51
|
Aydın EB, Aydın M, Sezgintürk MK. A label-free immunosensor for sensitive detection of RACK 1 cancer biomarker based on conjugated polymer modified ITO electrode. J Pharm Biomed Anal 2020; 190:113517. [PMID: 32784093 DOI: 10.1016/j.jpba.2020.113517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 11/19/2022]
Abstract
A new flexible biosensor based on conjugated polymer functionalized indium tin oxide (ITO) sheet was fabricated for Receptor for Activated C Kinase 1 (RACK 1) determination. Poly(3-thiophene acetic acid) (P(Thi-Ac)) was used as an immobilization matrix for construction of RACK 1 immunosensor. This polymer had a great number of carboxyl groups on its end site and these carboxyl ends provided anchoring points to the anti-RACK 1 antibodies. Anti-RACK 1 antibodies were covalently attached on the ITO electrode and recognized the RACK 1 antigens. Electrochemical characterizations were made by employing electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques. Additionally, single frequency impedance method (SFI) was applied to follow the specific biointeraction between antibody and antigen. As a result of specific biointeraction, the designed immunosensor exhibited a wide linear detection range between 0.01 pg/mL and 2 pg/mL RACK 1 with a detection limit of 3.1 fg/mL. Scanning electron microscopy and atomic force microscopy analyses were employed for electrode surface morphology investigation. The designed RACK 1 biosensor had good repeatability (5.73 %, RSD), excellent reproducibility (2.5 %, RSD), long storage-stability and reusable property. In addition, the fabricated RACK 1 biosensor was applied to determine RACK 1 concentration in human serums and the recovery was ranging from 98.79%-100.22%. This work illustrated a new tool to construct a sensitive and low-cost disposable biosensor for applications in clinical monitoring.
Collapse
Affiliation(s)
- Elif Burcu Aydın
- Tekirdağ Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey
| | - Muhammet Aydın
- Tekirdağ Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey
| | - Mustafa Kemal Sezgintürk
- Çanakkale Onsekiz Mart University, Faculty of Engineering, Bioengineering Department, Çanakkale, Turkey.
| |
Collapse
|
52
|
Tafazoli H, Safaei M, Shishehbore MR. A New Sensitive Method for Quantitative Determination of Cisplatin in Biological Samples by Kinetic Spectrophotometry. ANAL SCI 2020; 36:1217-1222. [PMID: 32418934 DOI: 10.2116/analsci.20p118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study describes a kinetic spectrophotometric method for accurate, sensitive and rapid determination of cisplatin in biofluids. The developed method is based on the inhibitory effect of cisplatin on the oxidization of Janus Green by bromate in acidic media. The change in absorbance as the criteria of the oxidation reaction was followed spectrophotometrically. To obtain the highest rate of sensitivity, efficient reaction parameters were optimized. Under optimum experimental conditions, a calibration graph was obtained linearly over the range 10.0 - 5750.0 μg L-1 and the limit of detection (3sb/m) was 4.2 μg L-1 of cisplatin. The interfering effect of diverse species was investigated. The developed method was used for the quantification of cisplatin in bio fluids of patients treated with cisplatin, spiked bio fluids and pharmaceutical samples and yielded satisfactory results.
Collapse
|
53
|
Hsan N, Dutta PK, Kumar S, Das N, Koh J. Capture and chemical fixation of carbon dioxide by chitosan grafted multi-walled carbon nanotubes. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101237] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
54
|
Applications of fiber-optic biochemical sensor in microfluidic chips: A review. Biosens Bioelectron 2020; 166:112447. [DOI: 10.1016/j.bios.2020.112447] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/03/2020] [Accepted: 07/10/2020] [Indexed: 11/19/2022]
|
55
|
Pen sensor made with silver nanoparticles decorating graphite-polyurethane electrodes to detect bisphenol-A in tap and river water samples. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:110989. [PMID: 32993994 DOI: 10.1016/j.msec.2020.110989] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/14/2020] [Accepted: 04/18/2020] [Indexed: 12/30/2022]
Abstract
Rapid, on-site detection of emerging pollutants is critical for monitoring health threats and the environment, especially if performed through autonomous systems. In this paper, we report on a new design of a complete electrochemical system whose working (WE), auxiliary (AE) and reference (RE) electrodes were obtained on a pen (PEN Sensor) made with graphite:polyurethane (GPUE). Working electrodes were decorated with spherical, ca. 200 nm silver nanoparticles (AgNPs) reduced on graphite using the polyol method. Differential pulse voltammetry (DPV) was used to detect bisphenol-A (BPA) in a linear range from 2.5 to 15 μmol L-1 with detection limit of 0.24 μmol L-1. The PEN Sensor could also detect bisphenol-A in tap and river water samples, with satisfactory reproducibility and repeatability, while common interferents did not affect electrooxidation of bisphenol-A. The high sensitivity and rapid detection are suitable for real-time analysis and in loco monitoring of emerging pollutants. With their robustness and versatility, PEN Sensors such as those fabricated here may be integrated into futuristic smart robotic systems.
