51
|
Chau E, Kim JR. Engineering of a protein probe with multiple inputs and multiple outputs for evaluation of alpha synuclein aggregation states. Biochem Eng J 2022; 178:108292. [PMID: 35002469 PMCID: PMC8740893 DOI: 10.1016/j.bej.2021.108292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The aggregation of α-synuclein (αS) into oligomers and fibrils is implicated in the pathology of Parkinson's Disease (PD). While a molecular probe for rapid and comprehensive evaluation of αS aggregation states is critical for a better understanding of PD pathology, identification of therapeutic candidates, and the development of early diagnostic strategies, no such probe has yet to be developed. A structurally flexible αS variant, PG65, was previously developed as a target binding-driven, conformation-switching molecular probe for rapid αS oligomer detection. Though informative, detection using PG65 provides no comprehensive assessment of the αS aggregation states. In the present study, we report engineering of a molecular probe, PG65-MIMO (a PG65 variant with Multiple-Inputs and Multiple-Outputs), that rapidly (within 2 hr) produces comprehensive information on αS aggregation states. PG65-MIMO generates distinct fluorescence responses to the three major αS conformers (monomers, oligomers, and fibrils). PG65-MIMO also displays unique fluorescent signals for αS oligomers, depending on the tris(2-carboxyethyl)phosphine (TCEP) concentration. Our results suggest that the TCEP dependent signaling of PG65-MIMO may be associated with its conformational states. Overall, our study illustrates engineering of an αS variant to create a molecular probe for handling multiple inputs and multiple outputs, addressing the technological gap in αS detection.
Collapse
Affiliation(s)
| | - Jin Ryoun Kim
- Corresponding author: Prof. Jin Ryoun Kim, Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY 11201, USA. Tel: 1-646-997-3719.
| |
Collapse
|
52
|
Sornay C, Vaur V, Wagner A, Chaubet G. An overview of chemo- and site-selectivity aspects in the chemical conjugation of proteins. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211563. [PMID: 35116160 PMCID: PMC8790347 DOI: 10.1098/rsos.211563] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/20/2021] [Indexed: 05/03/2023]
Abstract
The bioconjugation of proteins-that is, the creation of a covalent link between a protein and any other molecule-has been studied for decades, partly because of the numerous applications of protein conjugates, but also due to the technical challenge it represents. Indeed, proteins possess inner physico-chemical properties-they are sensitive and polynucleophilic macromolecules-that make them complex substrates in conjugation reactions. This complexity arises from the mild conditions imposed by their sensitivity but also from selectivity issues, viz the precise control of the conjugation site on the protein. After decades of research, strategies and reagents have been developed to address two aspects of this selectivity: chemoselectivity-harnessing the reacting chemical functionality-and site-selectivity-controlling the reacting amino acid residue-most notably thanks to the participation of synthetic chemistry in this effort. This review offers an overview of these chemical bioconjugation strategies, insisting on those employing native proteins as substrates, and shows that the field is active and exciting, especially for synthetic chemists seeking new challenges.
Collapse
Affiliation(s)
- Charlotte Sornay
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden 67400, France
| | - Valentine Vaur
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden 67400, France
| | - Alain Wagner
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden 67400, France
| | - Guilhem Chaubet
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden 67400, France
| |
Collapse
|
53
|
Ioannou PV. Trithioarsenites [(RS)3As], dithioarsonites [R-As(SR′)2] and thioarsinites [R2As-SR′]: Preparations, chemical, biochemical and biological properties. MAIN GROUP CHEMISTRY 2021. [DOI: 10.3233/mgc-210154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Contrary to P(V) compounds, As(V) compounds can very easily reduced by thiols to As(III) thiolates that are deemed to play a central role in the metabolism of arsenic and therefore a review on the preparation and properties of the title thiolates can be of interest. The preparation of trithioarsenites, dithioarsonites and thioarsinites involves reactions of a thiol with a proper As(V) or As(III) precursor via 4-centered transition states or a thiolate by SN2 mechanisms. Convenient precursors are the solids As2O3, arsonic and arsinic acids, although for the latter two acids the separation of the product from the co-produced disulfides can be problematic. Only a few crystal structures have been reported and involve only trithioarsenites. From their chemical properties, the hydrolyses, transthiolations and air oxidations are of particular interest from mechanistic and biochemical/biological points of view. Their nucleophilicity towards alkyl halides and acyl derivatives revealed unexpected behavior. Although these molecules have many free electron pairs only three reports were found pertaining to their reaction with metal cations (Hg2+) and metal carbonyls; the mercuric complexes being not characterized. Only a few studies appeared for the action of the title compounds towards enzymes, while the patent literature revealed that they have bactericidal, fungicidal and insecticidal activities for agricultural applications, some have antiparasitic activity on animals and a few are carcinostatic.
Collapse
|
54
|
Kuiper BP, Prins RC, Billerbeck S. Oligo Pools as an Affordable Source of Synthetic DNA for Cost-Effective Library Construction in Protein- and Metabolic Pathway Engineering. Chembiochem 2021; 23:e202100507. [PMID: 34817110 PMCID: PMC9300125 DOI: 10.1002/cbic.202100507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/23/2021] [Indexed: 11/11/2022]
Abstract
The construction of custom libraries is critical for rational protein engineering and directed evolution. Array‐synthesized oligo pools of thousands of user‐defined sequences (up to ∼350 bases in length) have emerged as a low‐cost commercially available source of DNA. These pools cost ≤10 % (depending on error rate and length) of other commercial sources of custom DNA, and this significant cost difference can determine whether an enzyme engineering project can be realized on a given research budget. However, while being cheap, oligo pools do suffer from a low concentration of individual oligos and relatively high error rates. Several powerful techniques that specifically make use of oligo pools have been developed and proven valuable or even essential for next‐generation protein and pathway engineering strategies, such as sequence‐function mapping, enzyme minimization, or de‐novo design. Here we consolidate the knowledge on these techniques and their applications to facilitate the use of oligo pools within the protein engineering community.
Collapse
Affiliation(s)
- Bastiaan P Kuiper
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Rianne C Prins
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Sonja Billerbeck
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
55
|
Qin X, Yang X, Du L, Li M. Polarity-based fluorescence probes: properties and applications. RSC Med Chem 2021; 12:1826-1838. [PMID: 34825183 PMCID: PMC8597426 DOI: 10.1039/d1md00170a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/07/2021] [Indexed: 11/21/2022] Open
Abstract
Local polarity can affect the physical or chemical behaviors of surrounding molecules, especially in organisms. Cell polarity is the ultimate feedback of cellular status and regulation mechanisms. Hence, the abnormal alteration of polarity in organisms is closely linked with functional disorders and many diseases. It is incredibly significant to monitor and detect local polarity to explain the biological processes and diagnoses of some diseases. Because of their in vivo safe and real-time monitoring, several polarity-sensitive fluorophores and fluorescent probes have gradually emerged and been used in modern research. This review summarizes the fluorescence properties and applications of several representative polarity-sensitive fluorescent probes.
Collapse
Affiliation(s)
- Xiaojun Qin
- School of Pharmacy, Guangxi Medical University Nanning Guangxi 530021 China
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Cheeloo College of Medicine, Shandong University Jinan Shandong 250012 China
| | - Xingye Yang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Cheeloo College of Medicine, Shandong University Jinan Shandong 250012 China
| | - Lupei Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Cheeloo College of Medicine, Shandong University Jinan Shandong 250012 China
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Cheeloo College of Medicine, Shandong University Jinan Shandong 250012 China
- State Key Laboratory of Microbial Technology, Shandong University Jinan Shandong 250100 China
| |
Collapse
|
56
|
Martynov VI, Pakhomov AA. BODIPY derivatives as fluorescent reporters of molecular activities in living cells. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Abstract
Fluorescent compounds have become indispensable tools for imaging molecular activities in the living cell. 4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) is currently one of the most popular fluorescent reporters due to its unique photophysical properties. This review provides a general survey and presents a summary of recent advances in the development of new BODIPY-based cellular biomarkers and biosensors. The review starts with the consideration of the properties of BODIPY derivatives required for their application as cellular reporters. Then review provides examples of the design of sensors for different biologically important molecules, ions, membrane potential, temperature and viscosity defining the live cell status. Special attention is payed to BODPY-based phototransformable reporters.
The bibliography includes 339 references.
Collapse
|
57
|
Pe KBA, Yatsuzuka K, Hakariya H, Kida T, Katsuda Y, Fukuda M, Sato SI. RNA-based cooperative protein labeling that permits direct monitoring of the intracellular concentration change of an endogenous protein. Nucleic Acids Res 2021; 49:e132. [PMID: 34581825 PMCID: PMC8682759 DOI: 10.1093/nar/gkab839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 08/24/2021] [Accepted: 09/09/2021] [Indexed: 11/13/2022] Open
Abstract
Imaging the dynamics of proteins in living cells is a powerful means for understanding cellular functions at a deeper level. Here, we report a versatile method for spatiotemporal imaging of specific endogenous proteins in living mammalian cells. The method employs a bifunctional aptamer capable of selective protein recognition and fluorescent probe-binding, which is induced only when the aptamer specifically binds to its target protein. An aptamer for β-actin protein preferentially recognizes its monomer forms over filamentous forms, resulting in selective G-actin staining in both fixed and living cells. Through actin-drug treatment, the method permitted direct monitoring of the intracellular concentration change of endogenous G-actin. This protein-labeling method, which is highly selective and non-covalent, provides rich insights into the study of spatiotemporal protein dynamics in living cells.
