51
|
Liu T, Zhang X, Zhang H, Zhao H, Zhang Z, Tian Y. Method for monitoring singlet oxygen quantum yield in real time by time resolved spectroscopy measurement. OPTICS EXPRESS 2020; 28:25757-25766. [PMID: 32906860 DOI: 10.1364/oe.401423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
The singlet oxygen quantum yield (ΦΔ) was monitored in real time through time resolved spectroscopy measurement, using gadolinium labeled hematoporphyrin monomethyl ether (Gd-HMME) as photosensitizer. According to the kinetics equations of singlet oxygen generation and reaction, ΦΔ was related to phosphorescence lifetime (τp). Through measuring τp of Gd-HMME in different oxygen conditions, the radiation transition property of first exited triplet state (T1) was monitored; combined with the triplet state quantum yield (ΦT) determined by linear fitting the ΦΔ, which was measured in different oxygen content using a relative measurement, ΦΔ can be determined in real time. The identification of anoxia during the treatment of photodynamic therapy (PDT) by this method is also presented.
Collapse
|
52
|
Bruemmer KJ, Crossley SWM, Chang CJ. Activity-Based Sensing: A Synthetic Methods Approach for Selective Molecular Imaging and Beyond. Angew Chem Int Ed Engl 2020; 59:13734-13762. [PMID: 31605413 PMCID: PMC7665898 DOI: 10.1002/anie.201909690] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 01/10/2023]
Abstract
Emerging from the origins of supramolecular chemistry and the development of selective chemical receptors that rely on lock-and-key binding, activity-based sensing (ABS)-which utilizes molecular reactivity rather than molecular recognition for analyte detection-has rapidly grown into a distinct field to investigate the production and regulation of chemical species that mediate biological signaling and stress pathways, particularly metal ions and small molecules. Chemical reactions exploit the diverse chemical reactivity of biological species to enable the development of selective and sensitive synthetic methods to decipher their contributions within complex living environments. The broad utility of this reaction-driven approach facilitates application to imaging platforms ranging from fluorescence, luminescence, photoacoustic, magnetic resonance, and positron emission tomography modalities. ABS methods are also being expanded to other fields, such as drug and materials discovery.
Collapse
Affiliation(s)
- Kevin J Bruemmer
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Steven W M Crossley
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
53
|
Jun JV, Chenoweth DM, Petersson EJ. Rational design of small molecule fluorescent probes for biological applications. Org Biomol Chem 2020; 18:5747-5763. [PMID: 32691820 PMCID: PMC7453994 DOI: 10.1039/d0ob01131b] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fluorescent small molecules are powerful tools for visualizing biological events, embodying an essential facet of chemical biology. Since the discovery of the first organic fluorophore, quinine, in 1845, both synthetic and theoretical efforts have endeavored to "modulate" fluorescent compounds. An advantage of synthetic dyes is the ability to employ modern organic chemistry strategies to tailor chemical structures and thereby rationally tune photophysical properties and functionality of the fluorophore. This review explores general factors affecting fluorophore excitation and emission spectra, molar absorption, Stokes shift, and quantum efficiency; and provides guidelines for chemist to create novel probes. Structure-property relationships concerning the substituents are discussed in detail with examples for several dye families. We also present a survey of functional probes based on PeT, FRET, and environmental or photo-sensitivity, focusing on representative recent work in each category. We believe that a full understanding of dyes with diverse chemical moieties enables the rational design of probes for the precise interrogation of biochemical and biological phenomena.
Collapse
Affiliation(s)
- Joomyung V Jun
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA. and Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - David M Chenoweth
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA.
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA. and Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA
| |
Collapse
|
54
|
Murotomi K, Umeno A, Sugino S, Yoshida Y. Quantitative kinetics of intracellular singlet oxygen generation using a fluorescence probe. Sci Rep 2020; 10:10616. [PMID: 32606330 PMCID: PMC7327044 DOI: 10.1038/s41598-020-67155-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/29/2020] [Indexed: 11/24/2022] Open
Abstract
Singlet oxygen (1O2) is a type of reactive oxygen species involved in numerous physiological activities. We previously reported that 1O2-specific oxidation products are increased in patients with prediabetes, suggesting that measurement of 1O2 may be an important indicator of physiological and pathological conditions. The turnover in the generation and quenching of 1O2 is extremely rapid during biological activities owing to it high reactivity and short lifetime in solution. However, the dynamic changes in 1O2 generation in living cells have not been fully explored. In this study, we investigated whether the kinetics of 1O2 generation can be quantified using a far-red fluorescent probe for mitochondrial 1O2, Si-DMA, following addition of the 1O2 generator, endoperoxide, to mammalian cells. The kinetics of Si-DMA fluorescence intensity dose-dependently increased following treatment of mammalian living cells with endoperoxide. Alternatively, treatment with 1O2 quenchers decreased the fluorescence intensities following endoperoxide treatment. Our results indicate that the kinetics of intracellular 1O2 can be readily obtained using Si-DMA and time-lapse imaging, which provides new insights into the mechanism of 1O2 generation in mammalian cells and the exploration of 1O2 generators and quenchers.
Collapse
Affiliation(s)
- Kazutoshi Murotomi
- Molecular Neurophysiology Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| | - Aya Umeno
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa, 761-0301, Japan
| | - Sakiko Sugino
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa, 761-0301, Japan
| | - Yasukazu Yoshida
- LG Japan Lab Inc., Glass Cube Shinagawa 2F, 4-13-14, Higashi Shinagawa, Shinagawa-ku, Tokyo, 140-0002, Japan
| |
Collapse
|
55
|
Mantri Y, Davidi B, Lemaster JE, Hariri A, Jokerst JV. Iodide-doped precious metal nanoparticles: measuring oxidative stress in vivo via photoacoustic imaging. NANOSCALE 2020; 12:10511-10520. [PMID: 32396928 PMCID: PMC7331795 DOI: 10.1039/d0nr03047c] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Accumulation of reactive oxygen and nitrogen species (RONS) can induce cell damage and even cell death. RONS are short-lived species, which makes direct, precise, and real-time measurement difficult. Biologically-relevant RONS levels are in the nM-μM scale; hence, there is a need for highly sensitive RONS probes. We previously used hybrid gold-core silver-shell nanoparticles with mM sensitivity to H2O2. These particles reported the presence of RONS via spectral shifts which could easily be quantified via photoacoustic imaging. Here, we used halide doping to tune the electrochemical properties of these materials to better match the oxidation potential of RONS. This work describes the synthesis, characterization, and application of these AgI-coated gold nanorods (AgI/AuNR). The I : Ag molar ratio, pH, and initial Ag shell thickness were optimized for good RONS detection limits. Halide doping lowers the reduction potential of Ag from to resulting in a 1000-fold increase in H2O2 and 100 000-fold increase in ONOO- sensitivity. The AgI/AuNR system also etches 45-times faster than undoped Ag/AuNR. The AgI/AuNR easily reported the endogenously produced RONS in established cells lines as well as murine models.