Collapse
|
56
|
Bakirhan NK, Topal BD, Ozcelikay G, Karadurmus L, Ozkan SA. Current Advances in Electrochemical Biosensors and Nanobiosensors. Crit Rev Anal Chem 2020; 52:519-534. [DOI: 10.1080/10408347.2020.1809339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Nurgul K. Bakirhan
- Department of Analytical Chemistry, Gulhane Faculty of Pharmacy, University of Health Sciences, Ankara, Turkey
| | - Burcu D. Topal
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Goksu Ozcelikay
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Leyla Karadurmus
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
- Department of Analytical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman, Turkey
| | - Sibel A. Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
57
|
Mourad R, El badry Mohamed M, Frag EYZ, El‐Boraey HA, EL‐Sanafery SS. A Novel Molecularly Imprinted Potentiometric Sensor for the Fast Determination of Bisoprolol Fumarate in Biological Samples. ELECTROANAL 2020. [DOI: 10.1002/elan.202060043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- R. Mourad
- Department of Polymers and Pigments National Research Centre Dokki Cairo Egypt
| | | | - Eman Y. Z. Frag
- Chemistry Department Faculty of Science Cairo University Giza Egypt
| | - Hanaa A. El‐Boraey
- Chemistry Department Faculty of Science Menoufia University Shebin AL-Kom
| | | |
Collapse
|
58
|
Environmentally benign production of cupric oxide nanoparticles and various utilizations of their polymeric hybrids in different technologies. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213378] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
59
|
Winiarski JP, Rampanelli R, Bassani JC, Mezalira DZ, Jost CL. Multi-walled carbon nanotubes/nickel hydroxide composite applied as electrochemical sensor for folic acid (vitamin B9) in food samples. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103511] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
60
|
Ghalkhani M, Kaya SI, Bakirhan NK, Ozkan Y, Ozkan SA. Application of Nanomaterials in Development of Electrochemical Sensors and Drug Delivery Systems for Anticancer Drugs and Cancer Biomarkers. Crit Rev Anal Chem 2020; 52:481-503. [DOI: 10.1080/10408347.2020.1808442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Masoumeh Ghalkhani
- Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Sariye Irem Kaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
- Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, University of Health Sciences, Ankara, Turkey
| | - Nurgul K. Bakirhan
- Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, University of Health Sciences, Ankara, Turkey
| | - Yalcin Ozkan
- Gulhane Faculty of Pharmacy, Department of Pharmaceutical Technology, University of Health Sciences, Ankara, Turkey
| | - Sibel A. Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
61
|
Electrochemical anticancer drug sensor for determination of raloxifene in the presence of tamoxifen using graphene-CuO-polypyrrole nanocomposite structure modified pencil graphite electrode: Theoretical and experimental investigation. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113314] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
62
|
Zhang S, Li KB, Pan Y, Han DM. Ultrasensitive detection of ochratoxin A based on biomimetic nanochannel and catalytic hairpin assembly signal amplification. Talanta 2020; 220:121420. [PMID: 32928431 DOI: 10.1016/j.talanta.2020.121420] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 10/23/2022]
Abstract
In this paper, an ultrasensitive nanochannel sensor has been proposed for label-free Ochratoxin A (OTA) assay in combination with graphene oxide (GO) and catalyzed hairpin assembly (CHA). The high-performance sensor is segmented into two parts. One is composed of graphene oxide (GO) and DNA probes. In the presence of target OTA, OTA works as a catalyst to trigger the self-assembly pathway of the two probes and initiate the cycling of CHA circuits, which results in numerous double-stranded DNAs (dsDNA) in solution. The excess ssDNA probes are removed by GO. The other part is composed of biomimetic nanochannel coated with polyethyleneimine (PEI) and Zr4+, which can quantify the concentration of OTA by detecting the dsDNA in solution. The nanofluidic device has a detection limit of as low as 6.2 pM with an excellent selectivity. The nanochannel based assay was used to analyse food samples (red wine) with satisfied results. Thus, the proposed analytical method will provide a new approach the detection of OTA and can be applied for quality control to ensure food safety.
Collapse
Affiliation(s)
- Siqi Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China; School of Pharmaceutical and Materials Engineering, Taizhou University, Jiaojiang, 318000, China
| | - Kai-Bin Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China; School of Pharmaceutical and Materials Engineering, Taizhou University, Jiaojiang, 318000, China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China.
| | - De-Man Han
- School of Pharmaceutical and Materials Engineering, Taizhou University, Jiaojiang, 318000, China.
| |
Collapse
|
63
|
A metal-organic framework/aptamer system as a fluorescent biosensor for determination of aflatoxin B1 in food samples. Talanta 2020; 219:121342. [PMID: 32887071 DOI: 10.1016/j.talanta.2020.121342] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 12/24/2022]
Abstract
The demand of simple, sensitive, selective and reliable assay for aflatoxin B1 (AFB1) detection is ubiquitous in food safety, due to its high toxic. Herein, a novel fluorescent aptasensor using metal-organic frameworks (UiO-66-NH2) and TAMRA label aptamer as sensing platform for AFB1 detection was developed. The TAMRA aptamer adsorbed on the surface of UiO-66-NH2 via van der Waals force and its fluorescence was quenched for the charge transfer from fluorescence dye TAMRA to metal ions of UiO-66-NH2. After introducing AFB1 to the system, the TAMRA aptamer binded to AFB1 and formed TAMRA aptamer/AFB1complex, making its conformation change and resulting in fluorescence recovery. Thus, the quantity of AFB1 could be analyzed according to the fluorescence signal change. Under optimize experimental conditions, the assay exhibited high sensitivity toward AFB1 in range of 0-180 ng mL-1 with low limit of detection of 0.35 ng mL-1 and good specificity against other toxins. Moreover, the aptamer/metal-organic frameworks sensing platform could be utilized to determine AFB1 content in food samples such as corn, rice and milk. It provided a reasonable method for other mycotoxin detection by changing the sequence of aptamer.
