51
|
Structural and dynamical characterization of the S4 state of the Kok-Joliot’s cycle by means of QM/MM Molecular Dynamics Simulations. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
52
|
de Lichtenberg C, Messinger J. Substrate water exchange in the S2 state of photosystem II is dependent on the conformation of the Mn4Ca cluster. Phys Chem Chem Phys 2020; 22:12894-12908. [DOI: 10.1039/d0cp01380c] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The structural flexibility of the Mn4Ca cluster in photosystem II supports the exchange of the central O5 bridge.
Collapse
|
53
|
Yamamoto M, Nakamura S, Noguchi T. Protonation structure of the photosynthetic water oxidizing complex in the S0 state as revealed by normal mode analysis using quantum mechanics/molecular mechanics calculations. Phys Chem Chem Phys 2020; 22:24213-24225. [DOI: 10.1039/d0cp04079g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Protonation structure of the first intermediate of the water oxidizing complex was determined by QM/MM calculations of molecular vibrations.
Collapse
Affiliation(s)
- Masao Yamamoto
- Division of Material Science
- Graduate School of Science
- Nagoya University
- Nagoya
- Japan
| | - Shin Nakamura
- Division of Material Science
- Graduate School of Science
- Nagoya University
- Nagoya
- Japan
| | - Takumi Noguchi
- Division of Material Science
- Graduate School of Science
- Nagoya University
- Nagoya
- Japan
| |
Collapse
|
54
|
Nakamura S, Capone M, Narzi D, Guidoni L. Pivotal role of the redox-active tyrosine in driving the water splitting catalyzed by photosystem II. Phys Chem Chem Phys 2020; 22:273-285. [DOI: 10.1039/c9cp04605d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
TyrZ oxidation state triggers hydrogen bond modification in the water oxidation catalysis.
Collapse
Affiliation(s)
- Shin Nakamura
- Department of Biochemical Sciences “A. Rossi Fanelli”
- University of Rome “Sapienza”
- Rome
- Italy
| | - Matteo Capone
- Department of Information Engineering, Computational Science, and Mathematics
- Università dell’Aquila
- L’Aquila
- Italy
| | - Daniele Narzi
- Institute of Chemical Sciences and Engineering Ecole Polytechnique Federale de Lausanne Av. F.-A. Forel 2
- 1015 Lausanne
- Switzerland
| | - Leonardo Guidoni
- Department of Physical and Chemical Science
- Università dell’Aquila
- L’Aquila
- Italy
| |
Collapse
|
55
|
|
56
|
Domain-based local pair natural orbital CCSD(T) calculations of fourteen different S2 intermediates for water oxidation in the Kok cycle of OEC of PSII. Re-visit to one LS-two HS model for the S2 state. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.136731] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
57
|
Suga M, Shimada A, Akita F, Shen JR, Tosha T, Sugimoto H. Time-resolved studies of metalloproteins using X-ray free electron laser radiation at SACLA. Biochim Biophys Acta Gen Subj 2019; 1864:129466. [PMID: 31678142 DOI: 10.1016/j.bbagen.2019.129466] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND The invention of the X-ray free-electron laser (XFEL) has provided unprecedented new opportunities for structural biology. The advantage of XFEL is an intense pulse of X-rays and a very short pulse duration (<10 fs) promising a damage-free and time-resolved crystallography approach. SCOPE OF REVIEW Recent time-resolved crystallographic analyses in XFEL facility SACLA are reviewed. Specifically, metalloproteins involved in the essential reactions of bioenergy conversion including photosystem II, cytochrome c oxidase and nitric oxide reductase are described. MAJOR CONCLUSIONS XFEL with pump-probe techniques successfully visualized the process of the reaction and the dynamics of a protein. Since the active center of metalloproteins is very sensitive to the X-ray radiation, damage-free structures obtained by XFEL are essential to draw mechanistic conclusions. Methods and tools for sample delivery and reaction initiation are key for successful measurement of the time-resolved data. GENERAL SIGNIFICANCE XFEL is at the center of approaches to gain insight into complex mechanism of structural dynamics and the reactions catalyzed by biological macromolecules. Further development has been carried out to expand the application of time-resolved X-ray crystallography. This article is part of a Special Issue entitled Novel measurement techniques for visualizing 'live' protein molecules.
Collapse
Affiliation(s)
- Michihiro Suga
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima Naka, Okayama 700-8530, Japan..
| | - Atsuhiro Shimada
- Graduate School of Applied Biological Sciences and Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan..
| | - Fusamichi Akita
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima Naka, Okayama 700-8530, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima Naka, Okayama 700-8530, Japan
| | - Takehiko Tosha
- Synchrotron Radiation Life Science Instrumentation Team, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Hiroshi Sugimoto
- Synchrotron Radiation Life Science Instrumentation Team, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan..
| |
Collapse
|
58
|
Lubitz W, Chrysina M, Cox N. Water oxidation in photosystem II. PHOTOSYNTHESIS RESEARCH 2019; 142:105-125. [PMID: 31187340 PMCID: PMC6763417 DOI: 10.1007/s11120-019-00648-3] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/20/2019] [Indexed: 05/18/2023]
Abstract
Biological water oxidation, performed by a single enzyme, photosystem II, is a central research topic not only in understanding the photosynthetic apparatus but also for the development of water splitting catalysts for technological applications. Great progress has been made in this endeavor following the report of a high-resolution X-ray crystallographic structure in 2011 resolving the cofactor site (Umena et al. in Nature 473:55-60, 2011), a tetra-manganese calcium complex. The electronic properties of the protein-bound water oxidizing Mn4OxCa complex are crucial to understand its catalytic activity. These properties include: its redox state(s) which are tuned by the protein matrix, the distribution of the manganese valence and spin states and the complex interactions that exist between the four manganese ions. In this short review we describe how magnetic resonance techniques, particularly EPR, complemented by quantum chemical calculations, have played an important role in understanding the electronic structure of the cofactor. Together with isotope labeling, these techniques have also been instrumental in deciphering the binding of the two substrate water molecules to the cluster. These results are briefly described in the context of the history of biological water oxidation with special emphasis on recent work using time resolved X-ray diffraction with free electron lasers. It is shown that these data are instrumental for developing a model of the biological water oxidation cycle.
