51
|
Jusko P, Brünken S, Asvany O, Thorwirth S, Stoffels A, van der Meer L, Berden G, Redlich B, Oomens J, Schlemmer S. The FELion cryogenic ion trap beam line at the FELIX free-electron laser laboratory: infrared signatures of primary alcohol cations. Faraday Discuss 2019; 217:172-202. [DOI: 10.1039/c8fd00225h] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The FELion beamline – a cryogenic 22-pole trap for vibrational spectroscopy of molecular ions at the FELIX Laboratory.
Collapse
Affiliation(s)
- Pavol Jusko
- I. Physikalisches Institut
- Universität zu Köln
- 50937 Köln
- Germany
| | - Sandra Brünken
- I. Physikalisches Institut
- Universität zu Köln
- 50937 Köln
- Germany
- Radboud University
| | - Oskar Asvany
- I. Physikalisches Institut
- Universität zu Köln
- 50937 Köln
- Germany
| | - Sven Thorwirth
- I. Physikalisches Institut
- Universität zu Köln
- 50937 Köln
- Germany
| | - Alexander Stoffels
- I. Physikalisches Institut
- Universität zu Köln
- 50937 Köln
- Germany
- Radboud University
| | - Lex van der Meer
- Radboud University
- Institute for Molecules and Materials
- FELIX Laboratory
- 6525 ED Nijmegen
- The Netherlands
| | - Giel Berden
- Radboud University
- Institute for Molecules and Materials
- FELIX Laboratory
- 6525 ED Nijmegen
- The Netherlands
| | - Britta Redlich
- Radboud University
- Institute for Molecules and Materials
- FELIX Laboratory
- 6525 ED Nijmegen
- The Netherlands
| | - Jos Oomens
- Radboud University
- Institute for Molecules and Materials
- FELIX Laboratory
- 6525 ED Nijmegen
- The Netherlands
| | | |
Collapse
|
52
|
Affiliation(s)
- Oleg V. Boyarkin
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
53
|
Tesler LF, Cismesia AP, Bell MR, Bailey LS, Polfer NC. Operation and Performance of a Mass-Selective Cryogenic Linear Ion Trap. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:2115-2124. [PMID: 30062479 PMCID: PMC6301008 DOI: 10.1007/s13361-018-2026-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 06/08/2023]
Abstract
We report on the performance of a cryogenic 2D linear ion trap (cryoLIT) that is shown to be mass-selective in the temperature range of 17-295 K. As the cryoLIT is cooled, the ejection voltages during the mass instability scan decrease, which results in an effective mass shift to lower m/z relative to room temperature. This is attributed to a decrease in trap radius caused by thermal contraction. Additionally, the cryoLIT generates reproducible mass spectra from day-to-day, and is capable of performing stored waveform inverse Fourier transform (SWIFT) mass isolation of fragile N2-tagged ions for the purpose of background-free infrared dissociation spectroscopy. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Larry F Tesler
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32611-7200, USA
| | - Adam P Cismesia
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32611-7200, USA
| | - Matthew R Bell
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32611-7200, USA
| | - Laura S Bailey
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32611-7200, USA
| | - Nicolas C Polfer
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32611-7200, USA.
| |
Collapse
|
54
|
Spieler S, Duong CH, Kaiser A, Duensing F, Geistlinger K, Fischer M, Yang N, Kumar SS, Johnson MA, Wester R. Vibrational Predissociation Spectroscopy of Cold Protonated Tryptophan with Different Messenger Tags. J Phys Chem A 2018; 122:8037-8046. [PMID: 30208709 DOI: 10.1021/acs.jpca.8b07532] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Vibrational spectra of protonated tryptophan were recorded by predissociation of H2 messenger tags using cryogenic ion traps. We explore the issue of messenger induced spectral changes by solvating TrpH+(H2) n with n = 1-5 to obtain single photon vibrational spectra of TrpH+ and of its partly deuterated isotopomer in the spectral region of 800-4400 cm-1. Depending on the number of messenger molecules, the spectra of several conformational isomers associated with multiple H2 binding locations along with two natural conformations of TrpH+ were found using the two photon MS3IR2 conformational hole burning method. Most probable messenger positions were established by comparison with predictions from DFT calculations on various candidate structures. Mechanical anharmonicity effects associated with the charged amino group were modeled by Born-Oppenheimer ab initio molecular dynamics. The spectra of TrpH+(H2O) m=1,2, recorded by infrared multiphoton dissociation (IRMPD), reveal broad features in the NH stretching region of the NH3+ group, indicating strong hydrogen bonding in acceptor-donor configuration with the benzene ring for the first water molecule, while the second water appears to attach to a less strongly perturbing site, yielding unique transitions associated with the free OH stretching fundamentals. We discuss the structural deformations induced by the water molecules and compare our results to recent experiments on similar hydrated cationic systems.
Collapse
Affiliation(s)
- Steffen Spieler
- Institut für Ionenphysik und Angewandte Physik , Universität Innsbruck , Technikerstraße 25 , 6020 Innsbruck , Austria
| | - Chinh H Duong
- Sterling Chemistry Laboratory , Yale University , 225 Prospect Street , New Haven , Connecticut 06520 , United States
| | - Alexander Kaiser
- Institut für Ionenphysik und Angewandte Physik , Universität Innsbruck , Technikerstraße 25 , 6020 Innsbruck , Austria
| | - Felix Duensing
- Institut für Ionenphysik und Angewandte Physik , Universität Innsbruck , Technikerstraße 25 , 6020 Innsbruck , Austria
| | - Katharina Geistlinger
- Institut für Ionenphysik und Angewandte Physik , Universität Innsbruck , Technikerstraße 25 , 6020 Innsbruck , Austria
| | - Moritz Fischer
- Institut für Ionenphysik und Angewandte Physik , Universität Innsbruck , Technikerstraße 25 , 6020 Innsbruck , Austria
| | - Nan Yang
- Sterling Chemistry Laboratory , Yale University , 225 Prospect Street , New Haven , Connecticut 06520 , United States
| | - S Sunil Kumar
- Department of Physics , Indian Institute of Science Education and Research , Tirupati, Rami Reddy Nagar, Karakambadi Road , Mangalam (P.O.) Tirupati 517507 , Andhra Pradesh , India
| | - Mark A Johnson
- Sterling Chemistry Laboratory , Yale University , 225 Prospect Street , New Haven , Connecticut 06520 , United States
| | - Roland Wester
- Institut für Ionenphysik und Angewandte Physik , Universität Innsbruck , Technikerstraße 25 , 6020 Innsbruck , Austria
| |
Collapse
|
55
|
Garand E. Spectroscopy of Reactive Complexes and Solvated Clusters: A Bottom-Up Approach Using Cryogenic Ion Traps. J Phys Chem A 2018; 122:6479-6490. [DOI: 10.1021/acs.jpca.8b05712] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Etienne Garand
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
56
|
Yang N, Duong CH, Kelleher PJ, Johnson MA. Unmasking Rare, Large-Amplitude Motions in D 2-Tagged I -·(H 2O) 2 Isotopomers with Two-Color, Infrared-Infrared Vibrational Predissociation Spectroscopy. J Phys Chem Lett 2018; 9:3744-3750. [PMID: 29924622 DOI: 10.1021/acs.jpclett.8b01485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We describe a two-color, isotopomer-selective infrared-infrared population-labeling method that can monitor very slow spectral diffusion of OH oscillators in H-bonded networks and apply it to the I-·(HDO)·(D2O) and I-·(H2O)·(D2O) systems, which are cryogenically cooled and D2-tagged at an ion trap temperature of 15 K. These measurements reveal very large (>400 cm-1), spontaneous spectral shifts despite the fact that the predissociation spectra in the OH stretching region of both isotopologues are sharp and readily assigned to four fundamentals of largely decoupled OH oscillators held in a cyclic H-bonded network. This spectral diffusion is not observed in the untagged isotopologues of the dihydrate clusters that are generated under the same source conditions but does become apparent at about 75 K. These results are discussed in the context of the large-amplitude "jump" mechanism for H-bond relaxation dynamics advanced by Laage and Hynes in an experimental scenario where rare events can be captured by following the migration of OH groups among the four available positions in the quasi-rigid equilibrium structure.
