51
|
Kang PL, Shi YF, Shang C, Liu ZP. Artificial intelligence pathway search to resolve catalytic glycerol hydrogenolysis selectivity. Chem Sci 2022; 13:8148-8160. [PMID: 35919423 PMCID: PMC9278456 DOI: 10.1039/d2sc02107b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
The complex interaction between molecules and catalyst surfaces leads to great difficulties in understanding and predicting the activity and selectivity in heterogeneous catalysis. Here we develop an end-to-end artificial intelligence framework for the activity prediction of heterogeneous catalytic systems (AI-Cat method), which takes simple inputs from names of molecules and metal catalysts and outputs the reaction energy profile from the input molecule to low energy pathway products. The AI-Cat method combines two neural network models, one for predicting reaction patterns and the other for providing the reaction barrier and energy, with a Monte Carlo tree search to resolve the low energy pathways in a reaction network. We then apply AI-Cat to resolve the reaction network of glycerol hydrogenolysis on Cu surfaces, which is a typical selective C-O bond activation system and of key significance for biomass-derived polyol utilization. We show that glycerol hydrogenolysis features a huge reaction network of relevant candidates, containing 420 reaction intermediates and 2467 elementary reactions. Among them, the surface-mediated enol-keto tautomeric resonance is a key step to facilitate the primary C-OH bond breaking and thus selects 1,2-propanediol as the major product on Cu catalysts. 1,3-Propanediol can only be produced under strong acidic conditions and high surface H coverage by following a hydrogenation-dehydration pathway. AI-Cat further discovers six low-energy reaction patterns for C-O bond activation on metals that is of general significance to polyol catalysis. Our results demonstrate that the reaction prediction for complex heterogeneous catalysis is now feasible with AI-based atomic simulation and a Monte Carlo tree search.
Collapse
Affiliation(s)
- Pei-Lin Kang
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University Shanghai 200433 China
| | - Yun-Fei Shi
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University Shanghai 200433 China
| | - Cheng Shang
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University Shanghai 200433 China
- Shanghai Qi Zhi Institution Shanghai 200030 China
| | - Zhi-Pan Liu
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University Shanghai 200433 China
- Shanghai Qi Zhi Institution Shanghai 200030 China
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
52
|
Xiang S, Dong L, Wang ZQ, Han X, Daemen LL, Li J, Cheng Y, Guo Y, Liu X, Hu Y, Ramirez-Cuesta AJ, Yang S, Gong XQ, Wang Y. A unique Co@CoO catalyst for hydrogenolysis of biomass-derived 5-hydroxymethylfurfural to 2,5-dimethylfuran. Nat Commun 2022; 13:3657. [PMID: 35760807 PMCID: PMC9237033 DOI: 10.1038/s41467-022-31362-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/13/2022] [Indexed: 11/19/2022] Open
Abstract
The development of precious-metal-free catalysts to promote the sustainable production of fuels and chemicals from biomass remains an important and challenging target. Here, we report the efficient hydrogenolysis of biomass-derived 5-hydroxymethylfurfural to 2,5-dimethylfuran over a unique core-shell structured catalyst, Co@CoO that affords the highest productivity among all catalysts, including noble-metal-based catalysts, reported to date. Surprisingly, we find that the catalytically active sites reside on the shell of CoO with oxygen vacancies rather than the metallic Co. The combination of various spectroscopic experiments and computational modelling reveals that the CoO shell incorporating oxygen vacancies not only drives the heterolytic cleavage, but also the homolytic cleavage of H2 to yield more active Hδ- species, resulting in the exceptional catalytic activity. Co@CoO also exhibits excellent activity toward the direct hydrodeoxygenation of lignin model compounds. This study unlocks, for the first time, the potential of simple metal-oxide-based catalysts for the hydrodeoxygenation of renewable biomass to chemical feedstocks.
Collapse
Affiliation(s)
- Shuang Xiang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lin Dong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhi-Qiang Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xue Han
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Luke L Daemen
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Jiong Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yongqiang Cheng
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Yong Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaohui Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yongfeng Hu
- Sinopec Shanghai Research Institute of Petrochemical Technology, Shanghai, 201208, China
| | - Anibal J Ramirez-Cuesta
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Sihai Yang
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK.
| | - Xue-Qing Gong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Yanqin Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
53
|
Ren C, Lu S, Wu Y, Ouyang Y, Zhang Y, Li Q, Ling C, Wang J. A Universal Descriptor for Complicated Interfacial Effects on Electrochemical Reduction Reactions. J Am Chem Soc 2022; 144:12874-12883. [PMID: 35700099 DOI: 10.1021/jacs.2c04540] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Supported catalysts have exhibited excellent performance in various reactions. However, the rational design of supported catalysts with high activity and certain selectivity remains a great challenge because of the complicated interfacial effects. Using recently emerged two-dimensional materials supported dual-atom catalysts (DACs@2D) as a prototype, we propose a simple and universal descriptor based on inherent atomic properties (electronegativity, electron type, and number), which can well evaluate the complicated interfacial effects on the electrochemical reduction reactions (i.e., CO2, O2, and N2 reduction reactions). Based on this descriptor, activity and selectivity trends in CO2 reduction reaction are successfully elucidated, in good agreement with available experimental data. Moreover, several potential catalysts with superior activity and selectivity for target products are predicted, such as CuCr/g-C3N4 for CH4 and CuSn/N-BN for HCOOH. More importantly, this descriptor can also be extended to evaluate the activity of DACs@2D for O2 and N2 reduction reactions, with very small errors between the prediction and reported experimental/computational results. This work provides feasible principles for the rational design of advanced electrocatalysts and the construction of universal descriptors based on inherent atomic properties.
