51
|
Barry BA. Reaction dynamics and proton coupled electron transfer: studies of tyrosine-based charge transfer in natural and biomimetic systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:46-54. [PMID: 25260243 DOI: 10.1016/j.bbabio.2014.09.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/27/2014] [Accepted: 09/10/2014] [Indexed: 11/25/2022]
Abstract
In bioenergetic reactions, electrons are transferred long distances via a hopping mechanism. In photosynthesis and DNA synthesis, the aromatic amino acid residue, tyrosine, functions as an intermediate that is transiently oxidized and reduced during long distance electron transfer. At physiological pH values, oxidation of tyrosine is associated with a deprotonation of the phenolic oxygen, giving rise to a proton coupled electron transfer (PCET) reaction. Tyrosine-based PCET reactions are important in photosystem II, which carries out the light-induced oxidation of water, and in ribonucleotide reductase, which reduces ribonucleotides to form deoxynucleotides. Photosystem II contains two redox-active tyrosines, YD (Y160 in the D2 polypeptide) and YZ (Y161 in the D1 polypeptide). YD forms a light-induced stable radical, while YZ functions as an essential charge relay, oxidizing the catalytic Mn₄CaO₅ cluster on each of four photo-oxidation reactions. In Escherichia coli class 1a RNR, the β2 subunit contains the radical initiator, Y122O•, which is reversibly reduced and oxidized in long range electron transfer with the α2 subunit. In the isolated E. coli β2 subunit, Y122O• is a stable radical, but Y122O• is activated for rapid PCET in an α2β2 substrate/effector complex. Recent results concerning the structure and function of YD, YZ, and Y122 are reviewed here. Comparison is made to recent results derived from bioengineered proteins and biomimetic compounds, in which tyrosine-based charge transfer mechanisms have been investigated. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems.
Collapse
Affiliation(s)
- Bridgette A Barry
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA; Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
52
|
Chemistry and biology of biomolecule nitration. ACTA ACUST UNITED AC 2014; 19:1086-92. [PMID: 22999877 DOI: 10.1016/j.chembiol.2012.07.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 07/25/2012] [Accepted: 07/27/2012] [Indexed: 12/27/2022]
Abstract
Posttranslational modifications of proteins play key roles in the regulation of biological processes and lead to various physiological responses. In recent years, a number of analytical technologies have been developed to help understand the diversity and disease relevance of these modifications. The main areas of focus have included phosphorylation, cysteine redox chemistry, and transformations mediated directly by oxidative stress. However, the nitration of biomolecules is an exciting and relatively understudied area of research. Reactive nitrogen species generated in various disease states can create nitrated biomolecules, and we are only beginning to understand the potential implications of these species. This review explores some of the recent advances in current knowledge concerning the chemistry and biology of nitrated biomolecules.
Collapse
|
53
|
Migliore A, Polizzi NF, Therien M, Beratan DN. Biochemistry and theory of proton-coupled electron transfer. Chem Rev 2014; 114:3381-465. [PMID: 24684625 PMCID: PMC4317057 DOI: 10.1021/cr4006654] [Citation(s) in RCA: 354] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Indexed: 02/01/2023]
Affiliation(s)
- Agostino Migliore
- Department
of Chemistry, Department of Biochemistry, and Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Nicholas F. Polizzi
- Department
of Chemistry, Department of Biochemistry, and Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Michael
J. Therien
- Department
of Chemistry, Department of Biochemistry, and Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - David N. Beratan
- Department
of Chemistry, Department of Biochemistry, and Department of Physics, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
54
|
Sandhiya L, Kolandaivel P, Senthilkumar K. Oxidation and nitration of tyrosine by ozone and nitrogen dioxide: reaction mechanisms and biological and atmospheric implications. J Phys Chem B 2014; 118:3479-90. [PMID: 24611937 DOI: 10.1021/jp4106037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The nitration of tyrosine by atmospheric oxidants, O3 and NO2, is an important cause for the spread of allergenic diseases. In the present study, the mechanism and pathways for the reaction of tyrosine with the atmospheric oxidants O3 and NO2 are studied using DFT-M06-2X, B3LYP, and B3LYP-D methods with the 6-311+G(d,p) basis set. The energy barrier for the initial oxidation reactions is also calculated at the CCSD(T)/6-31+G(d,p) level of theory. The reaction is studied in gas, aqueous, and lipid media. The initial oxidation of tyrosine by O3 proceeds by H atom abstraction and addition reactions and leads to the formation of six different intermediates. The subsequent nitration reaction is studied for all the intermediates, and the results show that the nitration affects both the side chain and the aromatic ring of tyrosine. The rate constant of the favorable oxidation and nitration reaction is calculated using variational transition state theory over the temperature range of 278-350 K. The spectral properties of the oxidation and nitration products are calculated at the TD-M06-2X/6-311+G(d,p) level of theory. The fate of the tyrosine radical intermediate is studied by its reaction with glutathione antioxidant. This study provides an enhanced understanding of the oxidation and nitration of tyrosine by O3 and NO2 in the context of improving the air quality and reducing the allergic diseases.
Collapse
Affiliation(s)
- L Sandhiya
- Department of Physics, Bharathiar University , Coimbatore 641 046, India
| | | | | |
Collapse
|
55
|
Offenbacher AR, Watson RA, Pagba CV, Barry BA. Redox-dependent structural coupling between the α2 and β2 subunits in E. coli ribonucleotide reductase. J Phys Chem B 2014; 118:2993-3004. [PMID: 24606240 DOI: 10.1021/jp501121d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ribonucleotide reductase (RNR) catalyzes the production of deoxyribonucleotides in all cells. In E. coli class Ia RNR, a transient α2β2 complex forms when a ribonucleotide substrate, such as CDP, binds to the α2 subunit. A tyrosyl radical (Y122O•)-diferric cofactor in β2 initiates substrate reduction in α2 via a long-distance, proton-coupled electron transfer (PCET) process. Here, we use reaction-induced FT-IR spectroscopy to describe the α2β2 structural landscapes, which are associated with dATP and hydroxyurea (HU) inhibition. Spectra were acquired after mixing E. coli α2 and β2 with a substrate, CDP, and the allosteric effector, ATP. Isotopic chimeras, (13)Cα2β2 and α2(13)Cβ2, were used to define subunit-specific structural changes. Mixing of α2 and β2 under turnover conditions yielded amide I (C═O) and II (CN/NH) bands, derived from each subunit. The addition of the inhibitor, dATP, resulted in a decreased contribution from amide I bands, attributable to β strands and disordered structures. Significantly, HU-mediated reduction of Y122O• was associated with structural changes in α2, as well as β2. To define the spectral contributions of Y122O•/Y122OH in the quaternary complex, (2)H4 labeling of β2 tyrosines and HU editing were performed. The bands of Y122O•, Y122OH, and D84, a unidentate ligand to the diferric cluster, previously identified in isolated β2, were observed in the α2β2 complex. These spectra also provide evidence for a conformational rearrangement at an additional β2 tyrosine(s), Yx, in the α2β2/CDP/ATP complex. This study illustrates the utility of reaction-induced FT-IR spectroscopy in the study of complex enzymes.