Collapse
Affiliation(s)
- Wolfgang Lubitz
- Max-Planck-Institut für Chemische Energiekonversion, Mülheim/Ruhr, Germany
| | - Maria Chrysina
- Max-Planck-Institut für Chemische Energiekonversion, Mülheim/Ruhr, Germany
| | - Nicholas Cox
- Research School of Chemistry, The Australian National University, Canberra, Australia
| |
Collapse
|
59
|
Mechanism of protonation of the over-reduced Mn4CaO5 cluster in photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:148059. [DOI: 10.1016/j.bbabio.2019.148059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/18/2019] [Accepted: 08/02/2019] [Indexed: 01/12/2023]
|
60
|
Kaur D, Szejgis W, Mao J, Amin M, Reiss KM, Askerka M, Cai X, Khaniya U, Zhang Y, Brudvig GW, Batista VS, Gunner MR. Relative stability of the S 2 isomers of the oxygen evolving complex of photosystem II. PHOTOSYNTHESIS RESEARCH 2019; 141:331-341. [PMID: 30941614 DOI: 10.1007/s11120-019-00637-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
The oxidation of water to O2 is catalyzed by the Oxygen Evolving Complex (OEC), a Mn4CaO5 complex in Photosystem II (PSII). The OEC is sequentially oxidized from state S0 to S4. The S2 state, (MnIII)(MnIV)3, coexists in two redox isomers: S2,g=2, where Mn4 is MnIV and S2,g=4.1, where Mn1 is MnIV. Mn4 has two terminal water ligands, whose proton affinity is affected by the Mn oxidation state. The relative energy of the two S2 redox isomers and the protonation state of the terminal water ligands are analyzed using classical multi-conformer continuum electrostatics (MCCE). The Monte Carlo simulations are done on QM/MM optimized S1 and S2 structures docked back into the complete PSII, keeping the protonation state of the protein at equilibrium with the OEC redox and protonation states. Wild-type PSII, chloride-depleted PSII, PSII in the presence of oxidized YZ/protonated D1-H190, and the PSII mutants D2-K317A, D1-D61A, and D1-S169A are studied at pH 6. The wild-type PSII at pH 8 is also described. In qualitative agreement with experiment, in wild-type PSII, the S2,g=2 redox isomer is the lower energy state; while chloride depletion or pH 8 stabilizes the S2,g=4.1 state and the mutants D2-K317A, D1-D61A, and D1-S169A favor the S2,g=2 state. The protonation states of D1-E329, D1-E65, D1-H337, D1-D61, and the terminal waters on Mn4 (W1 and W2) are affected by the OEC oxidation state. The terminal W2 on Mn4 is a mixture of water and hydroxyl in the S2,g=2 state, indicating the two water protonation states have similar energy, while it remains neutral in the S1 and S2,g=4.1 states. In wild-type PSII, advancement to S2 leads to negligible proton loss and so there is an accumulation of positive charge. In the analyzed mutations and Cl- depleted PSII, additional deprotonation is found upon formation of S2 state.
Collapse
Affiliation(s)
- Divya Kaur
- Department of Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA
- Department of Physics, City College of New York, 160 Convent Avenue, New York, NY, 10031, USA
| | - Witold Szejgis
- Department of Physics, City College of New York, 160 Convent Avenue, New York, NY, 10031, USA
| | - Junjun Mao
- Department of Physics, City College of New York, 160 Convent Avenue, New York, NY, 10031, USA
| | - Muhamed Amin
- University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Krystle M Reiss
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Mikhail Askerka
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Xiuhong Cai
- Department of Physics, City College of New York, 160 Convent Avenue, New York, NY, 10031, USA
- Department of Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Umesh Khaniya
- Department of Physics, City College of New York, 160 Convent Avenue, New York, NY, 10031, USA
- Department of Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Yingying Zhang
- Department of Physics, City College of New York, 160 Convent Avenue, New York, NY, 10031, USA
- Department of Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - M R Gunner
- Department of Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
- Department of Physics, City College of New York, 160 Convent Avenue, New York, NY, 10031, USA.
- Department of Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
61
|
Kim CJ, Debus RJ. One of the Substrate Waters for O2 Formation in Photosystem II Is Provided by the Water-Splitting Mn4CaO5 Cluster’s Ca2+ Ion. Biochemistry 2019; 58:3185-3192. [DOI: 10.1021/acs.biochem.9b00418] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Christopher J. Kim
- Department of Biochemistry, University of California, Riverside, California 92521, United States
| | - Richard J. Debus
- Department of Biochemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
62
|
Han R, Rempfer K, Zhang M, Dobbek H, Zouni A, Dau H, Luber S. Investigating the Structure and Dynamics of Apo‐Photosystem II. ChemCatChem 2019. [DOI: 10.1002/cctc.201900351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Ruocheng Han
- Institut für ChemieUniversität Zürich Winterthurerstrasse 129 8057 Zürich Switzerland
| | - Katharina Rempfer
- Institut für ChemieUniversität Zürich Winterthurerstrasse 129 8057 Zürich Switzerland
| | - Miao Zhang
- Institut für BiologieHumboldt Universität zu Berlin Philippstrasse 13 10115 Berlin Germany
| | - Holger Dobbek
- Institut für BiologieHumboldt Universität zu Berlin Philippstrasse 13 10115 Berlin Germany
| | - Athina Zouni
- Institut für BiologieHumboldt Universität zu Berlin Philippstrasse 13 10115 Berlin Germany
| | - Holger Dau
- Institut für PhysikFreie Universität Berlin Arnimallee 14 14195 Berlin Germany
| | - Sandra Luber
- Institut für ChemieUniversität Zürich Winterthurerstrasse 129 8057 Zürich Switzerland
| |
Collapse
|
63
|
Boussac A. Temperature dependence of the high-spin S2 to S3 transition in Photosystem II: Mechanistic consequences. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:508-518. [DOI: 10.1016/j.bbabio.2019.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 02/08/2023]
|
64
|
Capone M, Narzi D, Tychengulova A, Guidoni L. On the comparison between differential vibrational spectroscopy spectra and theoretical data in the carboxyl region of photosystem II. PHYSIOLOGIA PLANTARUM 2019; 166:33-43. [PMID: 30801735 DOI: 10.1111/ppl.12949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
Understanding the structural modification experienced by the Mn4 CaO5 oxygen-evolving complex of photosystem II along the Kok-Joliot's cycle has been a challenge for both theory and experiments since many decades. In particular, differential infrared spectroscopy was extensively used to probe the surroundings of the reaction center, to catch spectral changes between different S-states along the catalytic cycle. Because of the complexity of the signals, only a limited quantity of identified peaks have been assigned so far, also because of the difficulty of a direct comparison with theoretical calculations. In the present work, we critically reconsider the comparison between differential vibrational spectroscopy and theoretical calculations performed on the structural models of the photosystem II active site and an inorganic structural mimic. Several factors are currently limiting the reliability of a quantitative comparison, such as intrinsic errors associated to theoretical methods, and most of all, the uncertainty attributed to the lack of knowledge about the localization of the underlying structural changes. Critical points in this comparison are extensively discussed. Comparing several computational data of differential S2 /S1 infrared spectroscopy, we have identified weak and strong points in their interpretation when compared with experimental spectra.