Collapse
Affiliation(s)
- Yash Mantri
- Department of Bioengineering University of California, San Diego, La Jolla, CA, USA
| | - Barak Davidi
- Department of Physics, Fairfield University, Fairfield, CT, USA
| | - Jeanne E Lemaster
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, USA.
| | - Ali Hariri
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, USA.
| | - Jesse V Jokerst
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, USA. and Materials Science Program, University of California, San Diego, La Jolla, CA, USA and Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
56
|
Kjær C, Hansson RF, Hedberg C, Jensen F, Jensen HH, Nielsen SB. Gas-phase action and fluorescence spectroscopy of mass-selected fluorescein monoanions and two derivatives. Phys Chem Chem Phys 2020; 22:9210-9215. [PMID: 32227053 DOI: 10.1039/d0cp00453g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Gaseous fluorescein monoanions are weakly fluorescent; they display a broad fluorescence spectrum and a large Stokes shift. This contrasts with the situation in aqueous solution. One explanation of the intriguing behavior in vacuo is based on internal proton transfer from the pendant carboxyphenyl group to one of the xanthene oxygens in the excited state; another that rotation of the carboxyphenyl group relative to the xanthene leads to a partial charge transfer from one chromophore (xanthene) to the other (carboxyphenyl) when the π orbitals start to overlap. To shed light on the mechanism at play, we synthesized two fluorescein derivatives where the carboxylic acid group is replaced with either an ester or a tertiary amide functionality and explored their gas-phase ion fluorescence using the home-built LUminescence iNstrument in Aarhus (LUNA) setup. Results on the fluorescein methyl ester that has no acidic proton clearly disprove the former explanation: The spectrum remains broad, and the band center (at 605 nm) is shifted even more to the red than that of fluorescein (590 nm). Experiments on the other variant that contains a piperidino amide are also in favor of the second explanation as here the piperidino already causes the dihedral angle between the planes defining the xanthene and the benzene ring to be less than 90° in the ground state (i.e., 63°), according to density functional theory calculations. As a result of the closer similarity between the ground-state and excited-state structures, the fluorescence spectrum is narrower than those of the other two ions, and the band maximum is further to the blue (575 nm). In accordance with a more delocalized ground state of the amide derivative, action spectra associated with photoinduced dissociation recorded at another setup show that the absorption-band maximum for the amide derivative is redshifted compared to that of fluorescein (538 nm vs. 525 nm).
Collapse
Affiliation(s)
- Christina Kjær
- Department of Physics and Astronomy, Aarhus University, Denmark.
| | | | | | - Frank Jensen
- Department of Chemistry, Aarhus University, Denmark
| | | | | |
Collapse
|
57
|
Bruemmer KJ, Crossley SWM, Chang CJ. Aktivitätsbasierte Sensorik: ein synthetisch‐methodischer Ansatz für die selektive molekulare Bildgebung und darüber hinaus. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201909690] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kevin J. Bruemmer
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| | | | - Christopher J. Chang
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute University of California, Berkeley Berkeley CA 94720 USA
| |
Collapse
|
58
|
Roeinfard M, Zahedifar M, Darroudi M, Khorsand Zak A, Sadeghi E. Preparation and characterization of selenium‐decorated graphene quantum dots with high afterglow for application in photodynamic therapy. LUMINESCENCE 2020; 35:891-896. [DOI: 10.1002/bio.3798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/25/2020] [Accepted: 02/29/2020] [Indexed: 12/22/2022]
Affiliation(s)
- M. Roeinfard
- Institute of Nanoscience and NanotechnologyUniversity of Kashan Kashan I.R Iran
| | - M. Zahedifar
- Physics DepartmentUniversity of Kashan Kashan I.R. Iran
- Institute of Nanoscience and NanotechnologyUniversity of Kashan Kashan I.R Iran
| | - M. Darroudi
- Modern Science and Technology DepartmentUniversity of Medical Sciences Mashhad I.R. Iran
- Nuclear Medicine Research CenterUniversity of Medical Sciences Mashhad I.R. Iran
| | - A. Khorsand Zak
- Nanotechnology LaboratoryEsfarayen University of Technology Esfarayen I.R. Iran
| | - E. Sadeghi
- Physics DepartmentUniversity of Kashan Kashan I.R. Iran
- Institute of Nanoscience and NanotechnologyUniversity of Kashan Kashan I.R Iran
| |
Collapse
|
59
|
Laube C, Taut JA, Kretzschmar J, Zahn S, Knolle W, Ullman S, Kahnt A, Kersting B, Abel B. Light controlled oxidation by supramolecular Zn( ii) Schiff-base complexes. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00980f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Application of Schiff-base ligands for the controlled zinc ion induced formation of electronic triplet states and the initialisation of photoreactivity.
Collapse
Affiliation(s)
- Christian Laube
- Leibniz Institute for Surface Engineering (IOM)
- Department Functional Surfaces
- D-04318 Leipzig
- Germany
- Department of Chemistry
| | - Josef Anton Taut
- Leibniz Institute for Surface Engineering (IOM)
- Department Functional Surfaces
- D-04318 Leipzig
- Germany
| | - Jonas Kretzschmar
- Institute of Inorganic Chemistry
- University Leipzig
- 04103 Leipzig
- Germany
| | - Stefan Zahn
- Leibniz Institute for Surface Engineering (IOM)
- Department Functional Surfaces
- D-04318 Leipzig
- Germany
| | - Wolfgang Knolle
- Leibniz Institute for Surface Engineering (IOM)
- Department Functional Surfaces
- D-04318 Leipzig
- Germany
| | - Steve Ullman
- Institute of Inorganic Chemistry
- University Leipzig
- 04103 Leipzig
- Germany
| | - Axel Kahnt
- Leibniz Institute for Surface Engineering (IOM)
- Department Functional Surfaces
- D-04318 Leipzig
- Germany
| | - Berthold Kersting
- Institute of Inorganic Chemistry
- University Leipzig
- 04103 Leipzig
- Germany
| | - Bernd Abel
- Leibniz Institute for Surface Engineering (IOM)
- Department Functional Surfaces
- D-04318 Leipzig
- Germany
- Wilhelm-Ostwald-Institute of Physical und Theoretical Chemistry
| |
Collapse
|
60
|
Oliveira MS, Chorociejus G, Angeli JPF, Vila Verde G, Aquino GLB, Ronsein GE, Oliveira MCBD, Barbosa LF, Medeiros MHG, Greer A, Di Mascio P. Heck reaction synthesis of anthracene and naphthalene derivatives as traps and clean chemical sources of singlet molecular oxygen in biological systems. Photochem Photobiol Sci 2020; 19:1590-1602. [DOI: 10.1039/d0pp00153h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Our study shows that new anthracene and naphthalene derivatives function as compounds for trapping and chemically generating singlet molecular oxygen [O2(1Δg)], respectively. The syntheses of these derivatives are described, as well as some localization testing in cells.