Collapse
Affiliation(s)
- Adam R Offenbacher
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | | | | | | |
Collapse
|
56
|
Minnihan EC, Nocera DG, Stubbe J. Reversible, long-range radical transfer in E. coli class Ia ribonucleotide reductase. Acc Chem Res 2013; 46:2524-35. [PMID: 23730940 DOI: 10.1021/ar4000407] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Ribonucleotide reductases (RNRs) catalyze the conversionof nucleotides to 2'-deoxynucleotides and are classified on the basis of the metallo-cofactor used to conduct this chemistry. The class Ia RNRs initiate nucleotide reduction when a stable diferric-tyrosyl radical (Y•, t1/2 of 4 days at 4 °C) cofactor in the β2 subunit transiently oxidizes a cysteine to a thiyl radical (S•) in the active site of the α2 subunit. In the active α2β2 complex of the class Ia RNR from E. coli , researchers have proposed that radical hopping occurs reversibly over 35 Å along a specific pathway comprised of redox-active aromatic amino acids: Y122• ↔ [W48?] ↔ Y356 in β2 to Y731 ↔ Y730 ↔ C439 in α2. Each step necessitates a proton-coupled electron transfer (PCET). Protein conformational changes constitute the rate-limiting step in the overall catalytic scheme and kinetically mask the detailed chemistry of the PCET steps. Technology has evolved to allow the site-selective replacement of the four pathway tyrosines with unnatural tyrosine analogues. Rapid kinetic techniques combined with multifrequency electron paramagnetic resonance, pulsed electron-electron double resonance, and electron nuclear double resonance spectroscopies have facilitated the analysis of stable and transient radical intermediates in these mutants. These studies are beginning to reveal the mechanistic underpinnings of the radical transfer (RT) process. This Account summarizes recent mechanistic studies on mutant E. coli RNRs containing the following tyrosine analogues: 3,4-dihydroxyphenylalanine (DOPA) or 3-aminotyrosine (NH2Y), both thermodynamic radical traps; 3-nitrotyrosine (NO2Y), a thermodynamic barrier and probe of local environmental perturbations to the phenolic pKa; and fluorotyrosines (FnYs, n = 2 or 3), dual reporters on local pKas and reduction potentials. These studies have established the existence of a specific pathway spanning 35 Å within a globular α2β2 complex that involves one stable (position 122) and three transient (positions 356, 730, and 731) Y•s. Our results also support that RT occurs by an orthogonal PCET mechanism within β2, with Y122• reduction accompanied by proton transfer from an Fe1-bound water in the diferric cluster and Y356 oxidation coupled to an off-pathway proton transfer likely involving E350. In α2, RT likely occurs by a co-linear PCET mechanism, based on studies of light-initiated radical propagation from photopeptides that mimic the β2 subunit to the intact α2 subunit and on [(2)H]-ENDOR spectroscopic analysis of the hydrogen-bonding environment surrounding a stabilized NH2Y• formed at position 730. Additionally, studies on the thermodynamics of the RT pathway reveal that the relative reduction potentials decrease according to Y122 < Y356 < Y731 ≈ Y730 ≤ C439, and that the pathway in the forward direction is thermodynamically unfavorable. C439 oxidation is likely driven by rapid, irreversible loss of water during the nucleotide reduction process. Kinetic studies of radical intermediates reveal that RT is gated by conformational changes that occur on the order of >100 s(-1) in addition to the changes that are rate-limiting in the wild-type enzyme (∼10 s(-1)). The rate constant of one of the PCET steps is ∼10(5) s(-1), as measured in photoinitiated experiments.
Collapse
Affiliation(s)
| | - Daniel G. Nocera
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | | |
Collapse
|
57
|
Ng JY, Chiu J, Hogg PJ, Wong JWH. Tyrosine nitration moderates the peptidase activity of human methionyl aminopeptidase 2. Biochem Biophys Res Commun 2013; 440:37-42. [PMID: 24041691 DOI: 10.1016/j.bbrc.2013.09.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 09/05/2013] [Indexed: 12/12/2022]
Abstract
Methionyl aminopeptidase 2 (MetAP2) plays an important role in the regulation of angiogenesis. This study examined whether nitration of MetAP2 alters its enzymatic activity in vitro. The activity of unmodified, nitrated and oxidised MetAP2 was assessed and it was found that nitration significantly reduced its ability to cleave a chromogenic substrate. Mass spectrometry analysis identified Tyr336 as a nitrated residue in MetAP2. Structural and evolutionary analysis indicate that this is an important residue for MetAP2 activity. Combined, the results show that the activity of MetAP2 is reduced by nitration and raise the possibility that nitration of MetAP2 is a mechanism contributing to endothelial dysfunction.