Collapse
Affiliation(s)
- Matteo Capone
- Department of Information Engineering, Computational Science and Mathematics, Università dell'Aquila, 67100, L'Aquila, Italy
| | - Daniele Narzi
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Aliya Tychengulova
- Department of Basic Sciences Applied for Engineering, "Sapienza" Università di Roma, 00185, Rome, Italy
| | - Leonardo Guidoni
- Department of Physical and Chemical Science, Università dell'Aquila, 67100, L'Aquila, Italy
| |
Collapse
|
65
|
Yamaguchi K, Yamanaka S, Isobe H, Shoji M, Miyagawa K, Nakajima T, Kawakami T, Okumura M. Theoretical and computational investigations of geometrical, electronic and spin structures of the CaMn 4 O X (X = 5, 6) cluster in the Kok cycle S i (i = 0-3) of oxygen evolving complex of photosystem II. PHYSIOLOGIA PLANTARUM 2019; 166:44-59. [PMID: 30847925 DOI: 10.1111/ppl.12960] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
The optimized geometries of the CaMn4 OX (X = 5, 6) cluster in the oxygen evolving complex (OEC) of photosystem II (PSII) by large-scale quantum mechanics (QM) and molecular mechanics (MM) calculations are compared with recent serial femtosecond crystallography (SFX) results for the Si (i = 0-3) states. The valence states of four Mn ions by the QM/MM calculations are also examined in relation to the experimental results by the X-ray emission spectroscopy (XES) for the Si intermediates. Geometrical and valence structures of right-opened Mn-hydroxide, Mn-oxo and Mn-peroxide intermediates in the S3 state are investigated in detail in relation to recent SFX and XES experiments for the S3 state. Interplay between theory and experiment indicates that the Mn-oxo intermediate is a new possible candidate for the S3 state. Implications of the computational results are discussed in relation to possible mechanisms of the oxygenoxygen bond formation for water oxidation in OEC of PSII.
Collapse
Affiliation(s)
- Kizashi Yamaguchi
- Institute of Scientific and Industrial Research, Osaka University, Suita, Osaka, 567-0047, Japan
- Riken Center for Computational Science, Kobe, Hyogo 650-0047, Japan
| | - Shusuke Yamanaka
- Department of Chemistry, Graduate School of Science, Osaka University, Suita, Osaka 560-0043, Japan
| | - Hiroshi Isobe
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, Okayama 700-8530, Japan
| | - Mitsuo Shoji
- Center of Computational Sciences, Tsukuba University, Tsukuba, Ibaraki 305-8577, Japan
| | - Kouichi Miyagawa
- Institute of Scientific and Industrial Research, Osaka University, Suita, Osaka, 567-0047, Japan
| | | | - Takashi Kawakami
- Department of Chemistry, Graduate School of Science, Osaka University, Suita, Osaka 560-0043, Japan
| | - Mitsutaka Okumura
- Department of Chemistry, Graduate School of Science, Osaka University, Suita, Osaka 560-0043, Japan
| |
Collapse
|
66
|
Assessment of Double-Hybrid Density Functional Theory for Magnetic Exchange Coupling in Manganese Complexes. INORGANICS 2019. [DOI: 10.3390/inorganics7050057] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Molecular systems containing magnetically interacting (exchange-coupled) manganese ions are important in catalysis, biomimetic chemistry, and molecular magnetism. The reliable prediction of exchange coupling constants with quantum chemical methods is key for tracing the relationships between structure and magnetic properties in these systems. Density functional theory (DFT) in the broken-symmetry approach has been employed extensively for this purpose and hybrid functionals with moderate levels of Hartree–Fock exchange admixture have often been shown to perform adequately. Double-hybrid density functionals that introduce a second-order perturbational contribution to the Kohn–Sham energy are generally regarded as a superior approach for most molecular properties, but their performance remains unexplored for exchange-coupled manganese systems. An assessment of various double-hybrid functionals for the prediction of exchange coupling constants is presented here using a set of experimentally characterized dinuclear manganese complexes that cover a wide range of exchange coupling situations. Double-hybrid functionals perform more uniformly compared to conventional DFT methods, but they fail to deliver improved accuracy or reliability in the prediction of exchange coupling constants. Reparametrized double-hybrid density functionals (DHDFs) perform no better, and most often worse, than the original B2-PLYP double-hybrid method. All DHDFs are surpassed by the hybrid-meta-generalized gradient approximation (GGA) TPSSh functional. Possible directions for future methodological developments are discussed.