Collapse
|
64
|
Manasa G, Raj C, Satpati AK, Mascarenhas RJ. S(O)MWCNT/modified Carbon Paste – A Non‐enzymatic Amperometric Sensor for Direct Determination of 6‐Mercaptopurine in Biological Fluids. ELECTROANAL 2020. [DOI: 10.1002/elan.202060049] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- G. Manasa
- Electrochemistry Research Group Department of Chemistry St. Joseph's College – Autonomous Lalbagh Road Bangalore 560027 Karnataka India
| | - Clinto Raj
- Electrochemistry Research Group Department of Chemistry St. Joseph's College – Autonomous Lalbagh Road Bangalore 560027 Karnataka India
| | - Ashis K Satpati
- Analytical Chemistry Division Bhabha Atomic Research Centre, Anushakthi Nagar, Trombay Mumbai 400094 Maharashtra India
| | - Ronald J Mascarenhas
- Electrochemistry Research Group Department of Chemistry St. Joseph's College – Autonomous Lalbagh Road Bangalore 560027 Karnataka India
| |
Collapse
|
65
|
Karimi-Maleh H, Karimi F, Malekmohammadi S, Zakariae N, Esmaeili R, Rostamnia S, Yola ML, Atar N, Movaghgharnezhad S, Rajendran S, Razmjou A, Orooji Y, Agarwal S, Gupta VK. An amplified voltammetric sensor based on platinum nanoparticle/polyoxometalate/two-dimensional hexagonal boron nitride nanosheets composite and ionic liquid for determination of N-hydroxysuccinimide in water samples. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113185] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
66
|
Nafion-stabilized black phosphorus nanosheets-maltosyl-β-cyclodextrin as a chiral sensor for tryptophan enantiomers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110910. [DOI: 10.1016/j.msec.2020.110910] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 01/07/2023]
|
67
|
Sensitive and selective ctDNA detection based on functionalized black phosphorus nanosheets. Biosens Bioelectron 2020; 165:112384. [PMID: 32729509 DOI: 10.1016/j.bios.2020.112384] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 06/03/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023]
Abstract
Circulating tumor DNA (ctDNA) identification is one of the most meaningful approaches towards early cancer diagnosis. However, effective and practical methods for analyzing this emerging class of biomarkers are still lacking. In this work, a biosensor based on nitrophenyl functionalized black phosphorus nanosheets (NP-BPs) is fabricated for sensitive and selective detection of ctDNA. In this work, a nitrophenyl functionalized black phosphorus nanosheets (NP-BPs) biosensor is fabricated for sensitive and selective detection of ctDNA. Due to the successful nitrophenyl functionalization, the NP-BPs biosensor shows higher quenching efficiency and stronger affinity towards single-stranded DNA (ssDNA), as compared with double-stranded DNA (dsDNA). Therefore, the NP-BPs biosensor exhibits 5.4-fold fluorescence enhancement when dye-labelled ssDNA probe forms dsDNA in the presence of its specific ctDNA target. This biosensor exhibits a detection limit of 50 fM and a wide linear detection range of 50 fM-80 pM, provides reliable readout in a short time (15 min). Moreover, the NP-BPs-based biosensor could be applied to discriminate single nucleotide polymorphisms in clinical serum samples. It is envisioned that the NP-BPs-based sensing platform has great potentials in early cancer diagnosis and monitoring cancer progression.
Collapse
|
68
|
Duan J, Li Y, Hou Q, Lv W, Dai L, Ai S. A Facile Colorimetric Sensor for 6-Mercaptopurine Based on Silver Nanoparticles. ANAL SCI 2020; 36:515-517. [PMID: 32378526 DOI: 10.2116/analsci.20c006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 04/20/2020] [Indexed: 08/09/2023]
Abstract
A facile colorimetric method was developed for detecting 6-mercaptopurine (6-MP) using silver nanoparticles (AgNPs). The addition of 6-MP to AgNPs led to the aggregation of AgNPs with a color change from yellow to brown. The ratio between the absorbance at 394 and 530 nm (A394/A530) was used for a quantitative analysis of 6-MP. A linear range of 0 - 0.5 μM was obtained with a detection limit of 10 nM. The developed method is cost-effective and simple.
Collapse
Affiliation(s)
- Junling Duan
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Yijing Li
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Qin Hou
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Wei Lv
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Li Dai
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Shiyun Ai
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
69
|
Rohilla D, Chaudhary S, Kaur N, Shanavas A. Dopamine functionalized CuO nanoparticles: A high valued “turn on” colorimetric biosensor for detecting cysteine in human serum and urine samples. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110724. [DOI: 10.1016/j.msec.2020.110724] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/14/2020] [Accepted: 02/03/2020] [Indexed: 01/12/2023]
|
70
|
Thiol functionalized carbon ceramic electrode modified with multi-walled carbon nanotubes and gold nanoparticles for simultaneous determination of purine derivatives. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110568. [DOI: 10.1016/j.msec.2019.110568] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/03/2019] [Accepted: 12/17/2019] [Indexed: 01/07/2023]
|
71
|
Liu H, Zhang Y, Zhao Y, Zhao Y, Yang X, Han L, Xin J, Yang B, Lin Q. Dual-emission hydrogel nanoparticles with linear and reversible luminescence-response to pH for intracellular fluorescent probes. Talanta 2020; 211:120755. [DOI: 10.1016/j.talanta.2020.120755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 11/28/2022]
|
72
|
