51
|
The Architecture of the Anbu Complex Reflects an Evolutionary Intermediate at the Origin of the Proteasome System. Structure 2017; 25:834-845.e5. [PMID: 28479063 PMCID: PMC5666114 DOI: 10.1016/j.str.2017.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/23/2016] [Accepted: 04/14/2017] [Indexed: 11/22/2022]
Abstract
Proteasomes are self-compartmentalizing proteases that function at the core of the cellular protein degradation machinery in eukaryotes, archaea, and some bacteria. Although their evolutionary history is under debate, it is thought to be linked to that of the bacterial protease HslV and the hypothetical bacterial protease Anbu (ancestral beta subunit). Here, together with an extensive bioinformatic analysis, we present the first biophysical characterization of Anbu. Anbu forms a dodecameric complex with a unique architecture that was only accessible through the combination of X-ray crystallography and small-angle X-ray scattering. While forming continuous helices in crystals and electron microscopy preparations, refinement of sections from the crystal structure against the scattering data revealed a helical open-ring structure in solution, contrasting the ring-shaped structures of proteasome and HslV. Based on this primordial architecture and exhaustive sequence comparisons, we propose that Anbu represents an ancestral precursor at the origin of self-compartmentalization. The crystal structure of the bacterial proteasome homolog Anbu has been solved The dodecameric architecture reveals unique features compared with classical proteasomes Bioinformatic analysis places Anbu at the root of the proteasome family
Collapse
|
52
|
Wang Y, Qiao Y, Wei D, Tang M. Computational study on NHC-catalyzed enantioselective and chemoselective fluorination of aliphatic aldehydes. Org Chem Front 2017. [DOI: 10.1039/c7qo00436b] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A mechanistic study on NHC-catalyzed enantioselective and chemoselective fluorination of aliphatic aldehydes has been performed for the first time.
Collapse
Affiliation(s)
- Yang Wang
- Department of Material and Chemical Engineering
- Zhengzhou University of Light Industry
- Zhengzhou
- P.R. China
| | - Yan Qiao
- Department of Pathophysiology
- School of Basic Medical Sciences
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Donghui Wei
- College of Chemistry and Molecular Engineering
- Center of Computational Chemistry
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Mingsheng Tang
- College of Chemistry and Molecular Engineering
- Center of Computational Chemistry
- Zhengzhou University
- Zhengzhou
- P.R. China
| |
Collapse
|
53
|
Yao H, Liu J, Xu S, Zhu Z, Xu J. The structural modification of natural products for novel drug discovery. Expert Opin Drug Discov 2016; 12:121-140. [DOI: 10.1080/17460441.2016.1272757] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Hong Yao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China
| | - Junkai Liu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China
| | - Shengtao Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China
| | - Zheying Zhu
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, The University of Nottingham, Nottingham, UK
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China
| |
Collapse
|
54
|
Qiao Y, Chen X, Wei D, Chang J. Insights into the Competing Mechanisms and Origin of Enantioselectivity for N-Heterocyclic Carbene-Catalyzed Reaction of Aldehyde with Enamide. Sci Rep 2016; 6:38200. [PMID: 27905524 PMCID: PMC5131292 DOI: 10.1038/srep38200] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/04/2016] [Indexed: 12/16/2022] Open
Abstract
Hydroacylation reactions and aza-benzoin reactions have attracted considerable attention from experimental chemists. Recently, Wang et al. reported an interesting reaction of N-heterocyclic carbene (NHC)-catalyzed addition of aldehyde to enamide, in which both hydroacylation and aza-benzoin reactions may be involved. Thus, understanding the competing relationship between them is of great interest. Now, density functional theory (DFT) investigation was performed to elucidate this issue. Our results reveal that enamide can tautomerize to its imine isomer with the assistance of HCO3-. The addition of NHC to aldehydes formed Breslow intermediate, which can go through cross-coupling with enamide via hydroacylation reaction or its imine isomer via aza-benzoin reaction. The aza-benzoin reaction requires relatively lower free energy barrier than the hydroacylation reaction. The more polar characteristic of C=N group in the imine isomers, and the more advantageous stereoelectronic effect in the carbon-carbon bond forming transition states in aza-benzoin pathway were identified to determine that the imine isomer can react with the Breslow intermediate more easily. Furthermore, the origin of enantioselectivities for the reaction was explored and reasonably explained by structural analyses on key transition states. The work should provide valuable insights for rational design of switchable NHC-catalyzed hydroacylation and aza-benzoin reactions with high stereoselectivity.
Collapse
Affiliation(s)
- Yan Qiao
- Department of Pathophysiology, School of Basic Medical Sciences
- Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou 450001, Henan, China
| | - Xinhuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences
- Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou 450001, Henan, China
| | - Donghui Wei
- The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Junbiao Chang
- Department of Pathophysiology, School of Basic Medical Sciences
- Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou 450001, Henan, China
| |
Collapse
|
55
|
Forrest CM, McNair K, Vincenten MCJ, Darlington LG, Stone TW. Selective depletion of tumour suppressors Deleted in Colorectal Cancer (DCC) and neogenin by environmental and endogenous serine proteases: linking diet and cancer. BMC Cancer 2016; 16:772. [PMID: 27716118 PMCID: PMC5054602 DOI: 10.1186/s12885-016-2795-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 09/21/2016] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The related tumour suppressor proteins Deleted in Colorectal Cancer (DCC) and neogenin are absent or weakly expressed in many cancers, whereas their insertion into cells suppresses oncogenic behaviour. Serine proteases influence the initiation and progression of cancers although the mechanisms are unknown. METHODS The effects of environmental (bacterial subtilisin) and endogenous mammalian (chymotrypsin) serine proteases were examined on protein expression in fresh, normal tissue and human neuroblastoma and mammary adenocarcinoma lines. Cell proliferation and migration assays (chemoattraction and wound closure) were used to examine cell function. Cells lacking DCC were transfected with an ectopic dcc plasmid. RESULTS Subtilisin and chymotrypsin selectively depleted DCC and neogenin from cells at nanomolar concentrations without affecting related proteins. Cells showed reduced adherence and increased migration, but after washing they re-attached within 24 h, with recovery of protein expression. These effects are induced by chymotryptic activity as they are prevented by chymostatin and the soybean Bowman-Birk inhibitor typical of many plant protease inhibitors. CONCLUSIONS Bacillus subtilis, which secretes subtilisin is widely present in soil, the environment and the intestinal contents, while subtilisin itself is used in meat processing, animal feed probiotics and many household cleaning agents. With chymotrypsin present in chyme, blood and tissues, these proteases may contribute to cancer development by depleting DCC and neogenin. Blocking their activity by Bowman-Birk inhibitors may explain the protective effects of a plant diet. Our findings identify a potential non-genetic contribution to cancer cell behaviour which may explain both the association of processed meats and other factors with cancer incidence and the protection afforded by plant-rich diets, with significant implications for cancer prevention.
