51
|
Kumar R, Pandey B, Sen A, Ansari M, Sharma S, Rajaraman G. Role of oxidation state, ferryl-oxygen, and ligand architecture on the reactivity of popular high-valent FeIV=O species: A theoretical perspective. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213397] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
52
|
Yeh CG, Hörner G, Visser SP. Computational Study on O–O Bond Formation on a Mononuclear Non‐Heme Iron Center. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chieh‐Chih George Yeh
- Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science The University of Manchester 131 Princess Street M1 7DN Manchester UK
| | - Gerald Hörner
- Institut für Anorganische Chemie IV / NW I Universität Bayreuth Universitätsstraße 30 95440 Bayreuth Germany
| | - Sam P. Visser
- Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science The University of Manchester 131 Princess Street M1 7DN Manchester UK
| |
Collapse
|
53
|
Visser SP. Second‐Coordination Sphere Effects on Selectivity and Specificity of Heme and Nonheme Iron Enzymes. Chemistry 2020; 26:5308-5327. [DOI: 10.1002/chem.201905119] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/04/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Sam P. Visser
- The Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical ScienceThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
54
|
Sen A, Vyas N, Pandey B, Jaccob M, Rajaraman G. Mechanistic Insights on the Formation of High‐Valent Mn
III/IV
=O Species Using Oxygen as Oxidant: A Theoretical Perspective. Isr J Chem 2020. [DOI: 10.1002/ijch.201900142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Asmita Sen
- Department of Chemistry Indian Institute of Technology Bombay Mumbai 400076 India
| | - Nidhi Vyas
- Department of Chemistry Indian Institute of Technology Bombay Mumbai 400076 India
- School of Biotechnology Jawaharlal Nehru University New Delhi 110067 India
| | - Bhawana Pandey
- Department of Chemistry Indian Institute of Technology Bombay Mumbai 400076 India
| | - Madhavan Jaccob
- Department of Chemistry Indian Institute of Technology Bombay Mumbai 400076 India
- Department of chemistry Loyola College Chennai 600 034
| | - Gopalan Rajaraman
- Department of Chemistry Indian Institute of Technology Bombay Mumbai 400076 India
| |
Collapse
|
55
|
I. M, Shahid M, Kumar M, Ansari A, Akhtar MN, AlDamen MA, Song Y, Ahmad M, Khan IM. Exploring solvent dependent catecholase activity in transition metal complexes: an experimental and theoretical approach. NEW J CHEM 2020. [DOI: 10.1039/c9nj04374h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Four coordination compounds are designed with pyridinemethanol ligands, characterized with spectral, magnetic and X-ray analyses, and assessed for catecholase activity in various solvents.
Collapse
Affiliation(s)
- Mantasha I.
- Department of Chemistry
- Aligarh Muslim University
- Aligarh-202002
- India
| | - M. Shahid
- Department of Chemistry
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Manjeet Kumar
- Department of Chemistry
- Central University of Haryana
- Mahendergarh-123031
- India
| | - Azaj Ansari
- Department of Chemistry
- Central University of Haryana
- Mahendergarh-123031
- India
| | - Muhammad Nadeem Akhtar
- Department of Chemistry
- Khwaja Fareed University of Engineering & Information Technology
- Rahim Yar Khan 64200
- Pakistan
| | - Murad A. AlDamen
- Department of Chemistry
- Faculty of Science
- The University of Jordan
- Amman 11942
- Jordan
| | - You Song
- State Key Laboratory of Coordination Chemistry
- Nanjing University
- Nanjing 210023
- P. R. China
| | - Musheer Ahmad
- Department of Applied Chemistry (ZHCET)
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Ishaat M. Khan
- Department of Chemistry
- Aligarh Muslim University
- Aligarh-202002
- India
| |
Collapse
|
56
|
Anticancer properties, apoptosis and catecholase mimic activities of dinuclear cobalt(II) and copper(II) Schiff base complexes. Bioorg Chem 2020; 95:103561. [DOI: 10.1016/j.bioorg.2019.103561] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/15/2019] [Accepted: 12/27/2019] [Indexed: 01/26/2023]
|
57
|
Monika, Ansari A. Mechanistic insights into the allylic oxidation of aliphatic compounds by tetraamido iron( v) species: A C–H vs. O–H bond activation. NEW J CHEM 2020. [DOI: 10.1039/d0nj03095c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work is based on a deep insight into a comparative study of C–H vs. O–H bond activation of allylic compound by the high valent iron complex. Our theoretical findings can help to design catalysts with better efficiency for catalytic reactions.