Collapse
Affiliation(s)
- Nan Yang
- Sterling Chemistry Laboratory , Yale University , New Haven , Connecticut 06520 , United States
| | - Chinh H Duong
- Sterling Chemistry Laboratory , Yale University , New Haven , Connecticut 06520 , United States
| | - Patrick J Kelleher
- Sterling Chemistry Laboratory , Yale University , New Haven , Connecticut 06520 , United States
| | - Mark A Johnson
- Sterling Chemistry Laboratory , Yale University , New Haven , Connecticut 06520 , United States
| |
Collapse
|
57
|
Kamrath MZ, Rizzo TR. Combining Ion Mobility and Cryogenic Spectroscopy for Structural and Analytical Studies of Biomolecular Ions. Acc Chem Res 2018; 51:1487-1495. [PMID: 29746100 DOI: 10.1021/acs.accounts.8b00133] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ion mobility spectrometry (IMS) has become a valuable tool in biophysical and bioanalytical chemistry because of its ability to separate and characterize the structure of gas-phase biomolecular ions on the basis of their collisional cross section (CCS). Its importance has grown with the realization that in many cases, biomolecular ions retain important structural characteristics when produced in the gas phase by electrospray ionization (ESI). While a CCS can help distinguish between structures of radically different types, one cannot expect a single number to differentiate similar conformations of a complex molecule. Molecular spectroscopy has also played an increasingly important role for structural characterization of biomolecular ions. Spectroscopic measurements, particularly when performed at cryogenic temperatures, can be extremely sensitive to small changes in a molecule's conformation and provide tight constraints for calculations of biomolecular structures. However, spectra of complex molecules can be heavily congested due to the presence of multiple stable conformations, each of which can have a distinct spectrum. This congestion can inhibit spectral analysis and complicate the extraction of structural information. Even when a single conformation is present, the conformational search process needed to match a measured spectrum with a computed structure can be overwhelming for peptides of more than a few amino acids, for example. We have recently combined ion mobility spectrometry and cryogenic ion spectroscopy (CIS) to characterize the structures of gas-phase biomolecular ions. In this Account, we illustrate how the coupling of IMS and CIS is by nature synergistic. On the one hand, IMS can be used as a conformational filter to reduce spectral congestion that arises from heterogeneous samples, facilitating structural analysis. On the other hand, highly resolved, cryogenic spectra can serve as a selective detector for IMS that can increase the effective resolution and hence the maximum number of distinct species that can be detected. Taken together, spectra and CCS measurements on the same system facilitates structural analysis and strengthens the conclusions that can be drawn from each type of data. After describing different approaches to combining these two techniques in such a way as to simplify the data obtained from each one separately, we present two examples that illustrate the type of insight gained from using spectra and CCS data together for characterizing gas-phase biomolecular ions. In one example, the CCS is used as a constraint for quantum chemical structure calculations of kinetically trapped species, where a lowest-energy criterion is not applicable. In a second example, we use both the CCS and a cryogenic infrared spectrum as a means to distinguish isomeric glycans.
Collapse
Affiliation(s)
- Michael Z. Kamrath
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Thomas R. Rizzo
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|
58
|
Cismesia AP, Bell MR, Tesler LF, Alves M, Polfer NC. Infrared ion spectroscopy: an analytical tool for the study of metabolites. Analyst 2018; 143:1615-1623. [PMID: 29497730 PMCID: PMC6186386 DOI: 10.1039/c8an00087e] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vibrational ion spectroscopy techniques coupled with mass spectrometry are applied to standard metabolites as a proof-of-principle demonstration for the structural identification of unknown metabolites. The traditional room temperature infrared multiple photon dissociation (IRMPD) spectroscopy technique is shown to differentiate chemical moieties in isobaric and isomeric variants. These results are compared to infrared spectra of cryogenically cooled analyte ions, showing enhanced spectral resolution, and thus also improved differentiation between closely related molecules, such as isomers. The cryogenic spectroscopy is effected in a recently developed mass-selective cryogenic linear ion trap, which is capable of high sensitivity and the ability to measure the IR spectra of multiple analytes simultaneously.
Collapse
Affiliation(s)
- Adam P Cismesia
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL 32611-7200, USA.
| | | | | | | | | |
Collapse
|
59
|
Gibson JK, de Jong WA, van Stipdonk MJ, Martens J, Berden G, Oomens J. Equatorial coordination of uranyl: Correlating ligand charge donation with the Oyl-U-Oyl asymmetric stretch frequency. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2017.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
60
|
Honma K. Laser-induced- and dispersed-fluorescence studies of rhodamine 590 and 640 ions formed by electrospray ionization: observation of fluorescence from highly-excited vibrational levels of S1 states. Phys Chem Chem Phys 2018; 20:26859-26869. [DOI: 10.1039/c8cp04067b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescence spectra of vibrationally very “hot” S1 states were observed for the first time under gas phase conditions.