Collapse
Affiliation(s)
- Caroline M Forrest
- College of Medical, Veterinary and Life Sciences, West Medical Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Kara McNair
- College of Medical, Veterinary and Life Sciences, West Medical Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Maria C J Vincenten
- College of Medical, Veterinary and Life Sciences, West Medical Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | - Trevor W Stone
- College of Medical, Veterinary and Life Sciences, West Medical Building, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
56
|
Zheng L, Wang Y, Wei D, Qiao Y. Insights into N
-Heterocyclic Carbene-Catalyzed [4+2] Annulation Reaction of Enals with Nitroalkenes: Mechanisms, Origin of Chemo- and Stereoselectivity, and Role of Catalyst. Chem Asian J 2016; 11:3046-3054. [DOI: 10.1002/asia.201601022] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/02/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Linjie Zheng
- The College of Chemistry and Molecular Engineering; Zhengzhou University; No. 100 Kexue Street Zhengzhou Henan 450001 P. R. China
| | - Yang Wang
- The College of Chemistry and Molecular Engineering; Zhengzhou University; No. 100 Kexue Street Zhengzhou Henan 450001 P. R. China
| | - Donghui Wei
- The College of Chemistry and Molecular Engineering; Zhengzhou University; No. 100 Kexue Street Zhengzhou Henan 450001 P. R. China
| | - Yan Qiao
- School of Basic Medical Sciences; Zhengzhou University; No. 100 Kexue Street Zhengzhou Henan 450001 P. R. China
| |
Collapse
|
57
|
Computational Approaches for the Discovery of Human Proteasome Inhibitors: An Overview. Molecules 2016; 21:molecules21070927. [PMID: 27438821 PMCID: PMC6274525 DOI: 10.3390/molecules21070927] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 01/10/2023] Open
Abstract
Proteasome emerged as an important target in recent pharmacological research due to its pivotal role in degrading proteins in the cytoplasm and nucleus of eukaryotic cells, regulating a wide variety of cellular pathways, including cell growth and proliferation, apoptosis, DNA repair, transcription, immune response, and signaling processes. The last two decades witnessed intensive efforts to discover 20S proteasome inhibitors with significant chemical diversity and efficacy. To date, the US FDA approved to market three proteasome inhibitors: bortezomib, carfilzomib, and ixazomib. However new, safer and more efficient drugs are still required. Computer-aided drug discovery has long being used in drug discovery campaigns targeting the human proteasome. The aim of this review is to illustrate selected in silico methods like homology modeling, molecular docking, pharmacophore modeling, virtual screening, and combined methods that have been used in proteasome inhibitors discovery. Applications of these methods to proteasome inhibitors discovery will also be presented and discussed to raise improvements in this particular field.
Collapse
|
58
|
Wang Y, Tang M, Wang Y, Wei D. Insights into Stereoselective Aminomethylation Reaction of α,β-Unsaturated Aldehyde with N,O-Acetal via N-Heterocyclic Carbene and Brønsted Acid/Base Cooperative Organocatalysis. J Org Chem 2016; 81:5370-80. [DOI: 10.1021/acs.joc.6b00656] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yang Wang
- The College of Chemistry
and Molecular Engineering, Center of Computational Chemistry, Zhengzhou University, Zhengzhou, Henan Province 450001, P.R. China
| | - Mingsheng Tang
- The College of Chemistry
and Molecular Engineering, Center of Computational Chemistry, Zhengzhou University, Zhengzhou, Henan Province 450001, P.R. China
| | - Yanyan Wang
- The College of Chemistry
and Molecular Engineering, Center of Computational Chemistry, Zhengzhou University, Zhengzhou, Henan Province 450001, P.R. China
| | - Donghui Wei
- The College of Chemistry
and Molecular Engineering, Center of Computational Chemistry, Zhengzhou University, Zhengzhou, Henan Province 450001, P.R. China
| |
Collapse
|
59
|
Wei D, Tang M, Zhan CG. Fundamental reaction pathway and free energy profile of proteasome inhibition by syringolin A (SylA). Org Biomol Chem 2016; 13:6857-65. [PMID: 26018983 DOI: 10.1039/c5ob00737b] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, molecular dynamics (MD) simulations and first-principles quantum mechanical/molecular mechanical free energy (QM/MM-FE) calculations have been performed to uncover the fundamental reaction pathway of proteasome with a representative inhibitor syringolin A (SylA). The calculated results reveal that the reaction process consists of three steps. The first step is a proton transfer process, activating Thr1-O(γ) directly by Thr1-N(z) to form a zwitterionic intermediate. The next step is a nucleophilic attack on the olefin carbon of SylA by the negatively charged Thr1-O(γ) atom. The last step is a proton transfer from Thr1-N(z) to another olefin carbon of SylA to complete the inhibition reaction process. The calculated free energy profile demonstrates that the second step should be the rate-determining step and has the highest free energy barrier of 24.6 kcal mol(-1), which is reasonably close to the activation free energy (∼22.4-23.0 kcal mol(-1)) derived from the available experimental kinetic data. In addition, our computational results indicate that no water molecule can assist the rate-determining step, since the second step is not involved in a proton transfer process. The obtained mechanistic insights should be valuable for understanding the inhibition process of proteasome by SylA and structurally related inhibitors at a molecular level, and thus provide a solid mechanistic base and valuable clues for future rational design of novel, more potent inhibitors of proteasome.
Collapse
Affiliation(s)
- Donghui Wei
- Department of Chemistry, Zhengzhou University, Daxue Road, Zhengzhou, Henan 450052, China
| | | | | |
Collapse
|
60
|
Liu C, Han P, Liu Y, Tang M. Mechanism studies of the chemoselective ring opening of N-tosyl aziridines with aldehydes catalyzed by an N-heterocyclic carbene under aerobic conditions. Theor Chem Acc 2016. [DOI: 10.1007/s00214-016-1820-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
61
|
Qiao Y, Yang W, Wei D, Chang J. Theoretical investigations toward TMEDA-catalyzed [2 + 4] annulation of allenoate with 1-aza-1,3-diene: mechanism, regioselectivity, and role of the catalyst. RSC Adv 2016. [DOI: 10.1039/c6ra09507k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A computational study on the reaction between allenoate and 1-aza-1,3-diene catalyzed by TMEDA has been performed using the DFT method.
Collapse
Affiliation(s)
- Yan Qiao
- Department of Pathophysiology
- School of Basic Medical Sciences
- Zhengzhou University
- Zhengzhou
- China
| | - Wanjing Yang
- Department of Pathophysiology
- School of Basic Medical Sciences
- Zhengzhou University
- Zhengzhou
- China
| | - Donghui Wei
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- China
| | - Junbiao Chang
- Department of Pathophysiology
- School of Basic Medical Sciences
- Zhengzhou University
- Zhengzhou
- China
| |
Collapse
|
62
|
Wang Y, Wu B, Zheng L, Wei D, Tang M. DFT perspective toward [3 + 2] annulation reaction of enals with α-ketoamides through NHC and Brønsted acid cooperative catalysis: mechanism, stereoselectivity, and role of NHC. Org Chem Front 2016. [DOI: 10.1039/c5qo00338e] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The DFT perspective toward the [3 + 2] annulation reaction through NHC and Brønsted acid cooperative catalysis has been investigated.