Zhang W, Liu C, Han K, Wei X, Xu Y, Zou X, Zhang H, Chen Z. A signal on-off ratiometric electrochemical sensor coupled with a molecular imprinted polymer for selective and stable determination of imidacloprid. Biosens Bioelectron 2020; 154:112091. [DOI: 10.1016/j.bios.2020.112091] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/14/2020] [Accepted: 02/10/2020] [Indexed: 11/30/2022]
|
73
|
Mohanraj J, Durgalakshmi D, Rakkesh RA, Balakumar S, Rajendran S, Karimi-Maleh H. Facile synthesis of paper based graphene electrodes for point of care devices: A double stranded DNA (dsDNA) biosensor. J Colloid Interface Sci 2020; 566:463-472. [DOI: 10.1016/j.jcis.2020.01.089] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 12/11/2022]
|
74
|
Shetti NP, Mishra A, Basu S, Mascarenhas RJ, Kakarla RR, Aminabhavi TM. Skin-Patchable Electrodes for Biosensor Applications: A Review. ACS Biomater Sci Eng 2020; 6:1823-1835. [DOI: 10.1021/acsbiomaterials.9b01659] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Nagaraj P. Shetti
- Center for Electrochemical Science and Materials, Department of Chemistry, KLE Institute of Technology, Hubballi 580 030, Karnataka, India
| | - Amit Mishra
- Department of Chemistry, Bilkent University, Cankaya, Ankara 06008, Turkey
| | - Soumen Basu
- School of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala, Punjab 147004, India
| | - Ronald J. Mascarenhas
- Electrochemistry Research Group, Department of Chemistry, St. Joseph’s College (Autonomous), Lalbagh Road, Bangalore 560027, Karnataka, India
| | - Raghava Reddy Kakarla
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Tejraj M. Aminabhavi
- Pharmaceutical Engineering, SET’s College of Pharmacy, Dharwad, Karnataka 580 002, India
| |
Collapse
|
75
|
Chen W, Gao G, Jin Y, Deng C. A facile biosensor for Aβ 40O based on fluorescence quenching of prussian blue nanoparticles. Talanta 2020; 216:120930. [PMID: 32456942 DOI: 10.1016/j.talanta.2020.120930] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 12/25/2022]
Abstract
Amyloid β peptide oligomeFrs (AβOs) have been proved to be crucial biomarkers of Alzheimer's disease (AD). To explore an applicable method for the determination of AβOs is significant for the early AD diagnosis. Prussian blue nanoparticles (PBNPs), as one excellent nanomaterials, have the advantages of good stability, favorable biocompatibility, low cost, easy preparation and controllable shape. PBNPs was found to be of the fluorescence quenching ability to fluorophores, and the adsorption of DNA onto PBNPs surface occurred via the binding of phosphate skeleton in DNA to Fe2+/Fe3+ in PBNPs. On basis of this, carboxyl fluorescein (FAM) modified Aβ40O-targeting aptamer (FAM-AptAβ) was adsorbed onto PBNPs. And FAM-AptAβ@PBNPs-based fluorescent aptasensor for the determination of Aβ40O was developed. Upon incubating FAM-AptAβ@PBNPs with Aβ40O, the fluorescence intensity of the FAM-AptAβ@PBNPs obviously increased comparing to the initial fluorescence intensity of the FAM-AptAβ@PBNPs. The changes in the fluorescence intensity of the FAM-AptAβ@PBNPs were linear with the Aβ40O concentrations ranging from 1.00 nM to 100 nM. Moreover, AD patients and healthy persons can be distinguished using this method to determine Aβ40O concentrations in human cerebrospinal fluid samples from AD patients and healthy persons. It demonstrates that this PBNPs-based aptasensor is not only simple and cost-effective, but also sensitive, selective and more applicable. This fluorescent sensing strategy is promising for the development of aptasensor in clinical fields.
Collapse
Affiliation(s)
- Wenlan Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Ge Gao
- Department of Geratology, the Third Xiangya Hospital, Central South University, Changsha, 410013, PR China
| | - Yan Jin
- Department of Geratology, the Third Xiangya Hospital, Central South University, Changsha, 410013, PR China
| | - Chunyan Deng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China.
| |
Collapse
|
76
|
Zhang Q, Ma R, Li Z, Liu Z. A multi-responsive crown ether-based colorimetric/fluorescent chemosensor for highly selective detection of Al 3+, Cu 2+ and Mg 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117857. [PMID: 31784224 DOI: 10.1016/j.saa.2019.117857] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 11/21/2019] [Accepted: 11/23/2019] [Indexed: 06/10/2023]
Abstract
A novel multi-response chemosensor L based on coumarin-chalcone-crown ether was designed and synthesized, which exhibited a high selectivity for the colorimetric detecting Al3+ and Cu2+ and fluorescent recognizing Al3+ and Mg2+ in ethanol. L can monitor Al3+ and Cu2+ via distinct color changes from a slight yellow to pink and to orange, respectively. The sensor L can also monitor Al3+ and Mg2+ by fluorescence emission responses at 592 nm and 547 nm with low detection limits of 0.31 μM and 0.23 μM, respectively. The selectivity of L toward Al3+, Cu2+ and Mg2+ was not interfered by a large number of coexisting ions and was found to be reversible. By means of spectrometric titration, Job's plot, mass spectrometry, 1H NMR titration and IR spectroscopy analysis, it was unanimously confirmed that the sensor L had a stoichiometric ratio of 1:1 with Cu2+ and Mg2+, and 1:2 with Al3+. The order of the stability of the complexes formed by L and Al3+, Cu2+, Mg2+ was as follows: L-Al3+ > L-Cu2+ > L-Mg2+. At the same time, some possible bonding modes and sensing mechanisms were further proposed, and the optimized structure of the sensor L and its sensing mechanism for Al3+, Cu2+ and Mg2+ were confirmed by the calculations of DFT/B3LYP and TD-DFT methods in a suite of Gaussian 09 programs.