Collapse
Affiliation(s)
| | - Kenji Yatsuzuka
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hayase Hakariya
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Tomoki Kida
- Division of Materials Science and Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Yousuke Katsuda
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan.,Division of Materials Science and Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Masatora Fukuda
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Shin-Ichi Sato
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
58
|
Singh MK, Kenney LJ. Super-resolution imaging of bacterial pathogens and visualization of their secreted effectors. FEMS Microbiol Rev 2021; 45:5911101. [PMID: 32970796 DOI: 10.1093/femsre/fuaa050] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Recent advances in super-resolution imaging techniques, together with new fluorescent probes have enhanced our understanding of bacterial pathogenesis and their interplay within the host. In this review, we provide an overview of what these techniques have taught us about the bacterial lifestyle, the nucleoid organization, its complex protein secretion systems, as well as the secreted virulence factors.
Collapse
Affiliation(s)
- Moirangthem Kiran Singh
- Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Linda J Kenney
- Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
59
|
Pomorski A, Krężel A. Biarsenical fluorescent probes for multifunctional site-specific modification of proteins applicable in life sciences: an overview and future outlook. Metallomics 2021; 12:1179-1207. [PMID: 32658234 DOI: 10.1039/d0mt00093k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fluorescent modification of proteins of interest (POI) in living cells is desired to study their behaviour and functions in their natural environment. In a perfect setting it should be easy to perform, inexpensive, efficient and site-selective. Although multiple chemical and biological methods have been developed, only a few of them are applicable for cellular studies thanks to their appropriate physical, chemical and biological characteristics. One such successful system is a tetracysteine tag/motif and its selective biarsenical binders (e.g. FlAsH and ReAsH). Since its discovery in 1998 by Tsien and co-workers, this method has been enhanced and revolutionized in terms of its efficiency, formed complex stability and breadth of application. Here, we overview the whole field of knowledge, while placing most emphasis on recent reports. We showcase the improvements of classical biarsenical probes with various optical properties as well as multifunctional molecules that add new characteristics to proteins. We also present the evolution of affinity tags and motifs of biarsenical probes demonstrating much more possibilities in cellular applications. We summarize protocols and reported observations so both beginners and advanced users of biarsenical probes can troubleshoot their experiments. We address the concerns regarding the safety of biarsenical probe application. We showcase examples in virology, studies on receptors or amyloid aggregation, where application of biarsenical probes allowed observations that previously were not possible. We provide a summary of current applications ranging from bioanalytical sciences to allosteric control of selected proteins. Finally, we present an outlook to encourage more researchers to use these magnificent probes.
Collapse
Affiliation(s)
- Adam Pomorski
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland.
| | | |
Collapse
|
60
|
Gavins GC, Gröger K, Reimann M, Bartoschek MD, Bultmann S, Seitz O. Orthogonal coiled coils enable rapid covalent labelling of two distinct membrane proteins with peptide nucleic acid barcodes. RSC Chem Biol 2021; 2:1291-1295. [PMID: 34458843 PMCID: PMC8341593 DOI: 10.1039/d1cb00126d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/14/2021] [Indexed: 12/13/2022] Open
Abstract
Templated chemistry offers the prospect of addressing specificity challenges occurring in bioconjugation reactions. Here, we show two peptide-templated amide-bond forming reactions that enable the concurrent labelling of two different membrane proteins with two different peptide nucleic acid (PNA) barcodes. The reaction system is based on the mutually selective coiled coil interaction between two thioester-linked PNA–peptide conjugates and two cysteine peptides serving as genetically encoded peptide tags. Orthogonal coiled coil templated covalent labelling is highly specific, quantitative and proceeds within a minute. To demonstrate the usefulness, we evaluated receptor internalisation of two membranous receptors EGFR (epidermal growth factor) and ErbB2 (epidermal growth factor receptor 2) by first staining PNA-tagged proteins with fluorophore–DNA conjugates and then erasing signals from non-internalized receptors via toehold-mediated strand displacement. A pair of orthogonal coiled coils templates highly specific live cell bioconjugation of two different proteins. PNA tagging and hybridisation with fluorophore–DNA reporters enables rapid dual receptor internalisation analysis of EGFR and ErbB2.![]()
Collapse
Affiliation(s)
- Georgina C Gavins
- Institut für Chemie, Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 Berlin 12489 Germany
| | - Katharina Gröger
- Institut für Chemie, Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 Berlin 12489 Germany
| | - Marc Reimann
- Institut für Chemie, Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 Berlin 12489 Germany
| | - Michael D Bartoschek
- Center for Molecular Biosystems (BioSysM), Faculty of Biology, Ludwig-Maximilians-Universität München, Butenandtstr. 1 Munich 81377 Germany
| | - Sebastian Bultmann
- Center for Molecular Biosystems (BioSysM), Faculty of Biology, Ludwig-Maximilians-Universität München, Butenandtstr. 1 Munich 81377 Germany
| | - Oliver Seitz
- Institut für Chemie, Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 Berlin 12489 Germany
| |
Collapse
|
61
|
Wang R, Liu M, Wang H, Xia J, Li H. GB Tags: Small Covalent Peptide Tags Based on Protein Fragment Reconstitution. Bioconjug Chem 2021; 32:1926-1934. [PMID: 34329559 DOI: 10.1021/acs.bioconjchem.1c00325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Developing peptide tags that can bind target proteins covalently under mild conditions is of great importance for a myriad of applications, ranging from chemical biology to biotechnology. Here we report the development of a small covalent peptide tag system, termed as GB tags, that can covalently label the target protein with high specificity and high yield under oxidizing conditions. The GB tags consist of a pair of short peptides, GN and GC (GN contains 45 residues and GC contains 19 residues). GN and GC, which are split from a parent protein GB1, can undergo protein fragment reconstitution to reconstitute the folded structure of the parent protein spontaneously. The engineered cysteines in GN and GC can readily form a disulfide bond oxidized by air oxygen after protein reconstitution. Using thermally stable variants of GB1, we identified two pairs of GB tags that display improved thermodynamic stability and binding affinity. They can serve as efficient covalent peptide tags for various applications, including specific labeling of mammalian cell surface receptors. We anticipate that these new GB tags will find applications in biochemical labeling as well as biomaterials, such as protein hydrogels.
Collapse
Affiliation(s)
- Ruidi Wang
- Department of Chemistry, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada.,State Key Laboratory of Supramolecular Structure and Materials College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Miao Liu
- Department of Chemistry, Chinese University of Hong Kong, Hong Kong SRC, P. R. China
| | - Han Wang
- Department of Chemistry, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Jiang Xia
- Department of Chemistry, Chinese University of Hong Kong, Hong Kong SRC, P. R. China
| | - Hongbin Li
- Department of Chemistry, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
62
|
Li G, Hu J, Chen H, Chen YX, Li YM. Cucurbit[8]uril facilitated Michael addition for regioselective cysteine modification. Chem Commun (Camb) 2021; 57:6086-6089. [PMID: 34037637 DOI: 10.1039/d1cc01404h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Utilizing the interactions between tryptophan, methyl viologen and cucurbit[8]uril, we found that the distance between the targeted peptides/protein and the reactive peptide was shortened, which facilitated the Michael addition reaction between cysteine and dehydroalanine. The highest acceleration was observed on cysteines with suitable pKa and spatial location to tryptophan, suggesting that our system can be used for regioselective cysteine modification.
Collapse
Affiliation(s)
- Gao Li
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian 350108, China.
| | - Jun Hu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Huai Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Yong-Xiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Yan-Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China. and Beijing Institute for Brain Disorders, Beijing 100069, China and Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
63
|
Tian Y, Fang M, Lin Q. Intracellular bioorthogonal labeling of glucagon receptor via tetrazine ligation. Bioorg Med Chem 2021; 43:116256. [PMID: 34153838 DOI: 10.1016/j.bmc.2021.116256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 01/21/2023]
Abstract
The third intracellular loop (ICL3) in the cytosolic face of glucagon receptor (GCGR) experiences significant conformational transition during receptor activation. It thus offers an attractive site for the introduction of organic fluorophores in our efforts to construct fluorescence-based GPCR biosensors. Herein, we report our confocal microscopic study of intracellular fluorescent labeling of ICL3 using a bioorthogonal chemistry strategy. Our approach involves the site-specific introduction of a strained alkene amino acid into the ICL3 through genetic code expansion, followed by a highly specific inverse electron-demand Diels-Alder reaction with the fluorescent tetrazine probes. Among the three strained alkene amino acids examined, both SphK and 2'-aTCOK offered successful fluorescent labeling of GCGR ICL3 with the appropriate tetrazine probes. At the same time, 4'-TCOK gave high background fluorescence due to its intracellular retention. The fluorescent tetrazine probes were designed following a computational model for background-free intracellular fluorescent labeling; however, their performance varied significantly in live-cell imaging as the strong non-specific signals interfered with the specific ones. Among all GCGR ICL3 mutants bearing a strained alkene, the H339SphK/2'-aTCOK mutants provided the best reaction partners for the BODIPY-Tz1/4 reagents in the bioorthogonal labeling reactions. The results from this study highlight the challenges in identifying bioorthogonal reactant pairs suitable for intracellular labeling of low-abundance receptors in live-cell imaging studies.