Collapse
Affiliation(s)
- John Y Ng
- Lowy Cancer Research Centre and the Prince of Wales Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | |
Collapse
|
58
|
Warren JJ, Herrera N, Hill MG, Winkler JR, Gray HB. Electron flow through nitrotyrosinate in Pseudomonas aeruginosa azurin. J Am Chem Soc 2013; 135:11151-8. [PMID: 23859602 DOI: 10.1021/ja403734n] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have designed ruthenium-modified Pseudomonas aeruginosa azurins that incorporate 3-nitrotyrosine (NO2YOH) between Ru(2,2'-bipyridine)2(imidazole)(histidine) and Cu redox centers in electron transfer (ET) pathways. We investigated the structures and reactivities of three different systems: RuH107NO2YOH109, RuH124NO2YOH122, and RuH126NO2YOH122. RuH107NO2YOH109, unlabeled H124NO2YOH122, and unlabeled H126NO2YOH122 were structurally characterized. The pKa's of NO2YOH at positions 122 and 109 are 7.2 and 6.0, respectively. Reduction potentials of 3-nitrotyrosinate (NO2YO(-))-modified azurins were estimated from cyclic and differential pulse voltammetry data: oxidation of NO2YO(-)122 occurs near 1.1 versus NHE; oxidation of NO2YO(-)109 is near 1.2 V. Our analysis of transient optical spectroscopic experiments indicates that hopping via NO2YO(-) enhances Cu(I) oxidation rates over single-step ET by factors of 32 (RuH107NO2YO(-)109), 46 (RuH126NO2YO(-)122), and 13 (RuH124NO2YO(-)122).
Collapse
Affiliation(s)
- Jeffrey J Warren
- Beckman Institute and Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | |
Collapse
|
59
|
Offenbacher AR, Minnihan EC, Stubbe J, Barry BA. Redox-linked changes to the hydrogen-bonding network of ribonucleotide reductase β2. J Am Chem Soc 2013; 135:6380-3. [PMID: 23594029 PMCID: PMC3694779 DOI: 10.1021/ja3032949] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ribonucleotide reductase (RNR) catalyzes conversion of nucleoside diphosphates (NDPs) to 2'-deoxynucleotides, a critical step in DNA replication and repair in all organisms. Class-Ia RNRs, found in aerobic bacteria and all eukaryotes, are a complex of two subunits: α2 and β2. The β2 subunit contains an essential diferric-tyrosyl radical (Y122O(•)) cofactor that is needed to initiate reduction of NDPs in the α2 subunit. In this work, we investigated the Y122O(•) reduction mechanism in Escherichia coli β2 by hydroxyurea (HU), a radical scavenger and cancer therapeutic agent. We tested the hypothesis that Y122OH redox reactions cause structural changes in the diferric cluster. Reduction of Y122O(•) was studied using reaction-induced FT-IR spectroscopy and [(13)C]aspartate-labeled β2. These Y122O(•) minus Y122OH difference spectra provide evidence that the Y122OH redox reaction is associated with a frequency change to the asymmetric vibration of D84, a unidentate ligand to the diferric cluster. The results are consistent with a redox-induced shift in H-bonding between Y122OH and D84 that may regulate proton-transfer reactions on the HU-mediated inactivation pathway in isolated β2.
Collapse
Affiliation(s)
- Adam R. Offenbacher
- Department of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ellen C. Minnihan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bridgette A. Barry
- Department of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
60
|
Radi R. Protein tyrosine nitration: biochemical mechanisms and structural basis of functional effects. Acc Chem Res 2013; 46:550-9. [PMID: 23157446 DOI: 10.1021/ar300234c] [Citation(s) in RCA: 356] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In proteins, the nitration of tyrosine residues to 3-nitro-tyrosine represents an oxidative post-translational modification that disrupts nitric oxide ((•)NO) signaling and skews metabolism towards pro-oxidant processes. Indeed, excess levels of reactive oxygen species in the presence of (•)NO or (•)NO-derived metabolites lead to the formation of nitrating species such as peroxynitrite. Thus, protein 3-nitrotyrosine has been established as a biomarker of cell, tissue, and systemic "nitroxidative stress". Moreover, tyrosine nitration modifies key properties of the amino acid: phenol group pK(a), redox potential, hydrophobicity, and volume. Thus, the incorporation of a nitro group (-NO(2)) into protein tyrosines can lead to profound structural and functional changes, some of which contribute to altered cell and tissue homeostasis. In this Account, I describe our current efforts to define (1) biologically-relevant mechanisms of protein tyrosine nitration and (2) how this modification can cause changes in protein structure and function at the molecular level. First, I underscore the relevance of protein tyrosine nitration via free-radical-mediated reactions (in both peroxynitrite-dependent and -independent pathways) involving a tyrosyl radical intermediate (Tyr(•)). This feature of the nitration process is critical because Tyr(•) can follow various fates, including the formation of 3-nitrotyrosine. Fast kinetic techniques, electron paramagnetic resonance (EPR) studies, bioanalytical methods, and kinetic simulations have all assisted in characterizing and fingerprinting the reactions of tyrosine with peroxynitrite and one-electron oxidants and its further evolution to 3-nitrotyrosine. Recent findings show that nitration of tyrosines in proteins associated with biomembranes is linked to the lipid peroxidation process via a connecting reaction that involves the one-electron oxidation of tyrosine by lipid peroxyl radicals (LOO(•)). Second, immunochemical and proteomic-based studies indicate that protein tyrosine nitration is a selective process in vitro and in vivo, preferentially directed to a subset of proteins, and within those proteins, typically one or two tyrosine residues are site-specifically modified. The nature and site(s) of formation of the proximal oxidizing or nitrating species, the physicochemical characteristics of the local microenvironment, and the structural features of the protein account for part of this selectivity. How this relatively subtle chemical modification in one tyrosine residue can sometimes cause dramatic changes in protein activity has remained elusive. Herein, I analyze recent structural biology data of two pure and homogenously nitrated mitochondrial proteins (i.e., cytochrome c and manganese superoxide dismutase, MnSOD) to illustrate regioselectivity and structural effects of tyrosine nitration and subsequent impact in protein loss- or even gain-of-function.