Collapse
Affiliation(s)
- Qiang Zhang
- College of Chemical and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, PR China.
| | - Ruifang Ma
- College of Chemical and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, PR China
| | - Zhuying Li
- College of Chemical and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, PR China
| | - Zizhong Liu
- College of Chemical and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, PR China
| |
Collapse
|
77
|
Fukushima Y, Aikawa S. Colorimetric chemosensor based on a Ni2+ complex of a pyridylazo dye for detection of citrate in aqueous solution. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
78
|
Shetti NP, Shanbhag MM, Malode SJ, Srivastava RK, Reddy KR. Amberlite XAD-4 modified electrodes for highly sensitive electrochemical determination of nimesulide in human urine. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104389] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
79
|
Liu Y, Liu H, Yao Z, Diao Y, Hu G, Zhang Q, Sun Y, Li Z. Fabrication, improved performance, and response mechanism of binary Ag–Sb alloy pH electrodes. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
80
|
Yu L, Liu J, Yin W, Yu J, Chen R, Song D, Liu Q, Li R, Wang J. Ionic liquid combined with NiCo2O4/rGO enhances electrochemical oxygen sensing. Talanta 2020; 209:120515. [DOI: 10.1016/j.talanta.2019.120515] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/18/2019] [Accepted: 10/26/2019] [Indexed: 01/24/2023]
|
81
|
Khalkho BR, Kurrey R, Deb MK, Shrivas K, Thakur SS, Pervez S, Jain VK. L-cysteine modified silver nanoparticles for selective and sensitive colorimetric detection of vitamin B1 in food and water samples. Heliyon 2020; 6:e03423. [PMID: 32090184 PMCID: PMC7025228 DOI: 10.1016/j.heliyon.2020.e03423] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/04/2019] [Accepted: 02/12/2020] [Indexed: 12/20/2022] Open
Abstract
The use of L-cysteine modified silver nanoparticles (Cys-capped AgNPs) as a colorimetric probe for determination of vitamin B1 (thiamine) is described in the present work. This method is based on the measurement of red shift of localized surface plasmon resonance (LSPR) band of Cys-capped AgNPs in the region of 200–800 nm. The color of Cys-capped AgNPs was changed from yellow to colorless by the addition of vitamin B1. The mechanism for detection of vitamin B1 is based on the electrostatic interaction between positively charged vitamin B1, which causes the red shift of LSPR band from 390 nm to 580 nm. The interaction between Cys-capped AgNPs and vitamin B1 was theoretically explored by density function theory (DFT) using LANL2DZ basis sets with help of Gaussian 09 (C.01) program. The morphology, size distribution and optical properties of Cys-capped AgNPs were characterized by transmission electron microscope (TEM), UV-Visible spectrophotometry, Fourier transform infrared spectroscopy (FTIR) and dynamic light scattering (DLS) techniques. The method is linear in the range of 25–500 μg mL−1 with correlation coefficient (R2) 0.992 and limit of detection of 7.0 μg mL−1. The advantages of using Cys-capped AgNPs as a chemical sensor in colorimetry assay are being simple, low cost and selective for detection of vitamin B1 from food (peas, grapes and tomato) and environmental (river, sewage and pond) water samples.
Collapse
Affiliation(s)
- Beeta Rani Khalkho
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, 492010, Chhattisgarh, India
| | - Ramsingh Kurrey
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, 492010, Chhattisgarh, India
| | - Manas Kanti Deb
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, 492010, Chhattisgarh, India
- Corresponding author.
| | - Kamlesh Shrivas
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, 492010, Chhattisgarh, India
| | - Santosh Singh Thakur
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, 495009, India
| | - Shamsh Pervez
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, 492010, Chhattisgarh, India
| | - Vikas Kumar Jain
- Department of Chemistry, Govt. Engineering Collage, Raipur, 492015, Chhattisgarh, India
| |
Collapse
|
82
|
Eskiköy Bayraktepe D, Yazan Z. Application of Single‐use Electrode Based on Nano‐clay and MWCNT for Simultaneous Determination of Acetaminophen, Ascorbic Acid and Acetylsalicylic Acid in Pharmaceutical Dosage. ELECTROANAL 2020. [DOI: 10.1002/elan.201900601] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Zehra Yazan
- Ankara UniversityScience Faculty, Chemistry Department Ankara Turkey 06560
| |
Collapse
|
83
|
Yağmuroğlu O, Diltemiz SE. Development of QCM based biosensor for the selective and sensitive detection of paraoxon. Anal Biochem 2020; 591:113572. [DOI: 10.1016/j.ab.2019.113572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/19/2019] [Accepted: 12/29/2019] [Indexed: 12/22/2022]
|
84
|
Diouf A, Moufid M, Bouyahya D, Österlund L, El Bari N, Bouchikhi B. An electrochemical sensor based on chitosan capped with gold nanoparticles combined with a voltammetric electronic tongue for quantitative aspirin detection in human physiological fluids and tablets. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110665. [PMID: 32204094 DOI: 10.1016/j.msec.2020.110665] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/17/2019] [Accepted: 01/13/2020] [Indexed: 12/14/2022]
Abstract
Inflammatory diseases increase has recently sparked the research interest for drugs diagnostic tools development. At therapeutic doses, acetylsalicylic acid (ASA or aspirin) is widely used for these diseases' treatment. ASA overdoses can however give rise to adverse side effects including ulcers, gastric damage. Hence, development of simple, portable and sensitive methods for ASA detection is desirable. This paper reports aspirin analysis in urine, saliva and pharmaceutical tablet using an electrochemical sensor and a voltammetric electronic tongue (VE-Tongue). The electrochemical sensor was fabricated by self-assembling chitosan capped with gold nanoparticles (Cs + AuNPs) on a screen-printed carbon electrode (SPCE). It exhibits a logarithmic-linear relationship between its response and the ASA concentration in the range between 1 pg/mL and 1 μg/mL. A low detection limit (0.03 pg/mL), good selectivity against phenol and benzoic acid interference, and successful practical application were demonstrated. Qualitative analysis was performed using the VE-Tongue based unmodified metal electrodes combined with two chemometric approaches to classify urine samples spiked with different aspirin concentrations. Partial least squares (PLS) method provided prediction models obtained from the data of both devices with a regression correlation coefficient R2 = 0.99. Correspondingly, the SPCE/(Cs + AuNPs) electrochemical sensor and VE-Tongue could be viable tools for biological analysis of drugs.