Collapse
Affiliation(s)
- Chunjin Ren
- School of Physics, Southeast University, Nanjing 211189, China
| | - Shuaihua Lu
- School of Physics, Southeast University, Nanjing 211189, China
| | - Yilei Wu
- School of Physics, Southeast University, Nanjing 211189, China
| | - Yixin Ouyang
- School of Physics, Southeast University, Nanjing 211189, China
| | - Yehui Zhang
- School of Physics, Southeast University, Nanjing 211189, China
| | - Qiang Li
- School of Physics, Southeast University, Nanjing 211189, China
| | - Chongyi Ling
- School of Physics, Southeast University, Nanjing 211189, China
| | - Jinlan Wang
- School of Physics, Southeast University, Nanjing 211189, China
| |
Collapse
|
54
|
Yang Y, Shen T, Xu X. Towards the rational design of Pt-based alloy catalysts for the low-temperature water-gas shift reaction: from extended surfaces to single atom alloys. Chem Sci 2022; 13:6385-6396. [PMID: 35733891 PMCID: PMC9159103 DOI: 10.1039/d2sc01729f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/04/2022] [Indexed: 12/15/2022] Open
Abstract
The rational design of Pt-based catalysts for the low-temperature water-gas-shift (LT-WGS) reaction is an active research field because of its important role played in the fuel cell-based hydrogen economy, especially in mobile applications. Previous theoretical analyses have suggested that Pt alloys, leading to a weaker CO binding affinity than the Pt metal, could help alleviate CO poisoning and thus should be promising catalysts of the LT-WGS reaction. However, experimental research along this line was rather ineffective in the past decade. In the present work, we employed the state-of-the-art kinetic Monte Carlo (KMC) simulations to examine the influences of the electronic effect by introducing sub-surface alloys and/or core–shell structures, and the synergetic effect by introducing single atom alloys on the catalytic performance of Pt-alloy catalysts. Our KMC simulations have highlighted the importance of the OH binding affinity on the catalyst surfaces to reduce the barrier of water dissociation as the rate determining step, instead of the CO binding affinity as has been emphasized before in conventional mean-field kinetic models. Along this new direction of catalyst design, we found that Pt–Ru synergetic effects can significantly increase the activity of the Pt metal, leading to Ru1–3@Pt alloys with a tetrahedron site of one surface-three subsurface Ru atoms on the Pt host, showing a turnover frequency of about five orders of magnitude higher than the Pt metal. KMC simulations show that decreasing the barrier of H2O decomposition is more beneficial than decreasing the CO binding affinity in LT-WGS, while the latter was overemphasized by MF-MKM. Here Ru1–3@Pt alloy is proposed as a promising catalyst.![]()
Collapse
Affiliation(s)
- Yuqi Yang
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University Shanghai 200433 People's Republic of China
| | - Tonghao Shen
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University Shanghai 200433 People's Republic of China
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University Shanghai 200433 People's Republic of China
| |
Collapse
|
55
|
Hu J, Yang B, Liu Z. Assessing the Activity Trend of Metal Nitride Catalysts for Ammonia Synthesis Based on Theory of Chemical Potential Kinetics. ChemistrySelect 2022. [DOI: 10.1002/slct.202201359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jingya Hu
- School of Physical Science and Technology ShanghaiTech University 393 Middle Huaxia Road Shanghai 201210 China
| | - Bo Yang
- School of Physical Science and Technology ShanghaiTech University 393 Middle Huaxia Road Shanghai 201210 China
| | - Zhi Liu
- School of Physical Science and Technology ShanghaiTech University 393 Middle Huaxia Road Shanghai 201210 China
| |
Collapse
|
56
|
Jovanović AZ, Bijelić L, Dobrota AS, Skorodumova NV, Mentus SV, Pašti IA. Enhancement of hydrogen evolution reaction kinetics in alkaline media by fast galvanic displacement of nickel with rhodium – From smooth surfaces to electrodeposited nickel foams. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
57
|
Yang Z, Gao W. Applications of Machine Learning in Alloy Catalysts: Rational Selection and Future Development of Descriptors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106043. [PMID: 35229986 PMCID: PMC9036033 DOI: 10.1002/advs.202106043] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/02/2022] [Indexed: 05/28/2023]
Abstract
At present, alloys have broad application prospects in heterogeneous catalysis, due to their various catalytic active sites produced by their vast element combinations and complex geometric structures. However, it is the diverse variables of alloys that lead to the difficulty in understanding the structure-property relationship for conventional experimental and theoretical methods. Fortunately, machine learning methods are helpful to address the issue. Machine learning can not only deal with a large number of data rapidly, but also help establish the physical picture of reactions in multidimensional heterogeneous catalysis. The key challenge in machine learning is the exploration of suitable general descriptors to accurately describe various types of alloy catalysts, which help reasonably design catalysts and efficiently screen candidates. In this review, several kinds of machine learning methods commonly used in the design of alloy catalysts is introduced, and the applications of various reactivity descriptors corresponding to different alloy systems is summarized. Importantly, this work clarifies the existing understanding of physical picture of heterogeneous catalysis, and emphasize the significance of rational selection of universal descriptors. Finally, the development of heterogeneous catalytic descriptors for machine learning are presented.
Collapse
Affiliation(s)
- Ze Yang
- School of Materials Science and EngineeringJilin UniversityChangchun130022P. R. China
| | - Wang Gao
- School of Materials Science and EngineeringJilin UniversityChangchun130022P. R. China
| |
Collapse
|
58
|
García-Cruz R, Gonzalez-Torres J, Montoya-Moreno A, Domínguez-Soria V, Luna-García H, Poulain E, Arellano J, Olvera-Neria O. The π back-donation influence in CO oxidation on small and oxidized Au–Ag clusters. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
59
|
Abdelgaid M, Mpourmpakis G. Structure–Activity Relationships in Lewis Acid–Base Heterogeneous Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mona Abdelgaid
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Giannis Mpourmpakis
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
60
|
Abstract
The growing emission of carbon dioxide (CO2), combined with its ecotoxicity, is the reason for the intensification of research on the new technology of CO2 management. Currently, it is believed that it is not possible to eliminate whole CO2 emissions. However, a sustainable balance sheet is possible. The solution is technologies that use carbon dioxide as a raw material. Many of these methods are based on CO2 methanation, for example, projects such as Power-to-Gas, production of fuels, or polymers. This article presents the concept of using CO2 as a raw material, the catalytic conversion of carbon dioxide to methane, and consideration on CO2 methanation catalysts and their design.
Collapse
|
61
|
Guan Y, Chaffart D, Liu G, Tan Z, Zhang D, Wang Y, Li J, Ricardez-Sandoval L. Machine learning in solid heterogeneous catalysis: Recent developments, challenges and perspectives. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117224] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
62
|
Sheng T, Wu HY, Lin X, Lin WF. Insights into reaction mechanisms of ethanol electrooxidation at the Pt/Au(111) interfaces using density functional theory. Phys Chem Chem Phys 2022; 24:27277-27288. [DOI: 10.1039/d2cp03186h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Understanding ethanol electrooxidation reaction kinetics is fundamental to the development of direct ethanol fuel cells.