Collapse
Affiliation(s)
| | - Gabriel Chorociejus
- Departamento de Bioquímica
- Instituto de Química
- Universidade de São Paulo
- São Paulo
- Brazil
| | - José Pedro F. Angeli
- Rudolf Virchow Center for Translational Bioimaging
- University of Würzburg
- 97080 Würzburg
- Germany
| | - Giuliana Vila Verde
- Campus Anápolis de Ciências Exatas e Tecnológicas Henrique Santillo
- Universidade Estadual de Goiás
- 75001-970 Anápolis
- Brazil
| | - Gilberto L. B. Aquino
- Campus Anápolis de Ciências Exatas e Tecnológicas Henrique Santillo
- Universidade Estadual de Goiás
- 75001-970 Anápolis
- Brazil
| | - Graziella E. Ronsein
- Departamento de Bioquímica
- Instituto de Química
- Universidade de São Paulo
- São Paulo
- Brazil
| | | | - Livea F. Barbosa
- Departamento de Bioquímica
- Instituto de Química
- Universidade de São Paulo
- São Paulo
- Brazil
| | - Marisa H. G. Medeiros
- Departamento de Bioquímica
- Instituto de Química
- Universidade de São Paulo
- São Paulo
- Brazil
| | - Alexander Greer
- Department of Chemistry
- Brooklyn College
- City University of New York
- Brooklyn
- USA
| | - Paolo Di Mascio
- Departamento de Bioquímica
- Instituto de Química
- Universidade de São Paulo
- São Paulo
- Brazil
| |
Collapse
|
61
|
Sun XY, Liu T, Sun J, Wang XJ. Synthesis and application of coumarin fluorescence probes. RSC Adv 2020; 10:10826-10847. [PMID: 35492912 PMCID: PMC9050418 DOI: 10.1039/c9ra10290f] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/15/2020] [Indexed: 12/11/2022] Open
Abstract
In recent years, the research on fluorescent probes has developed rapidly. Coumarin fluorescent probes have also been one of the hot topics in recent years. For the synthesis and application of coumarin fluorescent probes, great progress has been made. Coumarin fluorescent probes have become more and more widely used in biochemistry, environmental protection, and disease prevention, and have broad prospects. This review introduces the three main light emitting mechanisms (PET, ICT, FRET) of fluorescent probes, and enumerates some probes based on this light emitting mechanism. In terms of the synthesis of coumarin fluorescent probes, the existing substituents on the core of coumarin compounds were modified. Based on the positions of the modified substituents, some of the fluorescent probes reported in the past ten years are listed. Most of the fluorescent probes are formed by modifying the 3 and 7 position substituents on the mother nucleus, and the 4 and 8 position substituents are relatively less modified. In terms of probe applications, the detection and application of coumarin fluorescent probes for Cu2+, Hg2+, Mg2+, Zn2+, pH, environmental polarity, and active oxygen and sulfide in the past ten years are mainly introduced. In recent years, the research on fluorescent probes has developed rapidly.![]()
Collapse
Affiliation(s)
- Xiao-ya Sun
- School of Medicine and Life Sciences
- University of Jinan
- Shandong Academy of Medical Sciences
- Jinan 250200
- China
| | - Teng Liu
- Institute of Materia Medical
- Shandong First Medical University & Shandong Academy of Medical Sciences
- Jinan 250062
- China
- Key Laboratory for Biotech-Drugs Ministry of Health
| | - Jie Sun
- Institute of Materia Medical
- Shandong First Medical University & Shandong Academy of Medical Sciences
- Jinan 250062
- China
- Key Laboratory for Biotech-Drugs Ministry of Health
| | - Xiao-jing Wang
- Institute of Materia Medical
- Shandong First Medical University & Shandong Academy of Medical Sciences
- Jinan 250062
- China
- Key Laboratory for Biotech-Drugs Ministry of Health
| |
Collapse
|
62
|
Brega V, Yan Y, Thomas SW. Acenes beyond organic electronics: sensing of singlet oxygen and stimuli-responsive materials. Org Biomol Chem 2020; 18:9191-9209. [DOI: 10.1039/d0ob01744b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Although they are often detrimental in organic electronics, the cycloaddition reactions of acenes, especially with singlet oxygen, are useful in a range of responsive materials.
Collapse
Affiliation(s)
| | - Yu Yan
- Department of Chemistry
- Tufts University
- Medford
- USA
| | | |
Collapse
|
63
|
Guan K, Wang P, Zhou F, Wang Y, Liu HW, Xie Q, Song G, Yin X, Huan S, Zhang XB. A two-photon fluorescence self-reporting black phosphorus nanoprobe for the in situ monitoring of therapy response. Chem Commun (Camb) 2020; 56:14007-14010. [DOI: 10.1039/d0cc05335j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed a black phosphorus based two-photon fluorescent nanoprobe (TPBP) for the in situ and real-time reporting of the therapeutic response of black phosphorus.
Collapse
|
64
|
Liu L, Zhang Z, Zhao Q, Chen X, Deng L, Chen W, Jin Y. Detection of singlet oxygen by chemical trap in ionic liquids. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2019.136952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
65
|
Wang T, Yang X, Men J, Zhou J, Zhang H. A near-infrared fluorescent probe based on boric acid hydrolysis for hydrogen peroxide detection and imaging in HeLa cells. LUMINESCENCE 2019; 35:208-214. [PMID: 31760681 DOI: 10.1002/bio.3715] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/27/2019] [Accepted: 09/12/2019] [Indexed: 01/17/2023]
Abstract
Using the characteristics of hydrogen peroxide that are able to cleave phenyl-boric acid selectively and efficiently, we here report a dicyanoisophorone-boric acid (DCP-BA)-based near-infrared (NIR) fluorescent probe for detection of hydrogen peroxide. This probe shows a rapid, highly selective, and sensitive detection process for hydrogen peroxide with a significant NIR fluorescent turn-on response that has been successfully applied to detect exogenous hydrogen peroxide in HeLa cells.
Collapse
Affiliation(s)
- Tao Wang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, Pharmaceutical University, Nanjing, China
| | - Xiaojun Yang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, Pharmaceutical University, Nanjing, China
| | - Jinxia Men
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Jinpei Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Huibin Zhang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, Pharmaceutical University, Nanjing, China
| |
Collapse
|
66
|
Zhou EY, Knox HJ, Liu C, Zhao W, Chan J. A Conformationally Restricted Aza-BODIPY Platform for Stimulus-Responsive Probes with Enhanced Photoacoustic Properties. J Am Chem Soc 2019; 141:17601-17609. [PMID: 31660741 PMCID: PMC6942515 DOI: 10.1021/jacs.9b06694] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Photoacoustic (PA) dyes, which absorb near-infrared (NIR) light to generate an ultrasonic signal, can be detected at centimeter depths in tissues with significantly higher resolution than dyes imaged with fluorescence-based methods. As such, PA agents show great promise as research tools for the study of live-animal disease models. However, the development of activatable PA probes has been hampered by the relative scarcity of appropriate PA-active molecular platforms with properties that can be manipulated in a rational manner. Herein we synthesized and evaluated six modifications to the aza-BODIPY dye platform with respect to their absorbance, fluorescence, and PA properties. We identified a promising conformationally restricted aza-BODIPY (CRaB) scaffold that prioritizes three criteria necessary for the design of stimulus-responsive dyes with optimal ratiometric PA response: absorbance at NIR wavelengths, strong PA intensity, and large Δλ upon interaction with the desired stimulus. Using this scaffold, we synthesized three chemically diverse stimulus-responsive PA probes and demonstrated between 2- and 8-fold improvements in theoretical ratiometric response in vitro. This suggests that improvements in PA parameters are generalizable. Finally, we validated the in vitro turnover of each CRaB PA probe and demonstrated the in vivo potential of the CRaB scaffold by direct comparison to an established hypoxia-responsive probe for the detection of tumor hypoxia.