Collapse
Affiliation(s)
- Kenji Honma
- Graduate School of Material Science
- University of Hyogo
- Hyogo
- Japan
| |
Collapse
|
61
|
Masellis C, Khanal N, Kamrath MZ, Clemmer DE, Rizzo TR. Cryogenic Vibrational Spectroscopy Provides Unique Fingerprints for Glycan Identification. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2217-2222. [PMID: 28643189 PMCID: PMC5693781 DOI: 10.1007/s13361-017-1728-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 05/23/2023]
Abstract
The structural characterization of glycans by mass spectrometry is particularly challenging. This is because of the high degree of isomerism in which glycans of the same mass can differ in their stereochemistry, attachment points, and degree of branching. Here we show that the addition of cryogenic vibrational spectroscopy to mass and mobility measurements allows one to uniquely identify and characterize these complex biopolymers. We investigate six disaccharide isomers that differ in their stereochemistry, attachment point of the glycosidic bond, and monosaccharide content, and demonstrate that we can identify each one unambiguously. Even disaccharides that differ by a single stereogenic center or in the monosaccharide sequence order show distinct vibrational fingerprints that would clearly allow their identification in a mixture, which is not possible by ion mobility spectrometry/mass spectrometry alone. Moreover, this technique can be applied to larger glycans, which we demonstrate by distinguishing isomeric branched and linear pentasaccharides. The creation of a database containing mass, collision cross section, and vibrational fingerprint measurements for glycan standards should allow unambiguous identification and characterization of these biopolymers in mixtures, providing an enabling technology for all fields of glycoscience. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Chiara Masellis
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, 1015, Lausanne, Switzerland
| | - Neelam Khanal
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Michael Z Kamrath
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, 1015, Lausanne, Switzerland
- , TOFWERK AG, Uttingenstrasse 22, 3600, Thun, Switzerland
| | - David E Clemmer
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Thomas R Rizzo
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, 1015, Lausanne, Switzerland.
| |
Collapse
|
62
|
Shen BB, Benitez Y, Lunny KG, Continetti RE. Internal energy dependence of the photodissociation dynamics of O3− using cryogenic photoelectron-photofragment coincidence spectroscopy. J Chem Phys 2017; 147:094307. [PMID: 28886639 DOI: 10.1063/1.4986500] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ben B. Shen
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093, USA
| | - Yanice Benitez
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093, USA
| | - Katharine G. Lunny
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093, USA
| | - Robert E. Continetti
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093, USA
| |
Collapse
|
63
|
Khanal N, Masellis C, Kamrath MZ, Clemmer DE, Rizzo TR. Glycosaminoglycan Analysis by Cryogenic Messenger-Tagging IR Spectroscopy Combined with IMS-MS. Anal Chem 2017; 89:7601-7606. [PMID: 28636333 PMCID: PMC5675075 DOI: 10.1021/acs.analchem.7b01467] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We combine ion mobility spectrometry with cryogenic, messenger-tagging, infrared spectroscopy and mass spectrometry to identify different isomeric disaccharides of chondroitin sulfate (CS) and heparan sulfate (HS), which are representatives of two major subclasses of glycosaminoglycans. Our analysis shows that while CS and HS disaccharide isomers have similar drift times, they can be uniquely distinguished by their vibrational spectrum between ∼3200 and 3700 cm-1 due to their different OH hydrogen-bonding patterns. We suggest that this combination of techniques is well suited to identify and characterize glycan isomers directly, which presents tremendous challenges for existing methods.
Collapse
Affiliation(s)
- Neelam Khanal
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Chiara Masellis
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Michael Z. Kamrath
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - David E. Clemmer
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Thomas R. Rizzo
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|
64
|
Voss JM, Duffy EM, Marsh BM, Garand E. Mass Spectrometric and Vibrational Characterization of Reaction Intermediates in [Ru(bpy)(tpy)(H 2 O)] 2+ Catalyzed Water Oxidation. Chempluschem 2017; 82:691-694. [PMID: 31961527 DOI: 10.1002/cplu.201700085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/03/2017] [Indexed: 11/09/2022]
Abstract
Mass spectrometry coupled with an in-line electrochemical electrospray ionization source is used to capture some of the reaction intermediates formed in the [Ru(bpy)(tpy)(H2 O)]2+ (bpy=2,2'-bipyridine, tpy=2,2':6',2"-terpyridine) catalyzed water oxidation reaction. By controlling the applied electrochemical potential, we identified the parent complex, as well as the first two oxidation complexes, identified as [Ru(bpy)(tpy)(OH)]2+ and [Ru(bpy)(tpy)(O)]2+ . The structures of the parent and first oxidation complexes are probed directly in the mass spectrometer by using infrared predissociation spectroscopy of D2 -tagged ions. Comparisons between experimental vibrational spectra and density functional theory calculations confirmed the identity and structure of these two complexes. Moreover, the frequency of the O-H stretching mode in [Ru(bpy)(tpy)(OH)]2+ shows that this complex features a Ru-OH interaction that is more covalent than ionic.
Collapse
Affiliation(s)
- Jonathan M Voss
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA), E-mail: Etienne Garand
| | - Erin M Duffy
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA), E-mail: Etienne Garand
| | - Brett M Marsh
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA), E-mail: Etienne Garand
| | - Etienne Garand
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA), E-mail: Etienne Garand
| |
Collapse
|
65
|
Bouchet A, Klyne J, Ishiuchi SI, Fujii M, Dopfer O. Conformation of protonated glutamic acid at room and cryogenic temperatures. Phys Chem Chem Phys 2017; 19:10767-10776. [DOI: 10.1039/c6cp08553a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Linear infrared spectroscopy of protonated glutamic acid in a cryogenic ion trap allows for the clear-cut and quantitative identification of the two conformers of this fundamental biomolecule.
Collapse
Affiliation(s)
- Aude Bouchet
- Institut für Optik und Atomare Physik
- Technische Universität Berlin
- Berlin
- Germany
- Laboratory for Chemistry and Life Science
| | - Johanna Klyne
- Institut für Optik und Atomare Physik
- Technische Universität Berlin
- Berlin
- Germany
| | - Shun-ichi Ishiuchi
- Laboratory for Chemistry and Life Science
- Institute of Innovation Research
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Masaaki Fujii
- Laboratory for Chemistry and Life Science
- Institute of Innovation Research
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Otto Dopfer
- Institut für Optik und Atomare Physik
- Technische Universität Berlin
- Berlin
- Germany
| |
Collapse
|
66
|
Herr JD, Steele RP. Signatures of Size-Dependent Structural Patterns in Hydrated Copper(I) Clusters, Cu +(H 2O) n=1-10. J Phys Chem A 2016; 120:10252-10263. [PMID: 27981838 DOI: 10.1021/acs.jpca.6b10346] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The isomers of a hydrated Cu(I) ion with n = 1-10 water molecules were investigated by using ab initio quantum chemistry and an automated isomer-search algorithm. The electronic structure and vibrational spectra of the hundreds of resulting isomers were used to analyze the source of the observed bonding patterns. A structural evolution from dominantly two-coordinate structures (n = 1-4) toward a mixture of two- and three-coordinate structures was observed at n = 5-6, where the stability provided by expanded hydrogen-bonding was competitive with the dominantly electrostatic interaction between the water ligand and remaining binding sites of the metal ion. Further hydration (n = 7-10) led to a mixture of three- and four-coordinate structures. The metal ion was found, through spectroscopic signatures, to appreciably perturb the O-H bonds of even third-shell water molecules, which highlighted the ability of this nominally simple ion to partially activate the surrounding water network.