Collapse
Affiliation(s)
- Yulin Tian
- Department of Chemistry, State University of New York at Buffalo, Buffalo, NY 14260-3000, United States; Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Fang
- Department of Chemistry, State University of New York at Buffalo, Buffalo, NY 14260-3000, United States
| | - Qing Lin
- Department of Chemistry, State University of New York at Buffalo, Buffalo, NY 14260-3000, United States.
| |
Collapse
|
64
|
Singh MK, Zangoui P, Yamanaka Y, Kenney LJ. Genetic code expansion enables visualization of Salmonella type three secretion system components and secreted effectors. eLife 2021; 10:67789. [PMID: 34061032 PMCID: PMC8192122 DOI: 10.7554/elife.67789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/22/2021] [Indexed: 12/14/2022] Open
Abstract
Type three secretion systems enable bacterial pathogens to inject effectors into the cytosol of eukaryotic hosts to reprogram cellular functions. It is technically challenging to label effectors and the secretion machinery without disrupting their structure/function. Herein, we present a new approach for labeling and visualization of previously intractable targets. Using genetic code expansion, we site-specifically labeled SsaP, the substrate specificity switch, and SifA, a here-to-fore unlabeled secreted effector. SsaP was secreted at later infection times; SsaP labeling demonstrated the stochasticity of injectisome and effector expression. SifA was labeled after secretion into host cells via fluorescent unnatural amino acids or non-fluorescent labels and a subsequent click reaction. We demonstrate the superiority of imaging after genetic code expansion compared to small molecule tags. It provides an alternative for labeling proteins that do not tolerate N- or C-terminal tags or fluorophores and thus is widely applicable to other secreted effectors and small proteins.
Collapse
Affiliation(s)
- Moirangthem Kiran Singh
- Mechanobiology Institute, T-Lab, 5A Engineering Drive 1, National University of Singapore, Singapore, Singapore.,Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, United States
| | - Parisa Zangoui
- Mechanobiology Institute, T-Lab, 5A Engineering Drive 1, National University of Singapore, Singapore, Singapore.,Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, United States
| | - Yuki Yamanaka
- Mechanobiology Institute, T-Lab, 5A Engineering Drive 1, National University of Singapore, Singapore, Singapore
| | - Linda J Kenney
- Mechanobiology Institute, T-Lab, 5A Engineering Drive 1, National University of Singapore, Singapore, Singapore.,Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, United States
| |
Collapse
|
65
|
Tan W, Zhang Q, Wang J, Yi M, He H, Xu B. Enzymatic Assemblies of Thiophosphopeptides Instantly Target Golgi Apparatus and Selectively Kill Cancer Cells*. Angew Chem Int Ed Engl 2021; 60:12796-12801. [PMID: 33783926 PMCID: PMC8159897 DOI: 10.1002/anie.202102601] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/19/2021] [Indexed: 01/01/2023]
Abstract
Changing an oxygen atom of the phosphoester bond in phosphopeptides by a sulfur atom enables instantly targeting Golgi apparatus (GA) and selectively killing cancer cells by enzymatic self-assembly. Specifically, conjugating cysteamine S-phosphate to the C-terminal of a self-assembling peptide generates a thiophosphopeptide. Being a substrate of alkaline phosphatase (ALP), the thiophosphopeptide undergoes rapid ALP-catalyzed dephosphorylation to form a thiopeptide that self-assembles. The thiophosphopeptide enters cells via caveolin-mediated endocytosis and macropinocytosis and instantly accumulates in GA because of dephosphorylation and formation of disulfide bonds in Golgi by themselves and with Golgi proteins. Moreover, the thiophosphopeptide potently and selectively inhibits cancer cells (HeLa) with the IC50 (about 3 μM), which is an order of magnitude more potent than that of the parent phosphopeptide.
Collapse
Affiliation(s)
- Weiyi Tan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Qiuxin Zhang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Jiaqing Wang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Meihui Yi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| |
Collapse
|
66
|
Wu L, Su L, Deng M, Hong X, Wu M, Zhang M, Bouveret E, Yan X. Dual-fluorescent bacterial two-hybrid system for quantitative Protein-Protein interaction measurement via flow cytometry. Talanta 2021; 233:122549. [PMID: 34215052 DOI: 10.1016/j.talanta.2021.122549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/15/2021] [Accepted: 05/19/2021] [Indexed: 11/28/2022]
Abstract
Characterization of protein-protein interactions (PPIs) is essential for understanding cellular signal transduction pathways. However, quantitative measurement of the binding strength remains challenging. Building upon the classical bacterial adenylate cyclase two-hybrid (BACTH) system, we previously demonstrated that the relative reporter protein expression (RRPE), defined as the level of reporter expression normalized to that of the interacting protein, is an intrinsic characteristic associated with the binding strength between the two interacting proteins. In this study, we inserted fluorescent protein tdTomato in the chromosome as the reporter protein by CRISPR/Cas9 technology and employed a 12-amino acid tetracysteine (TC) to tag one of the interacting proteins, which can be further labeled by a membrane-permeable biarsenical dye. The combined use of tdTomato and TC-tag offers rapid and high-throughput analysis of the expression levels of both the reporter protein and one of the interacting proteins at the single-cell level by multicolor flow cytometry, which simplifies the quantitative measurement of PPI. The use of the as-developed RRPE-tdTomato-TC-BACTH approach was demonstrated in three demanding applications. First, binding affinities could be correctly ranked for discriminating interaction strengths with a tenfold difference or of the same order of magnitude. We demonstrate that the method is sensitive enough to discriminate affinities with a small difference of 1.4-fold. Moreover, residues involved in PPI can be easily mapped and ranked. Lastly, protein interaction inhibitors can be rapidly screened.
Collapse
Affiliation(s)
- Lina Wu
- Department of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, PR China.
| | - Liuqin Su
- Department of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Minfang Deng
- Department of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Xinyi Hong
- Department of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Mingkai Wu
- Department of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, PR China
| | - Miaomiao Zhang
- Department of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, PR China
| | | | - Xiaomei Yan
- Department of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, PR China.
| |
Collapse
|
67
|
Reiber T, Zavoiura O, Dose C, Yushchenko DA. Fluorophore Multimerization as an Efficient Approach towards Bright Protein Labels. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Thorge Reiber
- Department of Chemical Biology Miltenyi Biotec B.V. & Co. KG Friedrich-Ebert Straße 68 51429 Bergisch Gladbach Germany
| | - Oleksandr Zavoiura
- Department of Chemical Biology Miltenyi Biotec B.V. & Co. KG Friedrich-Ebert Straße 68 51429 Bergisch Gladbach Germany
| | - Christian Dose
- Department of Chemical Biology Miltenyi Biotec B.V. & Co. KG Friedrich-Ebert Straße 68 51429 Bergisch Gladbach Germany
| | - Dmytro A. Yushchenko
- Department of Chemical Biology Miltenyi Biotec B.V. & Co. KG Friedrich-Ebert Straße 68 51429 Bergisch Gladbach Germany
- Laboratory of Chemical Biology The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo namesti 2 16610 Prague 6 Czech Republic
| |
Collapse
|
68
|
Abstract
Optical imaging probes allow us to detect and uncover the physiological and pathological functions of an analyte of interest at the molecular level in a non-invasive, longitudinal manner. By virtue of simplicity, low cost, high sensitivity, adaptation to automated analysis, capacity for spatially resolved imaging and diverse signal output modes, optical imaging probes have been widely applied in biology, physiology, pharmacology and medicine. To build a reliable and practically/clinically relevant probe, the design process often encompasses multidisciplinary themes, including chemistry, biology and medicine. Within the repertoire of probes, dual-locked systems are particularly interesting as a result of their ability to offer enhanced specificity and multiplex detection. In addition, chemiluminescence is a low-background, excitation-free optical modality and, thus, can be integrated into dual-locked systems, permitting crosstalk-free fluorescent and chemiluminescent detection of two distinct biomarkers. For many researchers, these dual-locked systems remain a 'black box'. Therefore, this Review aims to offer a 'beginner's guide' to such dual-locked systems, providing simple explanations on how they work, what they can do and where they have been applied, in order to help readers develop a deeper understanding of this rich area of research.
Collapse
|
69
|
Wolf P, Gavins G, Beck‐Sickinger AG, Seitz O. Strategies for Site-Specific Labeling of Receptor Proteins on the Surfaces of Living Cells by Using Genetically Encoded Peptide Tags. Chembiochem 2021; 22:1717-1732. [PMID: 33428317 PMCID: PMC8248378 DOI: 10.1002/cbic.202000797] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/08/2021] [Indexed: 12/14/2022]
Abstract
Fluorescence microscopy imaging enables receptor proteins to be investigated within their biological context. A key challenge is to site-specifically incorporate reporter moieties into proteins without interfering with biological functions or cellular networks. Small peptide tags offer the opportunity to combine inducible labeling with small tag sizes that avoid receptor perturbation. Herein, we review the current state of live-cell labeling of peptide-tagged cell-surface proteins. Considering their importance as targets in medicinal chemistry, we focus on membrane receptors such as G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs). We discuss peptide tags that i) are subject to enzyme-mediated modification reactions, ii) guide the complementation of reporter proteins, iii) form coiled-coil complexes, and iv) interact with metal complexes. Given our own contributions in the field, we place emphasis on peptide-templated labeling chemistry.