Collapse
Affiliation(s)
- Rafael Radi
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
61
|
Dassama LMK, Jiang W, Varano PT, Pandelia ME, Conner DA, Xie J, Bollinger JM, Krebs C. Radical-translocation intermediates and hurdling of pathway defects in "super-oxidized" (Mn(IV)/Fe(IV)) Chlamydia trachomatis ribonucleotide reductase. J Am Chem Soc 2012; 134:20498-506. [PMID: 23157728 PMCID: PMC3931446 DOI: 10.1021/ja309468s] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A class I ribonucleotide reductase (RNR) uses either a tyrosyl radical (Y(•)) or a Mn(IV)/Fe(III) cluster in its β subunit to oxidize a cysteine residue ∼35 Å away in its α subunit, generating a thiyl radical that abstracts hydrogen (H(•)) from the substrate. With either oxidant, the inter-subunit "hole-transfer" or "radical-translocation" (RT) process is thought to occur by a "hopping" mechanism involving multiple tyrosyl (and perhaps one tryptophanyl) radical intermediates along a specific pathway. The hopping intermediates have never been directly detected in a Mn/Fe-dependent (class Ic) RNR nor in any wild-type (wt) RNR. The Mn(IV)/Fe(III) cofactor of Chlamydia trachomatis RNR assembles via a Mn(IV)/Fe(IV) intermediate. Here we show that this cofactor-assembly intermediate can propagate a hole into the RT pathway when α is present, accumulating radicals with EPR spectra characteristic of Y(•)'s. The dependence of Y(•) accumulation on the presence of substrate suggests that RT within this "super-oxidized" enzyme form is gated by the protein, and the failure of a β variant having the subunit-interfacial pathway Y substituted by phenylalanine to support radical accumulation implies that the Y(•)(s) in the wt enzyme reside(s) within the RT pathway. Remarkably, two variant β proteins having pathway substitutions rendering them inactive in their Mn(IV)/Fe(III) states can generate the pathway Y(•)'s in their Mn(IV)/Fe(IV) states and also effect nucleotide reduction. Thus, the use of the more oxidized cofactor permits the accumulation of hopping intermediates and the "hurdling" of engineered defects in the RT pathway.
Collapse
Affiliation(s)
- Laura M. K. Dassama
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Wei Jiang
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Paul T. Varano
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Maria-Eirini Pandelia
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Denise A. Conner
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Jiajia Xie
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - J. Martin Bollinger
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Carsten Krebs
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
62
|
Argirević T, Riplinger C, Stubbe J, Neese F, Bennati M. ENDOR spectroscopy and DFT calculations: evidence for the hydrogen-bond network within α2 in the PCET of E. coli ribonucleotide reductase. J Am Chem Soc 2012; 134:17661-70. [PMID: 23072506 PMCID: PMC4516058 DOI: 10.1021/ja3071682] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Escherichia coli class I ribonucleotide reductase (RNR) catalyzes the conversion of nucleotides to deoxynucleotides and is composed of two subunits: α2 and β2. β2 contains a stable di-iron tyrosyl radical (Y(122)(•)) cofactor required to generate a thiyl radical (C(439)(•)) in α2 over a distance of 35 Å, which in turn initiates the chemistry of the reduction process. The radical transfer process is proposed to occur by proton-coupled electron transfer (PCET) via a specific pathway: Y(122) ⇆ W(48)[?] ⇆ Y(356) in β2, across the subunit interface to Y(731) ⇆ Y(730) ⇆ C(439) in α2. Within α2 a colinear PCET model has been proposed. To obtain evidence for this model, 3-amino tyrosine (NH(2)Y) replaced Y(730) in α2, and this mutant was incubated with β2, cytidine 5'-diphosphate, and adenosine 5'-triphosphate to generate a NH(2)Y(730)(•) in D(2)O. [(2)H]-Electron-nuclear double resonance (ENDOR) spectra at 94 GHz of this intermediate were obtained, and together with DFT models of α2 and quantum chemical calculations allowed assignment of the prominent ENDOR features to two hydrogen bonds likely associated with C(439) and Y(731). A third proton was assigned to a water molecule in close proximity (2.2 Å O-H···O distance) to residue 730. The calculations also suggest that the unusual g-values measured for NH(2)Y(730)(•) are consistent with the combined effect of the hydrogen bonds to Cys(439) and Tyr(731), both nearly perpendicular to the ring plane of NH(2)Y(730.) The results provide the first experimental evidence for the hydrogen-bond network between the pathway residues in α2 of the active RNR complex, for which no structural data are available.
Collapse
Affiliation(s)
- Tomislav Argirević
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Christoph Riplinger
- Max Planck Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| | - JoAnne Stubbe
- Dept. of Chemistry and Biology, MIT, Cambridge, MA 02139, USA
| | - Frank Neese
- Max Planck Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| | - Marina Bennati
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
- Dept. of Chemistry, University of Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
63
|
Little JW, Chen Z, Doyle T, Porreca F, Ghaffari M, Bryant L, Neumann WL, Salvemini D. Supraspinal peroxynitrite modulates pain signaling by suppressing the endogenous opioid pathway. J Neurosci 2012; 32:10797-808. [PMID: 22875915 PMCID: PMC3511865 DOI: 10.1523/jneurosci.6345-11.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 04/27/2012] [Accepted: 04/28/2012] [Indexed: 11/21/2022] Open
Abstract
Peroxynitrite (PN, ONOO(-)) is a potent oxidant and nitrating agent that contributes to pain through peripheral and spinal mechanisms, but its supraspinal role is unknown. We present evidence here that PN in the rostral ventromedial medulla (RVM) is essential for descending nociceptive modulation in rats during inflammatory and neuropathic pain through PN-mediated suppression of opioid signaling. Carrageenan-induced thermal hyperalgesia was associated with increased 3-nitrotyrosine (NT), a PN biomarker, in the RVM. Furthermore, intra-RVM microinjections of the PN decomposition catalyst Fe(III)-5,10,15,20-tetrakis(N-methyl-pyridinium-4-yl)porphyrin (FeTMPyP(5+)) dose-dependently reversed this thermal hyperalgesia. These effects of FeTMPyP(5+) were abrogated by intra-RVM naloxone, implicating potential interplay between PN and opioids. In support, we identified NT colocalization with the endogenous opioid enkephalin (ENK) in the RVM during thermal hyperalgesia, suggesting potential in situ interactions. To address the functional significance of such interactions, we exposed methionine-enkephalin (MENK) to PN and identified the major metabolite, 3-nitrotyrosine-methionine-sulfoxide (NSO)-MENK, using liquid chromatography-mass spectrometry. Next, we isolated, purified, and tested NSO-MENK for opioid receptor binding affinity and analgesic effects. Compared to MENK, this NSO-MENK metabolite lacked appreciable binding affinity for δ, μ, and κ opioid receptors. Intrathecal injection of NSO-MENK in rats did not evoke antinociception, suggesting that PN-mediated chemical modifications of ENK suppress opioid signaling. When extended to chronic pain, intra-RVM FeTMPyP(5+) produced naloxone-sensitive reversal of mechanical allodynia in rats following chronic constriction injury of the sciatic nerve. Collectively, our data reveal the central role of PN in RVM descending facilitation during inflammatory and neuropathic pain potentially through anti-opioid activity.