Collapse
Affiliation(s)
- Monika
- Department of Chemistry
- Central University of Haryana
- Mahendergarh-123031
- India
| | - Azaj Ansari
- Department of Chemistry
- Central University of Haryana
- Mahendergarh-123031
- India
| |
Collapse
|
58
|
Ahmad MS, Khalid M, Khan MS, Shahid M, Ahmad M, Monika, Ansari A, Ashafaq M. Exploring catecholase activity in dinuclear Mn(ii) and Cu(ii) complexes: an experimental and theoretical approach. NEW J CHEM 2020. [DOI: 10.1039/d0nj00605j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Two dinuclear Mn(ii) and Cu(ii) complexes were prepared, characterised and assessed for non-covalent interactions and catecholase oxidase properties. The catecholase activity of2is further corroborated by theoretical calculations using DFT.
Collapse
Affiliation(s)
- M. Shahwaz Ahmad
- Department of Chemistry
- Aligarh Muslim University
- Aligarh 202002
- India
| | - Mohd Khalid
- Department of Chemistry
- Aligarh Muslim University
- Aligarh 202002
- India
| | | | - M. Shahid
- Department of Chemistry
- Aligarh Muslim University
- Aligarh 202002
- India
| | - Musheer Ahmad
- Department of Applied Chemistry
- Aligarh Muslim University
- Aligarh 202002
- India
| | - Monika
- Department of Chemistry
- Central University of Haryana
- Mahendergarh-123031
- India
| | - Azaj Ansari
- Department of Chemistry
- Central University of Haryana
- Mahendergarh-123031
- India
| | - Mo Ashafaq
- Department of Chemistry
- Aligarh Muslim University
- Aligarh 202002
- India
| |
Collapse
|
59
|
Mukherjee G, Reinhard FGC, Bagha UK, Sastri CV, de Visser SP. Sluggish reactivity by a nonheme iron(iv)-tosylimido complex as compared to its oxo analogue. Dalton Trans 2020; 49:5921-5931. [DOI: 10.1039/d0dt00018c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A comparative spectroscopic and computational study of reactivity between ferryl-tosylimido and ferryl-oxo complexes of two biomimetic model systems. The Fe(iv)-tosylimido complex was found to be sluggish in comparison to its fellow oxo counterpart.
Collapse
Affiliation(s)
- Gourab Mukherjee
- Department of Chemistry
- Indian Institute of Technology Guwahati
- India
| | - Fabián G. Cantú Reinhard
- The Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science
- The University of Manchester
- Manchester M1 7DN
- UK
| | | | | | - Sam P. de Visser
- The Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science
- The University of Manchester
- Manchester M1 7DN
- UK
| |
Collapse
|
60
|
Ghafoor S, Mansha A, de Visser SP. Selective Hydrogen Atom Abstraction from Dihydroflavonol by a Nonheme Iron Center Is the Key Step in the Enzymatic Flavonol Synthesis and Avoids Byproducts. J Am Chem Soc 2019; 141:20278-20292. [PMID: 31749356 DOI: 10.1021/jacs.9b10526] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The plant non-heme iron dioxygenase flavonol synthase performs a regioselective desaturation reaction as part of the biosynthesis of the signaling molecule flavonol that triggers the growing of leaves and flowers. These compounds also have health benefits for humans. Desaturation of aliphatic compounds generally proceeds through two consecutive hydrogen atom abstraction steps from two adjacent carbon atoms and in nature often is performed by a high-valent iron(IV)-oxo species. We show that the order of the hydrogen atom abstraction steps, however, is opposite of those expected from the C-H bond strengths in the substrate and determines the product distributions. As such, flavonol synthase follows a negative catalysis mechanism. Using density functional theory methods on large active-site model complexes, we investigated pathways for desaturation and hydroxylation by an iron(IV)-oxo active-site model. Contrary to thermochemical predictions, we find that the oxidant abstracts the hydrogen atom from the strong C2-H bond rather than the weaker C3-H bond of the substrate first. We analyze the origin of this unexpected selective hydrogen atom abstraction pathway and find that the alternative C3-H hydrogen atom abstraction would be followed by a low-energy and competitive substrate hydroxylation mechanism hence, should give considerable amount of byproducts. Our computational modeling studies show that substrate positioning in flavonol synthase is essential, as it guides the reactivity to a chemo- and regioselective substrate desaturation from the C2-H group, leading to desaturation products efficiently.