Collapse
Affiliation(s)
- Philipp Wolf
- Faculty of Life SciencesInstitute of BiochemistryLeipzig UniversityBrüderstrasse 3404103LeipzigGermany
| | - Georgina Gavins
- Faculty of Mathematics and Natural SciencesDepartment of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| | - Annette G. Beck‐Sickinger
- Faculty of Life SciencesInstitute of BiochemistryLeipzig UniversityBrüderstrasse 3404103LeipzigGermany
| | - Oliver Seitz
- Faculty of Mathematics and Natural SciencesDepartment of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| |
Collapse
|
70
|
Suss O, Motiei L, Margulies D. Broad Applications of Thiazole Orange in Fluorescent Sensing of Biomolecules and Ions. Molecules 2021; 26:2828. [PMID: 34068759 PMCID: PMC8126248 DOI: 10.3390/molecules26092828] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
Fluorescent sensing of biomolecules has served as a revolutionary tool for studying and better understanding various biological systems. Therefore, it has become increasingly important to identify fluorescent building blocks that can be easily converted into sensing probes, which can detect specific targets with increasing sensitivity and accuracy. Over the past 30 years, thiazole orange (TO) has garnered great attention due to its low fluorescence background signal and remarkable 'turn-on' fluorescence response, being controlled only by its intramolecular torsional movement. These features have led to the development of numerous molecular probes that apply TO in order to sense a variety of biomolecules and metal ions. Here, we highlight the tremendous progress made in the field of TO-based sensors and demonstrate the different strategies that have enabled TO to evolve into a versatile dye for monitoring a collection of biomolecules.
Collapse
Affiliation(s)
| | | | - David Margulies
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (O.S.); (L.M.)
| |
Collapse
|
71
|
Tan W, Zhang Q, Wang J, Yi M, He H, Xu B. Enzymatic Assemblies of Thiophosphopeptides Instantly Target Golgi Apparatus and Selectively Kill Cancer Cells**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102601] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Weiyi Tan
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| | - Qiuxin Zhang
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| | - Jiaqing Wang
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| | - Meihui Yi
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| | - Hongjian He
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| | - Bing Xu
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| |
Collapse
|
72
|
Yang Z, Xu H, Wang J, Chen W, Zhao M. Single-Molecule Fluorescence Techniques for Membrane Protein Dynamics Analysis. APPLIED SPECTROSCOPY 2021; 75:491-505. [PMID: 33825543 DOI: 10.1177/00037028211009973] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fluorescence-based single-molecule techniques, mainly including fluorescence correlation spectroscopy (FCS) and single-molecule fluorescence resonance energy transfer (smFRET), are able to analyze the conformational dynamics and diversity of biological macromolecules. They have been applied to analysis of the dynamics of membrane proteins, such as membrane receptors and membrane transport proteins, due to their superior ability in resolving spatio-temporal heterogeneity and the demand of trace amounts of analytes. In this review, we first introduced the basic principle involved in FCS and smFRET. Then we summarized the labeling and immobilization strategies of membrane protein molecules, the confocal-based and TIRF-based instrumental configuration, and the data processing methods. The applications to membrane protein dynamics analysis are described in detail with the focus on how to select suitable fluorophores, labeling sites, experimental setup, and analysis methods. In the last part, the remaining challenges to be addressed and further development in this field are also briefly discussed.
Collapse
Affiliation(s)
- Ziyu Yang
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, 12465 Peking University, Beijing, China
| | - Haiqi Xu
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, 12465 Peking University, Beijing, China
| | - Jiayu Wang
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, 12465 Peking University, Beijing, China
| | - Wei Chen
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, 12465 Peking University, Beijing, China
| | - Meiping Zhao
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, 12465 Peking University, Beijing, China
| |
Collapse
|
73
|
Dindo M, Ambrosini G, Oppici E, Pey AL, O’Toole PJ, Marrison JL, Morrison IEG, Butturini E, Grottelli S, Costantini C, Cellini B. Dimerization Drives Proper Folding of Human Alanine:Glyoxylate Aminotransferase But Is Dispensable for Peroxisomal Targeting. J Pers Med 2021; 11:jpm11040273. [PMID: 33917320 PMCID: PMC8067440 DOI: 10.3390/jpm11040273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 12/15/2022] Open
Abstract
Peroxisomal matrix proteins are transported into peroxisomes in a fully-folded state, but whether multimeric proteins are imported as monomers or oligomers is still disputed. Here, we used alanine:glyoxylate aminotransferase (AGT), a homodimeric pyridoxal 5′-phosphate (PLP)-dependent enzyme, whose deficit causes primary hyperoxaluria type I (PH1), as a model protein and compared the intracellular behavior and peroxisomal import of native dimeric and artificial monomeric forms. Monomerization strongly reduces AGT intracellular stability and increases its aggregation/degradation propensity. In addition, monomers are partly retained in the cytosol. To assess possible differences in import kinetics, we engineered AGT to allow binding of a membrane-permeable dye and followed its intracellular trafficking without interfering with its biochemical properties. By fluorescence recovery after photobleaching, we measured the import rate in live cells. Dimeric and monomeric AGT displayed a similar import rate, suggesting that the oligomeric state per se does not influence import kinetics. However, when dimerization is compromised, monomers are prone to misfolding events that can prevent peroxisomal import, a finding crucial to predicting the consequences of PH1-causing mutations that destabilize the dimer. Treatment with pyridoxine of cells expressing monomeric AGT promotes dimerization and folding, thus, demonstrating the chaperone role of PLP. Our data support a model in which dimerization represents a potential key checkpoint in the cytosol at the crossroad between misfolding and correct targeting, a possible general mechanism for other oligomeric peroxisomal proteins.
Collapse
Affiliation(s)
- Mirco Dindo
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.D.); (S.G.); (C.C.)
| | - Giulia Ambrosini
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (G.A.); (E.O.); (E.B.)
| | - Elisa Oppici
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (G.A.); (E.O.); (E.B.)
| | - Angel L. Pey
- Departamento de Química Física, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain;
| | - Peter J. O’Toole
- Bioscience Technology Facility, Department of Biology, University of York, York YO23 3GE, UK; (P.J.O.); (J.L.M.); (I.E.G.M.)
| | - Joanne L. Marrison
- Bioscience Technology Facility, Department of Biology, University of York, York YO23 3GE, UK; (P.J.O.); (J.L.M.); (I.E.G.M.)
| | - Ian E. G. Morrison
- Bioscience Technology Facility, Department of Biology, University of York, York YO23 3GE, UK; (P.J.O.); (J.L.M.); (I.E.G.M.)
| | - Elena Butturini
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (G.A.); (E.O.); (E.B.)
| | - Silvia Grottelli
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.D.); (S.G.); (C.C.)
| | - Claudio Costantini
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.D.); (S.G.); (C.C.)
| | - Barbara Cellini
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.D.); (S.G.); (C.C.)
- Correspondence: ; Tel.: +39-075-585-8339
| |
Collapse
|
74
|
Dankovich TM, Rizzoli SO. Challenges facing quantitative large-scale optical super-resolution, and some simple solutions. iScience 2021; 24:102134. [PMID: 33665555 PMCID: PMC7898072 DOI: 10.1016/j.isci.2021.102134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Optical super-resolution microscopy (SRM) has enabled biologists to visualize cellular structures with near-molecular resolution, giving unprecedented access to details about the amounts, sizes, and spatial distributions of macromolecules in the cell. Precisely quantifying these molecular details requires large datasets of high-quality, reproducible SRM images. In this review, we discuss the unique set of challenges facing quantitative SRM, giving particular attention to the shortcomings of conventional specimen preparation techniques and the necessity for optimal labeling of molecular targets. We further discuss the obstacles to scaling SRM methods, such as lengthy image acquisition and complex SRM data analysis. For each of these challenges, we review the recent advances in the field that circumvent these pitfalls and provide practical advice to biologists for optimizing SRM experiments.
Collapse
Affiliation(s)
- Tal M. Dankovich
- University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Göttingen 37073, Germany
- International Max Planck Research School for Neuroscience, Göttingen, Germany
| | - Silvio O. Rizzoli
- University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Göttingen 37073, Germany
- Biostructural Imaging of Neurodegeneration (BIN) Center & Multiscale Bioimaging Excellence Center, Göttingen 37075, Germany
| |
Collapse
|
75
|
Kuchenbrod MT, Schubert US, Heintzmann R, Hoeppener S. Revisiting staining of biological samples for electron microscopy: perspectives for recent research. MATERIALS HORIZONS 2021; 8:685-699. [PMID: 34821312 DOI: 10.1039/d0mh01579b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This review revisits essential staining protocols for electron microscopy focussing on the visualization of active sites, i.e. enzymes, metabolites or proteins, in cells and tissues, which have been developed 50 to 60 years ago, however, never were established as standard protocols being used in electron microscopy in a routine fashion. These approaches offer numerous possibilities to expand the knowledge of cellular function and specifically address the localization of active compounds of these systems. It is our conviction, that many of these techniques are still useful, in particular when applied in conjunction with correlative light and electron microscopy. Revisiting specialized classical electron microscopy staining protocols for use in correlative microscopy is particularly promising, as some of these protocols were originally developed as staining methods for light microscopy. To account for this history, rather than summarizing the most recent achievements in literature, we instead first provide an overview of techniques that have been used in the past. While some of these techniques have been successfully implemented into modern microscopy techniques during recent years already, more possibilities are yet to be re-discovered and provide exciting new perspectives for their future use.
