WATER RESEARCH 2016; 95:113-123. [PMID: 26986500 DOI: 10.1016/j.watres.2016.02.058] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/15/2016] [Accepted: 02/28/2016] [Indexed: 06/05/2023]
Abstract
The effects of allelochemicals on cyanobacterial blooms have been observed for more than 20 years; however, the use of these compounds, usually involving a "direct-added" mode, has clear disadvantages, such as a short activity period or temporarily excessive localized concentration. Here, a simulated-allelopathy mode to facilitate the application of allelochemicals was proposed and tested on Microcystis aeruginosa. The continuous-release beads of 5,4'-dihydroxyflavone (DHF) were constitutive of a polymer matrix and showed a high drug-loading rate (47.18%) and encapsulation efficiency (67.65%) with a theoretical release time of approximately 120 d. Cyanobacterial growth tests showed that the DHF beads had long-term inhibition effects (>30 d), whereas those of "direct-added" DHF to cells lasted a maximum of 10 d. The beads also continuously affected the superoxide dismutase, catalase, and lipid peroxidation of M. aeruginosa. The inhibitory effects of DHF beads on cyanobacterial growth increased as initial cell densities of M. aeruginosa decreased, suggesting that the beads inhibit cyanobacterial activity more effectively in the early bloom phase. Consequently, the anti-cyanobacterial beads represent a novel application mode of allelochemicals with long-term inhibitory effects on cyanobacterial growth. Our study demonstrates that the successful application of allelochemicals offers great potential to control harmful cyanobacterial blooms, especially at the initial stage of development.
Collapse
Affiliation(s)
- Haomin Huang
- College of Environmental & Resource Sciences (CERS), Zhejiang University, 310012 Hangzhou, PR China
| | - Xi Xiao
- College of Environmental & Resource Sciences (CERS), Zhejiang University, 310012 Hangzhou, PR China; Ocean College, Zhejiang University, 310012 Hangzhou, PR China.
| | - Fang Lin
- Ocean College, Zhejiang University, 310012 Hangzhou, PR China
| | - Hans-Peter Grossart
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, 2 Alte Fischerhütte, Neuglobsow, Germany
| | - Zeyu Nie
- College of Environmental & Resource Sciences (CERS), Zhejiang University, 310012 Hangzhou, PR China
| | - Lijuan Sun
- College of Environmental & Resource Sciences (CERS), Zhejiang University, 310012 Hangzhou, PR China
| | - Chen Xu
- College of Environmental & Resource Sciences (CERS), Zhejiang University, 310012 Hangzhou, PR China
| | - Jiyan Shi
- College of Environmental & Resource Sciences (CERS), Zhejiang University, 310012 Hangzhou, PR China.
| |
Collapse
|
75
|
Stumpf RP, Davis TW, Wynne TT, Graham JL, Loftin KA, Johengen TH, Gossiaux D, Palladino D, Burtner A. Challenges for mapping cyanotoxin patterns from remote sensing of cyanobacteria. HARMFUL ALGAE 2016; 54:160-173. [PMID: 28073474 DOI: 10.1016/j.hal.2016.01.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 05/04/2023]
Abstract
Using satellite imagery to quantify the spatial patterns of cyanobacterial toxins has several challenges. These challenges include the need for surrogate pigments - since cyanotoxins cannot be directly detected by remote sensing, the variability in the relationship between the pigments and cyanotoxins - especially microcystins (MC), and the lack of standardization of the various measurement methods. A dual-model strategy can provide an approach to address these challenges. One model uses either chlorophyll-a (Chl-a) or phycocyanin (PC) collected in situ as a surrogate to estimate the MC concentration. The other uses a remote sensing algorithm to estimate the concentration of the surrogate pigment. Where blooms are mixtures of cyanobacteria and eukaryotic algae, PC should be the preferred surrogate to Chl-a. Where cyanobacteria dominate, Chl-a is a better surrogate than PC for remote sensing. Phycocyanin is less sensitive to detection by optical remote sensing, it is less frequently measured, PC laboratory methods are still not standardized, and PC has greater intracellular variability. Either pigment should not be presumed to have a fixed relationship with MC for any water body. The MC-pigment relationship can be valid over weeks, but have considerable intra- and inter-annual variability due to changes in the amount of MC produced relative to cyanobacterial biomass. To detect pigments by satellite, three classes of algorithms (analytic, semi-analytic, and derivative) have been used. Analytical and semi-analytical algorithms are more sensitive but less robust than derivatives because they depend on accurate atmospheric correction; as a result derivatives are more commonly used. Derivatives can estimate Chl-a concentration, and research suggests they can detect and possibly quantify PC. Derivative algorithms, however, need to be standardized in order to evaluate the reproducibility of parameterizations between lakes. A strategy for producing useful estimates of microcystins from cyanobacterial biomass is described, provided cyanotoxin variability is addressed.