Collapse
Affiliation(s)
- Alassane Diouf
- Sensor Electronic & Instrumentation Group, Department of Physics, Faculty of Sciences, Moulay Ismaïl University of Meknes, B.P. 11201, Zitoune, Meknes, Morocco.; Biotechnology Agroalimentary and Biomedical Analysis Group, Department of Biology, Faculty of Sciences, Moulay Ismaïl University of Meknes, B.P. 11201, Zitoune, 50003 Meknes, Morocco
| | - Mohammed Moufid
- Sensor Electronic & Instrumentation Group, Department of Physics, Faculty of Sciences, Moulay Ismaïl University of Meknes, B.P. 11201, Zitoune, Meknes, Morocco.; Biotechnology Agroalimentary and Biomedical Analysis Group, Department of Biology, Faculty of Sciences, Moulay Ismaïl University of Meknes, B.P. 11201, Zitoune, 50003 Meknes, Morocco
| | - Driss Bouyahya
- School of arts and humanities, Moulay Ismaïl University of Meknes, Morocco
| | - Lars Österlund
- Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, P.O. Box 534, SE-75121 Uppsala, Sweden
| | - Nezha El Bari
- Biotechnology Agroalimentary and Biomedical Analysis Group, Department of Biology, Faculty of Sciences, Moulay Ismaïl University of Meknes, B.P. 11201, Zitoune, 50003 Meknes, Morocco
| | - Benachir Bouchikhi
- Sensor Electronic & Instrumentation Group, Department of Physics, Faculty of Sciences, Moulay Ismaïl University of Meknes, B.P. 11201, Zitoune, Meknes, Morocco..
| |
Collapse
|
85
|
Electrochemical quantification of pyridoxine (VB6) in human blood from other water-soluble vitamins. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-019-01049-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
86
|
Synthesis of bifunctional cabbage flower-like Ho 3+/NiO nanostructures as a modifier for simultaneous determination of methotrexate and carbamazepine. Anal Bioanal Chem 2020; 412:1011-1024. [PMID: 31897563 DOI: 10.1007/s00216-019-02326-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/15/2019] [Accepted: 12/03/2019] [Indexed: 10/25/2022]
Abstract
Cabbage flower-like Ho3+/NiO nanostructure (CFL-Ho3+/NiO NSs) with significant electrocatalytic oxidation has been published for the first time. First, structure and morphology of CFL-Ho3+/NiO-NSs have been described by XRD, SEM, and EDX methods. Then, CFL-Ho3+/NiO-NSs have been applied as a modifier for simultaneous electrochemical detection of methotrexate (MTX) and carbamazepine (CBZ). Functions of the modified electrode have been dealt with through electrochemical impedance spectroscopy (EIS). It has been demonstrated that the electrode response has been linear from 0.001-310.0 μM with a limit of detection of 5.2 nM and 4.5 nM (3 s/m) through DPV for MTX and CBZ. Diffusion coefficient (D) and heterogeneous rate constant (kh) have been detected for MTX and CBZ oxidation at the surface of the modified electrode. Moreover, CFL-Ho3+/NiO-NS/GCE has been employed for determining MTX and CBZ in urine and drug specimens. Outputs showed the analyte acceptable recovery. Therefore, the electrode could be applied to analyze both analytes in drug prescription and clinical laboratories. Graphical abstract Electrochemical sensor based on bifunctional cabbage flower-like Ho3+/NiO nanostructures modified glassy carbon electrode for simultaneous detecting methotrexate and carbamazepine was fabricated.
Collapse
|
87
|
A poly(acrylic acid)-modified copper-organic framework for electrochemical determination of vancomycin. Mikrochim Acta 2020; 187:79. [DOI: 10.1007/s00604-019-4015-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/08/2019] [Indexed: 01/28/2023]
|
88
|
Alagappan M, Immanuel S, Sivasubramanian R, Kandaswamy A. Development of cholesterol biosensor using Au nanoparticles decorated f-MWCNT covered with polypyrrole network. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2018.02.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
89
|
Voltammetric detection of gliclazide and glibenclamide with graphite screen-printed electrode modified with nanopetal-structured MoWS2. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-019-03993-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
90
|
Taguchi L9 (34) orthogonal array study based on methylene blue removal by single-walled carbon nanotubes-amine: Adsorption optimization using the experimental design method, kinetics, equilibrium and thermodynamics. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112001] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
91
|
Sakthivel R, Annalakshmi M, Chen SM, Kubendhiran S. Synergistic activity of binary metal sulphide WS 2–RuS 2 nanospheres for the electrochemical detection of the antipsychotic drug promazine. NEW J CHEM 2020. [DOI: 10.1039/d0nj00096e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Schematic presentation for the synthesis of tungsten disulfide–ruthenium disulfide (WS2–RuS2) nanospheres and application for the electrochemical determination of antipsychotic drug promazine.
Collapse
Affiliation(s)
- Rajalakshmi Sakthivel
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Muthaiah Annalakshmi
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | | |
Collapse
|
92
|
Karimi-Maleh H, Karimi F, Alizadeh M, Sanati AL. Electrochemical Sensors, a Bright Future in the Fabrication of Portable Kits in Analytical Systems. CHEM REC 2019; 20:682-692. [PMID: 31845511 DOI: 10.1002/tcr.201900092] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 12/16/2022]
Abstract
Analysis of food, pharmaceutical, and environmental compounds is an inevitable issue to evaluate quality of the compounds used in human life. Quality of drinking water, food products, and pharmaceutical compounds is directly associated with human health. Presence of forbidden additives in food products, toxic compounds in water samples and drugs with low quality lead to important problems for human health. Therefore, attention to analytical strategy for investigation of quality of food, pharmaceutical, and environmental compounds and monitoring presence of forbidden compounds in materials used by humans has increased in recent years. Analytical methods help to identify and quantify both permissible and unauthorized compounds present in the materials used in human daily life. Among analytical methods, electrochemical methods have been shown to have more advantages compared to other analytical methods due to their portability and low cost. Most of big companies have applied this type of analytical methods because of their fast and selective analysis. Due to simple operation and high diversity of electroanalytical sensors, these types of sensors are expected to be the future generation of analytical systems. Therefore, many scientists and researchers have focused on designing and fabrication of electroanalytical sensors with good selectivity and high sensitivity for different types of compounds such as drugs, food, and environmental pollutants. In this paper, we described the mechanism and different examples of DNA, enzymatic and electro-catalytic methods for electroanalytical determination of drug, food and environmental compounds.