Collapse
Affiliation(s)
- Maren T Kuchenbrod
- Laboratory of Organic and Macromolecular Chemistry (IOMC) Friedrich Schiller University Jena, Humboldstr. 10, 07743, Germany.
| | | | | | | |
Collapse
|
76
|
Kondrashov M, Svensson SPS, Ström P, Westermark A, Jacobson-Ingemyr H, Takano A, Tari L, Tóth M, Cai M, Hruby VJ, Schou M. Multiple Applications of a Novel Biarsenical Imaging Probe in Fluorescence and PET Imaging of Melanoma. Bioconjug Chem 2021; 32:497-501. [PMID: 33576604 PMCID: PMC8023571 DOI: 10.1021/acs.bioconjchem.0c00671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
A new fluorescent
biarsenical peptide labeling probe was synthesized
and labeled with the radioactive isotopes 11C and 18F. The utility of this probe was demonstrated by installing
each of these isotopes into a melanocortin 1 receptor (MC1R) binding
peptide, which targets melanoma tumors. Its applicability was further
showcased by subsequent in vitro imaging in cells
as well as in vivo imaging in melanoma xenograft
mice by fluorescence and positron emission tomography.
Collapse
Affiliation(s)
- Mikhail Kondrashov
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 171 77, Stockholm, Sweden
| | - Samuel P S Svensson
- Biopercept Ltd, PR2 5DB, Barnfield Way, Preston, United Kingdom.,Department of Chemistry, Linkoping University, 581 83, Linkoping, Sweden
| | - Peter Ström
- Novandi Chemistry AB, 151 36, Södertälje, Sweden
| | - Andreas Westermark
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 171 77, Stockholm, Sweden
| | - Hanna Jacobson-Ingemyr
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 171 77, Stockholm, Sweden
| | - Akihiro Takano
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 171 77, Stockholm, Sweden
| | - Lenke Tari
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 171 77, Stockholm, Sweden
| | - Miklós Tóth
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 171 77, Stockholm, Sweden
| | - Minying Cai
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Victor J Hruby
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Magnus Schou
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 171 77, Stockholm, Sweden.,AstraZeneca PET Science Centre at Karolinska Institutet, Precision Medicine and Biosamples, Oncology R&D, AstraZeneca, Karolinska Institutet, 17176 Stockholm, Sweden
| |
Collapse
|
77
|
Hymel D, Liu F. Proximity‐driven, Regioselective Chemical Modification of Peptides and Proteins. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- David Hymel
- Discovery Chemistry Novo Nordisk Research Center Seattle, Inc. 500 Fairview Ave Seattle WA 98109 USA
| | - Fa Liu
- Focus-X Therapeutics, Inc 3541 223rd Ave SE Sammamish WA 98075 USA
| |
Collapse
|
78
|
Ando T, Takamori Y, Yokoyama T, Yamamoto M, Kawakami T. Directed evolution of dibenzocyclooctyne-reactive peptide tags for protein labeling. Biochem Biophys Res Commun 2020; 534:27-33. [PMID: 33310184 DOI: 10.1016/j.bbrc.2020.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/03/2020] [Indexed: 01/02/2023]
Abstract
Protein labeling with a functional molecule is a technique widely used for protein research. The covalent reaction of self-labeling peptide tags with synthetic probe-modified small molecules enables tag-fused protein labeling with chemically diverse molecules, including fluorescent probes. We report the discovery, by in vitro directed evolution, of a novel 23-mer dibenzocyclooctyne (DBCO)-reactive peptide (DRP) tag using Systematic Evolution of Ligands by EXponential enrichment (SELEX) with a combination of a reconstituted cell-free translation system (PURE system) and cDNA display. The N- and C-terminal DRP truncations created a shorter 16-mer DBCO-reactive peptide (sDRP) tag without significant reactivity reduction. By fusing the sDRP tag to a model protein, we showed the chemical labeling and in-gel fluorescence imaging of the sDRP-fused protein using a fluorescent DBCO probe. Results showed that sDRP tag-mediated protein labeling has potential for use as a basic molecular tool in a variety of applications for protein research.
Collapse
Affiliation(s)
- Takehiro Ando
- Department of Life and Environmental Sciences, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi, 400-8510, Japan
| | - Yukio Takamori
- Department of Life and Environmental Sciences, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi, 400-8510, Japan
| | - Takumi Yokoyama
- Department of Life and Environmental Sciences, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi, 400-8510, Japan
| | - Mizuki Yamamoto
- Department of Integrated Applied Life Science, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi, 400-8510, Japan
| | - Takashi Kawakami
- Faculty of Life and Environmental Sciences, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi, 400-8510, Japan; JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
79
|
Espinosa J, Lin TY, Estrella Y, Kim B, Molina H, Hang HC. Enterococcus NlpC/p60 Peptidoglycan Hydrolase SagA Localizes to Sites of Cell Division and Requires Only a Catalytic Dyad for Protease Activity. Biochemistry 2020; 59:4470-4480. [PMID: 33136372 DOI: 10.1021/acs.biochem.0c00755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peptidoglycan is a vital component of the bacterial cell wall, and its dynamic remodeling by NlpC/p60 hydrolases is crucial for proper cell division and survival. Beyond these essential functions, we previously discovered that Enterococcus species express and secrete the NlpC/p60 hydrolase-secreted antigen A (SagA), whose catalytic activity can modulate host immune responses in animal models. However, the localization and peptidoglycan hydrolase activity of SagA in Enterococcus was still unclear. In this study, we show that SagA contributes to a triseptal structure in dividing cells of enterococci and localizes to sites of cell division through its N-terminal coiled-coil domain. Using molecular modeling and site-directed mutagenesis, we identify amino acid residues within the SagA-NlpC/p60 domain that are crucial for catalytic activity and potential substrate binding. Notably, these studies revealed that SagA may function via a catalytic Cys-His dyad instead of the predicted Cys-His-His triad, which is conserved in SagA orthologs from other Enterococcus species. Our results provide key additional insight into peptidoglycan remodeling in Enterococcus by SagA NlpC/p60 hydrolases.
Collapse
Affiliation(s)
- Juliel Espinosa
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York 10065, United States
| | - Ti-Yu Lin
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York 10065, United States
| | - Yadyvic Estrella
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York 10065, United States
| | - Byungchul Kim
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York 10065, United States
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, New York 10065, United States
| | - Howard C Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York 10065, United States.,Departments of Immunology & Microbiology and Chemistry, Scripps Research, La Jolla, California 92037, United States
| |
Collapse
|
80
|
Cambré A, Aertsen A. Bacterial Vivisection: How Fluorescence-Based Imaging Techniques Shed a Light on the Inner Workings of Bacteria. Microbiol Mol Biol Rev 2020; 84:e00008-20. [PMID: 33115939 PMCID: PMC7599038 DOI: 10.1128/mmbr.00008-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The rise in fluorescence-based imaging techniques over the past 3 decades has improved the ability of researchers to scrutinize live cell biology at increased spatial and temporal resolution. In microbiology, these real-time vivisections structurally changed the view on the bacterial cell away from the "watery bag of enzymes" paradigm toward the perspective that these organisms are as complex as their eukaryotic counterparts. Capitalizing on the enormous potential of (time-lapse) fluorescence microscopy and the ever-extending pallet of corresponding probes, initial breakthroughs were made in unraveling the localization of proteins and monitoring real-time gene expression. However, later it became clear that the potential of this technique extends much further, paving the way for a focus-shift from observing single events within bacterial cells or populations to obtaining a more global picture at the intra- and intercellular level. In this review, we outline the current state of the art in fluorescence-based vivisection of bacteria and provide an overview of important case studies to exemplify how to use or combine different strategies to gain detailed information on the cell's physiology. The manuscript therefore consists of two separate (but interconnected) parts that can be read and consulted individually. The first part focuses on the fluorescent probe pallet and provides a perspective on modern methodologies for microscopy using these tools. The second section of the review takes the reader on a tour through the bacterial cell from cytoplasm to outer shell, describing strategies and methods to highlight architectural features and overall dynamics within cells.
Collapse
Affiliation(s)
- Alexander Cambré
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| | - Abram Aertsen
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| |
Collapse
|
81
|
Bachollet SPJT, Addi C, Pietrancosta N, Mallet JM, Dumat B. Fluorogenic Protein Probes with Red and Near-Infrared Emission for Genetically Targeted Imaging*. Chemistry 2020; 26:14467-14473. [PMID: 32691883 DOI: 10.1002/chem.202002911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Indexed: 11/09/2022]
Abstract
Fluorogenic probes are important tools to image proteins with high contrast and no wash protocols. In this work, we rationally designed and synthesized a small set of four protein fluorogens with red or near-infrared emission. The fluorophores were characterized in the presence of albumin as a model protein environment and exhibited good fluorogenicity and brightness (fluorescence quantum yield up to 36 %). Once conjugated to a haloalkane ligand, the probes reacted with the protein self-labeling tag HaloTag with a high fluorescence enhancement (up to 156-fold). The spectroscopic properties of the fluorogens and their reaction with HaloTag were investigated experimentally in vitro and with the help of molecular dynamics. The two most promising probes, one in the red and one in the near-infrared range, were finally applied to image the nucleus or actin in live-cell and in wash-free conditions using fluorogenic and chemogenetic targeting of HaloTag fusion proteins.