Collapse
Affiliation(s)
- Tian Sheng
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, China
| | - Han-Yue Wu
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, China
| | - Xiao Lin
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Wen-Feng Lin
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| |
Collapse
|
63
|
Kang J, Fan QY, Zhou W, Zhang Q, He S, Yue L, Tang Y, Nguyen L, Yu X, You Y, Chang H, Liu X, Chen L, Liu Y, Tao F, Cheng J, Wang Y. Iridium boosts the selectivity and stability of cobalt catalysts for syngas to liquid fuels. Chem 2022. [DOI: 10.1016/j.chempr.2021.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
64
|
Wang ZQ, Chu DR, Zhou H, Wu XP, Gong XQ. Role of Low-Coordinated Ce in Hydride Formation and Selective Hydrogenation Reactions on CeO2 Surfaces. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04856] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Zhi-Qiang Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - De-Ren Chu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai Research Institute of Chemical Industry, Co., Ltd., 345 Yunling Road(E), Shanghai 200062, China
| | - Hui Zhou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xin-Ping Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xue-Qing Gong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
65
|
Lai Z, Chen J, Jia M, Hu P, Wang H. Universal Skeleton Feature of the Three-Dimensional Volcano Surface and the Thermodynamic Rule in Locating the Catalyst in Heterogeneous Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhuangzhuang Lai
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jianfu Chen
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Menglei Jia
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Peijun Hu
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, Belfast BT9 5AG, U.K
| | - Haifeng Wang
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
66
|
Shen T, Yang Y, Xu X. Structure–Reactivity Relationship for Nano‐Catalysts in the Hydrogenation/Dehydrogenation Controlled Reaction Systems. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tonghao Shen
- Department of Chemistry Fudan University 200438 Shanghai China
| | - Yuqi Yang
- Department of Chemistry Fudan University 200438 Shanghai China
| | - Xin Xu
- Department of Chemistry Fudan University 200438 Shanghai China
| |
Collapse
|
67
|
Shen T, Yang Y, Xu X. Structure-Reactivity Relationship for Nano-Catalysts in the Hydrogenation/Dehydrogenation Controlled Reaction Systems. Angew Chem Int Ed Engl 2021; 60:26342-26345. [PMID: 34626058 DOI: 10.1002/anie.202109942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/04/2021] [Indexed: 11/06/2022]
Abstract
For the activity of a nano-catalyst, a general and quantitative solution to building direct structure-reactivity relationship has not yet been established. On top of the first-principle-based kinetic Monte Carlo (KMC) simulations, we developed a model to build the adsorption site dependence of the activity. We applied this model to study the nano effects of Cu catalysts in the water-gas shift reaction. By accumulating the activities of different adsorption sites, our model satisfactorily reproduced the experimental apparent activation energies for catalysts with sizes over hundreds of nanometers, which were out of reach for conventional KMC simulations. Our results disclose that, even for a cubic catalyst with size of 877 nm, its activity can still be closely related to the activity of edge sites, instead of only the exposed Cu(100) facets as might be expected. The present model is expected to be useful for systems that are controlled by the hydrogenation/dehydrogenation processes.
Collapse
Affiliation(s)
- Tonghao Shen
- Department of Chemistry, Fudan University, 200438, Shanghai, China
| | - Yuqi Yang
- Department of Chemistry, Fudan University, 200438, Shanghai, China
| | - Xin Xu
- Department of Chemistry, Fudan University, 200438, Shanghai, China
| |
Collapse
|
68
|
Yan WQ, Zhu YA, Zhou XG, Yuan WK. Rational design of heterogeneous catalysts by breaking and rebuilding scaling relations. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
69
|
Ke C, Huang J, Liu S. Two-dimensional ferroelectric metal for electrocatalysis. MATERIALS HORIZONS 2021; 8:3387-3393. [PMID: 34672306 DOI: 10.1039/d1mh01556g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The coexistence of metallicity and ferroelectricity has been an intriguing and controversial phenomenon as these two material properties are considered incompatible in bulk. We clarify the concept of the ferroelectric metal by revisiting the original definitions for ferroelectric and metal. Two-dimensional (2D) ferroelectrics with out-of-plane polarization can be engineered via layer stacking to a genuine ferroelectric metal characterized by switchable polarization and non-zero density of states at the Fermi level. We demonstrate that 2D ferroelectric metals can serve as electrically-tunable, high-quality electrocatalysts.
Collapse
Affiliation(s)
- Changming Ke
- School of Science, Westlake University, Hangzhou, Zhejiang 310024, China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
- Key Laboratory for Quantum Materials of Zhejiang Province, Hangzhou, Zhejiang 310024, China
| | - Jiawei Huang
- School of Science, Westlake University, Hangzhou, Zhejiang 310024, China.
- Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shi Liu
- School of Science, Westlake University, Hangzhou, Zhejiang 310024, China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
- Key Laboratory for Quantum Materials of Zhejiang Province, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
70
|
Wang Y, Yang X, Xiao L, Qi Y, Yang J, Zhu YA, Holmen A, Xiao W, Chen D. Descriptor-Based Microkinetic Modeling and Catalyst Screening for CO Hydrogenation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Yalan Wang
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Xiaoli Yang
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway
- State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao 266071, P. R. China
| | - Ling Xiao
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yanying Qi
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Jia Yang
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Yi-An Zhu
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Anders Holmen
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Wende Xiao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China
| | - De Chen
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway
| |
Collapse
|
71
|
Zhi X, Jiao Y, Zheng Y, Qiao SZ. Key to C 2 production: selective C-C coupling for electrochemical CO 2 reduction on copper alloy surfaces. Chem Commun (Camb) 2021; 57:9526-9529. [PMID: 34546247 DOI: 10.1039/d1cc03796j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The C-C coupling kinetic variations are observed on Cu alloys with Pt, Pd, or Au surface sites. The OC-COH coupling is kinetically more favorable than OC-CHO coupling, which originates from increased reactivity of adsorbed *CO species. Linear energy relations for C-C association/dissociation could simplify the energetic evaluation for C2 production.
Collapse
Affiliation(s)
- Xing Zhi
- Centre for Materials in Energy and Catalysis (CMEC), School of Chemical Engineering and Advanced Materials, The University of Adelaide, SA 5005, Australia.
| | - Yan Jiao
- Centre for Materials in Energy and Catalysis (CMEC), School of Chemical Engineering and Advanced Materials, The University of Adelaide, SA 5005, Australia.
| | - Yao Zheng
- Centre for Materials in Energy and Catalysis (CMEC), School of Chemical Engineering and Advanced Materials, The University of Adelaide, SA 5005, Australia.
| | - Shi-Zhang Qiao
- Centre for Materials in Energy and Catalysis (CMEC), School of Chemical Engineering and Advanced Materials, The University of Adelaide, SA 5005, Australia.