Collapse
Affiliation(s)
- Joshua W. Little
- Saint Louis University School of Medicine, Saint Louis, Missouri 63104
| | - Zhoumou Chen
- Saint Louis University School of Medicine, Saint Louis, Missouri 63104
| | - Timothy Doyle
- Saint Louis University School of Medicine, Saint Louis, Missouri 63104
| | - Frank Porreca
- University of Arizona College of Medicine, Tucson, Arizona 85724, and
| | - Mahsa Ghaffari
- Southern Illinois University Edwardsville School of Pharmacy, Edwardsville, Illinois 62026
| | - Leesa Bryant
- Saint Louis University School of Medicine, Saint Louis, Missouri 63104
| | - William L. Neumann
- Southern Illinois University Edwardsville School of Pharmacy, Edwardsville, Illinois 62026
| | - Daniela Salvemini
- Saint Louis University School of Medicine, Saint Louis, Missouri 63104
| |
Collapse
|
64
|
Petruk AA, Bartesaghi S, Trujillo M, Estrin DA, Murgida D, Kalyanaraman B, Marti MA, Radi R. Molecular basis of intramolecular electron transfer in proteins during radical-mediated oxidations: computer simulation studies in model tyrosine-cysteine peptides in solution. Arch Biochem Biophys 2012; 525:82-91. [PMID: 22640642 DOI: 10.1016/j.abb.2012.05.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 05/05/2012] [Accepted: 05/20/2012] [Indexed: 11/15/2022]
Abstract
Experimental studies in hemeproteins and model Tyr/Cys-containing peptides exposed to oxidizing and nitrating species suggest that intramolecular electron transfer (IET) between tyrosyl radicals (Tyr-O(·)) and Cys residues controls oxidative modification yields. The molecular basis of this IET process is not sufficiently understood with structural atomic detail. Herein, we analyzed using molecular dynamics and quantum mechanics-based computational calculations, mechanistic possibilities for the radical transfer reaction in Tyr/Cys-containing peptides in solution and correlated them with existing experimental data. Our results support that Tyr-O(·) to Cys radical transfer is mediated by an acid/base equilibrium that involves deprotonation of Cys to form the thiolate, followed by a likely rate-limiting transfer process to yield cysteinyl radical and a Tyr phenolate; proton uptake by Tyr completes the reaction. Both, the pKa values of the Tyr phenol and Cys thiol groups and the energetic and kinetics of the reversible IET are revealed as key physico-chemical factors. The proposed mechanism constitutes a case of sequential, acid/base equilibrium-dependent and solvent-mediated, proton-coupled electron transfer and explains the dependency of oxidative yields in Tyr/Cys peptides as a function of the number of alanine spacers. These findings contribute to explain oxidative modifications in proteins that contain sequence and/or spatially close Tyr-Cys residues.
Collapse
Affiliation(s)
- Ariel A Petruk
- Instituto Superior de Investigaciones Biológicas (CONICET-UNT), Chacabuco 461, S.M. de Tucumán, Tucumán, T4000CAN, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Raja Singh S, Prakash S, Muneeswaran G, Rajesh S, Muthukumar K, Vasu V, Karunakaran C. Molecular dynamics simulation studies on structural and conformational changes in tyrosine-67 nitrated cytochromec. MOLECULAR SIMULATION 2012. [DOI: 10.1080/08927022.2011.645597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
66
|
Abstract
Biological redox machines require efficient transfer of electrons and holes for function. Reactions involving multiple tunneling steps, termed "hopping," often promote charge separation within and between proteins that is essential for energy storage and conversion. Here we show how semiclassical electron transfer theory can be extended to include hopping reactions: graphical representations (called hopping maps) of the dependence of calculated two-step reaction rate constants on driving force are employed to account for flow in a rhenium-labeled azurin mutant as well as in two structurally characterized redox enzymes, DNA photolyase and MauG. Analysis of the 35 Å radical propagation in ribonucleotide reductases using hopping maps shows that all tyrosines and tryptophans on the radical pathway likely are involved in function. We suggest that hopping maps can facilitate the design and construction of artificial photosynthetic systems for the production of fuels and other chemicals.
Collapse
Affiliation(s)
- Jeffrey J Warren
- Beckman Institute, California Institute of Technology, Mail Code 139-74, Pasadena, CA 91125, USA
| | | | | | | | | |
Collapse
|
67
|
Barry BA, Chen J, Keough J, Jenson D, Offenbacher A, Pagba C. Proton Coupled Electron Transfer and Redox Active Tyrosines: Structure and Function of the Tyrosyl Radicals in Ribonucleotide Reductase and Photosystem II. J Phys Chem Lett 2012; 3:543-554. [PMID: 22662289 PMCID: PMC3362996 DOI: 10.1021/jz2014117] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Proton coupled electron transfer (PCET) reactions are important in many biological processes. Tyrosine oxidation/reduction can play a critical role in facilitating these reactions. Two examples are photosystem II (PSII) and ribonucleotide reductase (RNR). RNR is essential in DNA synthesis in all organisms. In E. coli RNR, a tyrosyl radical, Y122(•), is required as a radical initiator. Photosystem II (PSII) generates molecular oxygen from water. In PSII, an essential tyrosyl radical, YZ(•), oxidizes the oxygen evolving center. However, the mechanisms, by which the extraordinary oxidizing power of the tyrosyl radical is controlled, are not well understood. This is due to the difficulty in acquiring high-resolution structural information about the radical state. Spectroscopic approaches, such as EPR and UV resonance Raman (UVRR), can give new information. Here, we discuss EPR studies of PCET and the PSII YZ radical. We also present UVRR results, which support the conclusion that Y122 undergoes an alteration in ring and backbone dihedral angle when it is oxidized. This conformational change results in a loss of hydrogen bonding to the phenolic oxygen. Our analysis suggests that access of water is an important factor in determining tyrosyl radical lifetime and function. TOC graphic.