Collapse
|
67
|
Shoji M, Isobe H, Miyagawa K, Yamaguchi K. Possibility of the right-opened Mn-oxo intermediate (R-oxo(4444)) among all nine intermediates in the S3 state of the oxygen-evolving complex of photosystem II revealed by large-scale QM/MM calculations. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2018.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
68
|
Abstract
Photosystem II (PSII) uses water as the terminal electron donor, producing oxygen in the Mn4CaO5 oxygen evolving complex (OEC), while cytochrome c oxidase (CcO) reduces O2 to water in its heme–Cu binuclear center (BNC). Each protein is oriented in the membrane to add to the proton gradient. The OEC, which releases protons, is located near the P-side (positive, at low-pH) of the membrane. In contrast, the BNC is in the middle of CcO, so the protons needed for O2 reduction must be transferred from the N-side (negative, at high pH). In addition, CcO pumps protons from N- to P-side, coupled to the O2 reduction chemistry, to store additional energy. Thus, proton transfers are directly coupled to the OEC and BNC redox chemistry, as well as needed for CcO proton pumping. The simulations that study the changes in proton affinity of the redox active sites and the surrounding protein at different states of the reaction cycle, as well as the changes in hydration that modulate proton transfer paths, are described.
Collapse
|
69
|
Shoji M, Isobe H, Yamanaka S, Umena Y, Kawakami K, Kamiya N, Yamaguchi K. Theoretical Elucidation of Geometrical Structures of the CaMn4O5 Cluster in Oxygen Evolving Complex of Photosystem II Scope and Applicability of Estimation Formulae of Structural Deformations via the Mixed-Valence and Jahn–Teller Effects. ADVANCES IN QUANTUM CHEMISTRY 2019. [DOI: 10.1016/bs.aiq.2018.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
70
|
Lee J, Small DW, Head-Gordon M. Open-shell coupled-cluster valence-bond theory augmented with an independent amplitude approximation for three-pair correlations: Application to a model oxygen-evolving complex and single molecular magnet. J Chem Phys 2018; 149:244121. [DOI: 10.1063/1.5052667] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Joonho Lee
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - David W. Small
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
71
|
Yamaguchi K, Shoji M, Isobe H, Miyagawa K, Nakatani K. Theory of chemical bonds in metalloenzymes XXII: a concerted bond-switching mechanism for the oxygen–oxygen bond formation coupled with one electron transfer for water oxidation in the oxygen-evolving complex of photosystem II. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1552799] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- K. Yamaguchi
- Institute for Nanoscience Design, Osaka University, Toyonaka, Osaka, Japan
- The Institute for Scientific and Industrial Research, Osaka University, Osaka, Japan
- Handairigaku Techno-Research, Toyonaka, Osaka, Japan
| | - M. Shoji
- Center of Computational Sciences, Tsukuba University, Tsukuba, Ibaraki, Japan
| | - H. Isobe
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - K. Miyagawa
- The Institute for Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - K. Nakatani
- The Institute for Scientific and Industrial Research, Osaka University, Osaka, Japan
| |
Collapse
|
72
|
Lee HB, Shiau AA, Oyala PH, Marchiori DA, Gul S, Chatterjee R, Yano J, Britt RD, Agapie T. Tetranuclear [Mn IIIMn 3IVO 4] Complexes as Spectroscopic Models of the S 2 State of the Oxygen Evolving Complex in Photosystem II. J Am Chem Soc 2018; 140:17175-17187. [PMID: 30407806 DOI: 10.1021/jacs.8b09961] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Despite extensive biochemical, spectroscopic, and computational studies, the mechanism of biological water oxidation by the oxygen evolving complex (OEC) of Photosystem II remains a subject of significant debate. Mechanistic proposals are guided by the characterization of reaction intermediates such as the S2 state, which features two characteristic EPR signals at g = 2 and g = 4.1. Two nearly isoenergetic structural isomers have been proposed as the source of these distinct signals, but relevant structure-electronic structure studies remain rare. Herein, we report the synthesis, crystal structure, electrochemistry, XAS, magnetic susceptibility, variable temperature CW-EPR, and pulse EPR data for a series of [MnIIIMn3IVO4] cuboidal complexes as spectroscopic models of the S2 state of the OEC. Resembling the oxidation state and EPR spectra of the S2 state of the OEC, these model complexes show two EPR signals, a broad low field signal and a multiline signal, that are remarkably similar to the biological system. The effect of systematic changes in the nature of the bridging ligands on spectroscopy were studied. Results show that the electronic structure of tetranuclear Mn complexes is highly sensitive to even small geometric changes and the nature of the bridging ligands. Our model studies suggest that the spectroscopic properties of the OEC may also react very sensitively to small changes in structure; the effect of protonation state and other reorganization processes need to be carefully assessed.
Collapse
Affiliation(s)
- Heui Beom Lee
- Department of Chemistry and Chemical Engineering , California Institute of Technology , 1200 E California Blvd MC 127-72 , Pasadena , California 91125 , United States
| | - Angela A Shiau
- Department of Chemistry and Chemical Engineering , California Institute of Technology , 1200 E California Blvd MC 127-72 , Pasadena , California 91125 , United States
| | - Paul H Oyala
- Department of Chemistry and Chemical Engineering , California Institute of Technology , 1200 E California Blvd MC 127-72 , Pasadena , California 91125 , United States
| | - David A Marchiori
- Department of Chemistry , University of California Davis , One Shields Avenue , Davis , California 95616 , United States
| | - Sheraz Gul
- Molecular Biophysics and Integrated Bioimaging Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Ruchira Chatterjee
- Molecular Biophysics and Integrated Bioimaging Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - R David Britt
- Department of Chemistry , University of California Davis , One Shields Avenue , Davis , California 95616 , United States
| | - Theodor Agapie
- Department of Chemistry and Chemical Engineering , California Institute of Technology , 1200 E California Blvd MC 127-72 , Pasadena , California 91125 , United States
| |
Collapse
|
73
|
Shamsipur M, Pashabadi A. Latest advances in PSII features and mechanism of water oxidation. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
74
|
Corry TA, O'Malley PJ. Evidence of O-O Bond Formation in the Final Metastable S 3 State of Nature's Water Oxidizing Complex Implying a Novel Mechanism of Water Oxidation. J Phys Chem Lett 2018; 9:6269-6274. [PMID: 30336040 DOI: 10.1021/acs.jpclett.8b02793] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A novel mechanism for the final stages of Nature's photosynthetic water oxidation to molecular oxygen is proposed. This is based on a comparison of experimental and broken symmetry density functional theory (BS-DFT) calculated geometries and magnetic resonance properties of water oxidizing complex models in the final metastable oxidation state, S3. We show that peroxo models of the S3 state are in vastly superior agreement with the current experimental structural determinations compared with oxo-hydroxo models. Comparison of experimental and BS-DFT calculated 55Mn hyperfine couplings for the electron paramagnetic resonance (EPR) visible form shows better agreement for the oxo-hydroxo model. An equilibrium between oxo-hydroxo and peroxo models is proposed for the S3 state and the major implications for the final steps in the water oxidation mechanism are analyzed and discussed.