| |
Collapse
|
72
|
Zhou C, Zhao JY, Liu PF, Chen J, Dai S, Yang HG, Hu P, Wang H. Towards the object-oriented design of active hydrogen evolution catalysts on single-atom alloys. Chem Sci 2021; 12:10634-10642. [PMID: 34447556 PMCID: PMC8356813 DOI: 10.1039/d1sc01018b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 07/01/2021] [Indexed: 11/22/2022] Open
Abstract
Given a desired property, locating relevant materials is always highly desired but very challenging in a range of areas, including heterogeneous catalysis. Obviously, object-oriented design/screening is an ideal solution to this problem. Herein, we develop an inverse catalyst design workflow in Python (CATIDPy) that utilizes a genetic-algorithm-based global optimization method to guide on-the-fly density functional theory calculations, successfully realizing the highly accelerated location of active single-atom alloy (SAA) catalysts for the hydrogen evolution reaction (HER). 70 binary and 752 ternary SAA candidate catalysts are identified for the HER. Furthermore, via considering the segregation stability and cost of materials, we extracted 6 binary and 142 ternary SAA candidate catalysts that are recommended for experimental synthesis. Remarkably, guided by these theoretical identifications, homogeneously dispersed Ni-based bimetallic catalysts (e.g., NiMo, NiAl, Ni3Al, NiGa, and NiIn) were synthesized experimentally to test the reliability of the CATIDPy workflow, and they showed superior HER performance to bare Ni foam, indicating huge potential for use in real-world water electrolysis techniques. Perhaps more importantly, these results demonstrate the capacity of such a proposed approach for investigating unexplored chemical spaces to efficiently design promising catalysts without knowledge from the expert domain, which has far-reaching implications. An inverse catalyst design workflow in Python (CATIDPy) for discovering unexplored chemical spaces successfully realized the highly accelerated location of active single-atom alloy (SAA) catalysts for the hydrogen evolution reaction (HER).![]()
Collapse
Affiliation(s)
- Chuan Zhou
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry, Research Institute of Industrial Catalysis, East China University of Science and Technology Shanghai 200237 China
| | - Jia Yue Zhao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, East China University of Science and Technology Shanghai 200237 China
| | - Peng Fei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, East China University of Science and Technology Shanghai 200237 China
| | - Jianfu Chen
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry, Research Institute of Industrial Catalysis, East China University of Science and Technology Shanghai 200237 China
| | - Sheng Dai
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, East China University of Science and Technology Shanghai 200237 China
| | - Hua Gui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, East China University of Science and Technology Shanghai 200237 China
| | - P Hu
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry, Research Institute of Industrial Catalysis, East China University of Science and Technology Shanghai 200237 China .,School of Chemistry and Chemical Engineering, The Queen's University of Belfast Belfast BT9 5AG UK
| | - Haifeng Wang
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry, Research Institute of Industrial Catalysis, East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
73
|
Zhang L, Jang H, Wang Y, Li Z, Zhang W, Kim MG, Yang D, Liu S, Liu X, Cho J. Exploring the Dominant Role of Atomic- and Nano-Ruthenium as Active Sites for Hydrogen Evolution Reaction in Both Acidic and Alkaline Media. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004516. [PMID: 34085783 PMCID: PMC8336516 DOI: 10.1002/advs.202004516] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/23/2021] [Indexed: 05/12/2023]
Abstract
Ru nanoparticles (NPs) and single atoms (SAs)-based materials have been investigated as alternative electrocatalysts to Pt/C for hydrogen evolution reaction (HER). Exploring the dominant role of atomic- and nano-ruthenium as active sites in acidic and alkaline media is very necessary for optimizing the performance. Herein, an electrocatalyst containing both Ru SAs and NPs anchored on defective carbon (RuSA+NP /DC) has been synthesized via a Ru-alginate metal-organic supramolecules conversion method. RuSA+NP /DC exhibits low overpotentials of 16.6 and 18.8 mV at 10 mA cm-2 in acidic and alkaline electrolytes, respectively. Notably, its mass activities are dramatically improved, which are about 1.1 and 2.4 times those of Pt/C at an overpotential of 50 mV in acidic and alkaline media, respectively. Theoretical calculations reveal that Ru SAs own the most appropriate H* adsorption strength and thus, plays a dominant role for HER in acid electrolyte, while Ru NPs facilitate the dissociation of H2 O that is the rate-determining step in alkaline electrolyte, leading to a remarkable HER activity.
Collapse
Affiliation(s)
- Lijie Zhang
- State Key Laboratory Base of Eco‐Chemical EngineeringCollege of Chemical EngineeringQingdao University of Science and TechnologyQingdao266042P. R. China
| | - Haeseong Jang
- Department of Energy Engineering and School of Energy and Chemical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919South Korea
| | - Yan Wang
- Electron Microscopy Center, and Key Laboratory of Automobile Materials MOEJilin UniversityChangchun130012China
| | - Zijian Li
- State Key Laboratory Base of Eco‐Chemical EngineeringCollege of Chemical EngineeringQingdao University of Science and TechnologyQingdao266042P. R. China
| | - Wei Zhang
- Electron Microscopy Center, and Key Laboratory of Automobile Materials MOEJilin UniversityChangchun130012China
| | - Min Gyu Kim
- Beamline Research DivisionPohang Accelerator Laboratory (PAL)Pohang37673Korea
| | - Dongjiang Yang
- School of Environmental Science and EngineeringState Key Laboratory of Bio‐fibers and Eco‐textilesCollaborative Innovation Center of Marine Biobased Fibers and Ecological textilesInstitute of Marine Biobased MaterialsQingdao UniversityShandong266071P. R. China
| | - Shangguo Liu
- State Key Laboratory Base of Eco‐Chemical EngineeringCollege of Chemical EngineeringQingdao University of Science and TechnologyQingdao266042P. R. China
| | - Xien Liu
- State Key Laboratory Base of Eco‐Chemical EngineeringCollege of Chemical EngineeringQingdao University of Science and TechnologyQingdao266042P. R. China
| | - Jaephil Cho
- Department of Energy Engineering and School of Energy and Chemical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919South Korea
| |
Collapse
|
74
|
Yu YX, Yang J, Zhu KK, Sui ZJ, Chen D, Zhu YA, Zhou XG. High-Throughput Screening of Alloy Catalysts for Dry Methane Reforming. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04911] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ya-Xin Yu
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jie Yang
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ka-Ke Zhu
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhi-Jun Sui
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - De Chen
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim N-9491, Norway
| | - Yi-An Zhu
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xing-Gui Zhou
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
75
|
Geometric and electronic effects on the performance of a bifunctional Ru2P catalyst in the hydrogenation and acceptorless dehydrogenation of N-heteroarenes. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63747-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
76
|
|
77
|
Xu J, Cao XM, Hu P. Perspective on computational reaction prediction using machine learning methods in heterogeneous catalysis. Phys Chem Chem Phys 2021; 23:11155-11179. [PMID: 33972971 DOI: 10.1039/d1cp01349a] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Heterogeneous catalysis plays a significant role in the modern chemical industry. Towards the rational design of novel catalysts, understanding reactions over surfaces is the most essential aspect. Typical industrial catalytic processes such as syngas conversion and methane utilisation can generate a large reaction network comprising thousands of intermediates and reaction pairs. This complexity not only arises from the permutation of transformations between species but also from the extra reaction channels offered by distinct surface sites. Despite the success in investigating surface reactions at the atomic scale, the huge computational expense of ab initio methods hinders the exploration of such complicated reaction networks. With the proliferation of catalysis studies, machine learning as an emerging tool can take advantage of the accumulated reaction data to emulate the output of ab initio methods towards swift reaction prediction. Here, we briefly summarise the conventional workflow of reaction prediction, including reaction network generation, ab initio thermodynamics and microkinetic modelling. An overview of the frequently used regression models in machine learning is presented. As a promising alternative to full ab initio calculations, machine learning interatomic potentials are highlighted. Furthermore, we survey applications assisted by these methods for accelerating reaction prediction, exploring reaction networks, and computational catalyst design. Finally, we envisage future directions in computationally investigating reactions and implementing machine learning algorithms in heterogeneous catalysis.