Collapse
|
68
|
Photo-ribonucleotide reductase β2 by selective cysteine labeling with a radical phototrigger. Proc Natl Acad Sci U S A 2011; 109:39-43. [PMID: 22171005 DOI: 10.1073/pnas.1115778108] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photochemical radical initiation is a powerful tool for studying radical initiation and transport in biology. Ribonucleotide reductases (RNRs), which catalyze the conversion of nucleotides to deoxynucleotides in all organisms, are an exemplar of radical mediated transformations in biology. Class Ia RNRs are composed of two subunits: α2 and β2. As a method to initiate radical formation photochemically within β2, a single surface-exposed cysteine of the β2 subunit of Escherichia coli Class Ia RNR has been labeled (98%) with a photooxidant ([Re ] = tricarbonyl(1,10-phenanthroline)(methylpyridyl)rhenium(I)). The labeling was achieved by incubation of S355C-β2 with the 4-(bromomethyl)pyridyl derivative of [Re] to yield the labeled species, [Re]-S355C-β2. Steady-state and time-resolved emission experiments reveal that the metal-to-ligand charge transfer (MLCT) excited-state (3)[Re ](∗) is not significantly perturbed after bioconjugation and is available as a phototrigger of tyrosine radical at position 356 in the β2 subunit; transient absorption spectroscopy reveals that the radical lives for microseconds. The work described herein provides a platform for photochemical radical initiation and study of proton-coupled electron transfer (PCET) in the β2 subunit of RNR, from which radical initiation and transport for this enzyme originates.
Collapse
|
69
|
Yokoyama K, Smith AA, Corzilius B, Griffin RG, Stubbe J. Equilibration of tyrosyl radicals (Y356•, Y731•, Y730•) in the radical propagation pathway of the Escherichia coli class Ia ribonucleotide reductase. J Am Chem Soc 2011; 133:18420-32. [PMID: 21967342 PMCID: PMC3236566 DOI: 10.1021/ja207455k] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Escherichia coli ribonucleotide reductase is an α2β2 complex that catalyzes the conversion of nucleotides to deoxynucleotides using a diferric tyrosyl radical (Y(122)(•)) cofactor in β2 to initiate catalysis in α2. Each turnover requires reversible long-range proton-coupled electron transfer (PCET) over 35 Å between the two subunits by a specific pathway (Y(122)(•) ⇆ [W(48)?] ⇆ Y(356) within β to Y(731) ⇆ Y(730) ⇆ C(439) within α). Previously, we reported that a β2 mutant with 3-nitrotyrosyl radical (NO(2)Y(•); 1.2 radicals/β2) in place of Y(122)(•) in the presence of α2, CDP, and ATP catalyzes formation of 0.6 equiv of dCDP and accumulates 0.6 equiv of a new Y(•) proposed to be located on Y(356) in β2. We now report three independent methods that establish that Y(356) is the predominant location (85-90%) of the radical, with the remaining 10-15% delocalized onto Y(731) and Y(730) in α2. Pulsed electron-electron double-resonance spectroscopy on samples prepared by rapid freeze quench (RFQ) methods identified three distances: 30 ± 0.4 Å (88% ± 3%) and 33 ± 0.4 and 38 ± 0.5 Å (12% ± 3%) indicative of NO(2)Y(122)(•)-Y(356)(•), NO(2)Y(122)(•)-NO(2)Y(122)(•), and NO(2)Y(122)(•)-Y(731(730))(•), respectively. Radical distribution in α2 was supported by RFQ electron paramagnetic resonance (EPR) studies using Y(731)(3,5-F(2)Y) or Y(730)(3,5-F(2)Y)-α2, which revealed F(2)Y(•), studies using globally incorporated [β-(2)H(2)]Y-α2, and analysis using parameters obtained from 140 GHz EPR spectroscopy. The amount of Y(•) delocalized in α2 from these two studies varied from 6% to 15%. The studies together give the first insight into the relative redox potentials of the three transient Y(•) radicals in the PCET pathway and their conformations.
Collapse
Affiliation(s)
- Kenichi Yokoyama
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139–4307
| | - Albert A. Smith
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139–4307
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139–4307
| | - Björn Corzilius
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139–4307
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139–4307
| | - Robert G. Griffin
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139–4307
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139–4307
| | - JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139–4307
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139–4307
| |
Collapse
|
70
|
Kaila VRI, Hummer G. Energetics of direct and water-mediated proton-coupled electron transfer. J Am Chem Soc 2011; 133:19040-3. [PMID: 21988482 DOI: 10.1021/ja2082262] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Proton-coupled electron transfer (PCET) is an elementary chemical reaction crucial for biological oxidoreduction. We perform quantum chemical calculations to study the direct and water-mediated PCET between two stacked tyrosines, TyrO(•) + TyrOH → TyrOH + TyrO(•), to mimic a key step in the catalytic reaction of class Ia ribonucleotide reductase (RNR). The energy surfaces of electronic ground and excited states are separated by a large gap of ~20 kcal mol(-1), indicative of an electronically adiabatic transfer mechanism. In response to chemical substitutions of the proton donor, the energy of the transition state for direct PCET shifts by exactly half of the change in energetic driving force, resulting in a linear free energy relation with a Brønsted slope of ½. In contrast, for water-mediated PCET, we observe integer Brønsted slopes of 1 and 0 for proton acceptor and donor modifications, respectively. Our calculations suggest that the π-stacking of the tyrosine dimer in RNR results in strong electronic coupling and adiabatic PCET. Water participation in the PCET can be identified perturbatively in a Brønsted analysis.