Collapse
Affiliation(s)
- Jonathan D Herr
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112, United States and.,Henry Eyring Center for Theoretical Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Ryan P Steele
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112, United States and.,Henry Eyring Center for Theoretical Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
67
|
Oomens J, Berden G, Morton TH. Low-Frequency CH Stretch Vibrations of Free Alkoxide Ions. Angew Chem Int Ed Engl 2016; 56:217-220. [PMID: 27921354 DOI: 10.1002/anie.201609437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Indexed: 11/10/2022]
Abstract
CH stretches in hydrocarbon cations often shift to lower frequencies relative to neutral molecules, because they do not have sufficient electrons to give every bond an electron pair. A parallel effect in negatively charged species has not been previously observed. Here we show that CH bond weakening occurs in alkoxide anions as a consequence of hyperconjugation. The reasoning differs somewhat from the case of positively charged ions, but the net effect is the same: to lower CH stretching frequencies by hundreds of wavenumbers.
Collapse
Affiliation(s)
- Jos Oomens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED, Nijmegen, The Netherlands.,van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, The Netherlands
| | - Giel Berden
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED, Nijmegen, The Netherlands
| | - Thomas Hellman Morton
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521-0403, USA
| |
Collapse
|
68
|
Oomens J, Berden G, Morton TH. Low‐Frequency CH Stretch Vibrations of Free Alkoxide Ions. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201609437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jos Oomens
- Radboud University Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c 6525ED Nijmegen The Netherlands
- van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098XH Amsterdam The Netherlands
| | - Giel Berden
- Radboud University Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c 6525ED Nijmegen The Netherlands
| | - Thomas Hellman Morton
- Department of Chemistry University of California, Riverside Riverside CA 92521-0403 USA
| |
Collapse
|
69
|
Matthews E, Dessent CEH. Locating the Proton in Nicotinamide Protomers via Low-Resolution UV Action Spectroscopy of Electrosprayed Solutions. J Phys Chem A 2016; 120:9209-9216. [DOI: 10.1021/acs.jpca.6b10433] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Edward Matthews
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| | | |
Collapse
|
70
|
Cooperative Effects in Clusters and Oligonuclear Complexes of Transition Metals in Isolation. STRUCTURE AND BONDING 2016. [DOI: 10.1007/430_2016_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
71
|
Gao J, Bouwman J, Berden G, Oomens J. The Influence of Metal Ion Binding on the IR Spectra of Nitrogen-Containing PAHs. J Phys Chem A 2016; 120:7800-7809. [DOI: 10.1021/acs.jpca.6b05060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Juehan Gao
- Radboud
University, FELIX Laboratory, Institute for Molecules and Materials, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - Jordy Bouwman
- Radboud
University, FELIX Laboratory, Institute for Molecules and Materials, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - Giel Berden
- Radboud
University, FELIX Laboratory, Institute for Molecules and Materials, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - Jos Oomens
- Radboud
University, FELIX Laboratory, Institute for Molecules and Materials, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
- Van’t
Hoff Institute for Molecular Sciences, University of Amsterdam, Science
Park 904, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
72
|
Talbot JJ, Cheng X, Herr JD, Steele RP. Vibrational Signatures of Electronic Properties in Oxidized Water: Unraveling the Anomalous Spectrum of the Water Dimer Cation. J Am Chem Soc 2016; 138:11936-45. [DOI: 10.1021/jacs.6b07182] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Justin J. Talbot
- Department
of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
- Henry
Eyring Center for Theoretical Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Xiaolu Cheng
- Department
of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
- Henry
Eyring Center for Theoretical Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Jonathan D. Herr
- Department
of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
- Henry
Eyring Center for Theoretical Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Ryan P. Steele
- Department
of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
- Henry
Eyring Center for Theoretical Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
73
|
Voronina L, Masson A, Kamrath M, Schubert F, Clemmer D, Baldauf C, Rizzo T. Conformations of Prolyl–Peptide Bonds in the Bradykinin 1–5 Fragment in Solution and in the Gas Phase. J Am Chem Soc 2016; 138:9224-33. [DOI: 10.1021/jacs.6b04550] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Liudmila Voronina
- Laboratoire
de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Antoine Masson
- Laboratoire
de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Michael Kamrath
- Laboratoire
de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Franziska Schubert
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, D-14195 Berlin, Germany
| | - David Clemmer
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Carsten Baldauf
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, D-14195 Berlin, Germany
| | - Thomas Rizzo
- Laboratoire
de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|
74
|
Cismesia AP, Bailey LS, Bell MR, Tesler LF, Polfer NC. Making Mass Spectrometry See the Light: The Promises and Challenges of Cryogenic Infrared Ion Spectroscopy as a Bioanalytical Technique. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:757-66. [PMID: 26975370 PMCID: PMC4841727 DOI: 10.1007/s13361-016-1366-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 05/31/2023]
Abstract
The detailed chemical information contained in the vibrational spectrum of a cryogenically cooled analyte ion would, in principle, make infrared (IR) ion spectroscopy a gold standard technique for molecular identification in mass spectrometry. Despite this immense potential, there are considerable challenges in both instrumentation and methodology to overcome before the technique is analytically useful. Here, we discuss the promise of IR ion spectroscopy for small molecule analysis in the context of metabolite identification. Experimental strategies to address sensitivity constraints, poor overall duty cycle, and speed of the experiment are intimately tied to the development of a mass-selective cryogenic trap. Therefore, the most likely avenues for success, in the authors' opinion, are presented here, alongside alternative approaches and some thoughts on data interpretation.
Collapse
Affiliation(s)
- Adam P Cismesia
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32611-7200, USA
| | - Laura S Bailey
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32611-7200, USA
| | - Matthew R Bell
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32611-7200, USA
| | - Larry F Tesler
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32611-7200, USA
| | - Nicolas C Polfer
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32611-7200, USA.
