51
|
|
52
|
Arjmand F, Parveen S, Mohapatra D. Synthesis, characterization of Cu(II) and Zn(II) complexes of proline-glycine and proline-leucine tetrapeptides: In vitro DNA binding and cleavage studies. Inorganica Chim Acta 2012. [DOI: 10.1016/j.ica.2012.03.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
53
|
Siluvai GS, Vargheese B, Murthy NN. Synthesis and characterization of trivalent tribridged dicobalt complexes incorporating alkoxide, aqua-hydroxide, acetate and phosphate ligating groups. Inorganica Chim Acta 2012. [DOI: 10.1016/j.ica.2012.02.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
54
|
Abstract
The development of synthetic agents able to hydrolytically cleave DNA with high efficiency and selectivity is still a fascinating challenge. Over the years, many examples have been reported reproducing part of the behaviour of the corresponding natural enzymes. Eventually, even the possibility to apply such systems to the manipulation of DNA of higher organisms has been demonstrated. However, efficiency of enzymes is still unrivalled. This feature article discusses the progress reported toward the realization of synthetic nucleases with particular attention to the comprehension of the reaction mechanisms and to the strategies that need to be addressed to obtain more efficient systems.
Collapse
Affiliation(s)
- Fabrizio Mancin
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, I -35131 Padova, Italy.
| | | | | |
Collapse
|
55
|
Arjmand F, Parveen S, Afzal M, Toupet L, Ben Hadda T. Molecular drug design, synthesis and crystal structure determination of CuII–SnIV heterobimetallic core: DNA binding and cleavage studies. Eur J Med Chem 2012; 49:141-50. [DOI: 10.1016/j.ejmech.2012.01.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 01/05/2012] [Accepted: 01/05/2012] [Indexed: 10/14/2022]
|
56
|
Kumar P, Gorai S, Kumar Santra M, Mondal B, Manna D. DNA binding, nuclease activity and cytotoxicity studies of Cu(ii) complexes of tridentate ligands. Dalton Trans 2012; 41:7573-81. [DOI: 10.1039/c2dt30232b] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
57
|
Zhao M, Zhao C, Jiang XQ, Ji LN, Mao ZW. Rapid hydrolysis of phosphate ester promoted by Ce(iv) conjugating with a β-cyclodextrin monomer and dimer. Dalton Trans 2012; 41:4469-76. [DOI: 10.1039/c2dt00003b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
58
|
Efficient double-strand scission of plasmid DNA by quaternized-chitosan zinc complex. Bioorg Med Chem Lett 2011; 22:1814-7. [PMID: 22257891 DOI: 10.1016/j.bmcl.2011.11.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Revised: 11/04/2011] [Accepted: 11/09/2011] [Indexed: 11/24/2022]
Abstract
N-[(2-Hydroxy-3-trimethylammonium) propyl] chitosan chloride (HTACC) was prepared to construct a chitosan-based zinc complex (HTACC-Zn(II)) as a catalyst with good water solubility for rapid DNA cleavage. Results indicated that the observed rate constant (k(obs)) of plasmid DNA cleaved by HTACC-Zn(II) could be enhanced by 10(7)-fold compared with that of uncatalyzed DNA cleavage. The kinetic behavior of HTACC-Zn(II) for DNA cleavage is well fitted by Michaelis-Menten model. The results of gel electrophoresis suggested that HTACC-Zn(II) preferentially perform double-strand break of plasmid DNA.
Collapse
|
59
|
Xiao Y, Wehrmann RJ, Ibrahim NA, Silverman SK. Establishing broad generality of DNA catalysts for site-specific hydrolysis of single-stranded DNA. Nucleic Acids Res 2011; 40:1778-86. [PMID: 22021383 PMCID: PMC3287185 DOI: 10.1093/nar/gkr860] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
We recently reported that a DNA catalyst (deoxyribozyme) can site-specifically hydrolyze DNA on the minutes time scale. Sequence specificity is provided by Watson-Crick base pairing between the DNA substrate and two oligonucleotide binding arms that flank the 40-nt catalytic region of the deoxyribozyme. The DNA catalyst from our recent in vitro selection effort, 10MD5, can cleave a single-stranded DNA substrate sequence with the aid of Zn2+ and Mn2+ cofactors, as long as the substrate cleavage site encompasses the four particular nucleotides ATG^T. Thus, 10MD5 can cleave only 1 out of every 256 (44) arbitrarily chosen DNA sites, which is rather poor substrate sequence tolerance. In this study, we demonstrated substantially broader generality of deoxyribozymes for site-specific DNA hydrolysis. New selection experiments were performed, revealing the optimality of presenting only one or two unpaired DNA substrate nucleotides to the N40 DNA catalytic region. Comprehensive selections were then performed, including in some cases a key selection pressure to cleave the substrate at a predetermined site. These efforts led to identification of numerous new DNA-hydrolyzing deoxyribozymes, many of which require merely two particular nucleotide identities at the cleavage site (e.g. T^G), while retaining Watson-Crick sequence generality beyond those nucleotides along with useful cleavage rates. These findings establish experimentally that broadly sequence-tolerant and site-specific deoxyribozymes are readily identified for hydrolysis of single-stranded DNA.