Collapse
Affiliation(s)
- Sylvestre P J T Bachollet
- Laboratoire des Biomolécules, LBM, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Cyril Addi
- Membrane Traffic and Cell Division Lab, Cell Biology and Infection Department, Institut Pasteur, CNRS UMR3691, Sorbonne Université, 75005, Paris, France
| | - Nicolas Pietrancosta
- Laboratoire des Biomolécules, LBM, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France.,Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS) INSERM, CNRS, Sorbonne Université, Paris, France
| | - Jean-Maurice Mallet
- Laboratoire des Biomolécules, LBM, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Blaise Dumat
- Laboratoire des Biomolécules, LBM, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| |
Collapse
|
82
|
Macias‐Contreras M, Zhu L. The Collective Power of Genetically Encoded Protein/Peptide Tags and Bioorthogonal Chemistry in Biological Fluorescence Imaging. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Miguel Macias‐Contreras
- Department of Chemistry and Biochemistry Florida State University 95 Chieftan Way Tallahassee FL 32306-4390 USA
| | - Lei Zhu
- Department of Chemistry and Biochemistry Florida State University 95 Chieftan Way Tallahassee FL 32306-4390 USA
| |
Collapse
|
83
|
Sueda S. Enzyme-based protein-tagging systems for site-specific labeling of proteins in living cells. ACTA ACUST UNITED AC 2020; 69:156-166. [PMID: 32166307 DOI: 10.1093/jmicro/dfaa011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 11/13/2022]
Abstract
Various protein-labeling methods based on the specific interactions between genetically encoded tags and synthetic probes have been proposed to complement fluorescent protein-based labeling. In particular, labeling methods based on enzyme reactions have been intensively developed by taking advantage of the highly specific interactions between enzymes and their substrates. In this approach, the peptides or proteins are genetically attached to the target proteins as a tag, and the various labels are then incorporated into the tags by enzyme reactions with the substrates carrying those labels. On the other hand, we have been developing an enzyme-based protein-labeling system distinct from the existing ones. In our system, the substrate protein is attached to the target proteins as a tag, and the labels are incorporated into the tag by post-translational modification with an enzyme carrying those labels followed by tight complexation between the enzyme and the substrate protein. In this review, I summarize the enzyme-based protein-labeling systems with a focus on several typical methods and then describe our labeling system based on tight complexation between the enzyme and the substrate protein.
Collapse
Affiliation(s)
- Shinji Sueda
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka 820-8502, Japan.,Research Center for Bio-microsensing Technology, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu 804-8550, Japan
| |
Collapse
|
84
|
Tang J, Yu C, Loredo A, Chen Y, Xiao H. Site-Specific Incorporation of a Photoactivatable Fluorescent Amino Acid. Chembiochem 2020; 22:501-504. [PMID: 32961013 DOI: 10.1002/cbic.202000602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/21/2020] [Indexed: 12/11/2022]
Abstract
Photoactivatable fluorophores are emerging optical probes for biological applications. Most photoactivatable fluorophores are relatively large in size and need to be activated by ultraviolet light; this dramatically limits their applications. To introduce photoactivatable fluorophores into proteins, recent investigations have explored several protein-labeling technologies, including fluorescein arsenical hairpin (FlAsH) Tag, HaloTag labeling, SNAPTag labeling, and other bioorthogonal chemistry-based methods. However, these technologies require a multistep labeling process. Here, by using genetic code expansion and a single sulfur-for-oxygen atom replacement within an existing fluorescent amino acid, we have site-specifically incorporated the photoactivatable fluorescent amino acid thioacridonylalanine (SAcd) into proteins in a single step. Moreover, upon exposure to visible light, SAcd can be efficiently desulfurized to its oxo derivatives, thus restoring the strong fluorescence of labeled proteins.
Collapse
Affiliation(s)
- Juan Tang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Chenfei Yu
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Axel Loredo
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Yuda Chen
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Han Xiao
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Department of Biosciences, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| |
Collapse
|
85
|
Mozumdar D, Doerner A, Zhang JY, Rafizadeh DN, Schepartz A. Discrete Coiled Coil Rotamers Form within the EGFRvIII Juxtamembrane Domain. Biochemistry 2020; 59:3965-3972. [PMID: 32941004 DOI: 10.1021/acs.biochem.0c00641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mutations in the epidermal growth factor receptor (EGFR) extracellular domain (ECD) are implicated in the development of glioblastoma multiforme (GBM), which is a highly aggressive form of brain cancer. Of particular interest to GBM is the EGFR variant known as EGFRvIII, which is distinguished by an in-frame deletion of exons 2-7, which encode ECD residues 6-273. Included within the deleted region is an autoinhibitory tether, whose absence, alongside unique disulfide interactions within the truncated ECD, supports assembly of a constitutively active asymmetric kinase dimer. Previous studies have shown that the binding of growth factors to the ECD of wild-type EGFR leads to the formation of two distinct coiled coil dimers in the cytoplasmic juxtamembrane (JM) segment, whose identities correlate with the downstream phenotype. One coiled coil contains leucine residues at the interhelix interface (EGF-type), whereas the other contains charged and polar side chains (TGF-α-type). It has been proposed that growth-factor-dependent structural changes in the ECD and adjacent transmembrane helix are transduced into distinct JM coiled coils. Here, we show that, in the absence of this growth-factor-induced signal, the JM of EGFRvIII adopts both EGF-type and TGF-α-type structures, providing direct evidence for this hypothesis. These studies confirm that the signals that define JM coiled coil identity begin within the ECD, and support a model in which growth-factor-induced conformational changes are transmitted from the ECD through the transmembrane helix to favor different coiled coil isomers within the JM.
Collapse
Affiliation(s)
- Deepto Mozumdar
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Department of Chemistry, University of California, Berkeley, California 94705, United States
| | - Amy Doerner
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Justin Y Zhang
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Diane N Rafizadeh
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Alanna Schepartz
- Department of Chemistry, University of California, Berkeley, California 94705, United States
| |
Collapse
|
86
|
Mageeney CM, Mohammed HT, Dies M, Anbari S, Cudkevich N, Chen Y, Buceta J, Ware VC. Mycobacterium Phage Butters-Encoded Proteins Contribute to Host Defense against Viral Attack. mSystems 2020; 5:e00534-20. [PMID: 33024050 PMCID: PMC7542560 DOI: 10.1128/msystems.00534-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/15/2020] [Indexed: 01/21/2023] Open
Abstract
A diverse set of prophage-mediated mechanisms protecting bacterial hosts from infection has been recently uncovered within cluster N mycobacteriophages isolated on the host, Mycobacterium smegmatis mc2155. In that context, we unveil a novel defense mechanism in cluster N prophage Butters. By using bioinformatics analyses, phage plating efficiency experiments, microscopy, and immunoprecipitation assays, we show that Butters genes located in the central region of the genome play a key role in the defense against heterotypic viral attack. Our study suggests that a two-component system, articulated by interactions between protein products of genes 30 and 31, confers defense against heterotypic phage infection by PurpleHaze (cluster A/subcluster A3) or Alma (cluster A/subcluster A9) but is insufficient to confer defense against attack by the heterotypic phage Island3 (cluster I/subcluster I1). Therefore, based on heterotypic phage plating efficiencies on the Butters lysogen, additional prophage genes required for defense are implicated and further show specificity of prophage-encoded defense systems.IMPORTANCE Many sequenced bacterial genomes, including those of pathogenic bacteria, contain prophages. Some prophages encode defense systems that protect their bacterial host against heterotypic viral attack. Understanding the mechanisms undergirding these defense systems is crucial to appreciate the scope of bacterial immunity against viral infections and will be critical for better implementation of phage therapy that would require evasion of these defenses. Furthermore, such knowledge of prophage-encoded defense mechanisms may be useful for developing novel genetic tools for engineering phage-resistant bacteria of industrial importance.
Collapse
Affiliation(s)
- Catherine M Mageeney
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Hamidu T Mohammed
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Marta Dies
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania, USA
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Samira Anbari
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Netta Cudkevich
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Yanyan Chen
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Javier Buceta
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania, USA
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Vassie C Ware
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
| |
Collapse
|
87
|
Lu J, Mazidi H, Ding T, Zhang O, Lew MD. Single-Molecule 3D Orientation Imaging Reveals Nanoscale Compositional Heterogeneity in Lipid Membranes. Angew Chem Int Ed Engl 2020; 59:17572-17579. [PMID: 32648275 PMCID: PMC7794097 DOI: 10.1002/anie.202006207] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/15/2020] [Indexed: 12/21/2022]
Abstract
In soft matter, thermal energy causes molecules to continuously translate and rotate, even in crowded environments, thereby impacting the spatial organization and function of most molecular assemblies, such as lipid membranes. Directly measuring the orientation and spatial organization of large collections (>3000 molecules μm-2 ) of single molecules with nanoscale resolution remains elusive. In this paper, we utilize SMOLM, single-molecule orientation localization microscopy, to directly measure the orientation spectra (3D orientation plus "wobble") of lipophilic probes transiently bound to lipid membranes, revealing that Nile red's (NR) orientation spectra are extremely sensitive to membrane chemical composition. SMOLM images resolve nanodomains and enzyme-induced compositional heterogeneity within membranes, where NR within liquid-ordered vs. liquid-disordered domains shows a ≈4° difference in polar angle and a ≈0.3π sr difference in wobble angle. As a new type of imaging spectroscopy, SMOLM exposes the organizational and functional dynamics of lipid-lipid, lipid-protein, and lipid-dye interactions with single-molecule, nanoscale resolution.