| |
Collapse
|
75
|
Burke NL, DeBlase AF, Redwine JG, Hopkins JR, McLuckey SA, Zwier TS. Gas-Phase Folding of a Prototypical Protonated Pentapeptide: Spectroscopic Evidence for Formation of a Charge-Stabilized β-Hairpin. J Am Chem Soc 2016; 138:2849-57. [PMID: 26853832 DOI: 10.1021/jacs.6b00093] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nicole L. Burke
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - Andrew F. DeBlase
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - James G. Redwine
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - John R. Hopkins
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - Scott A. McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - Timothy S. Zwier
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| |
Collapse
|
76
|
Wolke CT, Fournier JA, Miliordos E, Kathmann SM, Xantheas SS, Johnson MA. Isotopomer-selective spectra of a single intact H2O molecule in the Cs+(D2O)5H2O isotopologue: Going beyond pattern recognition to harvest the structural information encoded in vibrational spectra. J Chem Phys 2016; 144:074305. [DOI: 10.1063/1.4941285] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Conrad T. Wolke
- Sterling Chemistry Laboratory, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, USA
| | - Joseph A. Fournier
- Sterling Chemistry Laboratory, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, USA
| | - Evangelos Miliordos
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, USA
| | - Shawn M. Kathmann
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, USA
| | - Sotiris S. Xantheas
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352, USA
| | - Mark A. Johnson
- Sterling Chemistry Laboratory, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, USA
| |
Collapse
|
77
|
Wen H, Hou GL, Liu YR, Wang XB, Huang W. Examining the structural evolution of bicarbonate–water clusters: insights from photoelectron spectroscopy, basin-hopping structural search, and comparison with available IR spectral studies. Phys Chem Chem Phys 2016; 18:17470-82. [DOI: 10.1039/c6cp01542e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Combining NIPES, theoretical calculations and available IR spectra allows us to identify the minimum energy structures that best fit the experiments.
Collapse
Affiliation(s)
- Hui Wen
- Laboratory of Atmospheric Physico-Chemistry
- Anhui Institute of Optics & Fine Mechanics
- Chinese Academy of Sciences
- Hefei
- China
| | - Gao-Lei Hou
- Physical Sciences Division
- Pacific Northwest National Laboratory
- Richland
- USA
| | - Yi-Rong Liu
- Laboratory of Atmospheric Physico-Chemistry
- Anhui Institute of Optics & Fine Mechanics
- Chinese Academy of Sciences
- Hefei
- China
| | - Xue-Bin Wang
- Physical Sciences Division
- Pacific Northwest National Laboratory
- Richland
- USA
| | - Wei Huang
- Laboratory of Atmospheric Physico-Chemistry
- Anhui Institute of Optics & Fine Mechanics
- Chinese Academy of Sciences
- Hefei
- China
| |
Collapse
|
78
|
Roy TK, Sharma R, Gerber RB. First-principles anharmonic quantum calculations for peptide spectroscopy: VSCF calculations and comparison with experiments. Phys Chem Chem Phys 2016; 18:1607-14. [DOI: 10.1039/c5cp05979h] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
First-principles quantum calculations for anharmonic vibrational spectroscopy of three protected dipeptides are carried out and compared with experimental data.
Collapse
Affiliation(s)
- Tapta Kanchan Roy
- Institute of Chemistry and The Fritz Haber Research Center
- The Hebrew University of Jerusalem
- Israel
- Department of Chemistry
- Central University of Rajasthan
| | - Rahul Sharma
- Department of Chemistry
- Indian Institute of Technology
- Roorkee
- India
| | - R. Benny Gerber
- Institute of Chemistry and The Fritz Haber Research Center
- The Hebrew University of Jerusalem
- Israel
- Department of Chemistry
- University of California
| |
Collapse
|
79
|
Wolke CT, DeBlase AF, Leavitt CM, McCoy AB, Johnson MA. Diffuse Vibrational Signature of a Single Proton Embedded in the Oxalate Scaffold, HO2CCO2(-). J Phys Chem A 2015; 119:13018-24. [PMID: 26608571 DOI: 10.1021/acs.jpca.5b10649] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To understand how the D2d oxalate scaffold (C2O4)(2-) distorts upon capture of a proton, we report the vibrational spectra of the cryogenically cooled HO2CCO2(-) anion and its deuterated isotopologue DO2CCO2(-). The transitions associated with the skeletal vibrations and OH bending modes are sharp and are well described by inclusion of cubic terms in the normal mode expansion of the potential surface through an extended Fermi resonance analysis. The ground state structure features a five-membered ring with an asymmetric intramolecular proton bond. The spectral signatures of the hydrogen stretches, on the contrary, are surprisingly diffuse, and this behavior is not anticipated by the extended Fermi scheme. We trace the diffuse bands to very strong couplings between the high-frequency OH-stretch and the low-frequency COH bends as well as heavy particle skeletal deformations. A simple vibrationally adiabatic model recovers this breadth of oscillator strength as a 0 K analogue of the motional broadening commonly used to explain the diffuse spectra of H-bonded systems at elevated temperatures, but where these displacements arise from the configurations present at the vibrational zero-point level.
Collapse
Affiliation(s)
- Conrad T Wolke
- Sterling Chemistry Laboratory, Yale University , New Haven, Connecticut 06520, United States
| | - Andrew F DeBlase
- Sterling Chemistry Laboratory, Yale University , New Haven, Connecticut 06520, United States.,Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States
| | - Christopher M Leavitt
- Sterling Chemistry Laboratory, Yale University , New Haven, Connecticut 06520, United States
| | - Anne B McCoy
- Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| | - Mark A Johnson
- Sterling Chemistry Laboratory, Yale University , New Haven, Connecticut 06520, United States
| |
Collapse
|
80
|
Marsh BM, Voss JM, Garand E. A dual cryogenic ion trap spectrometer for the formation and characterization of solvated ionic clusters. J Chem Phys 2015; 143:204201. [DOI: 10.1063/1.4936360] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Brett M. Marsh
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
| | - Jonathan M. Voss
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
| | - Etienne Garand
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
| |
Collapse
|
81
|
Masson A, Williams ER, Rizzo TR. Molecular hydrogen messengers can lead to structural infidelity: A cautionary tale of protonated glycine. J Chem Phys 2015; 143:104313. [DOI: 10.1063/1.4930196] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Antoine Masson
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Evan R. Williams
- Department of Chemistry, University of California, Berkeley, California 94720-1460, USA
| | - Thomas R. Rizzo
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|
82
|
Masson A, Kamrath MZ, Perez MAS, Glover MS, Rothlisberger U, Clemmer DE, Rizzo TR. Infrared Spectroscopy of Mobility-Selected H+-Gly-Pro-Gly-Gly (GPGG). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:1444-54. [PMID: 26091889 DOI: 10.1007/s13361-015-1172-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/16/2015] [Accepted: 04/18/2015] [Indexed: 05/14/2023]
Abstract
We report the first results from a new instrument capable of acquiring infrared spectra of mobility-selected ions. This demonstration involves using ion mobility to first separate the protonated peptide Gly-Pro-Gly-Gly (GPGG) into two conformational families with collisional cross-sections of 93.8 and 96.8 Å(2). After separation, each family is independently analyzed by acquiring the infrared predissociation spectrum of the H(2)-tagged molecules. The ion mobility and spectroscopic data combined with density functional theory (DFT) based molecular dynamics simulations confirm the presence of one major conformer per family, which arises from cis/trans isomerization about the proline residue. We induce isomerization between the two conformers by using collisional activation in the drift tube and monitor the evolution of the ion distribution with ion mobility and infrared spectroscopy. While the cis-proline species is the preferred gas-phase structure, its relative population is smaller than that of the trans-proline species in the initial ion mobility drift distribution. This suggests that a portion of the trans-proline ion population is kinetically trapped as a higher energy conformer and may retain structural elements from solution.