Collapse
Affiliation(s)
- Ying Xiao
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
60
|
Kumar P, Baidya B, Chaturvedi SK, Khan RH, Manna D, Mondal B. DNA binding and nuclease activity of copper(II) complexes of tridentate ligands. Inorganica Chim Acta 2011. [DOI: 10.1016/j.ica.2011.06.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
61
|
Joyner JC, Reichfield J, Cowan JA. Factors influencing the DNA nuclease activity of iron, cobalt, nickel, and copper chelates. J Am Chem Soc 2011; 133:15613-26. [PMID: 21815680 DOI: 10.1021/ja2052599] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A library of complexes that included iron, cobalt, nickel, and copper chelates of cyclam, cyclen, DOTA, DTPA, EDTA, tripeptide GGH, tetrapeptide KGHK, NTA, and TACN was evaluated for DNA nuclease activity, ascorbate consumption, superoxide and hydroxyl radical generation, and reduction potential under physiologically relevant conditions. Plasmid DNA cleavage rates demonstrated by combinations of each complex and biological co-reactants were quantified by gel electrophoresis, yielding second-order rate constants for DNA(supercoiled) to DNA(nicked) conversion up to 2.5 × 10(6) M(-1) min(-1), and for DNA(nicked) to DNA(linear) up to 7 × 10(5) M(-1) min(-1). Relative rates of radical generation and characterization of radical species were determined by reaction with the fluorescent radical probes TEMPO-9-AC and rhodamine B. Ascorbate turnover rate constants ranging from 3 × 10(-4) to 0.13 min(-1) were determined, although many complexes demonstrated no measurable activity. Inhibition and Freifelder-Trumbo analysis of DNA cleavage supported concerted cleavage of dsDNA by a metal-associated reactive oxygen species (ROS) in the case of Cu(2+)(aq), Cu-KGHK, Co-KGHK, and Cu-NTA and stepwise cleavage for Fe(2+)(aq), Cu-cyclam, Cu-cyclen, Co-cyclen, Cu-EDTA, Ni-EDTA, Co-EDTA, Cu-GGH, and Co-NTA. Reduction potentials varied over the range from -362 to +1111 mV versus NHE, and complexes demonstrated optimal catalytic activity in the range of the physiological redox co-reactants ascorbate and peroxide (-66 to +380 mV).
Collapse
Affiliation(s)
- Jeff C Joyner
- Evans Laboratory of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | | | | |
Collapse
|
62
|
Gulevich AV, Koroleva LS, Morozova OV, Bakhvalova VN, Silnikov VN, Nenajdenko VG. Multicomponent synthesis of artificial nucleases and their RNase and DNase activity. Beilstein J Org Chem 2011; 7:1135-40. [PMID: 21915218 PMCID: PMC3170195 DOI: 10.3762/bjoc.7.131] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 06/14/2011] [Indexed: 01/18/2023] Open
Abstract
The synthesis of new, artificial ribonucleases containing two amino acid residues connected by an aliphatic linker has been developed. Target molecules were synthesized via a catalytic three-component Ugi reaction from aliphatic diisocyanides. Preliminary investigations proved unspecific nuclease activity of the new compounds towards single-stranded RNA and double-stranded circular DNA.
Collapse
Affiliation(s)
- Anton V Gulevich
- Department of Chemistry, Moscow State University, 119992, Leninskie Gory, Moscow, Russia
| | - Lyudmila S Koroleva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8 Lavrentyev Ave., 630090 Novosibirsk, Russia
- Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| | - Olga V Morozova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8 Lavrentyev Ave., 630090 Novosibirsk, Russia
| | - Valentina N Bakhvalova
- Institute of Systematic and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, 11 Frunze Street, 630091 Novosibirsk, Russia
| | - Vladimir N Silnikov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8 Lavrentyev Ave., 630090 Novosibirsk, Russia
| | - Valentine G Nenajdenko
- Department of Chemistry, Moscow State University, 119992, Leninskie Gory, Moscow, Russia
| |
Collapse
|
63
|
Massoud SS, Louka FR, Xu W, Perkins RS, Vicente R, Albering JH, Mautner FA. DNA Cleavage by Structurally Characterized Dinuclear Copper(II) Complexes Based on Triazine. Eur J Inorg Chem 2011. [DOI: 10.1002/ejic.201100157] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
64
|
Effect of the central metal ion on the cleavage of DNA by [M(TPA)Cl]ClO4 complexes (M=CoII, CuII and ZnII, TPA=tris(2-pyridylmethyl)amine): An efficient artificial nuclease for DNA cleavage. Inorganica Chim Acta 2011. [DOI: 10.1016/j.ica.2011.04.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
65
|
Abstract
A series of compounds that target reactive metal chelates to the HIV-1 Rev response element (RRE) mRNA have been synthesized. Dissociation constants and chemical reactivity toward HIV RRE RNA have been determined and evaluated in terms of reduction potential, coordination unsaturation, and overall charge associated with the metal-chelate-Rev complex. Ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), diethylenetriaminepentaacetic acid (DTPA), and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) were linked to a lysine side chain of a Rev-derived peptide by either EDC/NHS or isothiocyanate coupling. The resulting chelate-Rev (EDTA-Rev, DTPA-Rev, NTA-Rev, and DOTA-Rev) conjugates were used to form coordination complexes with Fe(2+), Co(2+), Ni(2+), and Cu(2+) such that the arginine-rich Rev peptide could mediate localization of the metal chelates to the Rev peptide's high-affinity mRNA binding partner, RRE stem loop IIB. Metal complexes of the extended peptides GGH-Rev and KGHK-Rev, which also contain N-terminal peptidic chelators (ATCUN motifs), were studied for comparison. A fluorescence titration assay revealed high-affinity RRE RNA binding by all 22 metal-chelate-Rev species, with K(D) values ranging from ~0.2 to 16 nM, indicating little to no loss of RNA affinity due to the coupling of the metal chelates to the Rev peptide. Dissociation constants for binding at a previously unobserved low-affinity site are also reported. Rates of RNA modification by each metal-chelate-Rev species were determined and varied from ~0.28 to 4.9 nM/min but were optimal for Cu(2+)-NTA-Rev. Metal-chelate reduction potentials were determined and varied from -228 to +1111 mV vs NHE under similar solution conditions, allowing direct comparison of reactivity with redox thermodynamics. Optimal activity was observed when the reduction potential for the metal center was poised between those of the two principal co-reagents for metal-promoted formation of reactive oxygen species: E°(ascorbate/ascorbyl radical) = -66 mV and E°(H(2)O(2)/hydroxyl radical) = 380 mV. Given the variety of oxidative activities of these metal complexes and their high-affinity binding to the targeted RRE mRNA following coupling to the Rev peptide, this class of metal-chelate-Rev derivatives constitutes a promising step toward development of multiple-turnover reagents for selective eradication of HIV-1 RRE mRNA.