Collapse
Affiliation(s)
- Effie Y. Zhou
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Hailey J. Knox
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Chang Liu
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, 201203, P. R. China
| | - Weili Zhao
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, 201203, P. R. China
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng, 475004, P. R. China
| | - Jefferson Chan
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
67
|
Pronin D, Krishnakumar S, Rychlik M, Wu H, Huang D. Development of a Fluorescent Probe for Measurement of Singlet Oxygen Scavenging Activity of Flavonoids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10726-10733. [PMID: 31469953 DOI: 10.1021/acs.jafc.9b04025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A turn-on fluorescent probe, HOCD-RB, for monitoring singlet oxygen (1O2) was developed by linking rhodamine B as fluorophore with dimethylhomoocoerdianthrone (HOCD) as 1O2 reaction site and fluorescence quencher due to the intramolecular energy transfer (ET) between rhodamine B and HOCD moieties. Upon exposure to 1O2 it rapidly forms endoperoxide with HOCD and turns on the fluorescence of rhodamine B by 18-fold. Taking advantage of the HOCD-RB probe that shows fast response, high sensitivity, and selectivity for 1O2, it is applied for imaging of endogenous 1O2 in living cells and the fluorometric assay for evaluating 1O2 quenching activity of selected common flavonoids found in our daily diets. The results show that the 1O2 scavenging activity of flavonoids depends on not only the structure of individual flavonoid but also the competitive interactions between mixed flavonoids. The best antioxidant capacity for individual and mixed flavonoids is epigallocatechin gallate and the mixture of catechin gallate with kaempferol, respectively. Overall, this work provided a new tool for detection and imaging of singlet oxygen activity in a biological system as well as an efficient fluorometric assay of 1O2 scavenging activity.
Collapse
Affiliation(s)
- Darina Pronin
- Analytical Food Chemistry , Technical University of Munich , Maximus-von-Imhof-Forum 2 , D-85354 Freising , Germany
| | - Saarangan Krishnakumar
- Department of Food Science and Technology , National University of Singapore , 3 Science Drive 3 , Singapore 117543 , Republic of Singapore
| | - Michael Rychlik
- Analytical Food Chemistry , Technical University of Munich , Maximus-von-Imhof-Forum 2 , D-85354 Freising , Germany
| | - Haixia Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering , Inner Mongolia University , Hohhot 010021 , People's Republic of China
- Department of Food Science and Technology , National University of Singapore , 3 Science Drive 3 , Singapore 117543 , Republic of Singapore
| | - Dejian Huang
- Department of Food Science and Technology , National University of Singapore , 3 Science Drive 3 , Singapore 117543 , Republic of Singapore
| |
Collapse
|
68
|
Wang H, Wang Z, Li Y, Xu T, Zhang Q, Yang M, Wang P, Gu Y. A Novel Theranostic Nanoprobe for In Vivo Singlet Oxygen Detection and Real-Time Dose-Effect Relationship Monitoring in Photodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902185. [PMID: 31389152 DOI: 10.1002/smll.201902185] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Singlet oxygen, as the main member of reactive oxygen species, plays a significant role in cancer photodynamic therapy. However, the in vivo real-time detection of singlet oxygen remains challenging. In this work, a Förster resonance energy transfer (FRET)-based upconversion nanoplatform for monitoring the singlet oxygen in living systems is developed, with the ability to evaluate the in vivo dose-effect relationship between singlet oxygen and photodynamic therapy (PDT) efficacy. In details, this nanoplatform is composed of core-shell upconversion nanoparticles (UCNPs), photosensitizer MC540, NIR dye IR-820, and poly(acryl amine) PAA-octylamine, where the UCNPs serve as an energy donor while IR-820 serves as an energy acceptor. The nanoparticles are found to sensitively reflect the singlet oxygen levels generated in the tumor tissues during PDT, by luminescence intensity changes of UNCPs at 800 nm emission. Furthermore, it could also enable tumor treatment with satisfactory biocompatibility. To the best knowledge, this is the first report of a theranostic nanoplatform with the ability to formulate the in vivo dose-effect relationship between singlet oxygen and PDT efficacy and to achieve tumor treatment at the same time. This work might also provide an executable strategy to evaluate photodynamic therapeutic efficacy based on singlet oxygen pathway.
Collapse
Affiliation(s)
- Han Wang
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhaohui Wang
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Yongkuan Li
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Tian Xu
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Qi Zhang
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Man Yang
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Peng Wang
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Yueqing Gu
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
69
|
Molecular imaging of oxidative stress using an LED-based photoacoustic imaging system. Sci Rep 2019; 9:11378. [PMID: 31388020 PMCID: PMC6684596 DOI: 10.1038/s41598-019-47599-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 07/19/2019] [Indexed: 12/22/2022] Open
Abstract
LED-based photoacoustic imaging has practical value in that it is affordable and rugged; however, this technology has largely been confined to anatomic imaging with limited applications into functional or molecular imaging. Here, we report molecular imaging reactive oxygen and nitrogen species (RONS) with a near-infrared (NIR) absorbing small molecule (CyBA) and LED-based photoacoustic imaging equipment. CyBA produces increasing photoacoustic signal in response to peroxynitrite (ONOO−) and hydrogen peroxide (H2O2) with photoacoustic signal increases of 3.54 and 4.23-fold at 50 µM of RONS at 700 nm, respectively. CyBA is insensitive to OCl−, ˙NO, NO2−, NO3−, tBuOOH, O2−, C4H9O˙, HNO, and ˙OH, but can detect ONOO− in whole blood and plasma. CyBA was then used to detect endogenous RONS in macrophage RAW 246.7 cells as well as a rodent model; these results were confirmed with fluorescence microscopy. Importantly, CyB suffers photobleaching under a Nd:YAG laser but the signal decrease is <2% with the low-power LED-based photoacoustic system and the same radiant exposure time. To the best of our knowledge, this is the first report to describe molecular imaging with an LED-based photoacoustic scanner. This study not only reveals the sensitive photoacoustic detection of RONS but also highlights the utility of LED-based photoacoustic imaging.
Collapse
|
70
|
Cheng T, Huang W, Gao D, Yang Z, Zhang C, Zhang H, Zhang J, Li H, Yang XF. Michael Addition/S,N-Intramolecular Rearrangement Sequence Enables Selective Fluorescence Detection of Cysteine and Homocysteine. Anal Chem 2019; 91:10894-10900. [PMID: 31331163 DOI: 10.1021/acs.analchem.9b02814] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acrylate has been widely used as the recognition unit for Cys fluorescent probes. Despite this widespread use, a potential drawback of this probe type is that the ester linkage between the fluorophore and acryloyl recognition unit is liable to be hydrolyzed by abundant esterase in the cytosol, thus affording a high background signal. To solve this problem, we herein put forward a new strategy to construct a selective fluorescent probe for cysteine (Cys)/homocysteine (Hcy) with propynamide as the recognition moiety. The free probe CPA displays weakly fluorescent emission in aqueous media because of the donor-excited photoinduced electron transfer (d-PET) process within the molecule. The Michael addition of Cys (or Hcy) thiols to the conjugated alkyne of CPA gives the expected β-sulfido-α,β-unsaturated amides (1a/1b), which subsequently undergo an intramolecular S,N rearrangement, yielding β-amino-α,β-unsaturated amides (2a/2b) as the final products. The above cascade reaction results in the blockage of d-PET within CPA, thus affording a dramatic fluorescence enhancement at 495 nm. The involvement of the sulfhydryl and the adjacent amino groups in the sensing process renders CPA high selectivity for Cys/Hcy over glutathione as well as other amino acids. The probe has been successfully applied to image Cys in different cell lines. Further, CPA shows two-photon fluorescence properties, and its ability to monitor Cys in deep tissues has been demonstrated by using two-photon microscopy.