Collapse
Affiliation(s)
- Antoine Masson
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015, Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
83
|
Cheng X, Steele RP. Efficient anharmonic vibrational spectroscopy for large molecules using local-mode coordinates. J Chem Phys 2015; 141:104105. [PMID: 25217902 DOI: 10.1063/1.4894507] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
This article presents a general computational approach for efficient simulations of anharmonic vibrational spectra in chemical systems. An automated local-mode vibrational approach is presented, which borrows techniques from localized molecular orbitals in electronic structure theory. This approach generates spatially localized vibrational modes, in contrast to the delocalization exhibited by canonical normal modes. The method is rigorously tested across a series of chemical systems, ranging from small molecules to large water clusters and a protonated dipeptide. It is interfaced with exact, grid-based approaches, as well as vibrational self-consistent field methods. Most significantly, this new set of reference coordinates exhibits a well-behaved spatial decay of mode couplings, which allows for a systematic, a priori truncation of mode couplings and increased computational efficiency. Convergence can typically be reached by including modes within only about 4 Å. The local nature of this truncation suggests particular promise for the ab initio simulation of anharmonic vibrational motion in large systems, where connection to experimental spectra is currently most challenging.
Collapse
Affiliation(s)
- Xiaolu Cheng
- Department of Chemistry and Henry Eyring Center for Theoretical Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Ryan P Steele
- Department of Chemistry and Henry Eyring Center for Theoretical Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
84
|
Kelleher PJ, Johnson CJ, Fournier JA, Johnson MA, McCoy AB. Persistence of dual free internal rotation in NH4(+)(H2O)·Hen=0-3 ion-molecule complexes: expanding the case for quantum delocalization in He tagging. J Phys Chem A 2015; 119:4170-6. [PMID: 25867931 DOI: 10.1021/acs.jpca.5b03114] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To explore the extent of the molecular cation perturbation induced by complexation with He atoms required for the application of cryogenic ion vibrational predissociation (CIVP) spectroscopy, we compare the spectra of a bare NH4(+)(H2O) ion (obtained using infrared multiple photon dissociation (IRMPD)) with the one-photon CIVP spectra of the NH4(+)(H2O)·He1-3 clusters. Not only are the vibrational band origins minimally perturbed, but the rotational fine structures on the NH and OH asymmetric stretching vibrations, which arise from the free internal rotation of the -OH2 and -NH3 groups, also remain intact in the adducts. To establish the location and the quantum mechanical delocalization of the He atoms, we carried out diffusion Monte Carlo (DMC) calculations of the vibrational zero point wave function, which indicate that the barriers between the three equivalent minima for the He attachment are so small that the He atom wave function is delocalized over the entire -NH3 rotor, effectively restoring C3 symmetry for the embedded -NH3 group.
Collapse
Affiliation(s)
- Patrick J Kelleher
- †Sterling Chemistry Laboratory, Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Christopher J Johnson
- †Sterling Chemistry Laboratory, Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Joseph A Fournier
- †Sterling Chemistry Laboratory, Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Mark A Johnson
- †Sterling Chemistry Laboratory, Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Anne B McCoy
- ‡Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
85
|
Hanke K, Kaufmann M, Schwaab G, Havenith M, Wolke CT, Gorlova O, Johnson MA, Kar BP, Sander W, Sanchez-Garcia E. Understanding the ionic liquid [NC4111][NTf2] from individual building blocks: an IR-spectroscopic study. Phys Chem Chem Phys 2015; 17:8518-29. [PMID: 25749545 DOI: 10.1039/c5cp00116a] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study explores the interactions underlying the IR spectra of the ionic liquid [NC4111][NTf2] and its deuterated isotopomer [d9-NC4111][NTf2] by first isolating the spectra of charged ionic building blocks using mass-selective CIVP spectroscopy and then following the evolution of these bands upon sequential assembly of the ionic constituents. The spectra of the (1,1) and (2,2) neutral ion pairs are recorded using superfluid helium droplets as well as a solid neon matrix, while those of the larger charged aggregates are again obtained with CIVP. In general, the cluster spectra are similar to that of the bulk, with the (2,2) system displaying the closest resemblance. Analysis of the polarization-dependent band intensities of the neutral ion pairs in liquid droplets as a function of external electric field yields dipole moments of the neutral aggregates. This information allows a coarse assessment of the packing structure of the neutral pairs to be antiparallel at 0.37 K, in contrast to the parallel arrangement found for the assembly of small, high-dipole neutral molecules with large rotational constants (e.g., HCN). The role of an extra anion or cation attached to both the (1,1) and the (2,2) ion pairs to form the charged clusters is discussed in the context of an additional remote, more unfavorable binding site intrinsic to the nature of the charged IL clusters and as such not anticipated in the bulk phase. Whereas for the anion itself only the lowest energy trans conformer was observed, the higher clusters showed an additional population of the cis conformer. The interactions are found to be consistent with a minimal role of hydrogen bonding.
Collapse
Affiliation(s)
- Kenny Hanke
- Department of Physical Chemistry II, Ruhr-University Bochum, D-44801 Bochum, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Marsh BM, Zhou J, Garand E. Vibrational spectroscopy of isolated copper(ii) complexes with deprotonated triglycine and tetraglycine peptides. RSC Adv 2015. [DOI: 10.1039/c4ra09655j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The gas-phase vibrational predissociation spectra of deprotonated copper–triglycine and deprotonated copper–tetraglycine are presented and analyzed.
Collapse
Affiliation(s)
- Brett M. Marsh
- Department of Chemistry
- University of Wisconsin
- Madison
- USA
| | - Jia Zhou
- Department of Chemistry
- University of Wisconsin
- Madison
- USA
| | - Etienne Garand
- Department of Chemistry
- University of Wisconsin
- Madison
- USA
| |
Collapse
|
87
|
Féraud G, Esteves-López N, Dedonder-Lardeux C, Jouvet C. UV spectroscopy of cold ions as a probe of the protonation site. Phys Chem Chem Phys 2015; 17:25755-60. [DOI: 10.1039/c5cp01122a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Where does the proton go?