Collapse
Affiliation(s)
- Sidra Ghafoor
- The Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science , The University of Manchester , 131 Princess Street , Manchester M1 7DN , United Kingdom.,Department of Chemistry , Government College University Faisalabad , New Campus, Jhang Road , Faisalabad 38000 , Pakistan
| | - Asim Mansha
- Department of Chemistry , Government College University Faisalabad , New Campus, Jhang Road , Faisalabad 38000 , Pakistan
| | - Sam P de Visser
- The Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science , The University of Manchester , 131 Princess Street , Manchester M1 7DN , United Kingdom
| |
Collapse
|
61
|
Rebelo SL, Moniz T, Medforth CJ, de Castro B, Rangel M. EPR spin trapping studies of H2O2 activation in metaloporphyrin catalyzed oxygenation reactions: Insights on the biomimetic mechanism. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.110500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
62
|
Zeb N, Rashid MH, Mubarak MQE, Ghafoor S, de Visser SP. Flavonol biosynthesis by nonheme iron dioxygenases: A computational study into the structure and mechanism. J Inorg Biochem 2019; 198:110728. [PMID: 31203088 DOI: 10.1016/j.jinorgbio.2019.110728] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/13/2019] [Accepted: 05/29/2019] [Indexed: 12/20/2022]
Abstract
Plants produce flavonol compounds for vital functions regarding plant growth, fruit and flower colouring as well as fruit ripening processes. Several of these biosynthesis steps are stereo- and regioselective and are being carried out by nonheme iron enzymes. Using density functional theory calculations on a large active site model complex of flavanone-3β-hydroxylase (FHT), we established the mechanism for conversion of naringenin to its dihydroflavonol, which is a key step in the mechanism of flavonol biosynthesis. The reaction starts with dioxygen binding to the iron(II) centre and a reaction with α-ketoglutarate co-substrate gives succinate, an iron(IV)-oxo species and CO2 with large exothermicity and small reaction barriers. The rate-determining reaction step in the mechanism; however, is hydrogen atom abstraction of an aliphatic CH bond by the iron(IV)-oxo species. We identify a large kinetic isotope effect for the replacement of the transferring hydrogen atom by deuterium. In a final step the OH and substrate radicals combine to form the alcohol product with a barrier of several kcal mol-1. We show that the latter is the result of geometric constraints in the active site pocket. Furthermore, the calculations show that a weak tertiary CH bond is shielded from the iron(IV)-oxo species in the substrate binding position and therefore the enzyme is able to activate a stronger CH bond. As such, the flavanone-3β-hydroxylase enzyme reacts regioselectively with one specific CH bond of naringenin by avoiding activation of weaker bonds through tight substrate and oxidant positioning.
Collapse
Affiliation(s)
- Neelam Zeb
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom; National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, P.O. Box 577, Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Muhammad H Rashid
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, P.O. Box 577, Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - M Qadri E Mubarak
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Sidra Ghafoor
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom; Department of Chemistry, Government College University Faisalabad, Jhang Road, 3800 Faisalabad, Pakistan
| | - Sam P de Visser
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.
| |
Collapse
|
63
|
I. M, Raza MK, Shahid M, Ansari A, Ahmad M, Khan IM. Unprecedented isolation of a dinuclear tin (II) complex stabilized by pyridine‐2,6‐dimethanol: structure, DFT and in vitro screening of cytotoxic properties. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Mantasha I.