Collapse
Affiliation(s)
- Hassan Karimi-Maleh
- School of Resources and Enviroment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, P.R. China.,Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan, Iran.,Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein Campus, 2028, Johannesburg, South Africa
| | - Fatemeh Karimi
- School of Resources and Enviroment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, P.R. China.,Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan, Iran
| | - Marzieh Alizadeh
- Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
| | | |
Collapse
|
93
|
Synthesis of Ce/SiO
2
Composited Cross‐Linked Chitosan Flocculation Material and Its Application in Decolorization of Tartrazine Dye. ChemistrySelect 2019. [DOI: 10.1002/slct.201903312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
94
|
Atta NF, Galal A, El-Said DM. Electrochemical sensor based on incorporation of gold nanoparticles, ionic liquid crystal, and β-cyclodextrin into carbon paste composite for ultra-sensitive determination of norepinephrine in real samples. CAN J CHEM 2019. [DOI: 10.1139/cjc-2019-0025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A novel, reliable electrochemical sensor is fabricated for direct and sensitive determination of norepinephrine (NE) based on gold nanoparticles, ionic liquid crystal, and β-cyclodextrin modified carbon paste electrode, namely AuILCCDCPE. The ionic liquid crystal (ILC) played a key role in improving the current response of electro-oxidation of NE compared with other ionic liquids modified electrodes. The ILC increased the ionic conductivity of the paste and formed noncovalent interactions with both host (CD) and guest (NE) compounds. The solid state structure of the ILC helped in the formation of ordered films in the paste. Furthermore, CD and Au nanoparticles raised the stability and the electrocatalytic ability of the proposed sensor. Under optimized conditions, the fabricated electrochemical sensor showed a good electrochemical response towards NE in human urine in the linear dynamic ranges of 0.05–10 μmol/L and 20–300 μmol/L with a correlation coefficient of 0.999 and detection limit of 3.12 × 10−9 mol/L in the low concentration range. The practical analytical performance of the sensor was attained for determination of NE in real samples with satisfied recovery results. This sensor has great ability to be extended for electrochemical applications in assays of other drugs.
Collapse
Affiliation(s)
- Nada F. Atta
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Ahmed Galal
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Dalia M. El-Said
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
95
|
Wang Q, Wu J, Zhao G, Huang Y, Wang Z, Zheng H, Zhou Y, Ye Y, Ghomashchi R. Monitor application of multi-electrochemical sensor in extracting bromine from seawater. ROYAL SOCIETY OPEN SCIENCE 2019; 6:191138. [PMID: 31903205 PMCID: PMC6936287 DOI: 10.1098/rsos.191138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
In this paper, a set of online measurement devices of multi-electrochemical sensor was investigated. Combined with industrial distributed control system, it was first applied in extracting bromine from seawater to realize the real-time adjustment of production process parameters. In the process of extracting bromine from seawater, the pH value of acidified raw brine, the addition amount of Cl2 in the oxidation stage and the addition amount of SO2 in the absorption stage are key parameters to control the whole production process. The multi-electrochemical sensor realized a rapid and high-throughput detection of the above parameters by integrating an all-solid-stage bromide ion selective electrode (Br-ISE), Eh electrode and pH electrode. The Br-ISE and the pH electrode were self-developed electrodes and the Pt electrode was Eh electrode. The pH electrode was used to control the addition amount of H2SO4 during the acidification of the brine. The Eh electrode was used to control the addition amount of Cl2 during the oxidation stage and the addition amount of SO2 during the absorption stage. The Br-ISE was used to monitor the Br- concentration change in the raw brine. Results showed the optimum range of Eh in the oxidation stage and absorption stage of brine were 950-1000 mV and 580-610 mV, respectively. The application of multi-electrochemical sensor in industrial bromine production can realize real-time control of material addition and save the cost of production.
Collapse
Affiliation(s)
- Qiujin Wang
- Ocean College, Zhejiang University, Zhoushan 316000, People's Republic of China
| | - Jianbo Wu
- Ocean College, Zhejiang University, Zhoushan 316000, People's Republic of China
| | - Guochen Zhao
- Shandong Provincial Key Laboratory of High Strength Lightweight Metallic Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250000, People's Republic of China
| | - Yuanfeng Huang
- Shandong Special Equipment Inspection and Testing Science and Technology Co., Ltd, Jinan 250000, People's Republic of China
| | - Zhen Wang
- Shandong Special Equipment Inspection and Testing Science and Technology Co., Ltd, Jinan 250000, People's Republic of China
| | - Hao Zheng
- Ocean College, Zhejiang University, Zhoushan 316000, People's Republic of China
| | - Yifan Zhou
- Ocean College, Zhejiang University, Zhoushan 316000, People's Republic of China
| | - Ying Ye
- Ocean College, Zhejiang University, Zhoushan 316000, People's Republic of China
| | - Reza Ghomashchi
- School of Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
96
|
Rajendraprasad N, Basavaiah K. Development of membrane electrodes for selective determination of lisinopril in pharmaceuticals. J Anal Sci Technol 2019. [DOI: 10.1186/s40543-019-0192-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Lisinopril (LNP) is an angiotensin-converting enzyme inhibitor used as anti-hypertensive, cardiovascular, in anti-prophylactic and anti-diabetic nephropathy drug. Development of two new, simple, low cost, and selective membrane-based ion-selective electrodes has been proposed for the determination of LNP in pharmaceuticals.