Collapse
Affiliation(s)
- Géraldine Féraud
- CNRS, Aix Marseille Université
- PIIM
- Physique des Interactions Ioniques et Moléculaires (UMR-7345)
- 13397 Marseille Cedex 20
- France
| | - Natalia Esteves-López
- CNRS, Aix Marseille Université
- PIIM
- Physique des Interactions Ioniques et Moléculaires (UMR-7345)
- 13397 Marseille Cedex 20
- France
| | - Claude Dedonder-Lardeux
- CNRS, Aix Marseille Université
- PIIM
- Physique des Interactions Ioniques et Moléculaires (UMR-7345)
- 13397 Marseille Cedex 20
- France
| | - Christophe Jouvet
- CNRS, Aix Marseille Université
- PIIM
- Physique des Interactions Ioniques et Moléculaires (UMR-7345)
- 13397 Marseille Cedex 20
- France
| |
Collapse
|
88
|
Heine N, Asmis KR. Cryogenic ion trap vibrational spectroscopy of hydrogen-bonded clusters relevant to atmospheric chemistry. INT REV PHYS CHEM 2014. [DOI: 10.1080/0144235x.2014.979659] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
89
|
Sibert EL, Tabor DP, Kidwell NM, Dean JC, Zwier TS. Fermi Resonance Effects in the Vibrational Spectroscopy of Methyl and Methoxy Groups. J Phys Chem A 2014; 118:11272-81. [DOI: 10.1021/jp510142g] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Edwin L. Sibert
- Department
of Chemistry and Theoretical Chemistry Institute, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Daniel P. Tabor
- Department
of Chemistry and Theoretical Chemistry Institute, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Nathanael M. Kidwell
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - Jacob C. Dean
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | - Timothy S. Zwier
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| |
Collapse
|
90
|
Abascal NC, Lichtor PA, Giuliano MW, Miller SJ. Function-Oriented Investigations of a Peptide-Based Catalyst that Mediates Enantioselective Allylic Alcohol Epoxidation. Chem Sci 2014; 5:4504-4511. [PMID: 25386335 PMCID: PMC4224318 DOI: 10.1039/c4sc01440e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We detail an investigation of a peptide-based catalyst 6 that is effective for the site- (>100:1:1) and enantioselective epoxidation (86% ee) of farnesol. Studies of the substrate scope exhibited by the catalyst are included, along with an exploration of optimized reaction conditions. Mechanistic studies are reported, including relative rate determinations for the catalyst and propionic acid, a historical perspective, truncation studies, and modeling using NMR data. Our compiled data advances our understanding of the inner workings of a catalyst that was identified through combinatorial means.
Collapse
Affiliation(s)
- Nadia C. Abascal
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Phillip A. Lichtor
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Michael W. Giuliano
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Scott J. Miller
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
91
|
Féraud G, Berdakin M, Dedonder C, Jouvet C, Pino GA. Excited states of proton-bound DNA/RNA base homodimers: pyrimidines. J Phys Chem B 2014; 119:2219-28. [PMID: 25046334 DOI: 10.1021/jp505756a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We are presenting the electronic photofragment spectra of the protonated pyrimidine DNA base homodimers. Only the thymine dimer exhibits a well structured vibrational progression, while the protonated monomer shows broad vibrational bands. This shows that proton bonding can block some nonradiative processes present in the monomer.
Collapse
Affiliation(s)
- Géraldine Féraud
- Physique des Interactions Ioniques et Moléculaires (PIIM), UMR 7345, CNRS, Aix-Marseille Université , 13397 Marseille Cedex 20, France
| | | | | | | | | |
Collapse
|
92
|
Kang H, Féraud G, Dedonder-Lardeux C, Jouvet C. New Method for Double-Resonance Spectroscopy in a Cold Quadrupole Ion Trap and Its Application to UV-UV Hole-Burning Spectroscopy of Protonated Adenine Dimer. J Phys Chem Lett 2014; 5:2760-2764. [PMID: 26277976 DOI: 10.1021/jz5012466] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A novel method for double-resonance spectroscopy in a cold quadrupole ion trap is presented, which utilizes dipolar resonant excitation of fragment ions in the quadrupole ion trap. Photofragments by a burn laser are removed by applying an auxiliary RF to the trap, and a probe laser detects the depletion of photofragments by the burn laser. By scanning the wavelength of the burn laser, conformation-specific UV spectrum of a cold ion is obtained. This simple and powerful method is applicable to any type of double-resonance spectroscopy in a cold quadrupole ion trap and was applied to UV-UV hole-burning spectroscopy of protonated adenine dimer. It was found that protonated adenine dimer has multiple conformers/tautomers, each with multiple excited states with drastically different excited state dynamics.
Collapse
Affiliation(s)
- Hyuk Kang
- †Department of Chemistry, Ajou University, San5, Wonchon-dong, Youngtong-gu, Suwon 443-749, Korea
| | - Géraldine Féraud
- ‡CNRS, Aix-Marseille Université, Physique des Interactions Ioniques et Moléculaire (PIIM) UMR 7345, 13397 Marseille Cedex, France
| | - Claude Dedonder-Lardeux
- ‡CNRS, Aix-Marseille Université, Physique des Interactions Ioniques et Moléculaire (PIIM) UMR 7345, 13397 Marseille Cedex, France
| | - Christophe Jouvet
- ‡CNRS, Aix-Marseille Université, Physique des Interactions Ioniques et Moléculaire (PIIM) UMR 7345, 13397 Marseille Cedex, France
| |
Collapse
|
93
|
Mosley JD, Young JW, Duncan MA. Infrared spectroscopy of the acetyl cation and its protonated ketene isomer. J Chem Phys 2014; 141:024306. [DOI: 10.1063/1.4887074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- J. D. Mosley
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - J. W. Young
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - M. A. Duncan
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
94
|
Johnson CJ, Dzugan LC, Wolk AB, Leavitt CM, Fournier JA, McCoy AB, Johnson MA. Microhydration of contact ion pairs in M(2+)OH(-)(H2O)(n=1-5) (M = Mg, Ca) clusters: spectral manifestations of a mobile proton defect in the first hydration shell. J Phys Chem A 2014; 118:7590-7. [PMID: 24874345 DOI: 10.1021/jp504139j] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Vibrational predissociation spectra of D2-"tagged" Mg(2+)OH(-)(H2O)n=1-6 and Ca(2+)OH(-)(H2O)n=1-5 clusters are reported to explore how the M(2+)OH(-) contact ion pairs respond to stepwise formation of the first hydration shell. In both cases, the hydroxide stretching frequency is found to red-shift strongly starting with addition of the third water molecule, quickly becoming indistinguishable from nonbonded OH groups associated with solvent water molecules by n = 5. A remarkably broad feature centered around 3200 cm(-1) and spanning up to ∼1000 cm(-1) appears for the n ≥ 4 clusters that we assign to a single-donor ionic hydrogen bond between a proximal first solvent shell water molecule and the embedded hydroxide ion. The extreme broadening is rationalized with a theoretical model that evaluates the range of local OH stretching frequencies predicted for the heavy particle configurations available in the zero-point vibrational wave function describing the low-frequency modes. The implication of this treatment is that extreme broadening in the vibrational spectrum need not arise from thermal fluctuations in the ion ensemble, but can rather reflect combination bands based on the OH stretching fundamental that involve many quanta of low-frequency modes whose displacements strongly modulate the OH stretching frequency.