Collapse
Affiliation(s)
- Jin Lu
- Department of Electrical and Systems Engineering, Center for Science and Engineering of Living Systems, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Hesam Mazidi
- Department of Electrical and Systems Engineering, Center for Science and Engineering of Living Systems, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Tianben Ding
- Department of Electrical and Systems Engineering, Center for Science and Engineering of Living Systems, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Oumeng Zhang
- Department of Electrical and Systems Engineering, Center for Science and Engineering of Living Systems, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Matthew D Lew
- Department of Electrical and Systems Engineering, Center for Science and Engineering of Living Systems, Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| |
Collapse
|
88
|
Lu J, Mazidi H, Ding T, Zhang O, Lew MD. Single‐Molecule 3D Orientation Imaging Reveals Nanoscale Compositional Heterogeneity in Lipid Membranes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jin Lu
- Department of Electrical and Systems Engineering Center for Science and Engineering of Living Systems Institute of Materials Science and Engineering Washington University in St. Louis St. Louis MO 63130 USA
| | - Hesam Mazidi
- Department of Electrical and Systems Engineering Center for Science and Engineering of Living Systems Institute of Materials Science and Engineering Washington University in St. Louis St. Louis MO 63130 USA
| | - Tianben Ding
- Department of Electrical and Systems Engineering Center for Science and Engineering of Living Systems Institute of Materials Science and Engineering Washington University in St. Louis St. Louis MO 63130 USA
| | - Oumeng Zhang
- Department of Electrical and Systems Engineering Center for Science and Engineering of Living Systems Institute of Materials Science and Engineering Washington University in St. Louis St. Louis MO 63130 USA
| | - Matthew D. Lew
- Department of Electrical and Systems Engineering Center for Science and Engineering of Living Systems Institute of Materials Science and Engineering Washington University in St. Louis St. Louis MO 63130 USA
| |
Collapse
|
89
|
Pokhrel R, Tang T, Holub JM. Monitoring ligand-mediated helix 12 transitions within the human estrogen receptor α using bipartite tetracysteine display. Org Biomol Chem 2020; 18:6063-6071. [PMID: 32724950 DOI: 10.1039/d0ob01234c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Estrogen receptor α ligand-binding domains (ERα-LBD) expressing tetracysteine motifs bind FlAsH-EDT2 upon transition of helix 12 (H12) to a folded state. Changes in fluorescence intensity allowed surveillance of ligand-mediated H12 transitions and facilitated the determination of FlAsH association rates (kon) and apparent equilibrium dissociation constants (Kapp) to ERα-LBDs in the presence of estrogenic ligands.
Collapse
Affiliation(s)
- Ranju Pokhrel
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
| | | | | |
Collapse
|
90
|
Hill BD, Prabhu P, Rizvi SM, Wen F. Yeast Intracellular Staining (yICS): Enabling High-Throughput, Quantitative Detection of Intracellular Proteins via Flow Cytometry for Pathway Engineering. ACS Synth Biol 2020; 9:2119-2131. [PMID: 32603587 DOI: 10.1021/acssynbio.0c00199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The complexities of pathway engineering necessitate screening libraries to discover phenotypes of interest. However, this approach is challenging when desirable phenotypes cannot be directly linked to growth advantages or fluorescence. In these cases, the ability to rapidly quantify intracellular proteins in the pathway of interest is critical to expedite the clonal selection process. While Saccharomyces cerevisiae remains a common host for pathway engineering, current approaches for intracellular protein detection in yeast either have low throughput, can interfere with protein function, or lack the ability to detect multiple proteins simultaneously. To fill this need, we developed yeast intracellular staining (yICS) that enables fluorescent antibodies to access intracellular compartments of yeast cells while maintaining their cellular integrity for analysis by flow cytometry. Using the housekeeping proteins β actin and glyceraldehyde 3-phophate dehydrogenase (GAPDH) as targets for yICS, we demonstrated for the first time successful antibody-based flow cytometric detection of yeast intracellular proteins with no modification. Further, yICS characterization of a recombinant d-xylose assimilation pathway showed 3-plexed, quantitative detection of the xylose reductase (XR), xylitol dehydrogenase (XDH), and xylulokinase (XK) enzymes each fused with a small (6-10 amino acids) tag, revealing distinct enzyme expression profiles between plasmid-based and genome-integrated expression approaches. As a result of its high-throughput and quantitative capability, yICS enabled rapid screening of a library created from CRISPR-mediated XDH integration into the yeast δ site, identifying rare (1%) clones that led to an 8.4-fold increase in XDH activity. These results demonstrate the utility of yICS for greatly accelerating pathway engineering efforts, as well as any application where the high-throughput and quantitative detection of intracellular proteins is desired.
Collapse
Affiliation(s)
- Brett D. Hill
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ponnandy Prabhu
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Syed M. Rizvi
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Fei Wen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
91
|
Doh JK, Tobin SJ, Beatty KE. MiniVIPER Is a Peptide Tag for Imaging and Translocating Proteins in Cells. Biochemistry 2020; 59:3051-3059. [PMID: 32786411 DOI: 10.1021/acs.biochem.0c00526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Microscopy allows researchers to interrogate proteins within a cellular context. To deliver protein-specific contrast, we developed a new class of genetically encoded peptide tags called versatile interacting peptide (VIP) tags. VIP tags deliver a reporter to a target protein via the formation of a heterodimer between the peptide tag and an exogenously added probe peptide. We report herein a new VIP tag named MiniVIPER, which is comprised of a MiniE-MiniR heterodimer. We first demonstrated the selectivity of MiniVIPER by labeling three cellular targets: transferrin receptor 1 (TfR1), histone protein H2B, and the mitochondrial protein TOMM20. We showed that either MiniE or MiniR could serve as the genetically encoded tag. Next, we demonstrated MiniVIPER's versatility by generating five spectrally distinct probe peptides to label tagged TfR1 on live cells. Lastly, we demonstrated two new applications for VIP tags. First, we used MiniVIPER in combination with another VIP tag, VIPER, to selectively label two different proteins in a single cell (e.g., TfR1 with H2B or TOMM20). Second, we used MiniVIPER to translocate a fluorescent protein to the nucleus through in situ dimerization of mCherry with H2B-mEmerald. In summary, MiniVIPER is a new peptide tag that enables multitarget imaging and artificial dimerization of proteins in cells.
Collapse
Affiliation(s)
- Julia K Doh
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Savannah J Tobin
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Kimberly E Beatty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97239, United States
| |
Collapse
|
92
|
Zhang S, Gong H, Ge Y, Ye RD. Biased allosteric modulation of formyl peptide receptor 2 leads to distinct receptor conformational states for pro- and anti-inflammatory signaling. Pharmacol Res 2020; 161:105117. [PMID: 32768626 DOI: 10.1016/j.phrs.2020.105117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/25/2020] [Accepted: 07/26/2020] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND PURPOSE Formyl peptide receptor 2 (FPR2) is a Class A G protein-coupled receptor (GPCR) that interacts with multiple ligands and transduces both proinflammatory and anti-inflammatory signals. These ligands include weak agonists and modulators that are produced during inflammation. The present study investigates how prolonged exposure to FPR2 modulators influence receptor signaling. EXPERIMENTAL APPROACH Fluorescent biosensors of FPR2 were constructed based on single-molecule fluorescent resonance energy transfer (FRET) and used for measurement of ligand-induced receptor conformational changes. These changes were combined with FPR2-mediated signaling events and used as parameters for the conformational states of FPR2. Ternary complex models were developed to interpret ligand concentration-dependent changes in FPR2 conformational states. KEY RESULTS Incubation with Ac2-26, an anti-inflammatory ligand of FPR2, decreased FRET intensity at picomolar concentrations. In comparison, WKYMVm (W-pep) and Aβ42, both proinflammatory agonists of FPR2, increased FRET intensity. Preincubation with Ac2-26 at 10 pM diminished W-pep-induced Ca2+ flux but potentiated W-pep-stimulated β-arrestin2 membrane translocation and p38 MAPK phosphorylation. The opposite effects were observed with 10 pM of Aβ42. Neither Ac2-26 nor Aβ42 competed for W-pep binding at the picomolar concentrations. CONCLUSIONS AND IMPLICATIONS The results support the presence of two allosteric binding sites on FPR2, each for Ac2-26 and Aβ42, with high and low affinities. Sequential binding of the two allosteric ligands at increasing concentrations induce different conformational changes in FPR2, providing a novel mechanism by which biased allosteric modulators alter receptor conformations and generate pro- and anti-inflammatory signals.