Collapse
Affiliation(s)
- Richard P Stumpf
- National Oceanic and Atmospheric Administration, National Centers for Coastal Ocean Science, Silver Spring, MD, USA.
| | - Timothy W Davis
- National Oceanic and Atmospheric Administration, Great Lakes Environmental Research Laboratory, Ann Arbor, MI, USA
| | - Timothy T Wynne
- National Oceanic and Atmospheric Administration, National Centers for Coastal Ocean Science, Silver Spring, MD, USA
| | - Jennifer L Graham
- United States Geological Survey, Kansas Water Science Center, Lawrence, KS, USA
| | - Keith A Loftin
- United States Geological Survey, Kansas Water Science Center, Lawrence, KS, USA
| | - Thomas H Johengen
- Cooperative Institute for Limnology & Ecosystem Research (CILER), Ann Arbor, MI, USA
| | - Duane Gossiaux
- National Oceanic and Atmospheric Administration, Great Lakes Environmental Research Laboratory, Ann Arbor, MI, USA
| | - Danna Palladino
- Cooperative Institute for Limnology & Ecosystem Research (CILER), Ann Arbor, MI, USA
| | - Ashley Burtner
- Cooperative Institute for Limnology & Ecosystem Research (CILER), Ann Arbor, MI, USA
| |
Collapse
|
76
|
A review on factors affecting microcystins production by algae in aquatic environments. World J Microbiol Biotechnol 2016; 32:51. [PMID: 26874538 DOI: 10.1007/s11274-015-2003-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/16/2015] [Indexed: 10/22/2022]
Abstract
Microcystins, a toxin produced by Microcystis aeruginosa have become a global environmental issue in recent years. As a consequence of eutrophication, microcystins have become widely disseminated in drinking water sources, seriously impairing drinking water quality. This review focuses on the relationship between microcystins synthesis and physical, chemical, and biological environmental factors that are significant in controlling their production. Light intensity and temperature are the more important physical factors, and in many cases, an optimum level for these two factors has been observed. Nitrogen and phosphorus are the key chemical factors causing frequent occurrence of harmful algal blooms and microcystins production. The absorption of nutrients and metabolic activities of algae are affected by different concentrations and forms of nitrogen and phosphorus, leading to variations in microcystins production Metal ions and emerging pollutants are other significant chemical factors, whose comprehensive impact is still being studied. Algae can also interact with biological agents like predators and competitors in aquatic environments, and such interactions are suggested to promote MCs production and release. This review further highlights areas that require further research in order to gain a better understanding of microcystins production. It provides a theoretical basis for the control of microcystins production and releasing into aquatic environments.
Collapse
|
77
|
Han ZL, Shi XS, Ji YT, Tan XM, Bai FL, Yuan XZ, Wang YQ, Guo RB. Stable isotope labeling to study the nitrogen metabolism in microcystin biosynthesis. RSC Adv 2016. [DOI: 10.1039/c6ra03031a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
15N-labeled MC-LR was biosynthesized successfully inM. aeruginosabyin vivostable isotopic enrichment and its biosynthesis and metabolic flux was explored using LC-MS and Raman analysis.
Collapse
Affiliation(s)
- Zhen-Lian Han
- State Key Laboratory of Biological Fermentation Engineering of Beer
- Tsingtao Brewery Co., Ltd
- Qingdao 266100
- China
- College Material Science & Engineering
| | - Xiao-Shuang Shi
- Key Laboratory of Biofuels
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- P. R. China
| | - Yue-Tong Ji
- Key Laboratory of Biofuels
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- P. R. China
| | - Xiao-Ming Tan
- Key Laboratory of Biofuels
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- P. R. China
| | - Fa-Li Bai
- Key Laboratory of Biofuels
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- P. R. China
| | - Xian-Zheng Yuan
- State Key Laboratory of Biological Fermentation Engineering of Beer
- Tsingtao Brewery Co., Ltd
- Qingdao 266100
- China
- Key Laboratory of Biofuels
| | - Yi-Qian Wang
- Cultivation Base State Key Lab
- Qingdao University
- Qingdao
- P. R. China
| | - Rong-Bo Guo
- Key Laboratory of Biofuels
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- P. R. China
| |
Collapse
|