- Department of ChemistryAligarh Muslim University Aligarh India
| | - Md Kausar Raza
- Department of Inorganic and Physical ChemistryIndian Institute of Science Bangaluru India
| | - M. Shahid
- Department of ChemistryAligarh Muslim University Aligarh India
| | - Azaj Ansari
- Department of ChemistryCentral University of Haryana Mahendergarh India
| | - Musheer Ahmad
- Department of Applied Chemistry, ZHCETAligarh Muslim University Aligarh India
| | - Ishaat M. Khan
- Department of ChemistryAligarh Muslim University Aligarh India
| |
Collapse
|
64
|
Pattanayak S, Cantú Reinhard FG, Rana A, Gupta SS, de Visser SP. The Equatorial Ligand Effect on the Properties and Reactivity of Iron(V) Oxo Intermediates. Chemistry 2019; 25:8092-8104. [DOI: 10.1002/chem.201900708] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Santanu Pattanayak
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246 India
| | - Fabián G. Cantú Reinhard
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical ScienceThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Atanu Rana
- Indian Association for the Cultivation of Sciences 2A Raja S. C. Mullick Road Kolkata 700032 India
| | - Sayam Sen Gupta
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246 India
| | - Sam P. de Visser
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical ScienceThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
65
|
Guo M, Corona T, Ray K, Nam W. Heme and Nonheme High-Valent Iron and Manganese Oxo Cores in Biological and Abiological Oxidation Reactions. ACS CENTRAL SCIENCE 2019; 5:13-28. [PMID: 30693322 PMCID: PMC6346628 DOI: 10.1021/acscentsci.8b00698] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Indexed: 05/23/2023]
Abstract
Utilization of O2 as an abundant and environmentally benign oxidant is of great interest in the design of bioinspired synthetic catalytic oxidation systems. Metalloenzymes activate O2 by employing earth-abundant metals and exhibit diverse reactivities in oxidation reactions, including epoxidation of olefins, functionalization of alkane C-H bonds, arene hydroxylation, and syn-dihydroxylation of arenes. Metal-oxo species are proposed as reactive intermediates in these reactions. A number of biomimetic metal-oxo complexes have been synthesized in recent years by activating O2 or using artificial oxidants at iron and manganese centers supported on heme or nonheme-type ligand environments. Detailed reactivity studies together with spectroscopy and theory have helped us understand how the reactivities of these metal-oxygen intermediates are controlled by the electronic and steric properties of the metal centers. These studies have provided important insights into biological reactions, which have contributed to the design of biologically inspired oxidation catalysts containing earth-abundant metals like iron and manganese. In this Outlook article, we survey a few examples of these advances with particular emphasis in each case on the interplay of catalyst design and our understanding of metalloenzyme structure and function.
Collapse
Affiliation(s)
- Mian Guo
- Department
of Chemistry and Nano Science, Ewha Womans
University, Seoul 03760, Korea
| | - Teresa Corona
- Department
of Chemistry, Humboldt-Universität
zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Kallol Ray
- Department
of Chemistry, Humboldt-Universität
zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Wonwoo Nam
- Department
of Chemistry and Nano Science, Ewha Womans
University, Seoul 03760, Korea
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for
Excellence in Molecular Synthesis, Suzhou
Research Institute of LICP, Lanzhou Institute of Chemical Physics
(LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R.
China
| |
Collapse
|
66
|
Ahamad MN, Kumar M, Ansari A, I. M, Ahmad M, Shahid M. Synthesis, characterization, theoretical studies and catecholase like activities of [MO6] type complexes. NEW J CHEM 2019. [DOI: 10.1039/c9nj03729b] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Co(ii) and Zn(ii) complexes are prepared and characterized through spectral, crystallographic and theoretical studies. The Co(ii) complex is shown to be a catechol oxidase mimic and the activity is corroborated by DFT results.
Collapse
Affiliation(s)
- M. Naqi Ahamad
- Department of Chemistry
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Manjeet Kumar
- Department of Chemistry
- Central University of Haryana
- Mahendergarh-123031
- India
| | - Azaj Ansari
- Department of Chemistry
- Central University of Haryana
- Mahendergarh-123031
- India
| | - Mantasha I.
- Department of Chemistry
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Musheer Ahmad
- Department of Applied Chemistry (ZHCET)
- Aligarh Muslim University
- Aligarh-202002
- India
| | - M. Shahid
- Department of Chemistry
- Aligarh Muslim University
- Aligarh-202002
- India
| |
Collapse
|
67
|
Ahamad MN, Shahid M, Ansari A, Kumar M, Khan IM, Ahmad M, Rahisuddin R, Arif R. A combined experimental and theoretical approach to investigate the structure, magnetic properties and DNA binding affinity of a homodinuclear Cu(ii) complex. NEW J CHEM 2019. [DOI: 10.1039/c9nj00228f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A dicopper(ii) complex of a flexible amino alcohol anchored with an acetate auxiliary was designed and characterized by spectral, X-ray crystallographic, magnetic and DFT studies; moreover, it was evaluated for its DNA binding properties. The experimental results are supported by theoretical analyses.