Collapse
Affiliation(s)
- Shuo Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Gong
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yunjun Ge
- State Key Laboratory for Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Richard D Ye
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China; State Key Laboratory for Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China; Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
93
|
Liu J, Cui Z. Fluorescent Labeling of Proteins of Interest in Live Cells: Beyond Fluorescent Proteins. Bioconjug Chem 2020; 31:1587-1595. [PMID: 32379972 DOI: 10.1021/acs.bioconjchem.0c00181] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Live cell imaging brings us into a new era of direct visualization of biological processes and molecular dynamics in real time. To visualize dynamic cellular processes and virus-host interactions, fluorescent labeling of proteins of interest is often necessary. Fluorescent proteins are widely used for protein imaging, but they have some intrinsic deficiencies such as big size, photobleaching, and spectrum restriction. Thus, a variety of labeling strategies have been established and continuously developed. To protect the natural biological function(s) of the protein of interest, especially in viral life cycle, in vivo labeling requires smaller-sized tags, more specificity, and lower cytotoxicity. Here, we briefly summarized the principles, development, and their applications mainly in the virology field of three strategies for fluorescent labeling of proteins of interest including self-labeling enzyme derivatives, stainable peptide tags, and non-canonical amino acid incorporation. These labeling techniques greatly expand the fluorescent labeling toolbox and provide new opportunities for imaging biological processes.
Collapse
Affiliation(s)
- Ji Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
94
|
Thiel Z, Nguyen J, Rivera‐Fuentes P. Genetically Encoded Activators of Small Molecules for Imaging and Drug Delivery. Angew Chem Int Ed Engl 2020; 59:7669-7677. [PMID: 31898373 PMCID: PMC7318188 DOI: 10.1002/anie.201915521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Indexed: 12/30/2022]
Abstract
Chemical biologists have developed many tools based on genetically encoded macromolecules and small, synthetic compounds. The two different approaches are extremely useful, but they have inherent limitations. In this Minireview, we highlight examples of strategies that combine both concepts to tackle challenging problems in chemical biology. We discuss applications in imaging, with a focus on super-resolved techniques, and in probe and drug delivery. We propose future directions in this field, hoping to inspire chemical biologists to develop new combinations of synthetic and genetically encoded probes.
Collapse
Affiliation(s)
- Zacharias Thiel
- Institute of Chemical Sciences and EngineeringEPF LausanneCH C2 425, Station 61015LausanneSwitzerland
- Laboratory of Organic ChemistryETH ZurichVladimir-Prelog-Weg 38093ZurichSwitzerland
| | - Jade Nguyen
- Institute of Chemical Sciences and EngineeringEPF LausanneCH C2 425, Station 61015LausanneSwitzerland
- Laboratory of Organic ChemistryETH ZurichVladimir-Prelog-Weg 38093ZurichSwitzerland
| | - Pablo Rivera‐Fuentes
- Institute of Chemical Sciences and EngineeringEPF LausanneCH C2 425, Station 61015LausanneSwitzerland
| |
Collapse
|
95
|
Thiel Z, Nguyen J, Rivera‐Fuentes P. Genetically Encoded Activators of Small Molecules for Imaging and Drug Delivery. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zacharias Thiel
- Institute of Chemical Sciences and Engineering EPF Lausanne CH C2 425, Station 6 1015 Lausanne Switzerland
- Laboratory of Organic Chemistry ETH Zurich Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | - Jade Nguyen
- Institute of Chemical Sciences and Engineering EPF Lausanne CH C2 425, Station 6 1015 Lausanne Switzerland
- Laboratory of Organic Chemistry ETH Zurich Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | - Pablo Rivera‐Fuentes
- Institute of Chemical Sciences and Engineering EPF Lausanne CH C2 425, Station 6 1015 Lausanne Switzerland
| |
Collapse
|
96
|
Nascent SecM chain interacts with outer ribosomal surface to stabilize translation arrest. Biochem J 2020; 477:557-566. [PMID: 31913464 PMCID: PMC6993859 DOI: 10.1042/bcj20190723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 11/28/2022]
Abstract
SecM, a bacterial secretion monitor protein, posttranscriptionally regulates downstream gene expression via translation elongation arrest. SecM contains a characteristic amino acid sequence called the arrest sequence at its C-terminus, and this sequence acts within the ribosomal exit tunnel to stop translation. It has been widely assumed that the arrest sequence within the ribosome tunnel is sufficient for translation arrest. We have previously shown that the nascent SecM chain outside the ribosomal exit tunnel stabilizes translation arrest, but the molecular mechanism is unknown. In this study, we found that residues 57–98 of the nascent SecM chain are responsible for stabilizing translation arrest. We performed alanine/serine-scanning mutagenesis of residues 57–98 to identify D79, Y80, W81, H84, R87, I90, R91, and F95 as the key residues responsible for stabilization. The residues were predicted to be located on and near an α-helix-forming segment. A striking feature of the α-helix is the presence of an arginine patch, which interacts with the negatively charged ribosomal surface. A photocross-linking experiment showed that Y80 is adjacent to the ribosomal protein L23, which is located next to the ribosomal exit tunnel when translation is arrested. Thus, the folded nascent SecM chain that emerges from the ribosome exit tunnel interacts with the outer surface of the ribosome to stabilize translation arrest.
Collapse
|
97
|
Liu SL, Wang ZG, Xie HY, Liu AA, Lamb DC, Pang DW. Single-Virus Tracking: From Imaging Methodologies to Virological Applications. Chem Rev 2020; 120:1936-1979. [PMID: 31951121 PMCID: PMC7075663 DOI: 10.1021/acs.chemrev.9b00692] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Uncovering
the mechanisms of virus infection and assembly is crucial
for preventing the spread of viruses and treating viral disease. The
technique of single-virus tracking (SVT), also known as single-virus
tracing, allows one to follow individual viruses at different parts
of their life cycle and thereby provides dynamic insights into fundamental
processes of viruses occurring in live cells. SVT is typically based
on fluorescence imaging and reveals insights into previously unreported
infection mechanisms. In this review article, we provide the readers
a broad overview of the SVT technique. We first summarize recent advances
in SVT, from the choice of fluorescent labels and labeling strategies
to imaging implementation and analytical methodologies. We then describe
representative applications in detail to elucidate how SVT serves
as a valuable tool in virological research. Finally, we present our
perspectives regarding the future possibilities and challenges of
SVT.
Collapse
Affiliation(s)
- Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine , Nankai University , Tianjin 300071 , P. R. China.,Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , P. R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine , Nankai University , Tianjin 300071 , P. R. China
| | - Hai-Yan Xie
- School of Life Science , Beijing Institute of Technology , Beijing 100081 , P. R. China
| | - An-An Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine , Nankai University , Tianjin 300071 , P. R. China
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), and Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM) , Ludwig-Maximilians-Universität , München , 81377 , Germany
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine , Nankai University , Tianjin 300071 , P. R. China.,College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology , Wuhan University , Wuhan 430072 , P. R. China
| |
Collapse
|
98
|
Petazzi RA, Aji AK, Chiantia S. Fluorescence microscopy methods for the study of protein oligomerization. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 169:1-41. [DOI: 10.1016/bs.pmbts.2019.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
99
|
Abstract
Bioorthogonal chemistry has offered an invaluable reactivity-based tool to chemical biology owing to its exquisite specificity in tagging a diverse set of biomolecules in their native environment. Despite tremendous progress in the field over the past decade, designing a suitable bioorthogonal chemical probe to investigate a given biological system remains a challenge. In this Perspective, we put forward a series of fitness factors that can be used to assess the performance of bioorthogonal chemical probes. The consideration of these criteria should encourage continuous innovation in bioorthogonal probe development as well as enhance the quality of biological data.
Collapse
Affiliation(s)
- Yulin Tian
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-3000, United States
| | - Qing Lin
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-3000, United States
| |
Collapse
|
100
|
Deciphering the Antitoxin-Regulated Bacterial Stress Response via Single-Cell Analysis. ACS Chem Biol 2019; 14:2859-2866. [PMID: 31670944 DOI: 10.1021/acschembio.9b00721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Bacterial toxin-antitoxin (TA) systems, which are diverse and widespread among prokaryotes, are responsible for tolerance to drugs and environmental stresses. However, the low abundance of toxin and antitoxin proteins renders their quantitative measurement in single bacteria challenging. Employing a laboratory-built nano-flow cytometer (nFCM) to monitor a tetracysteine (TC)-tagged TA system labeled with the biarsenical dye FlAsH, we here report the development of a sensitive method that enables the detection of basal-level expression of antitoxin. Using the Escherichia coli MqsR/MqsA as a model TA system, we reveal for the first time that under its native promoter and in the absence of environmental stress, there exist two populations of bacteria with high or low levels of antitoxin MqsA. Under environmental stress, such as bile acid stress, heat shock, and amino acid starvation, the two populations of bacteria responded differently in terms of MqsA degradation and production. Subsequently, resumed production of MqsA after amino acid stress was observed for the first time. Taking advantage of the multiparameter capability of nFCM, bacterial growth rate and MqsA production were analyzed simultaneously. We found that under environmental stress, the response of bacterial growth was consistent with MqsA production but with an approximate 60 min lag. Overall, the results of the present study indicate that stochastic elevation of MqsA level facilitates bacterial survival, and the two populations with distinct phenotypes empower bacteria to deal with fluctuating environments. This analytical method will help researchers gain deeper insight into the heterogeneity and fundamental role of TA systems.
Collapse
|