Collapse
Affiliation(s)
- Tianyi Cheng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710069 , China
| | - Wenming Huang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710069 , China
| | - Di Gao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology , Xi'an Jiaotong University , Xi'an 710049 , China
| | - Zhe Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology , Xi'an Jiaotong University , Xi'an 710049 , China
| | - Congjie Zhang
- School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , China
| | - Haixia Zhang
- College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , China
| | - Jianjian Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710069 , China
| | - Hua Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710069 , China
| | - Xiao-Feng Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710069 , China
| |
Collapse
|
71
|
Hoffmann H, Mukanov D, Ganschow M, Rominger F, Freudenberg J, Bunz UHF. 2,3-Dihalo- and 2,3,6,7-Tetrahaloanthracenes by Vollhardt Trimerization. J Org Chem 2019; 84:9826-9834. [PMID: 31309840 DOI: 10.1021/acs.joc.9b01567] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We efficiently synthesized otherwise difficult to obtain 2,3- and 2,3,6,7-halogenated anthracenes with diverse east/west substituents. Key steps involve the (i) Vollhardt cyclization of bis(propargyl)benzenes with bis(trimethylsilyl)acetylene, (ii) halo-desilylation introducing chlorine, bromine, or iodine substituents, and (iii) dehydrogenation. Pd catalysis allows selective functionalization at the anthracenes' east/west positions. A tetrahydropentacene is synthesized and derivatized via the same strategy, employing tetrapropargylbenzene.
Collapse
Affiliation(s)
- Hendrik Hoffmann
- Organisch-Chemisches Institut , Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 270 , 69120 Heidelberg , Germany
| | - Diana Mukanov
- Organisch-Chemisches Institut , Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 270 , 69120 Heidelberg , Germany
| | - Michael Ganschow
- Organisch-Chemisches Institut , Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 270 , 69120 Heidelberg , Germany
| | - Frank Rominger
- Organisch-Chemisches Institut , Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 270 , 69120 Heidelberg , Germany
| | - Jan Freudenberg
- Organisch-Chemisches Institut , Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 270 , 69120 Heidelberg , Germany.,InnovationLab , Speyerer Str. 4 , 69115 Heidelberg , Germany
| | - Uwe H F Bunz
- Organisch-Chemisches Institut , Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 270 , 69120 Heidelberg , Germany.,Centre for Advanced Materials , Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 225 , 69120 Heidelberg , Germany
| |
Collapse
|
72
|
Brega V, Kanari SN, Doherty CT, Che D, Sharber SA, Thomas SW. Spectroscopy and Reactivity of Dialkoxy Acenes. Chemistry 2019; 25:10400-10407. [DOI: 10.1002/chem.201901258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/13/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Valentina Brega
- Department of Chemistry Tufts University 62 Talbot Avenue Medford MA 02155 United States
| | - Sare Nur Kanari
- Department of Chemistry Tufts University 62 Talbot Avenue Medford MA 02155 United States
| | - Connor T. Doherty
- Department of Chemistry Tufts University 62 Talbot Avenue Medford MA 02155 United States
| | - Dante Che
- Department of Chemistry Tufts University 62 Talbot Avenue Medford MA 02155 United States
| | - Seth A. Sharber
- Department of Chemistry Tufts University 62 Talbot Avenue Medford MA 02155 United States
| | - Samuel W. Thomas
- Department of Chemistry Tufts University 62 Talbot Avenue Medford MA 02155 United States
| |
Collapse
|
73
|
Long L, Yuan X, Cao S, Han Y, Liu W, Chen Q, Gong A, Wang K. Construction of a fluorescent probe for selectively detecting singlet oxygen with a high sensitivity and large concentration range based on a two-step cascade sensing reaction. Chem Commun (Camb) 2019; 55:8462-8465. [PMID: 31264675 DOI: 10.1039/c9cc04300d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A novel fluorescent probe XQ-1 for selectively detecting 1O2 on the basis of a two-step cascade reaction has been rationally constructed. The probe responded to 1O2 not only showing a high sensitivity, but also displaying a large concentration range, which means that the probe can be used as a powerful tool to monitor the efficacy of PDT toward cancer and concurrently track the adverse effects on healthy cells.
Collapse
Affiliation(s)
- Lingliang Long
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China.
| | - Xiangqi Yuan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China.
| | - Siyu Cao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China.
| | - Yuanyuan Han
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China.
| | - Weiguo Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China.
| | - Qian Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China.
| | - Aihua Gong
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China.
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China. and Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, P. R. China
| |
Collapse
|
74
|
Emissive Enhancement of the Singlet Oxygen Chemiluminescence Probe after Binding to Bovine Serum Albumin. Molecules 2019; 24:molecules24132422. [PMID: 31266247 PMCID: PMC6651777 DOI: 10.3390/molecules24132422] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/14/2019] [Accepted: 06/28/2019] [Indexed: 11/29/2022] Open
Abstract
A chemiluminescence probe for singlet oxygen 1O2 (SOCL) was investigated in phosphate buffer saline (PBS), either in the absence of proteins or containing bovine serum albumin (BSA). In the protein-free PBS, the reactivity of SOCL for methylene blue (MB)-photosensitized 1O2 was found to be moderate or low. The reaction yield increased with temperature and/or concentration of dissolved molecular oxygen. Unexpectedly, the presence of BSA boosted both the emissive nature and the thermal stability of the phenoxy-dioxetane intermediate formed in the chemiexcitation pathway. Isothermal titration calorimetry showed that SOCL has a moderate binding affinity for BSA and that entropy forces drive the formation of the SOCL-BSA complex. A model with two identical and independent binding sites was used to fit the binding isotherm data. Co-operative binding was observed when MB was present. Local viscosity factors and/or conformational restrictions of the BSA-bound SOCL phenoxy-dioxetane were proposed to contribute to the formation of the highly emissive benzoate ester during the chemically initiated electron exchange luminescence (CIEEL) process. These results led us to conclude that hydrophobic interactions of the SOCL with proteins can modify the emissive nature of its phenoxy-dioxetane, which should be taken into account when using SOCL or its cell-penetrating peptide derivative in living cells.
Collapse
|
75
|
Denisov SS, Ippel JH, Heinzmann ACA, Koenen RR, Ortega-Gomez A, Soehnlein O, Hackeng TM, Dijkgraaf I. Tick saliva protein Evasin-3 modulates chemotaxis by disrupting CXCL8 interactions with glycosaminoglycans and CXCR2. J Biol Chem 2019; 294:12370-12379. [PMID: 31235521 PMCID: PMC6699855 DOI: 10.1074/jbc.ra119.008902] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/11/2019] [Indexed: 01/22/2023] Open
Abstract
Chemokines are a group of chemotaxis proteins that regulate cell trafficking and play important roles in immune responses and inflammation. Ticks are blood-sucking parasites that secrete numerous immune-modulatory agents in their saliva to evade host immune responses. Evasin-3 is a small salivary protein that belongs to a class of chemokine-binding proteins isolated from the brown dog tick, Rhipicephalus sanguineus. Evasin-3 has been shown to have a high affinity for chemokines CXCL1 and CXCL8 and to diminish inflammation in mice. In the present study, solution NMR spectroscopy was used to investigate the structure of Evasin-3 and its CXCL8–Evasin-3 complex. Evasin-3 is found to disrupt the glycosaminoglycan-binding site of CXCL8 and inhibit the interaction of CXCL8 with CXCR2. Structural data were used to design two novel CXCL8-binding peptides. The linear tEv3 17–56 and cyclic tcEv3 16–56 dPG Evasin-3 variants were chemically synthesized by solid-phase peptide synthesis. The affinity of these newly synthesized variants to CXCL8 was measured by surface plasmon resonance biosensor analysis. The Kd values of tEv3 17–56 and tcEv3 16–56 dPG were 27 and 13 nm, respectively. Both compounds effectively inhibited CXCL8-induced migration of polymorphonuclear neutrophils. The present results suggest utility of synthetic Evasin-3 variants as scaffolds for designing and fine-tuning new chemokine-binding agents that suppress immune responses and inflammation.