Collapse
Affiliation(s)
- Yang Wang
- The College of Chemistry and Molecular Engineering
- Center of Computational Chemistry
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Bohua Wu
- The College of Chemistry and Molecular Engineering
- Center of Computational Chemistry
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Linjie Zheng
- The College of Chemistry and Molecular Engineering
- Center of Computational Chemistry
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Donghui Wei
- The College of Chemistry and Molecular Engineering
- Center of Computational Chemistry
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Mingsheng Tang
- The College of Chemistry and Molecular Engineering
- Center of Computational Chemistry
- Zhengzhou University
- Zhengzhou
- P.R. China
| |
Collapse
|
63
|
Zheng L, Tang M, Wang Y, Guo X, Wei D, Qiao Y. A DFT study on PBu3-catalyzed intramolecular cyclizations of N-allylic substituted α-amino nitriles for the formation of functionalized pyrrolidines: mechanisms, selectivities, and the role of catalysts. Org Biomol Chem 2016; 14:3130-41. [DOI: 10.1039/c6ob00150e] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The detailed mechanisms and stereoselectivities of PBu3-catalyzed intramolecular cyclizations for the formation of functionalized pyrrolidines have been investigated using a DFT method.
Collapse
Affiliation(s)
- Linjie Zheng
- School of Basic Medical Sciences
- Zhengzhou University
- Zhengzhou
- P.R. China
- The College of Chemistry and Molecular Engineering
| | - Mingsheng Tang
- The College of Chemistry and Molecular Engineering
- Center of Computational Chemistry
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Yang Wang
- The College of Chemistry and Molecular Engineering
- Center of Computational Chemistry
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Xiaokang Guo
- The College of Chemistry and Molecular Engineering
- Center of Computational Chemistry
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Donghui Wei
- The College of Chemistry and Molecular Engineering
- Center of Computational Chemistry
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Yan Qiao
- School of Basic Medical Sciences
- Zhengzhou University
- Zhengzhou
- P.R. China
| |
Collapse
|
64
|
Zhang W, Wang Y, Wei D, Tang M, Zhu X. A DFT study on NHC-catalyzed intramolecular aldehyde–ketone crossed-benzoin reaction: mechanism, regioselectivity, stereoselectivity, and role of NHC. Org Biomol Chem 2016; 14:6577-90. [DOI: 10.1039/c6ob00791k] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A computational study on NHC-catalyzed intramolecular aldehyde–ketone crossed-benzoin reaction has been performed using a DFT method.
Collapse
Affiliation(s)
- Wei Zhang
- The College of Chemistry and Molecular Engineering
- Center of Computational Chemistry
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Yang Wang
- The College of Chemistry and Molecular Engineering
- Center of Computational Chemistry
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Donghui Wei
- The College of Chemistry and Molecular Engineering
- Center of Computational Chemistry
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Mingsheng Tang
- The College of Chemistry and Molecular Engineering
- Center of Computational Chemistry
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Xinju Zhu
- The College of Chemistry and Molecular Engineering
- Center of Computational Chemistry
- Zhengzhou University
- Zhengzhou
- P.R. China
| |
Collapse
|
65
|
Wang Y, Wu B, Zhang H, Wei D, Tang M. A computational study on the N-heterocyclic carbene-catalyzed Csp2–Csp3 bond activation/[4+2] cycloaddition cascade reaction of cyclobutenones with imines: a new application of the conservation principle of molecular orbital symmetry. Phys Chem Chem Phys 2016; 18:19933-43. [DOI: 10.1039/c6cp03180c] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new application of the conservation principle of molecular orbital symmetry has been suggested for disclosing the role of NHC.
Collapse
Affiliation(s)
- Yang Wang
- The College of Chemistry and Molecular Engineering
- Center of Computational Chemistry
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Bohua Wu
- The College of Chemistry and Molecular Engineering
- Center of Computational Chemistry
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Haoyang Zhang
- The College of Chemistry and Molecular Engineering
- Center of Computational Chemistry
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Donghui Wei
- The College of Chemistry and Molecular Engineering
- Center of Computational Chemistry
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Mingsheng Tang
- The College of Chemistry and Molecular Engineering
- Center of Computational Chemistry
- Zhengzhou University
- Zhengzhou
- P. R. China
| |
Collapse
|
66
|
Yao Y, Liu J, Zheng F, Zhan CG. Reaction Pathway for Cocaine Hydrolase-Catalyzed Hydrolysis of (+)-Cocaine. Theor Chem Acc 2016; 135. [PMID: 28250715 DOI: 10.1007/s00214-015-1788-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A recently designed and discovered cocaine hydrolase (CocH), engineered from human butyrylcholinesterase (BChE), has been proven promising as a novel enzyme therapy for treatment of cocaine overdose and addiction because it is highly efficient in catalyzing hydrolysis of naturally occurring (-)-cocaine. It has been known that the CocH also has a high catalytic efficiency against (+)-cocaine, a synthetic enantiomer of cocaine. Reaction pathway and the corresponding free energy profile for the CocH-catalyzed hydrolysis of (+)-cocaine have been determined, in the present study, by performing first-principles pseudobond quantum mechanical/molecular mechanical (QM/MM)-free energy (FE) calculations. Acordingt to the QM/MM-FE results, the catalytic hydrolysis process is initiated by the nucleophilic attack on carbonyl carbon of (-)-cocaine benzoyl ester via hydroxyl oxygen of S198 side chain, and the second reaction step (i.e. dissociation of benzoyl ester) is rate-determining. This finding for CocH-catalyzed hydrolysis of (+)-cocaine is remarkably different from that for the (+)-cocaine hydrolysis catalyzed by bacterial cocaine esterase in which the first reaction step of the deacylation is associated with the highest free energy barrier (~17.9 kcal/mol). The overall free energy barrier (~16.0 kcal/mol) calculated for the acylation stage of CocH-catalyzed hydrolysis of (+)-cocaine is in good agreement with the experimental free energy barrier of ~14.5 kcal/mol derivated from the experimental kinetic data.
Collapse
Affiliation(s)
- Yuan Yao
- Molecular Modeling and Biopharmaceutical Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone, Lexington, KY 40536; The Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150080, P.R. China
| | - Junjun Liu
- Molecular Modeling and Biopharmaceutical Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone, Lexington, KY 40536; Tongji School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, P.R. China
| | - Fang Zheng
- Molecular Modeling and Biopharmaceutical Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone, Lexington, KY 40536
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone, Lexington, KY 40536
| |
Collapse
|
67
|
Azad CS, Khan IA, Narula AK. Organocatalyzed asymmetric Michael addition by an efficient bifunctional carbohydrate–thiourea hybrid with mechanistic DFT analysis. Org Biomol Chem 2016; 14:11454-11461. [DOI: 10.1039/c6ob02158a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of thiourea based bifunctional organocatalysts having d-glucose as a core scaffold were synthesized and examined as catalysts for the asymmetric Michael addition reaction of aryl/alkyl trans-β-nitrostyrenes over cyclohexanone and other Michael donors having active methylene.
Collapse
Affiliation(s)
- Chandra S. Azad
- “Hygeia” Centre of Excellence in Pharmaceutical Sciences (CEPS)
- GGS Indraprastha University
- New Delhi
- India
| | - Imran A. Khan
- Department of Chemistry
- Guru Nanak Dev University
- Amritsar
- India
| | - Anudeep K. Narula
- “Hygeia” Centre of Excellence in Pharmaceutical Sciences (CEPS)
- GGS Indraprastha University
- New Delhi
- India
| |
Collapse
|
68
|
Dong XY, Li X, Li B, Zhu YY, Zang SQ, Tang MS. Water sandwiched by a pair of aromatic rings in a proton-conducting metal–organic framework. Dalton Trans 2016; 45:18142-18146. [DOI: 10.1039/c6dt03632e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Water–benzene interactions are investigated in a metal–organic framework incorporating strong H-bond nets which contribute to distinct proton conduction.