Methods
The electrodes are based on poly(vinyl)chloride membrane doped with LNP-phosphotungstic acid (LNP-PTA) and LNP-phosphomolybdic acid (LNP-PMA) ion-pairs as molecular recognition materials.
Results
The developed LNP-PTA and LNP-PMA electrodes are applicable for the determination of LNP over the linear range of 5 × 10−5–2.4 × 10−3 mol l−1. The working pH ranges to measure potentials were 2.5 to 6.4 and 2.3 to 6.0 for LNP-PTA and LNP-PMA ISEs, respectively. The electrodes displayed the rapid Nernstian responses as revealed by the values of slopes 55.06 and 52.39 mV/decade, with limit of detection (LOD) values of 1.2 × 10−5 and 1.18 × 10−5 mol l−1 for LNP-PTA and LNP-PMA electrodes, respectively. The limits of quantitation (LOQ) values have also been calculated for both the electrodes. The developed electrodes have potential stability for up to 1 month and emerged as highly selective for the determination of LNP over other spiked ions and compounds.
Conclusions
The proposed electrodes have been validated and found that they are suitable for the determination of LNP in pharmaceuticals in pure form and in dosage forms. The results obtained in the analysis of LNP using proposed electrodes have been compared statistically with reference method’s results to assess the accuracy and precision. Robustness and ruggedness of the developed electrodes have also been checked and found satisfactory. The recovery studies have been performed by standard addition procedure to assess the role of excipients in tablets containing LNP and the results obtained are satisfactory.
Collapse
|
97
|
Ranđelović MS, Momčilović MZ, Milićević JS, Đurović-Pejčev RD, Mofarah SS, Sorrel CC. Voltammetric sensor based on Pt nanoparticles suported MWCNT for determination of pesticide clomazone in water samples. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
98
|
Takahashi S, Muguruma H, Osakabe N, Inoue H, Ohsawa T. Electrochemical determination with a long-length carbon nanotube electrode of quercetin glucosides in onion, apple peel, and tartary buckwheat. Food Chem 2019; 300:125189. [DOI: 10.1016/j.foodchem.2019.125189] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/15/2019] [Accepted: 07/15/2019] [Indexed: 12/19/2022]
|
99
|
Karami P, Khoshsafar H, Johari-Ahar M, Arduini F, Afkhami A, Bagheri H. Colorimetric immunosensor for determination of prostate specific antigen using surface plasmon resonance band of colloidal triangular shape gold nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 222:117218. [PMID: 31174151 DOI: 10.1016/j.saa.2019.117218] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/12/2019] [Accepted: 05/27/2019] [Indexed: 05/06/2023]
Abstract
In this work, we demonstrated the development of a colorimetric immunosensor using surface plasmon resonance band of gold nanoparticles for the detection of prostate specific antigen (PSA). To develop this biosensing tool, triangular gold nanoparticles (AuNPs) were synthesized using Tween-20 as a nonionic surfactant and then, conjugated with PSA capture antibody (Ab1-AuNPs). When exposed to Ab1-AuNPs, PSA antigens were found to be successfully captured by nanosystem (PSA)-Ab1-AuNPs. Next, (PSA)-Ab1-AuNPs were incubated with second PSA antibody (2)-decorated magnetite (Fe3O4-Ab2) and separated by an external magnetic force to leave Ab1-AuNPs in the supernatant solution to be directly analyzed using UV-Vis spectroscopy. It was found that the absorption intensity was directly proportional to the PSA concentration. As a result, the linear range for PSA detection was found to be 0.01-20 ng mL-1 with a detection limit of 0.009 ng mL-1. Because of significant stability of the prepared Ab1-AuNPs and excellent selectivity to the PSA antigen, this simple and sensitive sensing system is proposed to be potentially effective in the fast and real-time analysis of clinical samples from prostate cancer patients. We believe that the simple platform of this immunosensor to be useful in the development of future point-of-care sensing tools, working on the quantification of biomarkers in a drop of blood.
Collapse
Affiliation(s)
- Pari Karami
- Research and Development Department, Farin Behbood Tashkhis LTD, Tehran, Iran
| | - Hosein Khoshsafar
- Research and Development Department, Farin Behbood Tashkhis LTD, Tehran, Iran
| | - Mohammad Johari-Ahar
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran; Biosensor Research Center (BRC), Ardabil University of Medical Sciences, Ardabil, Iran
| | - Fabiana Arduini
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Abbas Afkhami
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
100
|
A sensitive H 2O 2 biosensor based on carbon nanotubes/tetrathiafulvalene and its application in detecting NADH. Anal Biochem 2019; 589:113493. [PMID: 31682794 DOI: 10.1016/j.ab.2019.113493] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/12/2019] [Accepted: 10/29/2019] [Indexed: 01/12/2023]
Abstract
Reduced nicotinamide adenine dinucleotide (NADH) plays a pivotal role in the electron-transfer chain of biological system. Analysis of many biological markers is based on the detection of the enzymatically generated NADH. In this paper, a sensitive hydrogen peroxide (H2O2) biosensor, fabricated by carbon nanotubes (CNTs)/tetrathiafulvalene (TTF)/horseradish peroxidase (HRP), was applied for detecting the NADH in a buffer containing methylene blue (MB) at low operating potential of - 0.3 V (vs. Ag/AgCl). Since the NADH could be oxidized by MB to release H2O2, the electrochemical biosensor enables to detect the NADH in the MB buffer. And the low working potential made the biosensor avoid the interference from other electroactive substances. Linear response ranges from 10 μM to 790 μM, with a sensitivity of 4.76 μA mM-1 and a detection limit of 1.53 μM were obtained under the optimum conditions. The proposed sensor provided a promising approach for sensitively detecting the NADH.
Collapse
|