Collapse
Affiliation(s)
- Jiayan Xu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China. and School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, UK
| | - Xiao-Ming Cao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China.
| | - P Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China. and School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, UK
| |
Collapse
|
78
|
Hensley AJR, Collinge G, Wang Y, McEwen JS. Guiding the design of oxidation-resistant Fe-based single atom alloy catalysts with insights from configurational space. J Chem Phys 2021; 154:174709. [PMID: 34241058 DOI: 10.1063/5.0048698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The high activity and selectivity of Fe-based heterogeneous catalysts toward a variety of reactions that require the breaking of strong bonds are offset in large part by their considerable instability with respect to oxidative deactivation. While it has been shown that the stability of Fe catalysts is considerably enhanced by alloying them with precious metals (even at the single-atom limit), rational design criteria for choosing such secondary metals are still missing. Since oxidative deactivation occurs due to the strong binding of oxygen to Fe and reduction by adsorbed hydrogen mitigates the deactivation, we propose here to use the binding affinity of oxygen and hydrogen adatoms as the basis for rational design. As it would also be beneficial to use cheaper secondary metals, we have scanned over a large subset of 3d-5d mid-to-late transition metal single atoms and computationally determined their effect on the oxygen and hydrogen adlayer binding as a function of chemical potential and adsorbate coverage. We further determine the underlying chemical origins that are responsible for these effects and connect them to experimentally tunable quantities. Our results reveal a reliable periodic trend wherein oxygen binding is weakened greatest as one moves right and down the periodic table. Hydrogen binding shows the same trend only at high (but relevant) coverages and otherwise tends to have its binding slightly increased in all systems. Trends with secondary metal coverage are also uncovered and connected to experimentally tunable parameters.
Collapse
Affiliation(s)
- Alyssa J R Hensley
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, USA
| | - Greg Collinge
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, USA
| | - Yong Wang
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, USA
| | - Jean-Sabin McEwen
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, USA
| |
Collapse
|
79
|
Theoretical study on water behavior on the copper surfaces. J Mol Model 2021; 27:149. [PMID: 33942197 DOI: 10.1007/s00894-021-04751-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
We calculated the adsorption of H, O, OH, and H2O and the dissociation of H2O molecule on the Cu(111), Cu(100), and Cu(110) surfaces using density functional theory. H, O, and OH tend to adsorb stably at the highly coordinated dh and h sites on the Cu(111) and Cu(100) surfaces. OH and H tend to adsorb on sb site on the Cu(110) surface. The more charge transfer of the adsorbed substance, the more stable the adsorption. The dissociation product is O+H on the Cu(111) surface, while the dissociation product is OH+H on the Cu(100) and Cu(110) surfaces. Due to the different geometric structures of initial state (IS), transition state (TS), and final state (FS) in the dissociation reaction, the dissociation of water on the copper surface does not establish a linear Brønsted-Evans-Polanyi (BEP) relationship. These results provide theoretical support for the understanding of the interaction between water and metals as well as the behavior of water molecules.
Collapse
|
80
|
Lou Y, Zhao Y, Liu H, Gu Q, Yang B, Shi Y, Yao T, Yang B. Edge‐Confined Pt
1
/MoS
2
Single‐Atom Catalyst Promoting the Selective Activation of Carbon‐Oxygen Bond. ChemCatChem 2021. [DOI: 10.1002/cctc.202100325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yang Lou
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education International Joint Research Center for Photoresponsive Molecules and Materials School of Chemical and Material Engineering Jiangnan University 1800 Lihu Avenue Wuxi, Jiangsu 214122 P. R. China
| | - Yi Zhao
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education International Joint Research Center for Photoresponsive Molecules and Materials School of Chemical and Material Engineering Jiangnan University 1800 Lihu Avenue Wuxi, Jiangsu 214122 P. R. China
| | - Hong Liu
- School of Physical Science and Technology ShanghaiTech University 393 Middle Huaxia Road Shanghai 201210 P. R. China
| | - Qingqing Gu
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics 457 Zhongshan Road Dalian 116023 P. R. China
| | - Bing Yang
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics 457 Zhongshan Road Dalian 116023 P. R. China
| | - Yujie Shi
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education International Joint Research Center for Photoresponsive Molecules and Materials School of Chemical and Material Engineering Jiangnan University 1800 Lihu Avenue Wuxi, Jiangsu 214122 P. R. China
| | - Tingyi Yao
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education International Joint Research Center for Photoresponsive Molecules and Materials School of Chemical and Material Engineering Jiangnan University 1800 Lihu Avenue Wuxi, Jiangsu 214122 P. R. China
| | - Bo Yang
- School of Physical Science and Technology ShanghaiTech University 393 Middle Huaxia Road Shanghai 201210 P. R. China
| |
Collapse
|
81
|
Wang Y, Hu P, Yang J, Zhu YA, Chen D. C-H bond activation in light alkanes: a theoretical perspective. Chem Soc Rev 2021; 50:4299-4358. [PMID: 33595008 DOI: 10.1039/d0cs01262a] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alkanes are the major constituents of natural gas and crude oil, the feedstocks for the chemical industry. The efficient and selective activation of C-H bonds can convert abundant and low-cost hydrocarbon feedstocks into value-added products. Due to the increasing global demand for light alkenes and their corresponding polymers as well as synthesis gas and hydrogen production, C-H bond activation of light alkanes has attracted widespread attention. A theoretical understanding of C-H bond activation in light hydrocarbons via density functional theory (DFT) and microkinetic modeling provides a feasible approach to gain insight into the process and guidelines for designing more efficient catalysts to promote light alkane transformation. This review describes the recent progress in computational catalysis that has addressed the C-H bond activation of light alkanes. We start with direct and oxidative C-H bond activation of methane, with emphasis placed on kinetic and mechanistic insights obtained from DFT assisted microkinetic analysis into steam and dry reforming, and the partial oxidation dependence on metal/oxide surfaces and nanoparticle size. Direct and oxidative activation of the C-H bond of ethane and propane on various metal and oxide surfaces are subsequently reviewed, including the elucidation of active sites, intriguing mechanisms, microkinetic modeling, and electronic features of the ethane and propane conversion processes with a focus on suppressing the side reaction and coke formation. The main target of this review is to give fundamental insight into C-H bond activation of light alkanes, which can provide useful guidance for the optimization of catalysts in future research.