Collapse
Affiliation(s)
- M. Naqi Ahamad
- Department of Chemistry
- Aligarh Muslim University
- Aligarh-202002
- India
| | - M. Shahid
- Department of Chemistry
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Azaj Ansari
- Department of Chemistry
- Central University of Haryana
- Mahendergarh-123031
- India
| | - Manjeet Kumar
- Department of Chemistry
- Central University of Haryana
- Mahendergarh-123031
- India
| | - Ishaat M. Khan
- Department of Chemistry
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Musheer Ahmad
- Department of Applied Chemistry (ZHCET)
- Aligarh Muslim University
- Aligarh-202002
- India
| | | | - Rizwan Arif
- Department of Chemistry
- Jamia Millia Islamia (A Central University)
- New Delhi
- India
| |
Collapse
|
68
|
Timmins A, Fowler NJ, Warwicker J, Straganz GD, de Visser SP. Does Substrate Positioning Affect the Selectivity and Reactivity in the Hectochlorin Biosynthesis Halogenase? Front Chem 2018; 6:513. [PMID: 30425979 PMCID: PMC6218459 DOI: 10.3389/fchem.2018.00513] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/04/2018] [Indexed: 12/17/2022] Open
Abstract
In this work we present the first computational study on the hectochlorin biosynthesis enzyme HctB, which is a unique three-domain halogenase that activates non-amino acid moieties tethered to an acyl-carrier, and as such may have biotechnological relevance beyond other halogenases. We use a combination of small cluster models and full enzyme structures calculated with quantum mechanics/molecular mechanics methods. Our work reveals that the reaction is initiated with a rate-determining hydrogen atom abstraction from substrate by an iron (IV)-oxo species, which creates an iron (III)-hydroxo intermediate. In a subsequent step the reaction can bifurcate to either halogenation or hydroxylation of substrate, but substrate binding and positioning drives the reaction to optimal substrate halogenation. Furthermore, several key residues in the protein have been identified for their involvement in charge-dipole interactions and induced electric field effects. In particular, two charged second coordination sphere amino acid residues (Glu223 and Arg245) appear to influence the charge density on the Cl ligand and push the mechanism toward halogenation. Our studies, therefore, conclude that nonheme iron halogenases have a chemical structure that induces an electric field on the active site that affects the halide and iron charge distributions and enable efficient halogenation. As such, HctB is intricately designed for a substrate halogenation and operates distinctly different from other nonheme iron halogenases.
Collapse
Affiliation(s)
- Amy Timmins
- The Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, University of Manchester, Manchester, United Kingdom
| | - Nicholas J. Fowler
- The Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester, United Kingdom
| | - Jim Warwicker
- The Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester, United Kingdom
| | - Grit D. Straganz
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
- Institute of Molecular Biosciences, Graz University, Graz, Austria
| | - Sam P. de Visser
- The Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
69
|
Rana S, Biswas JP, Sen A, Clémancey M, Blondin G, Latour JM, Rajaraman G, Maiti D. Selective C-H halogenation over hydroxylation by non-heme iron(iv)-oxo. Chem Sci 2018; 9:7843-7858. [PMID: 30429994 PMCID: PMC6194801 DOI: 10.1039/c8sc02053a] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/14/2018] [Indexed: 12/26/2022] Open
Abstract
Non-heme iron based halogenase enzymes promote selective halogenation of the sp3-C-H bond through iron(iv)-oxo-halide active species. During halogenation, competitive hydroxylation can be prevented completely in enzymatic systems. However, synthetic iron(iv)-oxo-halide intermediates often result in a mixture of halogenation and hydroxylation products. In this report, we have developed a new synthetic strategy by employing non-heme iron based complexes for selective sp3-C-H halogenation by overriding hydroxylation. A room temperature stable, iron(iv)-oxo complex, [Fe(2PyN2Q)(O)]2+ was directed for hydrogen atom abstraction (HAA) from aliphatic substrates and the iron(ii)-halide [FeII(2PyN2Q)(X)]+ (X, halogen) was exploited in conjunction to deliver the halogen atom to the ensuing carbon centered radical. Despite iron(iv)-oxo being an effective promoter of hydroxylation of aliphatic substrates, the perfect interplay of HAA and halogen atom transfer in this work leads to the halogenation product selectively by diverting the hydroxylation pathway. Experimental studies outline the mechanistic details of the iron(iv)-oxo mediated halogenation reactions. A kinetic isotope study between PhCH3 and C6D5CD3 showed a value of 13.5 that supports the initial HAA step as the RDS during halogenation. Successful implementation of this new strategy led to the establishment of a functional mimic of non-heme halogenase enzymes with an excellent selectivity for halogenation over hydroxylation. Detailed theoretical studies based on density functional methods reveal how the small difference in the ligand design leads to a large difference in the electronic structure of the [Fe(2PyN2Q)(O)]2+ species. Both experimental and computational studies suggest that the halide rebound process of the cage escaped radical with iron(iii)-halide is energetically favorable compared to iron(iii)-hydroxide and it brings in selective formation of halogenation products over hydroxylation.