Collapse
Affiliation(s)
- Ville R I Kaila
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 5, Bethesda, Maryland 20892-0520, USA.
| | | |
Collapse
|
71
|
Minnihan EC, Young DD, Schultz PG, Stubbe J. Incorporation of fluorotyrosines into ribonucleotide reductase using an evolved, polyspecific aminoacyl-tRNA synthetase. J Am Chem Soc 2011; 133:15942-5. [PMID: 21913683 PMCID: PMC3188361 DOI: 10.1021/ja207719f] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Tyrosyl radicals (Y·s) are prevalent in biological catalysis and are formed under physiological conditions by the coupled loss of both a proton and an electron. Fluorotyrosines (F(n)Ys, n = 1-4) are promising tools for studying the mechanism of Y· formation and reactivity, as their pK(a) values and peak potentials span four units and 300 mV, respectively, between pH 6 and 10. In this manuscript, we present the directed evolution of aminoacyl-tRNA synthetases (aaRSs) for 2,3,5-trifluorotyrosine (2,3,5-F(3)Y) and demonstrate their ability to charge an orthogonal tRNA with a series of F(n)Ys while maintaining high specificity over Y. An evolved aaRS is then used to incorporate F(n)Ys site-specifically into the two subunits (α2 and β2) of Escherichia coli class Ia ribonucleotide reductase (RNR), an enzyme that employs stable and transient Y·s to mediate long-range, reversible radical hopping during catalysis. Each of four conserved Ys in RNR is replaced with F(n)Y(s), and the resulting proteins are isolated in good yields. F(n)Ys incorporated at position 122 of β2, the site of a stable Y· in wild-type RNR, generate long-lived F(n)Y·s that are characterized by electron paramagnetic resonance (EPR) spectroscopy. Furthermore, we demonstrate that the radical pathway in the mutant Y(122)(2,3,5)F(3)Y-β2 is energetically and/or conformationally modulated in such a way that the enzyme retains its activity but a new on-pathway Y· can accumulate. The distinct EPR properties of the 2,3,5-F(3)Y· facilitate spectral subtractions that make detection and identification of new Y·s straightforward.
Collapse
Affiliation(s)
- Ellen C. Minnihan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
| | - Douglas D. Young
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Peter G. Schultz
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
| |
Collapse
|
72
|
Minnihan EC, Seyedsayamdost MR, Uhlin U, Stubbe J. Kinetics of radical intermediate formation and deoxynucleotide production in 3-aminotyrosine-substituted Escherichia coli ribonucleotide reductases. J Am Chem Soc 2011; 133:9430-40. [PMID: 21612216 PMCID: PMC3125130 DOI: 10.1021/ja201640n] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Escherichia coli ribonucleotide reductase is an α2β2 complex and catalyzes the conversion of nucleoside 5'-diphosphates (NDPs) to 2'-deoxynucleotides (dNDPs). The reaction is initiated by the transient oxidation of an active-site cysteine (C(439)) in α2 by a stable diferric tyrosyl radical (Y(122)•) cofactor in β2. This oxidation occurs by a mechanism of long-range proton-coupled electron transfer (PCET) over 35 Å through a specific pathway of residues: Y(122)•→ W(48)→ Y(356) in β2 to Y(731)→ Y(730)→ C(439) in α2. To study the details of this process, 3-aminotyrosine (NH(2)Y) has been site-specifically incorporated in place of Y(356) of β. The resulting protein, Y(356)NH(2)Y-β2, and the previously generated proteins Y(731)NH(2)Y-α2 and Y(730)NH(2)Y-α2 (NH(2)Y-RNRs) are shown to catalyze dNDP production in the presence of the second subunit, substrate (S), and allosteric effector (E) with turnover numbers of 0.2-0.7 s(-1). Evidence acquired by three different methods indicates that the catalytic activity is inherent to NH(2)Y-RNRs and not the result of copurifying wt enzyme. The kinetics of formation of 3-aminotyrosyl radical (NH(2)Y•) at position 356, 731, and 730 have been measured with all S/E pairs. In all cases, NH(2)Y• formation is biphasic (k(fast) of 9-46 s(-1) and k(slow) of 1.5-5.0 s(-1)) and kinetically competent to be an intermediate in nucleotide reduction. The slow phase is proposed to report on the conformational gating of NH(2)Y• formation, while the k(cat) of ~0.5 s(-1) is proposed to be associated with rate-limiting oxidation by NH(2)Y• of the subsequent amino acid on the pathway during forward PCET. The X-ray crystal structures of Y(730)NH(2)Y-α2 and Y(731)NH(2)Y-α2 have been solved and indicate minimal structural changes relative to wt-α2. From the data, a kinetic model for PCET along the radical propagation pathway is proposed.
Collapse
Affiliation(s)
- Ellen C. Minnihan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Mohammad R. Seyedsayamdost
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Ulla Uhlin
- Department of Molecular Biology, Swedish University of Agricultural Science, Uppsala Biomedical Center, Box 590, SE-75124 Uppsala, Sweden
| | - JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| |
Collapse
|
73
|
Seyedsayamdost MR, Yee CS, Stubbe J. Use of 2,3,5-F(3)Y-β2 and 3-NH(2)Y-α2 to study proton-coupled electron transfer in Escherichia coli ribonucleotide reductase. Biochemistry 2011; 50:1403-11. [PMID: 21182280 PMCID: PMC3076197 DOI: 10.1021/bi101319v] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Escherichia coli ribonucleotide reductase is an α2β2 complex that catalyzes the conversion of nucleoside 5'-diphosphates (NDPs) to deoxynucleotides (dNDPs). The active site for NDP reduction resides in α2, and the essential diferric-tyrosyl radical (Y(122)(•)) cofactor that initiates transfer of the radical to the active site cysteine in α2 (C(439)), 35 Å removed, is in β2. The oxidation is proposed to involve a hopping mechanism through aromatic amino acids (Y(122) → W(48) → Y(356) in β2 to Y(731) → Y(730) → C(439) in α2) and reversible proton-coupled electron transfer (PCET). Recently, 2,3,5-F(3)Y (F(3)Y) was site-specifically incorporated in place of Y(356) in β2 and 3-NH(2)Y (NH(2)Y) in place of Y(731) and Y(730) in α2. A pH-rate profile with F(3)Y(356)-β2 suggested that as the pH is elevated, the rate-determining step of RNR can be altered from a conformational change to PCET and that the altered driving force for F(3)Y oxidation, by residues adjacent to it in the pathway, is responsible for this change. Studies with NH(2)Y(731(730))-α2, β2, CDP, and ATP resulted in detection of NH(2)Y radical (NH(2)Y(•)) intermediates capable of dNDP formation. In this study, the reaction of F(3)Y(356)-β2, α2, CDP, and ATP has been examined by stopped-flow (SF) absorption and rapid freeze quench electron paramagnetic resonance spectroscopy and has failed to reveal any radical intermediates. The reaction of F(3)Y(356)-β2, CDP, and ATP has also been examined with NH(2)Y(731)-α2 (or NH(2)Y(730)-α2) by SF kinetics from pH 6.5 to 9.2 and exhibited rate constants for NH(2)Y(•) formation that support a change in the rate-limiting step at elevated pH. The results together with kinetic simulations provide a guide for future studies to detect radical intermediates in the pathway.