Collapse
Affiliation(s)
- Yalan Wang
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, 7491, Norway.
| | | | | | | | | |
Collapse
|
82
|
Han ZK, Sarker D, Ouyang R, Mazheika A, Gao Y, Levchenko SV. Single-atom alloy catalysts designed by first-principles calculations and artificial intelligence. Nat Commun 2021; 12:1833. [PMID: 33758170 PMCID: PMC7988173 DOI: 10.1038/s41467-021-22048-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 02/08/2021] [Indexed: 01/31/2023] Open
Abstract
Single-atom-alloy catalysts (SAACs) have recently become a frontier in catalysis research. Simultaneous optimization of reactants' facile dissociation and a balanced strength of intermediates' binding make them highly efficient catalysts for several industrially important reactions. However, discovery of new SAACs is hindered by lack of fast yet reliable prediction of catalytic properties of the large number of candidates. We address this problem by applying a compressed-sensing data-analytics approach parameterized with density-functional inputs. Besides consistently predicting efficiency of the experimentally studied SAACs, we identify more than 200 yet unreported promising candidates. Some of these candidates are more stable and efficient than the reported ones. We have also introduced a novel approach to a qualitative analysis of complex symbolic regression models based on the data-mining method subgroup discovery. Our study demonstrates the importance of data analytics for avoiding bias in catalysis design, and provides a recipe for finding best SAACs for various applications.
Collapse
Affiliation(s)
- Zhong-Kang Han
- grid.454320.40000 0004 0555 3608Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow, Russia
| | - Debalaya Sarker
- grid.454320.40000 0004 0555 3608Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow, Russia
| | - Runhai Ouyang
- grid.39436.3b0000 0001 2323 5732Materials Genome Institute, Shanghai University, Shanghai, P.R. China
| | - Aliaksei Mazheika
- grid.6734.60000 0001 2292 8254Technische Universität Berlin, BasCat−UniCat BASF JointLab, Berlin, Germany
| | - Yi Gao
- grid.9227.e0000000119573309Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Sergey V. Levchenko
- grid.454320.40000 0004 0555 3608Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow, Russia
| |
Collapse
|
83
|
Xie W, Xu J, Ding Y, Hu P. Quantitative Studies of the Key Aspects in Selective Acetylene Hydrogenation on Pd(111) by Microkinetic Modeling with Coverage Effects and Molecular Dynamics. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05345] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Wenbo Xie
- School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, Belfast BT9 5AG, U.K
| | - Jiayan Xu
- School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, Belfast BT9 5AG, U.K
| | - Yunxuan Ding
- School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, Belfast BT9 5AG, U.K
| | - P. Hu
- School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, Belfast BT9 5AG, U.K
| |
Collapse
|
84
|
Reece C, Madix RJ. Moving from Fundamental Knowledge of Kinetics and Mechanisms on Surfaces to Prediction of Catalyst Performance in Reactors. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christian Reece
- Rowland Institute at Harvard, Harvard University, Cambridge, Massachusetts 02142, United States
| | - Robert J. Madix
- School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02134, United States
| |
Collapse
|
85
|
Salcedo A, Irigoyen B. DFT insights into structural effects of Ni-Cu/CeO 2 catalysts for CO selective reaction towards water-gas shift. Phys Chem Chem Phys 2021; 23:3826-3836. [PMID: 33533765 DOI: 10.1039/d0cp05613h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The water-gas shift (WGS) reaction is a key step in hydrogen production, particularly to meet the high-purity H2 requirement of PEM fuel cells. The catalysts currently employed in large-scale WGS plants require a two-step process to overcome thermodynamic and kinetic limitations. Ni-Cu/CeO2 solids are promising catalysts for the one-step process required for small-scale applications, as the addition of Cu hinders undesired methanation reactions occurring on Ni/CeO2. In this work, we performed calculations on Ni4-xCux/CeO2(111) systems to evaluate the influence of cluster conformation on the selectivity towards water-gas shift. The structure and miscibility of CeO2-supported Ni4-xCux clusters were investigated and compared with those of gas-phase clusters to understand the effect of metal-support interactions. The adsorption of CO onto apical Ni and Cu atoms of Ni4-xCux/CeO2(111) systems was studied, and changes in the C-O bond strength were confirmed at the electronic level by investigating shifts in the 3σ and 1π orbitals. The selectivity towards WGS was evaluated using Brønsted-Evans-Polanyi relations for the C-O activation energy. Overall, a strengthening of the C-O bond and an increase in CO dissociation energy were verified on Cu-containing clusters, explaining the improvement in selectivity of Ni4-xCux/CeO2(111) systems.
Collapse
Affiliation(s)
- Agustín Salcedo
- Universidad de Buenos Aires, Facultad de Ingeniería, Departamento de Ingeniería Química, Pabellón de Industrias, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina. and CONICET - Universidad de Buenos Aires, Instituto de Tecnologías del Hidrógeno y Energías Sostenibles (ITHES), Pabellón de Industrias, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Beatriz Irigoyen
- Universidad de Buenos Aires, Facultad de Ingeniería, Departamento de Ingeniería Química, Pabellón de Industrias, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina. and CONICET - Universidad de Buenos Aires, Instituto de Tecnologías del Hidrógeno y Energías Sostenibles (ITHES), Pabellón de Industrias, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| |
Collapse
|
86
|
Chen J, Jia M, Hu P, Wang H. CATKINAS: A large-scale catalytic microkinetic analysis software for mechanism auto-analysis and catalyst screening. J Comput Chem 2021; 42:379-391. [PMID: 33315262 DOI: 10.1002/jcc.26464] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022]
Abstract
As an effective method to analyze complex catalytic reaction networks, microkinetic modeling is gaining increasing popularity in the catalytic activity evaluation and rational design of heterogeneous catalysts. An automated simulator with stable and reliable performance is especially useful and in great request. Here we introduce the CATKINAS package developed for large-scale microkinetic modeling and analysis. Featuring with a multilevel solver and a multifunctional analyzer, CATKINAS can provide both accurate solutions and various quantitative and automatic analysis for a wide range of catalytic systems. The structure and the basic workflow are overviewed with the multilevel solver particularly illustrated. Also, we take the CO methanation reaction as an example to illustrate the application and efficiency of the CATKINAS package.