Collapse
Affiliation(s)
- Thomas A Corry
- School of Chemistry , The University of Manchester , Manchester , M13 9PL , U.K
| | - Patrick J O'Malley
- School of Chemistry , The University of Manchester , Manchester , M13 9PL , U.K
| |
Collapse
|
75
|
Petrie S, Stranger R, Pace RJ. Explaining the Different Geometries of the Water Oxidising Complex in the Nominal S 3 State Crystal Structures of Photosystem II at 2.25 Å and 2.35 Å. Chemphyschem 2018; 19:3296-3309. [PMID: 30290080 DOI: 10.1002/cphc.201800686] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Indexed: 11/10/2022]
Abstract
Recently two atomic resolution crystal structures of Photosystem II, in the double flashed, nominal S3 intermediate state of its Mn4 Ca water oxidising complex (WOC), have been presented (Young et al., Nature 2016, 540, 453; Suga et al., Nature 2017, 543, 131). These structures are at 2.25 Å and 2.35 Å resolution, respectively. Although highly similar in most respects, the structures differ in a key region within the WOC catalytic site. In the 2.25 Å structure, one oxy species (O5) is observed within the WOC cavity, weakly associated with the Mn centres, similar to that seen earlier in the 1.95 Å XRD structure of the S1 intermediate (Suga et al., Nature, 2015, 517, 99). In the 2.35 Å structure, two such species are seen (O5, O6), with the Mn centres and O5 positioned as in the 2.25 Å structure and an O5-O6 separation of ∼1.5 Å, consistent with peroxo formation. This suggests O5 and O6 are substrate water derived species in this double flashed form. Recently we have presented (Petrie, et al., Chem. Phys. Chem., 2017) a large scale (220 atom) quantum chemical model of the Young et al. 2.25 Å structure, which quantitatively explains all significant features within the WOC region of that structure, particularly the positions of the metal centres and O5 group. Critical to this was our assumption of a 'low' Mn oxidation paradigm (mean S1 Mn oxidation level of +3.0, Petrie et al., Angew. Chem. Int. Ed., 2015), rather than a 'high' oxidation model (mean S1 oxidation level of +3.5), widely assumed in the literature. Here we show that our same oxidation state model predicts two classes of energetically close S3 structural forms, analogous to the S1 state, one with the metal centres and O5 positioned as in the 2.25 Å structure, and the other with the metals similarly placed, but with O5 located in the O6 position of the 2.35 Å structure. We show that the Suga et al. 2.35 Å structure is likely a superposition of two such forms, one from each class, which is consistent with reported atomic occupancies for that structure and the relative total energies we calculate for the two structural forms.
Collapse
Affiliation(s)
- Simon Petrie
- Research School of Chemistry, College of Physical and Mathematical Sciences, The Australian National University, Acton ACT, Australia, 2601
| | - Robert Stranger
- Research School of Chemistry, College of Physical and Mathematical Sciences, The Australian National University, Acton ACT, Australia, 2601
| | - Ron J Pace
- Research School of Chemistry, College of Physical and Mathematical Sciences, The Australian National University, Acton ACT, Australia, 2601
| |
Collapse
|
76
|
Chen H, Dismukes GC, Case DA. Resolving Ambiguous Protonation and Oxidation States in the Oxygen Evolving Complex of Photosystem II. J Phys Chem B 2018; 122:8654-8664. [PMID: 30134654 DOI: 10.1021/acs.jpcb.8b05577] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Photosystem II (PSII) of photosynthetic organisms converts light energy into chemical energy by oxidizing water to dioxygen at the Mn4CaO5 oxygen-evolving complex (OEC). Extensive structural data have been collected on the resting dark state (nominally S1 in the standard Kok nomenclature) from crystal diffraction and EXAFS studies but the protonation and Mn oxidation states are still uncertain. A "high-oxidation" model assigns the S1 state to have the formal Mn oxidation level of (III, IV, IV, III), whereas the "low-oxidation" model posits two additional electrons. Generally, additional protons are expected to be associated with the low-oxidation model and were not fully investigated until now. Here we consider structural features of the S0 and S1 states using a quantum mechanics/molecular mechanics (QM/MM) method. We systematically alter the hydrogen-bonding network and the protonation states of bridging and terminal oxygens and His337 to investigate how they influence Mn-Mn and Mn-O distances, relative energetics, and the internal distribution of Mn oxidation states, in both high and low-oxidation state paradigms. The bridging oxygens (O1, O2, O3, O4) all need to be deprotonated (O2-) to be compatible with available structural data, whereas the position of O5 (bridging Mn3, Mn4, and Ca) in the XFEL structure is more consistent with an OH- under the low paradigm. We show that structures with two short Mn-Mn distances, which are sometimes argued to be diagnostic of a high oxidation state paradigm, can also arise in low oxidation-state models. We conclude that the low Mn oxidation state proposal for the OEC can closely fit all of the available structural data at accessible energies in a straightforward manner. Modeling at the 4 H+ protonation level of S1 under the high paradigm predicts rearrangement of bidentate D1-Asp170 to H-bond to O5 (OH-), a geometry found in artificial OEC catalysts.