Collapse
Affiliation(s)
- Jeff C. Joyner
- Evans Laboratory of Chemistry, Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210
| | - J. A. Cowan
- Evans Laboratory of Chemistry, Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210
- The Ohio State Biochemistry Program, 784 Biological Sciences 484 W. 12th Avenue, Columbus, Ohio 43210
- MetalloPharm LLC, 1790 Riverstone Drive, Delaware, OH 43015
| |
Collapse
|
66
|
Ma L, Lu L, Zhu M, Wang Q, Gao F, Yuan C, Wu Y, Xing S, Fu X, Mei Y, Gao X. Dinuclear copper complexes of organic claw: potent inhibition of protein tyrosine phosphatases. J Inorg Biochem 2011; 105:1138-47. [PMID: 21708098 DOI: 10.1016/j.jinorgbio.2011.05.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 05/20/2011] [Accepted: 05/20/2011] [Indexed: 12/31/2022]
Abstract
Three dinuclear copper complexes of organic claw ligands (2,2',2″,2'''-(5-R-2-hydroxy-1,3-phenylene)bis(methylene)bis(azanetriyl)tetraacetic acid, R=methyl (H(5)L1), chloro (H(5)L2) and bromo (H(5)L3)): [Cu(2)NaL1(H(2)O)(2)] (1), [Cu(2)HL2(H(2)O)(2)] (2), [Cu(2)NaL3(H(2)O)(2)] (3), have been synthesized and characterized by elemental analyses, infrared spectra, thermo-gravimetric analyses, X-ray diffraction analysis, electrospray ionization mass spectra, pH-potentiometric titration, molar conductivity. Their inhibitory effects against human protein tyrosine phosphatase 1B (PTP1B), T cell protein tyrosine phosphatase (TCPTP), Megakaryocyte protein tyrosinephosphatase 2 (PTP-MEG2), srchomology phosphatase 1 (SHP-1) and srchomology phosphatase 2 (SHP-2) are evaluated in vitro. The three copper complexes exhibit potent and almost same inhibition against PTP1B and SHP-1 with IC(50) values ranging from 0.15 to 0.31μM, about 2-fold stronger inhibition than against PTP-MEG2, 10-fold stronger inhibition than against TCPTP, but almost no inhibition against SHP-2. Kinetic analysis indicates that they are reversible competitive inhibitors of PTP1B. Molecular docking analyses confirm the inhibition model. Fluorescence titration studies suggest that the complexes bond to PTP1B with the formation of a 1:1 complex. The results demonstrate that copper complexes that are potent PTPs inhibitors but have different inhibitory effects over different PTPs, may be explored as new practical inhibitors towards individual PTP with some specificity.
Collapse
Affiliation(s)
- Ling Ma
- Institute of Molecular Science, the Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi University, Taiyuan, 030006, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Zhang Q, Xiang Y, Yang R, Si J, Guo H. Effective Homogeneous Hydrolysis of Phosphodiester and DNA Cleavage by Chitosan-copper Complex. CHINESE J CHEM 2011. [DOI: 10.1002/cjoc.201190145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
68
|
Ullrich S, Nazir Z, Büsing A, Scheffer U, Wirth D, Bats JW, Dürner G, Göbel MW. Cleavage of phosphodiesters and of DNA by a bis(guanidinium)naphthol acting as a metal-free anion receptor. Chembiochem 2011; 12:1223-9. [PMID: 21500334 DOI: 10.1002/cbic.201100022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Indexed: 11/07/2022]
Abstract
Phosphoric acid diesters form anions at neutral pH. As a result of charge repulsion they are notoriously resistant to hydrolysis. Nucleophilic attack, however, can be promoted by different types of electrophilic catalysts that bind to the anions and reduce their negative charge density. Although in most cases phosphodiester-cleaving enzymes and synthetic catalysts rely on Lewis acidic metal ions, some exploit the guanidinium residues of arginine as metal-free electrophiles. Here we report that a combination of two guanidines and a hydroxy group yields highly reactive receptor molecules that can attack a broad range of phosphodiester substrates by nucleophilic displacement at phosphorus in a single-turnover mode. Some stable O-phosphates were isolated and characterized further by NMR spectroscopy. The bis(guanidinium)naphthols also cleave plasmid DNA, presumably by a transphosphorylation mechanism.