Collapse
Affiliation(s)
- Jianfu Chen
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Menglei Jia
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Peijun Hu
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.,School of Chemistry and Chemical Engineering, The Queen's University of Belfast, Belfast, BT9 5AG, UK
| | - Haifeng Wang
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
87
|
Li S, Dong M, Yang J, Cheng X, Shen X, Liu S, Wang ZQ, Gong XQ, Liu H, Han B. Selective hydrogenation of 5-(hydroxymethyl)furfural to 5-methylfurfural over single atomic metals anchored on Nb 2O 5. Nat Commun 2021; 12:584. [PMID: 33500400 PMCID: PMC7838200 DOI: 10.1038/s41467-020-20878-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/22/2020] [Indexed: 11/17/2022] Open
Abstract
5-Methylfurfural (MF) is a very useful chemical. Selective hydrogenation of biomass platform molecule 5-(hydroxymethyl)furfural (HMF) to MF using H2 as the reducing agent is very attractive, but challenging because hydrogenation of C=O bond in HMF is more favourable than C–OH both kinetically and thermodynamically, and this route has not been realized. In this work, we prepare isolated single atomic catalysts (SACs) Pt1/Nb2O5-Ov, Pd1/Nb2O5-Ov, and Au1/Nb2O5-Ov, in which single metal atoms are supported on oxygen defective Nb2O5 (Nb2O5-Ov). It is discovered that the SACs can efficiently catalyze the hydrogenation of HMF to MF using H2 as the reducing agent with MF selectivity of >99% at complete conversion, while the selectivities of the metal nanocatalysts supported on Nb2O5 are very poor. A combination of experimental and density function theory (DFT) studies show that the unique features of the SACs for the reaction result from the cooperation of the Nb and Pt sites near the interface in the Pt1/Nb2O5-Ov. The Pt atoms are responsible for the activation of H2 and the Nb sites activate C-OH in the reaction. This work opens the way for producing MF by direct hydrogenation of biomass-derived HMF using H2 as the reductant. Selective hydrogenation of 5-(hydroxymethyl)furfural (HMF) to 5-Methylfurfural using H2 as reductant is very attractive, but remains challenging. Here, the authors report that isolated single atomic catalysts can catalyze the reaction efficiently with selectivity >99% at complete conversion of HMF.
Collapse
Affiliation(s)
- Shaopeng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Minghua Dong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Junjuan Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Xiaomeng Cheng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Xiaojun Shen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Shulin Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Zhi-Qiang Wang
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, China.
| | - Xue-Qing Gong
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, China.
| | - Huizhen Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China. .,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, 100190, Beijing, China. .,Physical Science Laboratory, Huairou National Comprehensive Science Center, 101407, Beijing, China.
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China. .,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, 100190, Beijing, China. .,Physical Science Laboratory, Huairou National Comprehensive Science Center, 101407, Beijing, China.
| |
Collapse
|
88
|
Yao Z, Zhao J, Bunting RJ, Zhao C, Hu P, Wang J. Quantitative Insights into the Reaction Mechanism for the Direct Synthesis of H2O2 over Transition Metals: Coverage-Dependent Microkinetic Modeling. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04125] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zihao Yao
- Institute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, People’s Republic of China
| | - Jinyan Zhao
- Institute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, People’s Republic of China
| | - Rhys J. Bunting
- School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, Belfast BT9 5AG, U.K
| | - Chenxia Zhao
- Institute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, People’s Republic of China
| | - Peijun Hu
- School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, Belfast BT9 5AG, U.K
| | - Jianguo Wang
- Institute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, People’s Republic of China
| |
Collapse
|
89
|
Hou X, Qi L, Li W, Zhao J, Liu S. Theoretical study on water adsorption and dissociation on the nickel surfaces. J Mol Model 2021; 27:36. [PMID: 33423126 DOI: 10.1007/s00894-020-04662-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/22/2020] [Indexed: 11/29/2022]
Abstract
Using density functional theory methods, H2O dissociation was investigated on the Ni(111), Ni(100), and Ni(110) surfaces. H and O atom as well as OH species adsorb stably at the high coordination sites. While on the Ni(110) surface, the OH species prefers at the twofold short bridge site because the adsorption on the fourfold hollow site is less feasible due to the increased distances between the nickel atoms. The amount of charge transfer is related to the adsorption stability. The more charge transfer, the more stable the adsorption. The charge transfer decreases in the order of O > OH > H. H2O molecule adsorbs at the top site in a configuration parallel to the surface. The final products are different for H2O dissociation due to the different mechanisms. On the Ni(111) surface, the final product is the O atom. On the Ni(100) and Ni(110) surfaces, the most abundant species are OH and H, but the reaction mechanisms were different. It is not necessary to linear BEP relationship for a given reaction on different surfaces. These results could provide fundamental insights into water behaviors and a favorable theoretical basis for further understanding and research on the interaction between water and metal surfaces.
Collapse
Affiliation(s)
- Xuejie Hou
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, People's Republic of China
| | - Lingxi Qi
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, People's Republic of China
| | - Wenzuo Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, People's Republic of China.
| | - Jin Zhao
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, People's Republic of China
| | - Shaoli Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, People's Republic of China.
| |
Collapse
|
90
|
Guo C, Fu X, Long J, Li H, Qin G, Cao A, Jing H, Xiao J. Toward computational design of chemical reactions with reaction phase diagram. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1514] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Chenxi Guo
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian China
| | - Xiaoyan Fu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian China
| | - Jun Long
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian China
| | - Huan Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian China
| | - Gangqiang Qin
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian China
| | - Ang Cao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian China
| | - Huijuan Jing
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian China
| | - Jianping Xiao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian China
| |
Collapse
|
91
|
Xie W, Hu P. Influence of surface defects on activity and selectivity: a quantitative study of structure sensitivity of Pd catalysts for acetylene hydrogenation. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00665g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structure sensitivity of Pd catalysed acetylene hydrogenation is quantitatively examined using a coverage-dependent microkinetic model. Pd(211) was found to be more active than Pd(111), but present a poorer selectivity toward ethylene.