Collapse
Affiliation(s)
- Stepan S Denisov
- Department of Biochemistry, University of Maastricht, Cardiovascular Research Institute Maastricht, 6229 ER, Maastricht, The Netherlands
| | - Johannes H Ippel
- Department of Biochemistry, University of Maastricht, Cardiovascular Research Institute Maastricht, 6229 ER, Maastricht, The Netherlands
| | - Alexandra C A Heinzmann
- Department of Biochemistry, University of Maastricht, Cardiovascular Research Institute Maastricht, 6229 ER, Maastricht, The Netherlands
| | - Rory R Koenen
- Department of Biochemistry, University of Maastricht, Cardiovascular Research Institute Maastricht, 6229 ER, Maastricht, The Netherlands
| | - Almudena Ortega-Gomez
- Institute for Cardiovascular Prevention, Ludwig Maximilian University, 80336, Munich, Germany
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention, Ludwig Maximilian University, 80336, Munich, Germany; German Center for Cardiovascular Research, 13316, Berlin, Germany; Partner Site Munich Heart Alliance, 80802 Munich, Germany; Department of Physiology and Pharmacology and Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Tilman M Hackeng
- Department of Biochemistry, University of Maastricht, Cardiovascular Research Institute Maastricht, 6229 ER, Maastricht, The Netherlands
| | - Ingrid Dijkgraaf
- Department of Biochemistry, University of Maastricht, Cardiovascular Research Institute Maastricht, 6229 ER, Maastricht, The Netherlands.
| |
Collapse
|
76
|
Krajczewski J, Rucińska K, Townley HE, Kudelski A. Role of various nanoparticles in photodynamic therapy and detection methods of singlet oxygen. Photodiagnosis Photodyn Ther 2019; 26:162-178. [DOI: 10.1016/j.pdpdt.2019.03.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 01/10/2023]
|
77
|
Patil V, Padalkar VS, Sekar N, Patil SV, Rajput J. Synthesis of 2-methyl-5-(5-phenyl substituted-1,3,4 oxadiazole-2-yl) quinazolin-4-one fluorescent brightening agent: Computational and experimental comparison of photophysical structure. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.01.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
78
|
Photochemistry of various acene based molecules. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2019. [DOI: 10.1016/j.jphotochemrev.2018.12.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
79
|
Abstract
Growing evidence indicates intermediacy of singlet dioxygen (1O2) in a variety of pathophysiological processes. 1O2 has also found great utility of destructive actions for clinical and environmental applications. However, many details of the molecular mechanisms mediated by 1O2 remain insufficiently understood. Efforts to elucidate the 1O2 chemistry have been hampered by the lack of chemical tools capable of generation and detection of 1O2. In this review, I summarize the recent advances in the development of the chemical tools of 1O2. This article focuses on two topics. The first part introduces chemical methods for ground-state generation of 1O2. Designs of the molecular carriers of 1O2 are also explained. The second part discloses molecular probes of 1O2. The probes are categorized into three groups, depending on signaling modalities: absorption-based probes, photoluminescent probes, and chemiluminescent probes. Focus is on the molecular design to maximize the signaling actions. Disadvantages of using the probes are also discussed to motivate the future research. I hope that this review will serve as helpful guidance to the exploitation and development of the chemical tools of 1O2.
Collapse
Affiliation(s)
- Youngmin You
- Division of Chemical Engineering and Materials Science, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
80
|
|
81
|
Hou W, Yuan Y, Sun Z, Guo S, Dong H, Wu C. Ratiometric Fluorescent Detection of Intracellular Singlet Oxygen by Semiconducting Polymer Dots. Anal Chem 2018; 90:14629-14634. [DOI: 10.1021/acs.analchem.8b04859] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Weiying Hou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, China
| | - Ye Yuan
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, China
| | - Zezhou Sun
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, China
| | - Shuxu Guo
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, China
| | - Haowen Dong
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 510855, China
| | - Changfeng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 510855, China
| |
Collapse
|
82
|
Trewin AJ, Berry BJ, Wei AY, Bahr LL, Foster TH, Wojtovich AP. Light-induced oxidant production by fluorescent proteins. Free Radic Biol Med 2018; 128:157-164. [PMID: 29425690 PMCID: PMC6078816 DOI: 10.1016/j.freeradbiomed.2018.02.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/22/2018] [Accepted: 02/02/2018] [Indexed: 10/18/2022]
Abstract
Oxidants play an important role in the cell and are involved in many redox processes. Oxidant concentrations are maintained through coordinated production and removal systems. The dysregulation of oxidant homeostasis is a hallmark of many disease pathologies. The local oxidant microdomain is crucial for the initiation of many redox signaling events; however, methods to control oxidant product are limited. Some fluorescent proteins, including GFP, TagRFP, KillerRed, miniSOG, and their derivatives, generate oxidants in response to light. These genetically-encoded photosensitizers produce singlet oxygen and superoxide upon illumination and offer spatial and temporal control over oxidant production. In this review, we will examine the photosensitization properties of fluorescent proteins and their application to redox biology. Emerging concepts of selective oxidant species production via photosensitization and the impact of light on biological systems are discussed.
Collapse
Affiliation(s)
- Adam J Trewin
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, Rochester 14642, United States
| | - Brandon J Berry
- University of Rochester Medical Center, Department of Pharmacology and Physiology, Rochester 14642, United States
| | - Alicia Y Wei
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, Rochester 14642, United States
| | - Laura L Bahr
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, Rochester 14642, United States
| | - Thomas H Foster
- University of Rochester Medical Center, Department of Imaging Sciences, Rochester 14642, United States
| | - Andrew P Wojtovich
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, Rochester 14642, United States; University of Rochester Medical Center, Department of Pharmacology and Physiology, Rochester 14642, United States.
| |
Collapse
|
83
|
Qi S, Li Q, Liu W, Ren H, Zhang H, Wu J, Ge J, Wang P. Coumarin/fluorescein-fused fluorescent dyes for rapidly monitoring mitochondrial pH changes in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 204:590-597. [PMID: 29980060 DOI: 10.1016/j.saa.2018.06.095] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/25/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
On base of the good optical properties of coumarin and fluorescein, we designed and synthesized two coumarin/fluorescein-fused fluorescent dyes (CF dyes), which enlarged the emission wavelength and increased the Stokes shift of fluorescein moiety. The corresponding optical properties of CF dyes were investigated in detail. CF dyes could easily introduce other groups to design different functional molecules. CF dyes also exhibited rapid and sensitive responses to pH values in the range of 4.0-7.4 through the characterization of absorption and fluorescence spectra in buffer solution. More importantly, CF ethyl ester dye (CFE dye) not only showed good cell membrane permeability and low cytotoxicity, but also had the ability to rapidly monitor mitochondrial pH changes in living cells.