Collapse
Affiliation(s)
- Stefan Ullrich
- Institut für Organische Chemie und Chemische Biologie, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | | | | | | | | | | | | | | |
Collapse
|
69
|
One pot synthesis of Cu(II) 2,2′-bipyridyl complexes of 5-hydroxy-hydurilic acid and alloxanic acid: Synthesis, crystal structure, chemical nuclease activity and cytotoxicity. J Inorg Biochem 2011; 105:256-67. [DOI: 10.1016/j.jinorgbio.2010.11.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 11/04/2010] [Accepted: 11/05/2010] [Indexed: 11/22/2022]
|
70
|
Ramadan AM, Calatayud Sala JM, Parac-Vogt TN. Trinuclear rare earth metal complexes based on 1,3,5-triamino-1,3,5-trideoxy-cis inositol as catalysts for the hydrolysis of phosphodiesters. Dalton Trans 2011; 40:1230-2. [DOI: 10.1039/c0dt01257b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
71
|
Qian J, Wang L, Gu W, Liu X, Tian J, Yan S. Efficient double-strand cleavage of DNA mediated by Zn(ii)-based artificial nucleases. Dalton Trans 2011; 40:5617-24. [DOI: 10.1039/c0dt01659d] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
72
|
Li C, Du C, Tian H, Jiang C, Du M, Liu Y, Qiao RZ, Jia YX, Zhao YF. Artificial Transcription Factors which Mediate Double-Strand DNA Cleavage. Chemistry 2010; 16:12935-40. [DOI: 10.1002/chem.201000552] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
73
|
Wang JT, Zheng XH, Ji LN, Mao ZW. High nuclease activity of a copper(II)-bipyridyl complex containing cytosine pendants. J COORD CHEM 2010. [DOI: 10.1080/00958972.2010.492216] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jin-Tao Wang
- a MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University , Guangzhou 510275, P.R. China
| | - Xiao-Hui Zheng
- a MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University , Guangzhou 510275, P.R. China
| | - Liang-Nian Ji
- a MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University , Guangzhou 510275, P.R. China
| | - Zong-Wan Mao
- a MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University , Guangzhou 510275, P.R. China
| |
Collapse
|
74
|
Camargo MA, Neves A, Bortoluzzi AJ, Szpoganicz B, Fischer FL, Terenzi H, Serra OA, Santos VG, Vaz BG, Eberlin MN. Efficient Phosphodiester Hydrolysis by Luminescent Terbium(III) and Europium(III) Complexes. Inorg Chem 2010; 49:6013-25. [DOI: 10.1021/ic100549u] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Maryene A. Camargo
- Laboratório de Bioinorgânica e Crystalografia (LABINC), Departamento de Química
| | - Ademir Neves
- Laboratório de Bioinorgânica e Crystalografia (LABINC), Departamento de Química
| | | | - Bruno Szpoganicz
- Laboratório de Bioinorgânica e Crystalografia (LABINC), Departamento de Química
| | | | - Hernán Terenzi
- Centro de Biologia Molecular Estrutural, Departamento de Bioquímica, CCB
| | - Osvaldo A. Serra
- Laboratório de Terras Raras (FFCLRP-USP), Departamento de Química, Universidade de São Paulo, Avenue Bandeirantes 3900, 14040-901, Ribeirão Preto, São Paulo, Brazil
| | - Vanessa G. Santos
- Laboratório ThoMSon de Espectrometria de Massas, Instituto de Química, Universidade Estadual de Campinas, 13083-970, Campinas, São Paulo, Brazil
| | - Boniek G. Vaz
- Laboratório ThoMSon de Espectrometria de Massas, Instituto de Química, Universidade Estadual de Campinas, 13083-970, Campinas, São Paulo, Brazil
| | - Marcos N. Eberlin
- Laboratório ThoMSon de Espectrometria de Massas, Instituto de Química, Universidade Estadual de Campinas, 13083-970, Campinas, São Paulo, Brazil
| |
Collapse
|
75
|
Kuchma MH, Komanski CB, Colon J, Teblum A, Masunov AE, Alvarado B, Babu S, Seal S, Summy J, Baker CH. Phosphate ester hydrolysis of biologically relevant molecules by cerium oxide nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2010; 6:738-44. [PMID: 20553964 DOI: 10.1016/j.nano.2010.05.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 03/22/2010] [Accepted: 05/06/2010] [Indexed: 11/30/2022]
Abstract
In an effort to characterize the interaction of cerium oxide nanoparticles (CNPs) in biological systems, we explored the reactivity of CNPs with the phosphate ester bonds of p-nitrophenylphosphate (pNPP), ATP, o-phospho-l-tyrosine, and DNA. The activity of the bond cleavage for pNPP at pH 7 is calculated to be 0.860 ± 0.010 nmol p-nitrophenol/min/μg CNPs. Interestingly, when CNPs bind to plasmid DNA, no cleavage products are detected. While cerium(IV) complexes generally exhibit the ability to break phosphorus-oxygen bonds, the reactions we report appear to be dependent on the availability of cerium(III) sites, not cerium(IV) sites. We investigated the dephosphorylation mechanism from the first principles and find the reaction proceeds through inversion of the phosphate group similar to an S(N)2 mechanism. The ability of CNPs to interact with phosphate ester bonds of biologically relevant molecules has important implications for their use as potential therapeutics.