Collapse
Affiliation(s)
- Xi-Yan Dong
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
- College of Chemistry and Chemical Engineering
| | - Xue Li
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Bo Li
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Yan-Yan Zhu
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Shuang-Quan Zang
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Ming-Sheng Tang
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
| |
Collapse
|
69
|
Wang Y, Wei D, Wang Y, Zhang W, Tang M. N-Heterocyclic Carbene (NHC)-Catalyzed sp3 β-C–H Activation of Saturated Carbonyl Compounds: Mechanism, Role of NHC, and Origin of Stereoselectivity. ACS Catal 2015. [DOI: 10.1021/acscatal.5b01710] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yanyan Wang
- College of Chemistry and
Molecular Engineering, Center of Computational Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Donghui Wei
- College of Chemistry and
Molecular Engineering, Center of Computational Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yang Wang
- College of Chemistry and
Molecular Engineering, Center of Computational Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Wenjing Zhang
- College of Chemistry and
Molecular Engineering, Center of Computational Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Mingsheng Tang
- College of Chemistry and
Molecular Engineering, Center of Computational Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
70
|
Guo XK, Zhang LB, Wei D, Niu JL. Mechanistic insights into cobalt(ii/iii)-catalyzed C-H oxidation: a combined theoretical and experimental study. Chem Sci 2015; 6:7059-7071. [PMID: 29861945 PMCID: PMC5947531 DOI: 10.1039/c5sc01807b] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/04/2015] [Indexed: 12/21/2022] Open
Abstract
Cobalt-mediated C-H functionalization has been the subject of extensive interest in synthetic chemistry, but the mechanisms of many of these reactions (such as the cobalt-catalyzed C-H oxidation) are poorly understood. In this paper, possible mechanisms including single electron transfer (SET) and the concerted metalation-deprotonation (CMD) pathways of the CoII/CoIII-catalyzed alkoxylation of C(sp2)-H bonds have been investigated for the first time using the DFT method. CoII(OAc)2 has been employed as an efficient catalyst in our previous experimental study, but the calculated results unexpectedly indicated that the intermolecular SET pathway with CoIII as the actual catalyst might be the most favorable pathway. To support this theoretical prediction, we have explored a series of Cp*CoIII(CO)I2 catalyzed C(sp2)-H bond alkoxylations, extending the application of cobalt-catalyzed functionalization of C-H bonds. Furthermore, kinetic isotope effect (KIE) data, electron paramagnetic resonance (EPR) data, and TEMPO inhibition experiments also support the SET mechanism in both the Co-catalyzed alkoxylation reactions. Thus, this work should support an understanding of the possible mechanisms of the CoII/CoIII-catalyzed C(sp2)-H functionalization, and also provide an example of the rational design of novel catalytic reactions guided by theoretical calculations.
Collapse
Affiliation(s)
- Xiao-Kang Guo
- The College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou , Henan Province 450001 , P. R. China . ;
| | - Lin-Bao Zhang
- The College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou , Henan Province 450001 , P. R. China . ;
| | - Donghui Wei
- The College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou , Henan Province 450001 , P. R. China . ;
| | - Jun-Long Niu
- The College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou , Henan Province 450001 , P. R. China . ;
| |
Collapse
|
71
|
Ho LK, Nodwell JR. David and Goliath: chemical perturbation of eukaryotes by bacteria. J Ind Microbiol Biotechnol 2015; 43:233-48. [PMID: 26433385 PMCID: PMC4752587 DOI: 10.1007/s10295-015-1686-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/09/2015] [Indexed: 12/20/2022]
Abstract
Environmental microbes produce biologically active small molecules that have been mined extensively as antibiotics and a smaller number of drugs that act on eukaryotic cells. It is known that there are additional bioactives to be discovered from this source. While the discovery of new antibiotics is challenged by the frequent discovery of known compounds, we contend that the eukaryote-active compounds may be less saturated. Indeed, despite there being far fewer eukaryotic-active natural products these molecules interact with a far richer diversity of molecular and cellular targets.
Collapse
Affiliation(s)
- Louis K Ho
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Justin R Nodwell
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
72
|
Wang Y, Guo X, Tang M, Wei D. Theoretical Investigations toward the Asymmetric Insertion Reaction of Diazoester with Aldehyde Catalyzed by N-Protonated Chiral Oxazaborolidine: Mechanisms and Stereoselectivity. J Phys Chem A 2015; 119:8422-31. [DOI: 10.1021/acs.jpca.5b04793] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yang Wang
- The College of Chemistry
and Molecular Engineering, Center of Computational Chemistry, Zhengzhou University, Zhengzhou, Henan Province 450001, P. R. China
| | - Xiaokang Guo
- The College of Chemistry
and Molecular Engineering, Center of Computational Chemistry, Zhengzhou University, Zhengzhou, Henan Province 450001, P. R. China
| | - Mingsheng Tang
- The College of Chemistry
and Molecular Engineering, Center of Computational Chemistry, Zhengzhou University, Zhengzhou, Henan Province 450001, P. R. China
| | - Donghui Wei
- The College of Chemistry
and Molecular Engineering, Center of Computational Chemistry, Zhengzhou University, Zhengzhou, Henan Province 450001, P. R. China
| |
Collapse
|
73
|
Zhang M, Wei D, Wang Y, Li S, Liu J, Zhu Y, Tang M. DFT study on the reaction mechanisms and stereoselectivities of NHC-catalyzed [2 + 2] cycloaddition between arylalkylketenes and electron-deficient benzaldehydes. Org Biomol Chem 2015; 12:6374-83. [PMID: 24940721 DOI: 10.1039/c4ob00606b] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, two possible mechanisms (mechanisms A and B) on the stereoselective [2 + 2] cycloaddition of aryl(alkyl)ketenes and electron-deficient benzaldehydes catalyzed by N-heterocyclic carbenes (NHCs) have been investigated using density functional theory (DFT). Our calculated results indicate that the favorable mechanism (mechanism A) includes three processes: the first step is the nucleophilic attack on the arylalkylketene by the NHC catalyst to form an intermediate, the second step is the [2 + 2] cycloaddition of the intermediate and benzaldehyde for the formation of a β-lactone, and the last step is the dissociation of the NHC catalyst and the β-lactone. Notably, the [2 + 2] cycloaddition, in which two chiral centers associated with four configurations (SS, RR, SR and RS) are formed, is demonstrated to be both the rate- and stereoselectivity-determining step. Moreover, the reaction pathway associated with the SR configuration is the most favorable pathway and leads to the main product, which is in good agreement with the experimental results. Furthermore, the analysis of global and local reactivity indexes has been performed to explain the role of the NHC catalyst in the [2 + 2] cycloaddition reaction. Therefore, this study will be of great use for the rational design of more efficient catalysts for this kind of cycloaddition.