Collapse
Affiliation(s)
- Wenbo Xie
- School of Chemistry and Chemical Engineering
- Queen's University Belfast
- Belfast
- UK
| | - P. Hu
- School of Chemistry and Chemical Engineering
- Queen's University Belfast
- Belfast
- UK
| |
Collapse
|
92
|
Wang Z, Hu P. Rational catalyst design for CO oxidation: a gradient-based optimization strategy. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02053b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this work, we proposed a gradient-based optimization strategy for rational catalyst design.
Collapse
Affiliation(s)
- Ziyun Wang
- School of Chemistry and Chemical Engineering
- The Queen's University of Belfast
- Belfast BT9 5AG
- UK
| | - P. Hu
- School of Chemistry and Chemical Engineering
- The Queen's University of Belfast
- Belfast BT9 5AG
- UK
| |
Collapse
|
93
|
Gu T, Zhu W, Yang B. Ethanol steam reforming on Rh: microkinetic analyses on the complex reaction network. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01202a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reaction networks were generated for ethanol steam reforming to CO and CO2. After the pruning of the networks, the preferred reaction pathways of the CO and CO2 production on Rh(111) were identified and detailed kinetic information was analyzed.
Collapse
Affiliation(s)
- Tangjie Gu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Wen Zhu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Bo Yang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| |
Collapse
|
94
|
Abstract
It is an ultimate goal in chemistry to predict reaction without recourse to experiment. Reaction prediction is not just the reaction rate determination of known reactions but, more broadly, the reaction exploration to identify new reaction routes. This review briefly overviews the theory on chemical reaction and the current methods for computing/estimating reaction rate and exploring reaction space. We particularly focus on the atomistic simulation methods for reaction exploration, which are benefited significantly by recently emerged machine learning potentials. We elaborate the stochastic surface walking global pathway sampling based on the global neural network (SSW-NN) potential, developed in our group since 2013, which can explore complex reactions systems unbiasedly and automatedly. Two examples, molecular reaction and heterogeneous catalytic reactions, are presented to illustrate the current status for reaction prediction using SSW-NN.
Collapse
Affiliation(s)
- Pei-Lin Kang
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Zhi-Pan Liu
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
95
|
Jiang X, Jang H, Liu S, Li Z, Kim MG, Li C, Qin Q, Liu X, Cho J. The Heterostructure of Ru
2
P/WO
3
/NPC Synergistically Promotes H
2
O Dissociation for Improved Hydrogen Evolution. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202014411] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaoli Jiang
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Haeseong Jang
- Department of Energy Engineering, Department of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| | - Shangguo Liu
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Zijian Li
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Min Gyu Kim
- Beamline Research Division Pohang Accelerator Laboratory (PAL) Pohang 37673 South Korea
| | - Chuang Li
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Qing Qin
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Xien Liu
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Jaephil Cho
- Department of Energy Engineering, Department of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| |
Collapse
|
96
|
Jiang X, Jang H, Liu S, Li Z, Kim MG, Li C, Qin Q, Liu X, Cho J. The Heterostructure of Ru
2
P/WO
3
/NPC Synergistically Promotes H
2
O Dissociation for Improved Hydrogen Evolution. Angew Chem Int Ed Engl 2020; 60:4110-4116. [DOI: 10.1002/anie.202014411] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Indexed: 01/29/2023]
Affiliation(s)
- Xiaoli Jiang
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Haeseong Jang
- Department of Energy Engineering, Department of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| | - Shangguo Liu
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Zijian Li
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Min Gyu Kim
- Beamline Research Division Pohang Accelerator Laboratory (PAL) Pohang 37673 South Korea
| | - Chuang Li
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Qing Qin
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Xien Liu
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Jaephil Cho
- Department of Energy Engineering, Department of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| |
Collapse
|
97
|
Bao JL, Welch BK, Ulusoy IS, Zhang X, Xu X, Wilson AK, Truhlar DG. Predicting Bond Dissociation Energies and Bond Lengths of Coordinatively Unsaturated Vanadium-Ligand Bonds. J Phys Chem A 2020; 124:9757-9770. [PMID: 33180508 DOI: 10.1021/acs.jpca.0c06519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding the electronic structure of coordinatively unsaturated transition-metal compounds and predicting their physical properties are of great importance for catalyst design. Bond dissociation energy De and bond length re are two of the fundamental quantities for which good predictions are important for a successful design strategy. In the present work, recent experimentally measured bond energies and bond lengths of VX diatomic molecules (X = C, N, S) are used as a gauge to consider the utility of a number of electronic structure methods. Single-reference methods are one focus because of their efficiency and utility in practical calculations, and multireference configuration interaction (MRCISD) methods and a composite coupled cluster (CCC) method are a second focus because of their potential high accuracy. The comparison is especially challenging because of the large multireference M diagnostics of these molecules, in the range 0.15-0.19. For the single-reference methods, Kohn-Sham density functional theory (KS-DFT) has been tested with a variety of approximate exchange-correlation functionals. Of these, MOHLYP provides the bond dissociation energies in best agreement with experiments, and BLYP provides the bond lengths that are in best agreement with experiments; but by requiring good performance for both the De and re of the vanadium compounds, MOHLYP, MN12-L, MGGA_MS1, MGGA_MS0, O3LYP, and M06-L are the most highly recommended functionals. The CCC calculations include up to connected pentuple excitations for the valence electrons and up to connected quadruple excitations for the core-valence terms; this results in highly accurate dissociation energies and good bond lengths. Averaged over the three molecules, the mean unsigned deviation of CCC bond energies from experimental ones is only 0.4 kcal/mol, demonstrating excellent convergence of theory and experiments.
Collapse
Affiliation(s)
- Junwei Lucas Bao
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Bradley K Welch
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824-1322, United States
| | - Inga S Ulusoy
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824-1322, United States.,Theoretical Chemistry, Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 229, Heidelberg 69120, Germany
| | - Xin Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.,Department of Chemistry, Chemical Theory Center, Inorganometallic Catalyst Design Center, and Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Xuefei Xu
- Center for Combustion Energy, Department of Energy and Power Engineering, and Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Angela K Wilson
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824-1322, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, Inorganometallic Catalyst Design Center, and Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
98
|
Deimel M, Reuter K, Andersen M. Active Site Representation in First-Principles Microkinetic Models: Data-Enhanced Computational Screening for Improved Methanation Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04045] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Martin Deimel
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Karsten Reuter
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Mie Andersen
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| |
Collapse
|
99
|
Ma S, Liu ZP. Machine Learning for Atomic Simulation and Activity Prediction in Heterogeneous Catalysis: Current Status and Future. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03472] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sicong Ma
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Zhi-Pan Liu
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
100
|
Li H, Reuter K. Active-Site Computational Screening: Role of Structural and Compositional Diversity for the Electrochemical CO2 Reduction at Mo Carbide Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03249] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Haobo Li
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Karsten Reuter
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|