Collapse
Affiliation(s)
- Melissa Hirsch Kuchma
- Cancer Research Institute, M. D. Anderson Cancer Center Orlando, Orlando, Florida, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Yi XY, Lam TCH, Williams ID, Leung WH. Hydrolysis of Bis(p-nitrophenyl)phosphate by Tetravalent Metal Complexes with Kläui’s Oxygen Tripodal Ligand. Inorg Chem 2010; 49:2232-8. [DOI: 10.1021/ic902018u] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Xiao-Yi Yi
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, People’s Republic of China
| | - Tony C. H. Lam
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, People’s Republic of China
| | - Ian D. Williams
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, People’s Republic of China
| | - Wa-Hung Leung
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, People’s Republic of China
| |
Collapse
|
77
|
Bonomi R, Scrimin P, Mancin F. Phosphate diesters cleavage mediated by Ce(iv) complexes self-assembled on gold nanoparticles. Org Biomol Chem 2010; 8:2622-6. [DOI: 10.1039/b926916a] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
78
|
Wang JT, Xia Q, Zheng XH, Chen HY, Chao H, Mao ZW, Ji LN. An effective approach to artificial nucleases using copper(ii) complexes bearing nucleobases. Dalton Trans 2010; 39:2128-36. [DOI: 10.1039/b915392f] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
79
|
Shimakoshi H, Kaieda T, Hisaeda Y. The Single- and Double-Strand Cleavage of DNA by a Cationic Dicobalt Complex by Visible Light. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2009. [DOI: 10.1246/bcsj.82.1386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
80
|
Shao Y, Ding Y, Xu W, Wei L, Liu F, Lu G. DNA Binding and Cleavage Activity of Zinc(II) Complex ofN,N′-Bis(2-guanidinoethyl)-2,6-pyridinedicarboxamide. CHINESE J CHEM 2009. [DOI: 10.1002/cjoc.200990290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
81
|
Chen X, Fan J, Peng X, Wang J, Sun S, Zhang R, Wu T, Zhang F, Liu J, Wang F, Ma S. Bisintercalator-containing dinuclear iron(III) complex: An efficient artificial nuclease. Bioorg Med Chem Lett 2009; 19:4139-42. [DOI: 10.1016/j.bmcl.2009.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2009] [Revised: 05/29/2009] [Accepted: 06/01/2009] [Indexed: 01/13/2023]
|
82
|
Chang YC, Chen DH. Highly efficient hydrolysis of phosphodiester by a copper(II)-chelated chitosan magnetic nanocarrier. REACT FUNCT POLYM 2009. [DOI: 10.1016/j.reactfunctpolym.2009.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
83
|
Pyrophosphate-bridged complexes with picomolar toxicity. J Inorg Biochem 2009; 103:1254-64. [PMID: 19666193 DOI: 10.1016/j.jinorgbio.2009.07.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2009] [Revised: 06/30/2009] [Accepted: 07/06/2009] [Indexed: 11/22/2022]
Abstract
Recently, we have observed the emergence of a new series of pyrophosphate-bridged coordination complexes. Such complexes have been prepared by overcoming the ready hydrolysis of the pyrophosphate moiety. To date, no exploration has been conducted on the cytotoxicity of such complexes. Three pyrophosphate-bridged complexes, namely {[Ni(phen)(2)](2)(mu-P(2)O(7))}.27H(2)O, {[Cu(phen)(H(2)O)](2)(mu-P(2)O(7))}.8H(2)O and {[Co(phen)(2)](2)(mu-P(2)O(7))}.6MeOH, (where phen is 1,10'-phenanthroline) were chosen for their comparative structural similarities and suitable aqueous solubility. Cytotoxicity studies in the adriamycin-resistant ovarian cancer cell line A2780/AD demonstrated highly significant efficacy, with values as low as 160pM for the cobalt complex at 72h. The underlying mechanism for such exceptional toxicity is investigated focusing on DNA interactions, topoisomerase I enzyme inhibition and oxidative stress (followed by intracellular glutathione levels). The role of hydrolysis in uptake and toxicity is also explored (followed by electronic absorption spectroscopy, (31)P NMR, and confocal microscopy) and the complexes are compared to cisplatin controls. Overall a clear picture of the extraordinary toxicity emerged. The results demonstrate a new class of prodrugs with significant potential for future development for the treatment of drug-resistant cancer cell lines.
Collapse
|
84
|
Shao Y, Ding Y, Jia ZL, Lu XM, Ke ZH, Xu WH, Lu GY. Synthesis and DNA cleavage activity of 2-hydrazinyl-1,4,5,6-tetrahydropyrimidine containing hydroxy group. Bioorg Med Chem 2009; 17:4274-9. [DOI: 10.1016/j.bmc.2009.05.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 05/15/2009] [Accepted: 05/16/2009] [Indexed: 11/17/2022]
|
85
|
Linear disulfide-containing low polymer as efficient DNA cleavage reagent. Bioorg Med Chem Lett 2009; 19:3458-60. [DOI: 10.1016/j.bmcl.2009.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 04/17/2009] [Accepted: 05/06/2009] [Indexed: 11/19/2022]
|
86
|