Collapse
Affiliation(s)
- Sujie Qi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, City U-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qi Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, City U-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, City U-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Haohui Ren
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, City U-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Hongyan Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, City U-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Jiasheng Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, City U-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Jiechao Ge
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, City U-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, City U-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
84
|
Ma H, Wang X, Song B, Wang L, Tang Z, Luo T, Yuan J. Extending the excitation wavelength from UV to visible light for a europium complex-based mitochondria targetable luminescent probe for singlet oxygen. Dalton Trans 2018; 47:12852-12857. [PMID: 30151539 DOI: 10.1039/c8dt02829j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A visible-light-excitable Eu3+ complex-based luminescent probe, [Eu(pdap)3(DPBT)], has been proposed for time-gated luminescence imaging of singlet oxygen in the mitochondria of living cells, as well as in tumor tissues and laboratory animals. Extension of the excitation window to the visible-light region makes the probe more favorable for practical usage.
Collapse
Affiliation(s)
- Hua Ma
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Linggong Road 2, Dalian 116024, China.
| | - Xin Wang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Linggong Road 2, Dalian 116024, China.
| | - Bo Song
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Linggong Road 2, Dalian 116024, China.
| | - Liu Wang
- School of Pharmaceutical Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Zhixin Tang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Linggong Road 2, Dalian 116024, China.
| | - Tianlie Luo
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Jingli Yuan
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Linggong Road 2, Dalian 116024, China.
| |
Collapse
|
85
|
Baschieri A, Valgimigli L, Gabbanini S, DiLabio GA, Romero-Montalvo E, Amorati R. Extremely Fast Hydrogen Atom Transfer between Nitroxides and HOO· Radicals and Implication for Catalytic Coantioxidant Systems. J Am Chem Soc 2018; 140:10354-10362. [DOI: 10.1021/jacs.8b06336] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Andrea Baschieri
- Department of Chemistry “G. Ciamician”, University of Bologna, Via S. Giacomo 11, 40126 Bologna, Italy
| | - Luca Valgimigli
- Department of Chemistry “G. Ciamician”, University of Bologna, Via S. Giacomo 11, 40126 Bologna, Italy
| | - Simone Gabbanini
- R&D division, BeC s.r.l. Via C. Monteverdi 49, 47122 Forlì, Italy
| | - Gino A. DiLabio
- Department of Chemistry, University of British Columbia, 3247 University Way, Kelowna, British Columbia V1V 1V7, Canada
- Faculty of Management, University of British Columbia, 1137 Alumni Avenue, Kelowna, British Columbia V1V 1V7, Canada
| | - Eduardo Romero-Montalvo
- Department of Chemistry, University of British Columbia, 3247 University Way, Kelowna, British Columbia V1V 1V7, Canada
| | - Riccardo Amorati
- Department of Chemistry “G. Ciamician”, University of Bologna, Via S. Giacomo 11, 40126 Bologna, Italy
| |
Collapse
|
86
|
Meher N, Iyer PK. Spontaneously Self-Assembled Naphthalimide Nanosheets: Aggregation-Induced Emission and Unveiling a-PET for Sensitive Detection of Organic Volatile Contaminants in Water. Angew Chem Int Ed Engl 2018; 57:8488-8492. [PMID: 29722475 DOI: 10.1002/anie.201802842] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/06/2018] [Indexed: 11/11/2022]
Abstract
A simple design strategy of long alkyl chain substitution was formulated to block the detrimental π-π interaction that potentially transforms the aggregation-caused quenching (ACQ) chromophores into aggregation-induced emission (AIE) active smart nanomaterials. The long octadecyl pendant chain substituted naphthalimide (NI) derivatives self-assembled into fluorescent nanosheets (NS)-like structures that spontaneously have surfaces coated with NI cores in water. The fluorescent NS were subsequently used to recognize the organic volatile contaminants (OVCs) at ppb levels via an acceptor-excited photoinduced electron transfer (a-PET) mechanism, unveiled as the first representative example. A new design strategy is thereby provided to detect toxic xylene derivatives in water using smart nanomaterials.
Collapse
Affiliation(s)
- Niranjan Meher
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-, 781039, Assam, India
| | - Parameswar Krishnan Iyer
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-, 781039, Assam, India.,Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati-, 781039, Assam, India
| |
Collapse
|
87
|
Meher N, Iyer PK. Spontaneously Self‐Assembled Naphthalimide Nanosheets: Aggregation‐Induced Emission and Unveiling a‐PET for Sensitive Detection of Organic Volatile Contaminants in Water. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802842] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Niranjan Meher
- Department of Chemistry Indian Institute of Technology Guwahati Guwahati- 781039 Assam India
| | - Parameswar Krishnan Iyer
- Department of Chemistry Indian Institute of Technology Guwahati Guwahati- 781039 Assam India
- Centre for Nanotechnology Indian Institute of Technology Guwahati Guwahati- 781039 Assam India
| |
Collapse
|
88
|
Xu D, Liu M, Huang Q, Chen J, Huang H, Deng F, Tian J, Wen Y, Zhang X, Wei Y. A Novel method for the preparation of fluorescent C60 poly(amino acid) composites and their biological imaging. J Colloid Interface Sci 2018; 516:392-397. [DOI: 10.1016/j.jcis.2018.01.085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 11/28/2022]
|
89
|
Wang Q, Yang F, Zhang Y, Chen M, Zhang X, Lei S, Li R, Hu W. Space-Confined Strategy toward Large-Area Two-Dimensional Single Crystals of Molecular Materials. J Am Chem Soc 2018. [DOI: 10.1021/jacs.8b01997] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Qingqing Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Fangxu Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Yu Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Mingxi Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Xiaotao Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Shengbin Lei
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Rongjin Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|
90
|
Effect of LaF3: Ag fluorescent nanoparticles on photodynamic efficiency and cytotoxicity of Protoporphyrin IX photosensitizer. Photodiagnosis Photodyn Ther 2018; 21:306-311. [DOI: 10.1016/j.pdpdt.2018.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 12/08/2017] [Accepted: 01/09/2018] [Indexed: 11/23/2022]
|
91
|
Liu HW, Xu S, Wang P, Hu XX, Zhang J, Yuan L, Zhang XB, Tan W. An efficient two-photon fluorescent probe for monitoring mitochondrial singlet oxygen in tissues during photodynamic therapy. Chem Commun (Camb) 2018; 52:12330-12333. [PMID: 27722455 DOI: 10.1039/c6cc05880a] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A promising two-photon fluorescent probe MNAH for detecting 1O2 during the PDT process in mitochondria was proposed for the first time. MNAH was successfully applied for two-photon imaging of 1O2 in living cells and tissues during the PDT process with deep-tissue imaging depth. MNAH can be a powerful molecular tool for studying 1O2 generation in mitochondria during the PDT process.