Collapse
Affiliation(s)
- Sujoy Rana
- Department of Chemistry , IIT Bombay , Powai , Mumbai-400076 , India
| | | | - Asmita Sen
- Department of Chemistry , IIT Bombay , Powai , Mumbai-400076 , India
| | - Martin Clémancey
- University of Grenoble Alpes , LCBM/PMB and CEA , IRTSV/CBM/PMB and CNRS , LCBM UMR 5249, PMB , 38000 Grenoble , France
| | - Geneviève Blondin
- University of Grenoble Alpes , LCBM/PMB and CEA , IRTSV/CBM/PMB and CNRS , LCBM UMR 5249, PMB , 38000 Grenoble , France
| | - Jean-Marc Latour
- University of Grenoble Alpes , LCBM/PMB and CEA , IRTSV/CBM/PMB and CNRS , LCBM UMR 5249, PMB , 38000 Grenoble , France
| | - Gopalan Rajaraman
- Department of Chemistry , IIT Bombay , Powai , Mumbai-400076 , India
| | - Debabrata Maiti
- Department of Chemistry , IIT Bombay , Powai , Mumbai-400076 , India
| |
Collapse
|
70
|
Timmins A, Quesne MG, Borowski T, de Visser SP. Group Transfer to an Aliphatic Bond: A Biomimetic Study Inspired by Nonheme Iron Halogenases. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01673] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Amy Timmins
- The Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Matthew G. Quesne
- The Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Tomasz Borowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Sam P. de Visser
- The Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
71
|
Pandey B, Ray K, Rajaraman G. Structure, Bonding, Reactivity and Spectral Features of Putative NiIII
=O Species: A Theoretical Perspective. Z Anorg Allg Chem 2018. [DOI: 10.1002/zaac.201800122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bhawana Pandey
- Department of Chemistry; Indian Institute of Technology Bombay; 400 076 Powai India
| | - Kallol Ray
- Institut fár Chemie; Humboldt-Universität zu Berlin; Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Gopalan Rajaraman
- Department of Chemistry; Indian Institute of Technology Bombay; 400 076 Powai India
| |
Collapse
|
72
|
Roy L. Theoretical Insights into the Nature of Oxidant and Mechanism in the Regioselective Syn
-dihydroxylation of an Alkene with a Rieske oxygenase inspired Iron Catalyst. ChemCatChem 2018. [DOI: 10.1002/cctc.201800799] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lisa Roy
- Surface Engineering and Tribology Division; CSIR Central Mechanical Engineering Research Institute; Mahatma Gandhi Avenue Durgapur 713209 India
| |
Collapse
|
73
|
Kumar R, Ansari A, Rajaraman G. Axial vs. Equatorial Ligand Rivalry in Controlling the Reactivity of Iron(IV)-Oxo Species: Single-State vs. Two-State Reactivity. Chemistry 2018; 24:6818-6827. [DOI: 10.1002/chem.201800380] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Ravi Kumar
- Department of Chemistry; Indian Institute of Technology Bombay; Powai, Mumbai 400076 India
| | - Azaj Ansari
- Department of Chemistry; Central University of Haryana; Haryana 123031 India
| | - Gopalan Rajaraman
- Department of Chemistry; Indian Institute of Technology Bombay; Powai, Mumbai 400076 India
| |
Collapse
|
74
|
Pandey B, Jaccob M, Rajaraman G. Mechanistic insights into intramolecular ortho-amination/hydroxylation by nonheme Fe IV[double bond, length as m-dash]NTs/Fe IV[double bond, length as m-dash]O species: the σ vs. the π channels. Chem Commun (Camb) 2018; 53:3193-3196. [PMID: 28220156 DOI: 10.1039/c6cc08761b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Comparative oxidative abilities of nonheme FeIV[double bond, length as m-dash]NTs and FeIV[double bond, length as m-dash]O species using DFT has been explored. Our calculations reveal that the FeIV[double bond, length as m-dash]NTs is found to be a stronger oxidant in two electron transfer reactions and react exclusively via π channels while the FeIV[double bond, length as m-dash]O species is found to be a stronger oxidant when the σ-pathway is activated such as in HAT reactions.