Xu W, Louka FR, Doulain PE, Landry CA, Mautner FA, Massoud SS. Hydrolytic cleavage of DNA promoted by cobalt(III)–tetraamine complexes: Synthesis and characterization of carbonatobis[2-(2-pyridylethyl)]-(2-pyridylmethyl)aminecobalt(III) perchlorate. Polyhedron 2009. [DOI: 10.1016/j.poly.2009.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
87
|
Phosphoester hydrolysis by cerium(IV)-thiacalix[4]arene complexes and its application to immunoassay. Anal Bioanal Chem 2009; 394:1471-6. [DOI: 10.1007/s00216-009-2798-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 04/08/2009] [Accepted: 04/09/2009] [Indexed: 11/26/2022]
|
88
|
Li D, Tian J, Kou Y, Huang F, Chen G, Gu W, Liu X, Liao D, Cheng P, Yan S. Synthesis, X-ray crystal structures, magnetism, and DNA cleavage properties of copper(II) complexes with 1,4-tpbd ligand. Dalton Trans 2009:3574-83. [PMID: 19381420 DOI: 10.1039/b823472h] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four new copper(II) complexes, [Cu(1,4-tpbd)Br(2)] (), [Cu(2)(1,4-tpbd)(H(2)O)(4)](ClO(4))(4) (), [Cu(2)(1,4-tpbd)(1,10-phen)(2)(DMF)(2)](ClO(4))(4) () and [Cu(2)(1,4-tpbd)(2,2'-bpy)(2)(ClO(4))(2)](ClO(4))(2) (), [1,4-tpbd = N,N,N',N'-tetrakis(2-pyridylmethyl)benzene-1,4-diamine], have been synthesized to serve as artificial nucleases. Single crystal X-ray diffraction reveals that the copper(II) atom has a distorted intermediate between square pyramidal and trigonal bipyramidal configuration for and a distorted square pyramidal geometry for , while a distorted octahedral environment for and . Variable-temperature magnetic susceptibility studies (2-300 K) indicate the existence of antiferromagnetic coupling between the copper(II) ions in complex . The interactions of the four complexes with calf thymus DNA (CT-DNA) have been investigated by UV absorption, fluorescent spectroscopy and cyclic voltammetry, and the modes of CT-DNA binding for the complexes have been proposed. In the absence of external agents, supercoiled plasmid DNA cleavage by the complexes was performed under aerobic conditions, the influence on the DNA cleavage process of different complex concentrations, reaction times was also studied. The DNA cleavage mechanisms were demonstrated with radical scavengers and anaerobic conditions, indicating all complexes cleaved pBR322 DNA in 50 mM Tris-HCl/18 mM NaCl buffer (pH = 7.2) at 37 degrees C through a hydrolytic process. In the four copper(II) complexes, complex showed highest cleavage activity with the pseudo-Michaelis-Menten kinetic parameters k(cat) = 4.23 h(-1) and K(m) = 2.4 x 10(-5) M.
Collapse
Affiliation(s)
- Dongdong Li
- Department of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Li K, Zhang J, Zhang ZW, Xiang YZ, Lin HH, Yu XQ. Immobilization cyclen copper (II) on merrifield resin: Efficient oxidative cleavage of plasmid DNA. J Appl Polym Sci 2009. [DOI: 10.1002/app.29266] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
90
|
The use of hydrogenated Schiff base ligands in the synthesis of multi-metallic compounds. Inorganica Chim Acta 2009. [DOI: 10.1016/j.ica.2008.06.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
91
|
Oxidative nuclease activity of ferromagnetically coupled μ-hydroxo-μ-propionato copper(II) complexes [Cu3(L)2(μ-OH)2(μ-propionato)2] (L=N-(pyrid-2-ylmethyl)R-sulfonamidato, R=benzene, toluene, naphthalene). J Inorg Biochem 2009; 103:243-55. [DOI: 10.1016/j.jinorgbio.2008.10.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 10/13/2008] [Accepted: 10/15/2008] [Indexed: 11/20/2022]
|
92
|
Liu C, Wang L. DNA hydrolytic cleavage catalyzed by synthetic multinuclear metallonucleases. Dalton Trans 2009:227-39. [DOI: 10.1039/b811616d] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
93
|
Synthesis, crystal structures, and catalytic hydrolysis activities of four dinuclear complexes with 1,4,7,10-tetraazacyclododecane and succinate ligands. TRANSIT METAL CHEM 2008. [DOI: 10.1007/s11243-008-9178-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
94
|
Synthesis and biological evaluation of the Zn (II)–IDB complexes appended with oligopolyamide as potent artificial nuclease. Bioorg Med Chem Lett 2008; 18:5766-70. [DOI: 10.1016/j.bmcl.2008.09.074] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 09/03/2008] [Accepted: 09/19/2008] [Indexed: 11/21/2022]
|
95
|
Xiang YZ, Zhou LH, Jiang N, Lin HH, Yu XQ. Synthesis of a novel linear polymer of a macrocyclic polyamine copper (II) complex and its interaction with plasmid DNA. J Enzyme Inhib Med Chem 2008; 24:315-9. [PMID: 18825526 DOI: 10.1080/14756360802166806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The novel linear polymer of a macrocyclic polyamine copper (II) complex, which has many cyclen groups linked by epichlorohydrin, has been synthesized as a DNA cleavage agent. The structure of the polymer 3 was identified by 1HNMR and IR and its molecular weight was measured by GPC. The result of agarose gel electrophoresis assay showed that Cu-(II) complex 4 could act as a powerful catalyst for the cleavage of plasmid DNA under physiological conditions.