Collapse
Affiliation(s)
- Mohammad R. Seyedsayamdost
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139–4307
| | - Cyril S. Yee
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139–4307
| | - JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139–4307
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139–4307
| |
Collapse
|
74
|
Wang YS, Russell WK, Wang Z, Wan W, Dodd LE, Pai PJ, Russell DH, Liu WR. The de novo engineering of pyrrolysyl-tRNA synthetase for genetic incorporation of L-phenylalanine and its derivatives. MOLECULAR BIOSYSTEMS 2011; 7:714-7. [PMID: 21234492 DOI: 10.1039/c0mb00217h] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using evolved pyrrolysyl-tRNA synthetase-tRNA(CUA)(Pyl) pairs, L-phenylalanine, p-iodo-L-phenylalanine and p-bromo-L-phenylalanine have been genetically incorporated into proteins at amber mutation sites in E. coli.
Collapse
Affiliation(s)
- Yane-Shih Wang
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Exploring the molecular basis of human manganese superoxide dismutase inactivation mediated by tyrosine 34 nitration. Arch Biochem Biophys 2010; 507:304-9. [PMID: 21167124 DOI: 10.1016/j.abb.2010.12.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 11/17/2010] [Accepted: 12/09/2010] [Indexed: 11/23/2022]
Abstract
Manganese Superoxide Dismutase (MnSOD) is an essential mitochondrial antioxidant enzyme that protects organisms against oxidative damage, dismutating superoxide radical (O₂(.)⁻) into H₂O₂ and O₂. The active site of the protein presents a Mn ion in a distorted trigonal-bipyramidal environment, coordinated by H26, H74, H163, D159 and one ⁻OH ion or H₂O molecule. The catalytic cycle of the enzyme is a "ping-pong" mechanism involving Mn³+/Mn²+. It is known that nitration of Y34 is responsible for enzyme inactivation, and that this protein oxidative modification is found in tissues undergoing inflammatory and degenerative processes. However, the molecular basis about MnSOD tyrosine nitration affects the protein catalytic function is mostly unknown. In this work we strongly suggest, using computer simulation tools, that Y34 nitration affects protein function by restricting ligand access to the active site. In particular, deprotonation of 3-nitrotyrosine increases drastically the energetic barrier for ligand entry due to the absence of the proton. Our results for the WT and selected mutant proteins confirm that the phenolic moiety of Y34 plays a key role in assisting superoxide migration.
Collapse
|
76
|
Liu WR, Wang YS, Wan W. Synthesis of proteins with defined posttranslational modifications using the genetic noncanonical amino acid incorporation approach. MOLECULAR BIOSYSTEMS 2010; 7:38-47. [PMID: 21088799 DOI: 10.1039/c0mb00216j] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Posttranslational modifications modulate the activities of most eukaryotic proteins and play a critical role in all aspects of cellular life. Understanding functional roles of these modifications requires homogeneously modified proteins that are usually difficult to purify from their natural sources. An emerging powerful tool for synthesis of proteins with defined posttranslational modifications is to genetically encode modified amino acids in living cells and incorporate them directly into proteins during the protein translation process. Using this approach, homogenous proteins with tyrosine sulfation, tyrosine phosphorylation mimics, tyrosine nitration, lysine acetylation, lysine methylation, and ubiquitination have been synthesized in large quantities. In this review, we provide a brief introduction to protein posttranslational modifications and the genetic noncanonical amino acid (NAA) incorporation technique, then discuss successful applications of the genetic NAA incorporation approach to produce proteins with defined modifications, and end with challenges and ongoing methodology developments for synthesis of proteins with other modifications.
Collapse
Affiliation(s)
- Wenshe R Liu
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA.
| | | | | |
Collapse
|
77
|
Yokoyama K, Uhlin U, Stubbe J. A hot oxidant, 3-NO2Y122 radical, unmasks conformational gating in ribonucleotide reductase. J Am Chem Soc 2010; 132:15368-79. [PMID: 20929229 PMCID: PMC3005585 DOI: 10.1021/ja1069344] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Escherichia coli ribonucleotide reductase is an α2β2 complex that catalyzes the conversion of nucleotides to deoxynucleotides and requires a diferric-tyrosyl radical (Y(•)) cofactor to initiate catalysis. The initiation process requires long-range proton-coupled electron transfer (PCET) over 35 Å between the two subunits by a specific pathway (Y(122)(•)→W(48)→Y(356) within β to Y(731)→Y(730)→C(439) within α). The rate-limiting step in nucleotide reduction is the conformational gating of the PCET process, which masks the chemistry of radical propagation. 3-Nitrotyrosine (NO(2)Y) has recently been incorporated site-specifically in place of Y(122) in β2. The protein as isolated contained a diferric cluster but no nitrotyrosyl radical (NO(2)Y(•)) and was inactive. In the present paper we show that incubation of apo-Y(122)NO(2)Y-β2 with Fe(2+) and O(2) generates a diferric-NO(2)Y(•) that has a half-life of 40 s at 25 °C. Sequential mixing experiments, in which the cofactor is assembled to 1.2 NO(2)Y(•)/β2 and then mixed with α2, CDP, and ATP, have been analyzed by stopped-flow absorption spectroscopy, rapid freeze quench EPR spectroscopy, and rapid chemical quench methods. These studies have, for the first time, unmasked the conformational gating. They reveal that the NO(2)Y(•) is reduced to the nitrotyrosinate with biphasic kinetics (283 and 67 s(-1)), that dCDP is produced at 107 s(-1), and that a new Y(•) is produced at 97 s(-1). Studies with pathway mutants suggest that the new Y(•) is predominantly located at 356 in β2. In consideration of these data and the crystal structure of Y(122)NO(2)Y-β2, a mechanism for PCET uncoupling in NO(2)Y(•)-RNR is proposed.
Collapse
Affiliation(s)
- Kenichi Yokoyama
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139–4307
| | - Ulla Uhlin
- Department of Molecular Biology, Swedish University of Agricultural Science, Uppsala Biomedical Center, Box 590, SE-75124 Uppsala, Sweden
| | - JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139–4307
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139–4307
| |
Collapse
|