Collapse
Affiliation(s)
- Mengmeng Zhang
- The College of Chemistry and Molecular Engineering, Center of Computational Chemistry, Zhengzhou University, Zhengzhou, Henan Province 450001, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
74
|
Proaporphine and aporphine alkaloids with acetylcholinesterase inhibitory activity from Stephania epigaea. Fitoterapia 2015; 104:102-7. [PMID: 26028544 DOI: 10.1016/j.fitote.2015.05.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 05/22/2015] [Accepted: 05/24/2015] [Indexed: 11/20/2022]
Abstract
An unusual proaporphine alkaloid bearing an isopropanenitrile group at isoquinoline nitrogen, named epiganine A (1) and a new aporphine alkaloid, epiganine B (2), together with eight known alkaloids, pronuciferine (3), dehydrodicentrine (4), romerine (5), romeline (6), N-methylcalycinine (7), phanostenine (8), dicentrine (9), and N-methyllaurotetanine (10), were isolated from the roots of Stephania epigaea. The absolute configuration of 1 was determined by calculating electronic circular dichroism (ECD) and comparing with experimental data. Compounds 2 and 4 showed strong acetylcholinesterase (AChE) inhibitory effects with the IC50 values of 4.36 and 2.98μM, respectively. Compounds 5-9 also exhibited potent AChE inhibitory activities.
Collapse
|
75
|
Wang Y, Wang Y, Zhang W, Zhu Y, Wei D, Tang M. Mechanisms and stereoselectivities of the Rh(i)-catalyzed carbenoid carbon insertion reaction of benzocyclobutenol with diazoester. Org Biomol Chem 2015; 13:6587-97. [DOI: 10.1039/c5ob00608b] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Mechanisms and stereoselectivities of a Rh(i)-catalyzed carbenoid carbon insertion reaction of benzocyclobutenol with diazoester have been investigated using the DFT method.
Collapse
Affiliation(s)
- Yanyan Wang
- College of Chemistry and Molecular Engineering
- Center of Computational Chemistry
- Zhengzhou University
- Zhengzhou
- PR China
| | - Yang Wang
- College of Chemistry and Molecular Engineering
- Center of Computational Chemistry
- Zhengzhou University
- Zhengzhou
- PR China
| | - Wenjing Zhang
- College of Chemistry and Molecular Engineering
- Center of Computational Chemistry
- Zhengzhou University
- Zhengzhou
- PR China
| | - Yanyan Zhu
- College of Chemistry and Molecular Engineering
- Center of Computational Chemistry
- Zhengzhou University
- Zhengzhou
- PR China
| | - Donghui Wei
- College of Chemistry and Molecular Engineering
- Center of Computational Chemistry
- Zhengzhou University
- Zhengzhou
- PR China
| | - Mingsheng Tang
- College of Chemistry and Molecular Engineering
- Center of Computational Chemistry
- Zhengzhou University
- Zhengzhou
- PR China
| |
Collapse
|
76
|
Wang Y, Zheng L, Wei D, Tang M. A quantum mechanical study of the mechanism and stereoselectivity of the N-heterocyclic carbene catalyzed [4 + 2] annulation reaction of enals with azodicarboxylates. Org Chem Front 2015. [DOI: 10.1039/c5qo00121h] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanism and stereoselectivity of the NHC-catalyzed [4 + 2] annulation reaction of enals with azodicarboxylates have been investigated using the DFT method.
Collapse
Affiliation(s)
- Yang Wang
- The College of Chemistry and Molecular Engineering
- Center of Computational Chemistry
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Linjie Zheng
- The College of Chemistry and Molecular Engineering
- Center of Computational Chemistry
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Donghui Wei
- The College of Chemistry and Molecular Engineering
- Center of Computational Chemistry
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Mingsheng Tang
- The College of Chemistry and Molecular Engineering
- Center of Computational Chemistry
- Zhengzhou University
- Zhengzhou
- P.R. China
| |
Collapse
|
77
|
Mechanistic insights into the stereoselective C2-functionalization of 1-substituted imidazoles with cyanophenylacetylene and aldehydes. COMPUT THEOR CHEM 2014. [DOI: 10.1016/j.comptc.2014.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
78
|
Qiao Y, Han K, Zhan CG. Reaction pathways and free energy profiles for cholinesterase-catalyzed hydrolysis of 6-monoacetylmorphine. Org Biomol Chem 2014; 12:2214-27. [PMID: 24595354 DOI: 10.1039/c3ob42464b] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As the most active metabolite of heroin, 6-monoacetylmorphine (6-MAM) can penetrate into the brain for the rapid onset of heroin effects. The primary enzymes responsible for the metabolism of 6-MAM to the less potent morphine in humans are acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The detailed reaction pathways for AChE- and BChE-catalyzed hydrolysis of 6-MAM to morphine have been explored, for the first time, in the present study by performing first-principles quantum mechanical/molecular mechanical free energy calculations. It has been demonstrated that the two enzymatic reaction processes follow similar catalytic reaction mechanisms, and the whole catalytic reaction pathway for each enzyme consists of four reaction steps. According to the calculated results, the second reaction step associated with the transition state TS2(a)/TS2(b) should be rate-determining for the AChE/BChE-catalyzed hydrolysis, and the free energy barrier calculated for the AChE-catalyzed hydrolysis (18.3 kcal mol(-1)) is 2.5 kcal mol(-1) lower than that for the BChE-catalyzed hydrolysis (20.8 kcal mol(-1)). The free energy barriers calculated for the AChE- and BChE-catalyzed reactions are in good agreement with the experimentally derived activation free energies (17.5 and 20.7 kcal mol(-1) for the AChE- and BChE-catalyzed reactions, respectively). Further structural analysis reveals that the aromatic residues Phe295 and Phe297 in the acyl pocket of AChE (corresponding to Leu286 and Val288 in BChE) contribute to the lower energy of TS2(a) relative to TS2(b). The obtained structural and mechanistic insights could be valuable for use in future rational design of a novel therapeutic treatment of heroin abuse.