Collapse
|
77
|
Affiliation(s)
- Dimitrios A. Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
78
|
Kim CJ, Bao H, Burnap RL, Debus RJ. Impact of D1-V185 on the Water Molecules That Facilitate O2 Formation by the Catalytic Mn4CaO5 Cluster in Photosystem II. Biochemistry 2018; 57:4299-4311. [DOI: 10.1021/acs.biochem.8b00630] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christopher J. Kim
- Department of Biochemistry, University of California, Riverside, California 92521, United States
| | - Han Bao
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Robert L. Burnap
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Richard J. Debus
- Department of Biochemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
79
|
Narzi D, Capone M, Bovi D, Guidoni L. Evolution from S3
to S4
States of the Oxygen-Evolving Complex in Photosystem II Monitored by Quantum Mechanics/Molecular Mechanics (QM/MM) Dynamics. Chemistry 2018; 24:10820-10828. [DOI: 10.1002/chem.201801709] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Daniele Narzi
- Institute of Chemical Sciences and Engineering; Ecole Polytechnique Federale de Lausanne; Av. F.-A. Forel 2 1015 Lausanne Switzerland
| | - Matteo Capone
- Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica; Universita degli studi dell'Aquila; Via Vetoio (Coppito) 67100 L'Aquila Italy
| | - Daniele Bovi
- Dipartimento di Scienze Fisiche e Chimiche; Universita degli studi dell'Aquila; Via Vetoio (Coppito) 67100 L'Aquila Italy
| | - Leonardo Guidoni
- Dipartimento di Scienze Fisiche e Chimiche; Universita degli studi dell'Aquila; Via Vetoio (Coppito) 67100 L'Aquila Italy
| |
Collapse
|
80
|
The low spin - high spin equilibrium in the S2-state of the water oxidizing enzyme. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:342-356. [DOI: 10.1016/j.bbabio.2018.02.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/21/2018] [Accepted: 02/24/2018] [Indexed: 11/17/2022]
|
81
|
Photosynthetic water splitting by the Mn4Ca2+OX catalyst of photosystem II: its structure, robustness and mechanism. Q Rev Biophys 2018; 50:e13. [PMID: 29233225 DOI: 10.1017/s0033583517000105] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The biological energy cycle of our planet is driven by photosynthesis whereby sunlight is absorbed by chlorophyll and other accessory pigments. The excitation energy is then efficiently transferred to a reaction centre where charge separation occurs in a few picoseconds. In the case of photosystem II (PSII), the energy of the charge transfer state is used to split water into oxygen and reducing equivalents. This is accomplished by the relatively low energy content of four photons of visible light. PSII is a large multi-subunit membrane protein complex embedded in the lipid environment of the thylakoid membranes of plants, algae and cyanobacteria. Four high energy electrons, together with four protons (4H+), are used to reduce plastoquinone (PQ), the terminal electron acceptor of PSII, to plastoquinol (PQH2). PQH2 passes its reducing equivalents to an electron transfer chain which feeds into photosystem I (PSI) where they gain additional reducing potential from a second light reaction which is necessary to drive CO2 reduction. The catalytic centre of PSII consists of a cluster of four Mn ions and a Ca2+ linked by oxo bonds. In addition, there are seven amino acid ligands. In this Article, I discuss the structure of this metal cluster, its stability and the probability that an acid-base (nucleophilic-electrophilic) mechanism catalyses the water splitting reaction on the surface of the metal-cluster. Evidence for this mechanism is presented from studies on water splitting catalysts consisting of organo-complexes of ruthenium and manganese and also by comparison with the enzymology of carbon monoxide dehydrogenase (CODH). Finally the relevance of our understanding of PSII is discussed in terms of artificial photosynthesis with emphasis on inorganic water splitting catalysts as oxygen generating photoelectrodes.
Collapse
|
82
|
Beal NJ, Corry TA, O'Malley PJ. Comparison of Experimental and Broken Symmetry Density Functional Theory Calculated Electron Paramagnetic Resonance Parameters for the Manganese Catalase Active Site in the Superoxidized Mn III/Mn IV State. J Phys Chem B 2018; 122:2881-2890. [PMID: 29470911 DOI: 10.1021/acs.jpcb.7b11649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Broken symmetry density functional theory has been used to calculate g-tensor, 55Mn, 14N, and 17O hyperfine couplings for active site models of superoxidized MnIII/MnIV manganese catalase both in its native and azide-inhibited form. While a good agreement is found between the calculated and experimental g-tensor and 55Mn hyperfine couplings for all models, the active site geometry and Mn ion oxidation state can only be readily distinguished based on a comparison of the calculated and experimental 14N azide and 17O HFCs. This comparison shows that only models containing a Jahn-Teller distorted 5-coordinate (MnIII)2 site and a 6-coordinate (MnIV)1 site can satisfactorily reproduce the experimental 14N and 17O hyperfine couplings.
Collapse
Affiliation(s)
- Nathan J Beal
- School of Chemistry , The University of Manchester , Manchester M13 9PL , U.K
| | - Thomas A Corry
- School of Chemistry , The University of Manchester , Manchester M13 9PL , U.K
| | - Patrick J O'Malley
- School of Chemistry , The University of Manchester , Manchester M13 9PL , U.K
| |
Collapse
|
83
|
Yamaguchi K, Shoji M, Isobe H, Yamanaka S, Kawakami T, Yamada S, Katouda M, Nakajima T. Theory of chemical bonds in metalloenzymes XXI. Possible mechanisms of water oxidation in oxygen evolving complex of photosystem II. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1428375] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Kizashi Yamaguchi
- Institute for Nanoscience Design, Osaka University, Osaka, Japan
- Handairigaku Techno-Research, Osaka Univeristy, Osaka, Japan
- Riken Advanced Institute for Computational Science (AICS), Hyogo, Japan
| | - Mitsuo Shoji
- Center for Computational Sciences, University of Tsukuba, Ibaraki, Japan
| | - Hiroshi Isobe
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | | | - Takashi Kawakami
- Graduate School of Science, Osaka University, Osaka, Japan
- Riken Advanced Institute for Computational Science (AICS), Hyogo, Japan
| | - Satoru Yamada
- Riken Advanced Institute for Computational Science (AICS), Hyogo, Japan
| | - Michio Katouda
- Riken Advanced Institute for Computational Science (AICS), Hyogo, Japan
| | - Takahito Nakajima
- Riken Advanced Institute for Computational Science (AICS), Hyogo, Japan
| |
Collapse
|
84
|
Siegbahn PEM. The S2 to S3 transition for water oxidation in PSII (photosystem II), revisited. Phys Chem Chem Phys 2018; 20:22926-22931. [DOI: 10.1039/c8cp03720e] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The formation of O2 from water requires four transitions, each one after the absorption of one light flash.