Collapse
Affiliation(s)
- Yong-Zhe Xiang
- Department of Chemistry, Key Laboratory of Green Chemistry and Technology (Ministry of Education), Sichuan University, Chengdu, Sichuan, China
| | | | | | | | | |
Collapse
|
96
|
Fernandes L, Fischer FL, Ribeiro CW, Silveira GP, Sá MM, Nome F, Terenzi H. Metal-free artificial nucleases based on simple oxime and hydroxylamine scaffolds. Bioorg Med Chem Lett 2008; 18:4499-502. [DOI: 10.1016/j.bmcl.2008.07.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 07/11/2008] [Accepted: 07/14/2008] [Indexed: 10/21/2022]
|
97
|
Lönnberg T, Suzuki Y, Komiyama M. Prompt site-selective DNA hydrolysis by Ce(IV)-EDTA using oligonucleotide multiphosphonate conjugates. Org Biomol Chem 2008; 6:3580-7. [PMID: 19082159 DOI: 10.1039/b807789d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oligodeoxyribonucleotide multiphosphonate conjugates have been prepared by on-support oximation of aminooxy-functionalized oligonucleotides with 2-(4-formylphenoxy)ethyl esters of nitrilotris(methylenephosphonic acid) (NTP) and ethylenediaminetetrakis(methylenephosphonic acid) (EDTP). These conjugates, along with the corresponding oligonucleotides bearing hydroxy or monophosphate termini, were hybridized with a longer substrate DNA leaving a narrow single-stranded gap site in the substrate between the two additive oligonucleotides. Gap sites flanked by two of the multiphosphonate groups, in particular EDTP, were hydrolyzed by the Ce(IV)-EDTA complex significantly faster than the corresponding gap sites flanked by only hydroxy or monophosphate termini. Using the new oligonucleotide conjugates, efficient site-selective hydrolysis of the substrate DNA can be achieved at Ce(IV) concentrations where other single-stranded regions remain intact. At high Ce(IV) concentrations, the cleavage rate becomes independent on [Ce(IV)] and little improvement by the new multiphosphonate conjugates over oligonucleotides with monophosphate termini is observed, suggesting that the origin of the rate acceleration is the higher affinity of the NTP or EDTP ligands to Ce(IV) compared to hydroxy or monophosphate ligands.
Collapse
Affiliation(s)
- Tuomas Lönnberg
- Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | | | | |
Collapse
|
98
|
Bazzicalupi C, Bencini A, Bonaccini C, Giorgi C, Gratteri P, Moro S, Palumbo M, Simionato A, Sgrignani J, Sissi C, Valtancoli B. Tuning the Activity of Zn(II) Complexes in DNA Cleavage: Clues for Design of New Efficient Metallo-Hydrolases. Inorg Chem 2008; 47:5473-84. [DOI: 10.1021/ic800085n] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Carla Bazzicalupi
- Dipartimento di Chimica, Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Firenze, Italy, Laboratorio di Molecular Modeling, Cheminformatics and QSAR, Dipartimento di Scienze Farmaceutiche, Laboratorio di Progettazione, Sintesi e Studio di Eterocicli Biologicamente Attivi, Polo Scientifico, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino (FI), Italy, and Dipartimento di Scienze Farmaceutiche, Università degli Studi di Padova, Via Marzolo 5,
| | - Andrea Bencini
- Dipartimento di Chimica, Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Firenze, Italy, Laboratorio di Molecular Modeling, Cheminformatics and QSAR, Dipartimento di Scienze Farmaceutiche, Laboratorio di Progettazione, Sintesi e Studio di Eterocicli Biologicamente Attivi, Polo Scientifico, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino (FI), Italy, and Dipartimento di Scienze Farmaceutiche, Università degli Studi di Padova, Via Marzolo 5,
| | - Claudia Bonaccini
- Dipartimento di Chimica, Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Firenze, Italy, Laboratorio di Molecular Modeling, Cheminformatics and QSAR, Dipartimento di Scienze Farmaceutiche, Laboratorio di Progettazione, Sintesi e Studio di Eterocicli Biologicamente Attivi, Polo Scientifico, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino (FI), Italy, and Dipartimento di Scienze Farmaceutiche, Università degli Studi di Padova, Via Marzolo 5,
| | - Claudia Giorgi
- Dipartimento di Chimica, Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Firenze, Italy, Laboratorio di Molecular Modeling, Cheminformatics and QSAR, Dipartimento di Scienze Farmaceutiche, Laboratorio di Progettazione, Sintesi e Studio di Eterocicli Biologicamente Attivi, Polo Scientifico, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino (FI), Italy, and Dipartimento di Scienze Farmaceutiche, Università degli Studi di Padova, Via Marzolo 5,
| | - Paola Gratteri
- Dipartimento di Chimica, Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Firenze, Italy, Laboratorio di Molecular Modeling, Cheminformatics and QSAR, Dipartimento di Scienze Farmaceutiche, Laboratorio di Progettazione, Sintesi e Studio di Eterocicli Biologicamente Attivi, Polo Scientifico, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino (FI), Italy, and Dipartimento di Scienze Farmaceutiche, Università degli Studi di Padova, Via Marzolo 5,
| | - Stefano Moro
- Dipartimento di Chimica, Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Firenze, Italy, Laboratorio di Molecular Modeling, Cheminformatics and QSAR, Dipartimento di Scienze Farmaceutiche, Laboratorio di Progettazione, Sintesi e Studio di Eterocicli Biologicamente Attivi, Polo Scientifico, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino (FI), Italy, and Dipartimento di Scienze Farmaceutiche, Università degli Studi di Padova, Via Marzolo 5,
| | - Manlio Palumbo
- Dipartimento di Chimica, Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Firenze, Italy, Laboratorio di Molecular Modeling, Cheminformatics and QSAR, Dipartimento di Scienze Farmaceutiche, Laboratorio di Progettazione, Sintesi e Studio di Eterocicli Biologicamente Attivi, Polo Scientifico, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino (FI), Italy, and Dipartimento di Scienze Farmaceutiche, Università degli Studi di Padova, Via Marzolo 5,
| | - Alessandro Simionato
- Dipartimento di Chimica, Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Firenze, Italy, Laboratorio di Molecular Modeling, Cheminformatics and QSAR, Dipartimento di Scienze Farmaceutiche, Laboratorio di Progettazione, Sintesi e Studio di Eterocicli Biologicamente Attivi, Polo Scientifico, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino (FI), Italy, and Dipartimento di Scienze Farmaceutiche, Università degli Studi di Padova, Via Marzolo 5,
| | - Jacopo Sgrignani