Collapse
Affiliation(s)
- Yan Qiao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Zhongshan Road 457, Dalian 116023, P. R. China
| | | | | |
Collapse
|
79
|
Jin L, Wang W, Hu D, Lü J. A new insight into the 5-carboxycytosine and 5-formylcytosine under typical bisulfite conditions: a deamination mechanism study. Phys Chem Chem Phys 2014; 16:3573-85. [PMID: 24413472 DOI: 10.1039/c3cp54266a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
5-Methylcytosine (5-MeCyt) can be converted to 5-hydroxymethylcytosine (5-hmCyt) in mammalian DNA by the ten-eleven translocation enzymes. The conventional bisulfite sequencing cannot discriminate 5-hmCyt from 5-MeCyt, whereas the oxidation products of 5-hmCyt, 5-carboxycytosine (5-caCyt) and 5-formylcytosine (5-fCyt) enable them to be identified in bisulfite sequencing. This mechanism likely involves the decarboxylation of 5-caCyt and deformylation of 5-fCyt to cytosine (Cyt) before deamination. Another possibility could be a direct bisulfite-induced deamination reaction followed by decarboxylation and deformylation. Here the HSO3(-)-induced direct hydrolytic deamination of 5-caCytN3(+)-SO3(-) (paths A and B) and 5-O(+)fCytN3(+)-SO3(-) (paths C and D) has been explored at the MP2/6-311++G(3df,3pd)//B3LYP/6-311++G(d,p) level. The activation free energy (ΔG(s≠) = 54.16 kJ mol(-1)) of the direct hydrolytic deamination of 5-caCytN3(+)-SO3(-) path A is much lower than the ΔG(s≠) of CytN3(+)-SO3(-) (100.91 kJ mol(-1)) under bisulfite conditions, implying that 5-caCyt may firstly involve a process of deamination. Meanwhile, the ΔG(s≠) (103.84 kJ mol(-1)) of the HSO3(-)-induced direct hydrolytic deamination of 5-O(+)fCytN3(+)-SO3(-) path C is in close proximity to our previous theoretical data for CytN3(+)-SO3(-), indicating that the deamination of 5-fCyt is also likely to occur in the presence of bisulfite. Meanwhile, the HSO3(-)-induced direct hydrolytic deamination of 5-caCytN3(+)-SO3(-) path A and 5-O(+)fCytN3(+)-SO3(-) path C is represented and has been further explored in the presence of one and two water molecules. The results show that both in the gas and aqueous phases, the participation of one and two water molecules makes the HSO3(-)-induced direct hydrolytic deamination of 5-caCytN3(+)-SO3(-) path A unfavorable, whereas the contribution of one and two water molecules facilitates the HSO3(-)-induced direct hydrolytic deamination of 5-O(+)fCytN3(+)-SO3(-) path C.
Collapse
Affiliation(s)
- Lingxia Jin
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | | | | | | |
Collapse
|
80
|
Jin L, Wang L, Zhang C, Wang W, Min S, Hu D. Is the contribution of cis and trans protonated 5-methylcytosine-SO3(-) isomers equal in the conversion to thymine-SO3(-) under bisulfite conditions? A theoretical perspective. Phys Chem Chem Phys 2014; 16:16264-77. [PMID: 24974803 DOI: 10.1039/c4cp00387j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cytosine (Cyt) can be converted to 5-methylcytosine (5-MeCyt) in CpG sequences of DNA. Conventional bisulfite sequencing can discriminate Cyt from 5-MeCyt, however inappropriate conversion of 5-MeCyt to thymine and a failure to convert Cyt to uracil always occur when Cyt and 5-MeCyt are treated with bisulfite, which would lead to erroneous estimates of DNA methylation densities. Here, the direct hydrolytic deamination of cis (paths A-C) and trans (paths A'-C') 5-MeCytN3(+)-SO3(-) isomers with bisulfite have been explored at the MP2/6-311++G(3df,3pd)//B3LYP/6-311++G(d,p) level. The activation free energies (ΔG(s-a≠)) of the cis and trans 5-MeCytN3(+)-SO3(-) isomers' paths exhibit no obvious differences, implying both isomers may make an equal contribution to the hydrolytic deamination of 5-MeCyt under bisulfite conditions. It is greatly expected that these results could aid experimental scientists to explore new methods to avoid the formation of the deaminated reactants (5-MeCytN3(+)-SO3(-)). Meanwhile, the HSO3(-)-induced direct hydrolytic deamination of cis and trans 5-MeCytN3(+)-SO3(-) isomers is represented by paths A and A', respectively, and has been further explored in the presence of two water molecules. It was found that the contribution of two water molecules renders the HSO3(-)-induced direct hydrolytic deamination of cis and trans 5-MeCytN3(+)-SO3(-) isomers by paths A and A' favourable. In addition, the ΔG(s-a≠) values (85.74-85.34 kJ mol(-1)) of the rate-limiting steps of the two water-mediated paths A and A' are very close to that of the theoretical value for CytN3(+)-SO3(-) (88.18 kJ mol(-1)), implying that the free barrier gap between Cyt and 5-MeCyt is very small under bisulfite conditions. This further suggests that bisulfite sequencing technology may be easily influenced by the external environment.
Collapse
Affiliation(s)
- Lingxia Jin
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | | | | | | | | | | |
Collapse
|
81
|
Wang Y, Wei D, Zhang W, Wang Y, Zhu Y, Jia Y, Tang M. A theoretical study on the mechanisms of the reactions between 1,3-dialkynes and ammonia derivatives for the formation of five-membered N-heterocycles. Org Biomol Chem 2014; 12:7503-14. [DOI: 10.1039/c4ob01015a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
82
|
Enzyme inhibition by hydroamination: design and mechanism of a hybrid carmaphycin-syringolin enone proteasome inhibitor. ACTA ACUST UNITED AC 2014; 21:782-91. [PMID: 24930969 DOI: 10.1016/j.chembiol.2014.04.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 03/13/2014] [Accepted: 04/22/2014] [Indexed: 01/20/2023]
Abstract
Hydroamination reactions involving the addition of an amine to an inactivated alkene are entropically prohibited and require strong chemical catalysts. While this synthetic process is efficient at generating substituted amines, there is no equivalent in small molecule-mediated enzyme inhibition. We report an unusual mechanism of proteasome inhibition that involves a hydroamination reaction of alkene derivatives of the epoxyketone natural product carmaphycin. We show that the carmaphycin enone first forms a hemiketal intermediate with the catalytic Thr1 residue of the proteasome before cyclization by an unanticipated intramolecular alkene hydroamination reaction, resulting in a stable six-membered morpholine ring. The carmaphycin enone electrophile, which does not undergo a 1,4-Michael addition as previously observed with vinyl sulfone and α,β-unsaturated amide-based inhibitors, is partially reversible and gives insight into the design of proteasome inhibitors for cancer chemotherapy.
Collapse
|
83
|
Wang Y, Wei D, Li Z, Zhu Y, Tang M. DFT study on the mechanisms and diastereoselectivities of Lewis acid-promoted ketene-alkene [2 + 2] cycloadditions: what is the role of Lewis acid in the ketene and C = X (X = O, CH₂, and NH) [2 + 2] cycloaddition reactions? J Phys Chem A 2014; 118:4288-300. [PMID: 24874716 DOI: 10.1021/jp500358m] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The detailed mechanisms and diastereoselectivities of Lewis acid-promoted ketene-alkene [2 + 2] cycloaddition reactions have been studied by density functional theory (DFT). Four possible reaction channels, including two noncatalyzed diastereomeric reaction channels (channels A and B) and two Lewis acid (LA) ethylaluminum dichloride (EtAlCl2) catalyzed diastereomeric reaction channels (channels C and D), have been investigated in this work. The calculated results indicate that channel A (associated with product R-configurational cycloputanone) is more energy favorable than channel B (associated with the other product S-configurational cyclobutanone) under noncatalyzed condition, but channel D leading to S-configurational cyclobutanone is more energy-favorable than channel C, leading to R-configurational cycloputanone under a LA-promoted condition, which is consistent with the experimental results. And Lewis acid can make the energy barrier of ketene-alkene [2 + 2] cycloaddition much lower. In order to explore the role of LA in ketene and C = X (X = O, CH2, and NH) [2 + 2] cycloadditions, we have tracked and compared the interaction modes of frontier molecular orbitals (FMOs) along the intrinsic reaction coordinate (IRC) under the two different conditions. Besides by reducing the energy gap between the FMOs of the reactants, our computational results demonstrate that Lewis acid lowers the energy barrier of the ketene and C = X [2 + 2] cycloadditions by changing the overlap modes of the FMOs, which is remarkably different from the traditional FMO theory. Furthermore, analysis of global reactivity indexes has also been performed to explain the role of LA catalyst in the ketene-alkene [2 + 2] cycloaddition reaction.