Collapse
Affiliation(s)
- Hong-Wen Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Shuai Xu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Peng Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Xiao-Xiao Hu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Jing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Lin Yuan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
92
|
Fischer C, Sparr C. Direct Transformation of Esters into Heterocyclic Fluorophores. Angew Chem Int Ed Engl 2018; 57:2436-2440. [DOI: 10.1002/anie.201711296] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Christian Fischer
- Department of Chemistry; University of Basel; St. Johanns-Ring 19 4056 Basel Switzerland
| | - Christof Sparr
- Department of Chemistry; University of Basel; St. Johanns-Ring 19 4056 Basel Switzerland
| |
Collapse
|
93
|
Fischer C, Sparr C. Direkte Umwandlung von Estern in heterocyclische Fluorophore. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711296] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Christian Fischer
- Departement Chemie; Universität Basel; St. Johanns-Ring 19 4056 Basel Schweiz
| | - Christof Sparr
- Departement Chemie; Universität Basel; St. Johanns-Ring 19 4056 Basel Schweiz
| |
Collapse
|
94
|
Shimomura N, Egawa Y, Miki R, Fujihara T, Ishimaru Y, Seki T. A red fluorophore comprising a borinate-containing xanthene analogue as a polyol sensor. Org Biomol Chem 2018; 14:10031-10036. [PMID: 27714219 DOI: 10.1039/c6ob01695b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A xanthene derivative containing a borinate moiety emitted red fluorescence with a high quantum yield. The interaction between the borinate and a sugar molecule induced a fluorescence change based on the change in the HOMO-LUMO gap. The response was pH-resistant in a wide range. In addition, catechol quenched through photoinduced electron transfer. The red fluorescence and polyol binding ability of dyes will pave the way for new biological applications of chemical sensors.
Collapse
Affiliation(s)
- N Shimomura
- Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan.
| | - Y Egawa
- Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan.
| | - R Miki
- Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan.
| | - T Fujihara
- Research and Development Bureau, Comprehensive Analysis Center for Science, Saitama University, Shimo-ohkubo 255, Sakura-ku, Saitama, Saitama 338-8570, Japan
| | - Y Ishimaru
- Division of Material Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama, Saitama 338-8570, Japan
| | - T Seki
- Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan.
| |
Collapse
|
95
|
Kaur A. Introduction. SPRINGER THESES 2018. [PMCID: PMC7122183 DOI: 10.1007/978-3-319-73405-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Primordial life forms on earth comprised oxygen-sensitive organisms: the anaerobic fermenters and cyanobacteria, which released oxygen as a metabolic by-product, causing the oxygen levels in the atmosphere to rise Benzie (Eur J Nutr 39:53–61, 2000 [1]), Halliwell (Free Radic Res 31:261–272, 1999 [2]).
Collapse
Affiliation(s)
- Amandeep Kaur
- School of Chemistry, University of Sydney, Sydney, NSW Australia
| |
Collapse
|
96
|
Karlsson JKG, Woodford OJ, Al-Aqar R, Harriman A. Effects of Temperature and Concentration on the Rate of Photobleaching of Erythrosine in Water. J Phys Chem A 2017; 121:8569-8576. [DOI: 10.1021/acs.jpca.7b06440] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Joshua K. G. Karlsson
- Molecular Photonics Laboratory,
School of Chemistry, Newcastle University, Bedson Building, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Owen J. Woodford
- Molecular Photonics Laboratory,
School of Chemistry, Newcastle University, Bedson Building, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Roza Al-Aqar
- Molecular Photonics Laboratory,
School of Chemistry, Newcastle University, Bedson Building, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Anthony Harriman
- Molecular Photonics Laboratory,
School of Chemistry, Newcastle University, Bedson Building, Newcastle upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
97
|
Jenie SNA, Plush SE, Voelcker NH. Singlet Oxygen Detection on a Nanostructured Porous Silicon Thin Film via Photonic Luminescence Enhancements. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8606-8613. [PMID: 28412813 DOI: 10.1021/acs.langmuir.7b00522] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Because reactive oxygen species are involved in a range of pathologies, developing analytical tools for this group of molecules opens new vistas for biomedical diagnostics. Herein, we fabricate a porous silicon microcavity (pSiMC) functionalized with luminescent singlet oxygen (1O2) probe EuA ((Eu(III)-2,2',2″-(10-(2-((4-(2-((4-(2-((anthracen-9-ylmethyl)amino)ethyl)-1H-1,2,3-triazol-1-yl)amino)-2-oxoethyl)-2-oxo-1,2-dihydroquinolin-7-yl)amino)-2-oxoethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid) as proof of concept of an optical sensor for reactive oxygen species. We characterize each surface modification step of the pSiMC by means of FTIR and X-ray photoelectron spectroscopy as well as by determining the optical shifts of the resonance wavelength of the pSiMC. The luminescence signal upon detection of 1O2 on the EuA-modified pSiMC is enhanced ∼2-fold compared to that of a single layer and a detuned microcavity. The sensing performance of the EuA probe is improved significantly on the pSiMC compared to that in aqueous solution, giving a limit of 1O2 detection of 3.7 × 10-8 M.
Collapse
Affiliation(s)
- S N Aisyiyah Jenie
- Future Industries Institute, University of South Australia , Mawson Lakes, SA 5095, Australia
- Research Centre for Chemistry, Indonesian Institute of Sciences (LIPI), Kawasan Pusat Penelitian, Ilmu Pengetahuan dan Teknologi (Centre for Research, Science and Technology-PUSPIPTEK), Serpong, Tangerang, Banten 15310, Indonesia
| | - Sally E Plush
- School of Pharmacy and Medical Sciences, University of South Australia , Adelaide, SA 5000, Australia
| | - Nicolas H Voelcker
- Future Industries Institute, University of South Australia , Mawson Lakes, SA 5095, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, VIC 3052, Australia
| |
Collapse
|
98
|
Hananya N, Green O, Blau R, Satchi-Fainaro R, Shabat D. A Highly Efficient Chemiluminescence Probe for the Detection of Singlet Oxygen in Living Cells. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705803] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Nir Hananya
- School of Chemistry; Faculty of Exact Sciences; Tel Aviv University; Tel Aviv 69978 Israel
| | - Ori Green
- School of Chemistry; Faculty of Exact Sciences; Tel Aviv University; Tel Aviv 69978 Israel
| | - Rachel Blau
- Department of Physiology and Pharmacology; Faculty of Medicine; Tel Aviv University; Tel Aviv 69978 Israel
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology; Faculty of Medicine; Tel Aviv University; Tel Aviv 69978 Israel
| | - Doron Shabat
- School of Chemistry; Faculty of Exact Sciences; Tel Aviv University; Tel Aviv 69978 Israel
| |
Collapse
|
99
|
Hananya N, Green O, Blau R, Satchi-Fainaro R, Shabat D. A Highly Efficient Chemiluminescence Probe for the Detection of Singlet Oxygen in Living Cells. Angew Chem Int Ed Engl 2017; 56:11793-11796. [DOI: 10.1002/anie.201705803] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/24/2017] [Indexed: 02/02/2023]
Affiliation(s)
- Nir Hananya
- School of Chemistry; Faculty of Exact Sciences; Tel Aviv University; Tel Aviv 69978 Israel
| | - Ori Green
- School of Chemistry; Faculty of Exact Sciences; Tel Aviv University; Tel Aviv 69978 Israel
| | - Rachel Blau
- Department of Physiology and Pharmacology; Faculty of Medicine; Tel Aviv University; Tel Aviv 69978 Israel
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology; Faculty of Medicine; Tel Aviv University; Tel Aviv 69978 Israel
| | - Doron Shabat
- School of Chemistry; Faculty of Exact Sciences; Tel Aviv University; Tel Aviv 69978 Israel
| |
Collapse
|
100
|
Jenie SA, Hickey SM, Du Z, Sebben D, Brooks DA, Voelcker NH, Plush SE. A europium-based ‘off-on’ colourimetric detector of singlet oxygen. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.03.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|