Collapse
Affiliation(s)
- Christopher J Johnson
- Sterling Chemistry Laboratory, Department of Chemistry, Yale University , 225 Prospect Street, New Haven, Connecticut 06520, United States
| | | | | | | | | | | | | |
Collapse
|
95
|
Johnson CJ, Wolk AB, Fournier JA, Sullivan EN, Weddle GH, Johnson MA. Communication: He-tagged vibrational spectra of the SarGlyH+ and H+(H2O)2,3 ions: Quantifying tag effects in cryogenic ion vibrational predissociation (CIVP) spectroscopy. J Chem Phys 2014; 140:221101. [DOI: 10.1063/1.4880475] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
96
|
Fournier JA, Johnson CJ, Wolke CT, Weddle GH, Wolk AB, Johnson MA. Vibrational spectral signature of the proton defect in the three-dimensional H⁺(H₂O)₂₁ cluster. Science 2014; 344:1009-12. [PMID: 24876493 DOI: 10.1126/science.1253788] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The way in which a three-dimensional network of water molecules accommodates an excess proton is hard to discern from the broad vibrational spectra of dilute acids. The sharper bands displayed by cold gas-phase clusters, H(+)(H2O)n, are therefore useful because they encode the network-dependent speciation of the proton defect and yet are small enough to be accurately treated with electronic structure theory. We identified the previously elusive spectral signature of the proton defect in the three-dimensional cage structure adopted by the particularly stable H(+)(H2O)21 cluster. Cryogenically cooling the ion and tagging it with loosely bound deuterium (D2) enabled detection of its vibrational spectrum over the 600 to 4000 cm(-1) range. The excess charge is consistent with a tricoordinated H3O(+) moiety embedded on the surface of a clathrate-like cage.
Collapse
Affiliation(s)
- Joseph A Fournier
- Sterling Chemistry Laboratory, Yale University, New Haven, CT 06520, USA
| | | | - Conrad T Wolke
- Sterling Chemistry Laboratory, Yale University, New Haven, CT 06520, USA
| | - Gary H Weddle
- Sterling Chemistry Laboratory, Yale University, New Haven, CT 06520, USA
| | - Arron B Wolk
- Sterling Chemistry Laboratory, Yale University, New Haven, CT 06520, USA
| | - Mark A Johnson
- Sterling Chemistry Laboratory, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
97
|
Marsh BM, Duffy EM, Soukup MT, Zhou J, Garand E. Intramolecular Hydrogen Bonding Motifs in Deprotonated Glycine Peptides by Cryogenic Ion Infrared Spectroscopy. J Phys Chem A 2014; 118:3906-12. [DOI: 10.1021/jp501936b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Brett M. Marsh
- Department
of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Erin M. Duffy
- Department
of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Michael T. Soukup
- Department
of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jia Zhou
- Department
of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Etienne Garand
- Department
of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
98
|
Féraud G, Dedonder C, Jouvet C, Inokuchi Y, Haino T, Sekiya R, Ebata T. Development of Ultraviolet-Ultraviolet Hole-Burning Spectroscopy for Cold Gas-Phase Ions. J Phys Chem Lett 2014; 5:1236-1240. [PMID: 26274477 DOI: 10.1021/jz500478w] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A new ultraviolet-ultraviolet hole-burning (UV-UV HB) spectroscopic scheme has been developed for cold gas-phase ions in a quadrupole ion trap (QIT) connected with a time-of-flight (TOF) mass spectrometer. In this method, a pump UV laser generates a population hole for the ions trapped in the cold QIT, and a second UV laser (probe) monitors the population hole for the ions extracted to the field-free region of the TOF mass spectrometer. Here, the neutral fragments generated by the UV dissociation of the ions with the second laser are detected. This UV-UV HB spectroscopy was applied to protonated dibenzylamine and to protonated uracil. Protonated uracil exhibits two strong electronic transitions; one has a band origin at 31760 cm(-1) and the other at 39000 cm(-1). From the UV-UV HB measurement and quantum chemical calculations, the lower-energy transition is assigned to the enol-keto tautomer and the higher-energy one to the enol-enol tautomer.
Collapse
Affiliation(s)
- Géraldine Féraud
- †Physique des Interactions Ioniques et Moleculaires (PIIM) UMR 7345, CNRS, Aix Marseille Université, 13397 Marseille Cedex, France
| | - Claude Dedonder
- †Physique des Interactions Ioniques et Moleculaires (PIIM) UMR 7345, CNRS, Aix Marseille Université, 13397 Marseille Cedex, France
| | - Christophe Jouvet
- †Physique des Interactions Ioniques et Moleculaires (PIIM) UMR 7345, CNRS, Aix Marseille Université, 13397 Marseille Cedex, France
| | - Yoshiya Inokuchi
- ‡Department of Chemistry, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Takeharu Haino
- ‡Department of Chemistry, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Ryo Sekiya
- ‡Department of Chemistry, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Takayuki Ebata
- ‡Department of Chemistry, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
99
|
Marsh BM, Zhou J, Garand E. Vibrational Spectroscopy of Small Hydrated CuOH+ Clusters. J Phys Chem A 2014; 118:2063-71. [DOI: 10.1021/jp411614t] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Brett M. Marsh
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jia Zhou
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Etienne Garand
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
100
|
Boyarkin OV, Kopysov V. Cryogenically cooled octupole ion trap for spectroscopy of biomolecular ions. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2014; 85:033105. [PMID: 24689562 DOI: 10.1063/1.4868178] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We present here the design of a linear octupole ion trap, suitable for collisional cryogenic cooling and spectroscopy of large ions. The performance of this trap has been assessed using ultraviolet (UV) photofragmentation spectroscopy of protonated dipeptides. At the trap temperature of 6.1 K, the vibrational temperature of the ions reaches 9.1 K, although their estimated translational temperature is ~150 K. This observation suggests that, despite the significant translational heating by radio-frequency electrical field, vibrational cooling of heavy ions in the octupole is at least as efficient as in the 22-pole ion traps previously used in our laboratory. In contrast to the 22-pole traps, excellent radial confinement of ions in the octupole makes it convenient for laser spectroscopy and boosts the dissociation yield of the stored ions to 30%. Overlap of the entire ion cloud by the laser beam in the octupole also allows for efficient UV depletion spectroscopy of ion-He clusters. The measured electronic spectra of the dipeptides and the clusters differ drastically, complicating a use of UV tagging spectroscopy for structural determination of large species.
Collapse
Affiliation(s)
- Oleg V Boyarkin
- Laboratoire de Chimie Physique Moléculaire, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Vladimir Kopysov
- Laboratoire de Chimie Physique Moléculaire, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|