Collapse
Affiliation(s)
- Yang Wang
- The College of Chemistry and Molecular Engineering, Center of Computational Chemistry, Zhengzhou University , Zhengzhou, Henan Province 450001, P.R. China
| | | | | | | | | |
Collapse
|
84
|
Selective immunoproteasome inhibitors with non-peptide scaffolds identified from structure-based virtual screening. Bioorg Med Chem Lett 2014; 24:3614-7. [PMID: 24913713 DOI: 10.1016/j.bmcl.2014.05.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 05/07/2014] [Accepted: 05/09/2014] [Indexed: 12/17/2022]
Abstract
As a major component of the crucial nonlysosomal protein degradation pathway in the cells, the proteasome has been implicated in many diseases such as Alzheimer's disease, Huntington's disease, inflammatory bowel diseases, autoimmune diseases, multiple myeloma (MM) and other cancers. There are two main proteasome subtypes: the constitutive proteasome which is expressed in all eukaryotic cells and the immunoproteasome which is expressed in immune cells and can be induced in other cell types. Majority of currently available proteasome inhibitors are peptide backbone-based, having short half-lives in the body. It is highly desirable to identify novel, immunoproteasome-selective inhibitors with non-peptide scaffolds for development of novel therapeutics. Through combined virtual screening and experimental studies targeting the immunoproteasome, we have identified a set of novel immunoproteasome inhibitors with diverse non-peptide scaffolds. Some of the identified inhibitors have significant selectivity for the immunoproteasome over the constitutive proteasome. Unlike most of the currently available proteasome inhibitors, these new inhibitors lacking electrophilic pharmacophores are not expected to form a covalent bond with proteasome after the binding. These non-peptide scaffolds may provide a new platform for future rational drug design and discovery targeting the immunoproteasome.
Collapse
|
85
|
Li Z, Wei D, Wang Y, Zhu Y, Tang M. DFT Study on the Mechanisms and Stereoselectivities of the [4 + 2] Cycloadditions of Enals and Chalcones Catalyzed by N-Heterocyclic Carbene. J Org Chem 2014; 79:3069-78. [DOI: 10.1021/jo500194d] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Zhenyu Li
- The College of Chemistry
and Molecular Engineering, Center of Computational Chemistry, Zhengzhou University, Zhengzhou, Henan Province, 450001, P.R. China
| | - Donghui Wei
- The College of Chemistry
and Molecular Engineering, Center of Computational Chemistry, Zhengzhou University, Zhengzhou, Henan Province, 450001, P.R. China
| | - Yang Wang
- The College of Chemistry
and Molecular Engineering, Center of Computational Chemistry, Zhengzhou University, Zhengzhou, Henan Province, 450001, P.R. China
| | - Yanyan Zhu
- The College of Chemistry
and Molecular Engineering, Center of Computational Chemistry, Zhengzhou University, Zhengzhou, Henan Province, 450001, P.R. China
| | - Mingsheng Tang
- The College of Chemistry
and Molecular Engineering, Center of Computational Chemistry, Zhengzhou University, Zhengzhou, Henan Province, 450001, P.R. China
| |
Collapse
|
86
|
Li Y, Zhu Y, Zhang W, Wei D, Ran Y, Zhao Q, Tang M. A DFT study on the reaction mechanism of dimerization of methyl methacrylate catalyzed by N-heterocyclic carbene. Phys Chem Chem Phys 2014; 16:20001-8. [DOI: 10.1039/c4cp02186j] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The novel proton transfers assisted by methyl methacrylate lower the energy barrier of the dimerization.
Collapse
Affiliation(s)
- Yunxia Li
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou, PR China
| | - Yanyan Zhu
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou, PR China
| | - Wenjing Zhang
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou, PR China
| | - Donghui Wei
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou, PR China
| | - Yingying Ran
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou, PR China
| | - Qilin Zhao
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou, PR China
| | - Mingsheng Tang
- The College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou, PR China
| |
Collapse
|
87
|
Wei D, Fang L, Tang M, Zhan CG. Fundamental reaction pathway for peptide metabolism by proteasome: insights from first-principles quantum mechanical/molecular mechanical free energy calculations. J Phys Chem B 2013; 117:13418-34. [PMID: 24111489 DOI: 10.1021/jp405337v] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Proteasome is the major component of the crucial non-lysosomal protein degradation pathway in the cells, but the detailed reaction pathway is unclear. In this study, first-principles quantum mechanical/molecular mechanical free energy calculations have been performed to explore, for the first time, possible reaction pathways for proteasomal proteolysis/hydrolysis of a representative peptide, succinyl-leucyl-leucyl-valyl-tyrosyl-7-amino-4-methylcoumarin (Suc-LLVY-AMC). The computational results reveal that the most favorable reaction pathway consists of six steps. The first is a water-assisted proton transfer within proteasome, activating Thr1-O(γ). The second is a nucleophilic attack on the carbonyl carbon of a Tyr residue of substrate by the negatively charged Thr1-O(γ), followed by the dissociation of the amine AMC (third step). The fourth step is a nucleophilic attack on the carbonyl carbon of the Tyr residue of substrate by a water molecule, accompanied by a proton transfer from the water molecule to Thr1-N(z). Then, Suc-LLVY is dissociated (fifth step), and Thr1 is regenerated via a direct proton transfer from Thr1-N(z) to Thr1-O(γ). According to the calculated energetic results, the overall reaction energy barrier of the proteasomal hydrolysis is associated with the transition state (TS3(b)) for the third step involving a water-assisted proton transfer. The determined most favorable reaction pathway and the rate-determining step have provided a reasonable interpretation of the reported experimental observations concerning the substituent and isotopic effects on the kinetics. The calculated overall free energy barrier of 18.2 kcal/mol is close to the experimentally derived activation free energy of ∼18.3-19.4 kcal/mol, suggesting that the computational results are reasonable.
Collapse
Affiliation(s)
- Donghui Wei
- Department of Chemistry, Zhengzhou University , 75 Daxue Road, Zhengzhou, Henan 450052, China
| | | | | | | |
Collapse
|
88
|
Qiao Y, Han K, Zhan CG. Fundamental reaction pathway and free energy profile for butyrylcholinesterase-catalyzed hydrolysis of heroin. Biochemistry 2013; 52:6467-79. [PMID: 23992153 DOI: 10.1021/bi400709v] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The pharmacological function of heroin requires an activation process that transforms heroin into 6-monoacetylmorphine (6-MAM), which is the most active form. The primary enzyme responsible for this activation process in human plasma is butyrylcholinesterase (BChE). The detailed reaction pathway of the activation process via BChE-catalyzed hydrolysis has been explored computationally, for the first time, in this study via molecular dynamics simulation and first-principles quantum mechanical/molecular mechanical free energy calculations. It has been demonstrated that the whole reaction process includes acylation and deacylation stages. The acylation consists of two reaction steps, i.e., the nucleophilic attack on the carbonyl carbon of the 3-acetyl group of heroin by the hydroxyl oxygen of the Ser198 side chain and the dissociation of 6-MAM. The deacylation also consists of two reaction steps, i.e., the nucleophilic attack on the carbonyl carbon of the acyl-enzyme intermediate by a water molecule and the dissociation of the acetic acid from Ser198. The calculated free energy profile reveals that the second transition state (TS2) should be rate-determining. The structural analysis reveals that the oxyanion hole of BChE plays an important role in the stabilization of rate-determining TS2. The free energy barrier (15.9 ± 0.2 or 16.1 ± 0.2 kcal/mol) calculated for the rate-determining step is in good agreement with the experimentally derived activation free energy (~16.2 kcal/mol), suggesting that the mechanistic insights obtained from this computational study are reliable. The obtained structural and mechanistic insights could be valuable for use in the future rational design of a novel therapeutic treatment of heroin abuse.