Collapse
Affiliation(s)
- Per E. M. Siegbahn
- Department of Organic Chemistry
- Arrhenius Laboratory
- Stockholm University
- Stockholm
- Sweden
| |
Collapse
|
85
|
Beal NJ, Corry TA, O’Malley PJ. Comparison between Experimental and Broken Symmetry Density Functional Theory (BS-DFT) Calculated Electron Paramagnetic Resonance (EPR) Parameters of the S2 State of the Oxygen-Evolving Complex of Photosystem II in Its Native (Calcium) and Strontium-Substituted Form. J Phys Chem B 2017; 121:11273-11283. [DOI: 10.1021/acs.jpcb.7b09498] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Nathan J. Beal
- School of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Thomas A. Corry
- School of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Patrick J. O’Malley
- School of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
86
|
Siegbahn PE. Computational investigations of S 3 structures related to a recent X-ray free electron laser study. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.08.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
87
|
Liao RZ, Siegbahn PEM. Quantum Chemical Modeling of Homogeneous Water Oxidation Catalysis. CHEMSUSCHEM 2017; 10:4236-4263. [PMID: 28875583 DOI: 10.1002/cssc.201701374] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/31/2017] [Indexed: 06/07/2023]
Abstract
The design of efficient and robust water oxidation catalysts has proven challenging in the development of artificial photosynthetic systems for solar energy harnessing and storage. Tremendous progress has been made in the development of homogeneous transition-metal complexes capable of mediating water oxidation. To improve the efficiency of the catalyst and to design new catalysts, a detailed mechanistic understanding is necessary. Quantum chemical modeling calculations have been successfully used to complement the experimental techniques to suggest a catalytic mechanism and identify all stationary points, including transition states for both O-O bond formation and O2 release. In this review, recent progress in the applications of quantum chemical methods for the modeling of homogeneous water oxidation catalysis, covering various transition metals, including manganese, iron, cobalt, nickel, copper, ruthenium, and iridium, is discussed.
Collapse
Affiliation(s)
- Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Per E M Siegbahn
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| |
Collapse
|
88
|
Schilling M, Hodel FH, Luber S. Discovery of Open Cubane Core Structures for Biomimetic LnCo 3 (OR) 4 Water Oxidation Catalysts. CHEMSUSCHEM 2017; 10:4561-4569. [PMID: 28941193 DOI: 10.1002/cssc.201701527] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Indexed: 06/07/2023]
Abstract
Bio-mimetic catalysts such as LnCo3 (OR)4 (Ln=Er, Tm; OR=alkoxide) cubanes have recently been in the focus of research for artificial water oxidation processes. Previously, the remarkable adaptability with respect to ligand shell, nuclear structure as well as protonation and oxidation states of those catalysts has been shown to be beneficial for the water oxidation process. We further explored the structural flexibility of those catalysts and present here a series of novel structures in which one metal center is pulled out of the cubane cage. This leads to an open cubane core, which is to some extent reminiscent of observed open/closed cubane-core forms of the oxygen-evolving complex in nature's photosystem II. We investigate how those open cubane core models alter the thermodynamics of the water oxidation cycle and how different solvation approaches influence their stability.
Collapse
Affiliation(s)
- Mauro Schilling
- Department of Chemistry C, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Florian H Hodel
- Department of Chemistry C, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Sandra Luber
- Department of Chemistry C, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| |
Collapse
|
89
|
Miyagawa K, Komi K, Ohnari J, Maruyama S, Yamanaka S, Saito T, Kawakami T, Yamaguchi K, Okumura M. Density functional study of the magneto-structural correlations of manganese complexes, [Mn2O2H (salpn)2]+(2−) (n= 0–2) from the viewpoint of the protonation modes of the bridging oxygen anions. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.03.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
90
|
Chu S, Bovi D, Cappelluti F, Orellana AG, Martin H, Guidoni L. Effects of Static Correlation between Spin Centers in Multicenter Transition Metal Complexes. J Chem Theory Comput 2017; 13:4675-4683. [PMID: 28763210 DOI: 10.1021/acs.jctc.7b00316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multicenter transition metal complexes are the key moieties of many processes in chemistry, biochemistry, and materials science such as in the active sites of enzymes, molecular catalysts, and biological electron carriers. Their electronic structure, often characterized by high-spin-polarized metal sites, is a challenge for theoretical chemists because of their high degree of dynamical and static correlation. Static correlation is necessary both for the appropriate description of the metal-ligand bonding and for a correct description of the multideterminant character arising from the magnetic interactions between spin centers. Density functional theory (DFT) is usually applied using a single-determinant broken-symmetry state that is lacking the correct spin symmetry when the ground state has total low-spin character. To alleviate this drawback, we use the extended broken-symmetry (EBS) approach to derive approximate ground-state energies and, for the first time, forces for the correctly symmetric ground state of an arbitrary number of spin centers within the framework of the Heisenberg-Dirac-van Vleck Hamiltonian. Remarkably, the proposed procedure supplies relaxed geometries that are fully consistent with the calculated J-coupling constants. We apply the method to investigate the relaxed geometrical structure of the low-spin ground state of iron-sulfur clusters with two, three, and four iron centers. We observed significant differences in both geometrical parameters and coupling constant J between the symmetrized ground state, the high-spin, and the broken-symmetry optimized structures. These changes are often comparable with the differences observed by using different functionals, and the use of EBS always improves the description of the studied systems. It will be therefore important to include it in any DFT attempt to quantitatively describe multicenter transition metal complexes in the future.