- Dipartimento di Chimica, Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Firenze, Italy, Laboratorio di Molecular Modeling, Cheminformatics and QSAR, Dipartimento di Scienze Farmaceutiche, Laboratorio di Progettazione, Sintesi e Studio di Eterocicli Biologicamente Attivi, Polo Scientifico, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino (FI), Italy, and Dipartimento di Scienze Farmaceutiche, Università degli Studi di Padova, Via Marzolo 5,
| | - Claudia Sissi
- Dipartimento di Chimica, Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Firenze, Italy, Laboratorio di Molecular Modeling, Cheminformatics and QSAR, Dipartimento di Scienze Farmaceutiche, Laboratorio di Progettazione, Sintesi e Studio di Eterocicli Biologicamente Attivi, Polo Scientifico, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino (FI), Italy, and Dipartimento di Scienze Farmaceutiche, Università degli Studi di Padova, Via Marzolo 5,
| | - Barbara Valtancoli
- Dipartimento di Chimica, Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Firenze, Italy, Laboratorio di Molecular Modeling, Cheminformatics and QSAR, Dipartimento di Scienze Farmaceutiche, Laboratorio di Progettazione, Sintesi e Studio di Eterocicli Biologicamente Attivi, Polo Scientifico, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino (FI), Italy, and Dipartimento di Scienze Farmaceutiche, Università degli Studi di Padova, Via Marzolo 5,
| |
Collapse
|
99
|
Camargo MA, Neves A, Bortoluzzi AJ, Szpoganicz B, Martendal A, Murgu M, Fischer FL, Terenzi H, Severino PC. New Gadolinium Complex with Efficient Hydrolase-like Activity: A 100-Million-Fold Rate Enhancement in Diester Hydrolysis. Inorg Chem 2008; 47:2919-21. [DOI: 10.1021/ic702167p] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maryene A. Camargo
- Laboratório de Bioinorgânica e Cristalografia (LABINC), Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil, Laboratório de Expressão Gênica, Departamento de Bioquímica, CCB, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil, and Waters Technologies do Brazil, Alameda Tocantins 125, 27° andar, 06455-020, Barueri, São Paulo, Brazil
| | - Ademir Neves
- Laboratório de Bioinorgânica e Cristalografia (LABINC), Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil, Laboratório de Expressão Gênica, Departamento de Bioquímica, CCB, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil, and Waters Technologies do Brazil, Alameda Tocantins 125, 27° andar, 06455-020, Barueri, São Paulo, Brazil
| | - Adailton J. Bortoluzzi
- Laboratório de Bioinorgânica e Cristalografia (LABINC), Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil, Laboratório de Expressão Gênica, Departamento de Bioquímica, CCB, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil, and Waters Technologies do Brazil, Alameda Tocantins 125, 27° andar, 06455-020, Barueri, São Paulo, Brazil
| | - Bruno Szpoganicz
- Laboratório de Bioinorgânica e Cristalografia (LABINC), Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil, Laboratório de Expressão Gênica, Departamento de Bioquímica, CCB, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil, and Waters Technologies do Brazil, Alameda Tocantins 125, 27° andar, 06455-020, Barueri, São Paulo, Brazil
| | - Adriano Martendal
- Laboratório de Bioinorgânica e Cristalografia (LABINC), Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil, Laboratório de Expressão Gênica, Departamento de Bioquímica, CCB, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil, and Waters Technologies do Brazil, Alameda Tocantins 125, 27° andar, 06455-020, Barueri, São Paulo, Brazil
| | - Michael Murgu
- Laboratório de Bioinorgânica e Cristalografia (LABINC), Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil, Laboratório de Expressão Gênica, Departamento de Bioquímica, CCB, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil, and Waters Technologies do Brazil, Alameda Tocantins 125, 27° andar, 06455-020, Barueri, São Paulo, Brazil
| | - Franciele L. Fischer
- Laboratório de Bioinorgânica e Cristalografia (LABINC), Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil, Laboratório de Expressão Gênica, Departamento de Bioquímica, CCB, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil, and Waters Technologies do Brazil, Alameda Tocantins 125, 27° andar, 06455-020, Barueri, São Paulo, Brazil
| | - Hernán Terenzi
- Laboratório de Bioinorgânica e Cristalografia (LABINC), Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil, Laboratório de Expressão Gênica, Departamento de Bioquímica, CCB, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil, and Waters Technologies do Brazil, Alameda Tocantins 125, 27° andar, 06455-020, Barueri, São Paulo, Brazil
| | - Patricia Cardoso Severino
- Laboratório de Bioinorgânica e Cristalografia (LABINC), Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil, Laboratório de Expressão Gênica, Departamento de Bioquímica, CCB, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil, and Waters Technologies do Brazil, Alameda Tocantins 125, 27° andar, 06455-020, Barueri, São Paulo, Brazil
| |
Collapse
|
100
|
Sheng X, Guo X, Lu XM, Lu GY, Shao Y, Liu F, Xu Q. DNA Binding, Cleavage, and Cytotoxic Activity of the Preorganized Dinuclear Zinc(II) Complex of Triazacyclononane Derivatives. Bioconjug Chem 2008; 19:490-8. [PMID: 18179160 DOI: 10.1021/bc700322w] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Xin Sheng
- Department of Chemistry, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China, and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Xun Guo
- Department of Chemistry, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China, and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Xiao-Min Lu
- Department of Chemistry, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China, and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Guo-Yuan Lu
- Department of Chemistry, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China, and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Ying Shao
- Department of Chemistry, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China, and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Fang Liu
- Department of Chemistry, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China, and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Qiang Xu
- Department of Chemistry, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China, and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| |
Collapse
|