Collapse
Affiliation(s)
- Yan Qiao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science , Zhongshan Road 457, Dalian 116023, P. R. China
| | | | | |
Collapse
|
89
|
Wang Y, Wei D, Zhu Y, Liu P, Tang M. A DFT study on the reaction mechanisms of isocyanide-based multicomponent synthesis of polysubstituted cyclopentenes. COMPUT THEOR CHEM 2013. [DOI: 10.1016/j.comptc.2013.06.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
90
|
A DFT study on the mechanisms of three-component reaction between imidazoles, isocyanates and cyanophenylacetylene. COMPUT THEOR CHEM 2013. [DOI: 10.1016/j.comptc.2013.05.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
91
|
Wei D, Huang X, Tang M, Zhan CG. Reaction pathway and free energy profile for papain-catalyzed hydrolysis of N-acetyl-Phe-Gly 4-nitroanilide. Biochemistry 2013; 52:5145-54. [PMID: 23862626 PMCID: PMC3770148 DOI: 10.1021/bi400629r] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Possible reaction pathways for papain-catalyzed hydrolysis of N-acetyl-Phe-Gly 4-nitroanilide (APGNA) have been studied by performing pseudobond first-principles quantum mechanical/molecular mechanical-free energy (QM/MM-FE) calculations. The whole hydrolysis process includes two stages: acylation and deacylation. For the acylation stage of the catalytic reaction, we have explored three possible paths (A, B, and C) and the corresponding free energy profiles along the reaction coordinates. It has been demonstrated that the most favorable reaction path in this stage is path B consisting of two reaction steps: the first step is a proton transfer to form a zwitterionic form (i.e., Cys-S⁻/His-H⁺ ion-pair), and the second step is the nucleophilic attack on the carboxyl carbon of the substrate accompanied by the dissociation of 4-nitroanilide. The deacylation stage includes the nucleophilic attack of a water molecule on the carboxyl carbon of the substrate and dissociation between the carboxyl carbon of the substrate and the sulfhydryl sulfur of Cys25 side chain. The free energy barriers calculated for the acylation and deacylation stages are 20.0 and 10.7 kcal/mol, respectively. Thus, the acylation is rate-limiting. The overall free energy barrier calculated for papain-catalyzed hydrolysis of APGNA is 20.0 kcal/mol, which is reasonably close to the experimentally derived activation free energy of 17.9 kcal/mol.
Collapse
Affiliation(s)
- Donghui Wei
- Department of Chemistry, Zhengzhou University, 75 Daxue Road, Zhengzhou, Henan, 450052, P. R. China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
| | - Xiaoqin Huang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
| | - Mingsheng Tang
- Department of Chemistry, Zhengzhou University, 75 Daxue Road, Zhengzhou, Henan, 450052, P. R. China
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
| |
Collapse
|
92
|
Rentsch A, Landsberg D, Brodmann T, Bülow L, Girbig AK, Kalesse M. Synthese und Pharmakologie von Proteasom-Inhibitoren. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201207900] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
93
|
Rentsch A, Landsberg D, Brodmann T, Bülow L, Girbig AK, Kalesse M. Synthesis and pharmacology of proteasome inhibitors. Angew Chem Int Ed Engl 2013; 52:5450-88. [PMID: 23526565 DOI: 10.1002/anie.201207900] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Indexed: 12/17/2022]
Abstract
Shortly after the discovery of the proteasome it was proposed that inhibitors could stabilize proteins which ultimately would trigger apoptosis in tumor cells. The essential questions were whether small molecules would be able to inhibit the proteasome without generating prohibitive side effects and how one would derive these compounds. Fortunately, "Mother Nature" has generated a wide variety of natural products that provide distinct selectivities and specificities. The chemical synthesis of these natural products finally provided access to analogues and optimized drugs of which two different classes have been approved for the treatment of malignancies. Despite these achievements, additional lead structures derived from nature are under investigation and will be discussed with regard to their biological potential and chemical challenges.
Collapse
Affiliation(s)
- Andreas Rentsch
- Institut für Organische Chemie and Centre of Biomolecular Drug Research, Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
94
|
Li D, Huang X, Lin J, Zhan CG. Catalytic mechanism of cytochrome P450 for N-methylhydroxylation of nicotine: reaction pathways and regioselectivity of the enzymatic nicotine oxidation. Dalton Trans 2013; 42:3812-20. [PMID: 23303461 DOI: 10.1039/c2dt32106h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fundamental reaction mechanism of cytochrome P450 2A6 (CYP2A6)-catalyzed N-methylhydroxylation of (S)-(-)-nicotine and the free energy profile have been studied by performing pseudobond first-principles quantum mechanical/molecular mechanical (QM/MM) reaction-coordinate calculations. In the CYP2A6-(S)-(-)-nicotine binding structures that allow for 5'-hydroxylation, the N-methyl group is also sufficiently close to the oxygen of Cpd I for the N-methylhydroxylation reaction to occur. It has been demonstrated that the CYP2A6-catalyzed N-methylhydroxylation reaction is a concerted process involving a hydrogen-transfer transition state on both the quartet and the doublet states. The N-methylhydroxylation reaction proceeds mainly in the doublet state, since the free energy barriers on the doublet state are lower than the corresponding ones on the quartet state. The calculated free energy barriers indicate that (S)-(-)-nicotine oxidation catalyzed by CYP2A6 proceeds with a high regioselective abstraction of the hydrogen at the 5'-position, rather than the hydrogen at the N-methyl group. The predicted regioselectivity of 93% is in agreement with the most recent experimentally reported regioselectivity of 95%. The binding mode of (S)-(-)-nicotine in the active site of CYP2A6 is an important determinant for the stereoselectivity of nicotine (S)-(-)-oxidation, whereas the regioselectivity of (S)-(-)-nicotine oxidation is determined mainly by the free energy barrier difference between the 5'-hydroxylation and N-methylhydroxylation reactions.
Collapse
Affiliation(s)
- Dongmei Li
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.
| | | | | | | |
Collapse
|
95
|
Jin L, Wang W, Hu D, Lü J. The conversion of protonated cytosine-SO3− to uracil-SO3−: Insights into the novel induced hydrolytic deamination through bisulfite catalysis. Phys Chem Chem Phys 2013; 15:9034-42. [DOI: 10.1039/c3cp51275d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|