Collapse
Affiliation(s)
- Shibing Chu
- Dipartimento di Scienze Fisiche e Chimiche, Università degli studi dell'Aquila , Via Vetoio (Coppito), 67100 L'Aquila, Italy
| | - Daniele Bovi
- Dipartimento di Scienze Fisiche e Chimiche, Università degli studi dell'Aquila , Via Vetoio (Coppito), 67100 L'Aquila, Italy
| | | | | | - Henry Martin
- Dipartimento di Scienze Fisiche e Chimiche, Università degli studi dell'Aquila , Via Vetoio (Coppito), 67100 L'Aquila, Italy
| | - Leonardo Guidoni
- Dipartimento di Scienze Fisiche e Chimiche, Università degli studi dell'Aquila , Via Vetoio (Coppito), 67100 L'Aquila, Italy
| |
Collapse
|
91
|
Lohmiller T, Krewald V, Sedoud A, Rutherford AW, Neese F, Lubitz W, Pantazis DA, Cox N. The First State in the Catalytic Cycle of the Water-Oxidizing Enzyme: Identification of a Water-Derived μ-Hydroxo Bridge. J Am Chem Soc 2017; 139:14412-14424. [DOI: 10.1021/jacs.7b05263] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Thomas Lohmiller
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Vera Krewald
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Arezki Sedoud
- Department
of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
- iBiTec-S, URA
CNRS 2096, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - A. William Rutherford
- Department
of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
- iBiTec-S, URA
CNRS 2096, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Frank Neese
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Wolfgang Lubitz
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Dimitrios A. Pantazis
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Nicholas Cox
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
- Research
School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
92
|
Narzi D, Coccia E, Manzoli M, Guidoni L. Impact of molecular flexibility on the site energy shift of chlorophylls in Photosystem II. Biophys Chem 2017; 229:93-98. [DOI: 10.1016/j.bpc.2017.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/26/2017] [Accepted: 06/26/2017] [Indexed: 01/31/2023]
|
93
|
Liao RZ, Siegbahn PE. Possible water association and oxidation mechanisms for a recently synthesized Mn4Ca-complex. J Catal 2017. [DOI: 10.1016/j.jcat.2017.07.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
94
|
Guo Y, Li H, He LL, Zhao DX, Gong LD, Yang ZZ. Theoretical reflections on the structural polymorphism of the oxygen-evolving complex in the S2 state and the correlations to substrate water exchange and water oxidation mechanism in photosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:833-846. [DOI: 10.1016/j.bbabio.2017.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/25/2017] [Accepted: 08/02/2017] [Indexed: 11/29/2022]
|
95
|
Retegan M, Pantazis DA. Differences in the Active Site of Water Oxidation among Photosynthetic Organisms. J Am Chem Soc 2017; 139:14340-14343. [PMID: 28948784 DOI: 10.1021/jacs.7b06351] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The site of biological water oxidation is highly conserved across photosynthetic organisms, but differences of unidentified structural and electronic origin exist between taxonomically discrete clades, revealed by distinct spectroscopic signatures of the oxygen-evolving Mn4CaO5 cluster and variations in active-site accessibility. Comparison of atomistic models of a native cyanobacterial form (Thermosynechococcus vulcanus) and a chimeric spinach-like form of photosystem II allows us to identify the precise atomic-level differences between organisms in the vicinity of the manganese cluster. Substitution of cyanobacterial D1-Asn87 by higher-plant D1-Ala87 is the principal discriminating feature: it drastically rearranges a network of proximal hydrogen bonds, modifying the local architecture of a water channel and the interaction of second coordination shell residues with the manganese cluster. The two variants explain species-dependent differences in spectroscopic properties and in the interaction of substrate analogues with the oxygen-evolving complex, enabling assignment of a substrate delivery channel to the active site.
Collapse
Affiliation(s)
- Marius Retegan
- European Synchrotron Radiation Facility , 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Dimitrios A Pantazis
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
96
|
Petrie S, Stranger R, Pace RJ. Rationalizing the 2.25 Å Resolution Crystal Structure of the Water Oxidising Complex of Photosystem II in the S3State. Chemphyschem 2017; 18:2924-2931. [DOI: 10.1002/cphc.201700640] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Simon Petrie
- Research School of Chemistry, College of Physical and Mathematical Sciences; The Australian National University; Acton ACT 2601 Australia
| | - Rob Stranger
- Research School of Chemistry, College of Physical and Mathematical Sciences; The Australian National University; Acton ACT 2601 Australia
| | - Ron J. Pace
- Research School of Chemistry, College of Physical and Mathematical Sciences; The Australian National University; Acton ACT 2601 Australia
| |
Collapse
|
97
|
Siegbahn PEM, Li X. Cluster size convergence for the energetics of the oxygen evolving complex in PSII. J Comput Chem 2017; 38:2157-2160. [PMID: 28667689 PMCID: PMC5575486 DOI: 10.1002/jcc.24863] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/26/2017] [Accepted: 05/25/2017] [Indexed: 12/31/2022]
Abstract
Density functional theory calculations have been made to investigate the stability of the energetics for the oxygen evolving complex of photosystem II. Results published elsewhere have given excellent agreement with experiments for both energetics and structures, where many of the experimental results were obtained several years after the calculations were done. The computational results were obtained after a careful extension from small models to a size of about 200 atoms, where stability of the results was demonstrated. However, recently results were published by Isobe et al., suggesting that very different results could be obtained if the model was extended from 200 to 340 atoms. The present study aims at understanding where this difference comes from. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Per E M Siegbahn
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Xichen Li
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
98
|
Nakamura S, Noguchi T. Infrared Determination of the Protonation State of a Key Histidine Residue in the Photosynthetic Water Oxidizing Center. J Am Chem Soc 2017. [DOI: 10.1021/jacs.7b04924] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Shin Nakamura
- Division of Material Science,
Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Takumi Noguchi
- Division of Material Science,
Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
99
|
Hodel FH, Deglmann P, Luber S. Exploring Solvation Effects in Ligand-Exchange Reactions via Static and Dynamic Methods. J Chem Theory Comput 2017; 13:3348-3358. [DOI: 10.1021/acs.jctc.7b00214] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Florian H. Hodel
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Peter Deglmann
- BASF SE, Carl-Bosch-Straße
38, 67056 Ludwigshafen
am Rhein, Germany
| | - Sandra Luber
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
100
|
Shee J, Zhang S, Reichman DR, Friesner RA. Chemical Transformations Approaching Chemical Accuracy via Correlated Sampling in Auxiliary-Field Quantum Monte Carlo. J Chem Theory Comput 2017; 13:2667-2680. [DOI: 10.1021/acs.jctc.7b00224] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- James Shee
- Department
of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Shiwei Zhang
- Department
of Physics, College of William and Mary, Williamsburg, Virginia 23187-8795, United States
| | - David R. Reichman
- Department
of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Richard A. Friesner
- Department
of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| |
Collapse
|