Collapse
Affiliation(s)
- Bhawana Pandey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India.
| | - Madhavan Jaccob
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India. and Department of Chemistry, Loyola College, Chennai 600 034, Tamil Nadu, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India.
| |
Collapse
|
75
|
Serrano-Plana J, Acuña-Parés F, Dantignana V, Oloo WN, Castillo E, Draksharapu A, Whiteoak CJ, Martin-Diaconescu V, Basallote MG, Luis JM, Que L, Costas M, Company A. Acid-Triggered O-O Bond Heterolysis of a Nonheme Fe III (OOH) Species for the Stereospecific Hydroxylation of Strong C-H Bonds. Chemistry 2018; 24:5331-5340. [PMID: 29193378 DOI: 10.1002/chem.201704851] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Indexed: 12/11/2022]
Abstract
A novel hydroperoxoiron(III) species [FeIII (OOH)(MeCN)(PyNMe3 )]2+ (3) has been generated by reaction of its ferrous precursor [FeII (CF3 SO3 )2 (PyNMe3 )] (1) with hydrogen peroxide at low temperatures. This species has been characterized by several spectroscopic techniques and cryospray mass spectrometry. Similar to most of the previously described low-spin hydroperoxoiron(III) compounds, 3 behaves as a sluggish oxidant and it is not kinetically competent for breaking weak C-H bonds. However, triflic acid addition to 3 causes its transformation into a much more reactive compound towards organic substrates that is capable of oxidizing unactivated C-H bonds with high stereospecificity. Stopped-flow kinetic analyses and theoretical studies provide a rationale for the observed chemistry, a triflic-acid-assisted heterolytic cleavage of the O-O bond to form a putative strongly oxidizing oxoiron(V) species. This mechanism is reminiscent to that observed in heme systems, where protonation of the hydroperoxo intermediate leads to the formation of the high-valent [(Porph. )FeIV (O)] (Compound I).
Collapse
Affiliation(s)
- Joan Serrano-Plana
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, C/ M. Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| | - Ferran Acuña-Parés
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, C/ M. Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain.,Institute of Chemical Research of Catalonia (ICIQ), Avinguda Països Catalans 16, 43007, Tarragona, Spain
| | - Valeria Dantignana
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, C/ M. Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| | - Williamson N Oloo
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Esther Castillo
- Departamento de Ciencia de los Materiales e Ingeniería MetalúrgicayQuímica Inorgánica, Universidad de Cádiz, Facultad de Ciencias, Apdo. 40, 11510, Puerto Real, Cádiz, Spain
| | - Apparao Draksharapu
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Christopher J Whiteoak
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, C/ M. Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| | - Vlad Martin-Diaconescu
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, C/ M. Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| | - Manuel G Basallote
- Departamento de Ciencia de los Materiales e Ingeniería MetalúrgicayQuímica Inorgánica, Universidad de Cádiz, Facultad de Ciencias, Apdo. 40, 11510, Puerto Real, Cádiz, Spain
| | - Josep M Luis
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, C/ M. Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Miquel Costas
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, C/ M. Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| | - Anna Company
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, C/ M. Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| |
Collapse
|
76
|
Mukherjee G, Lee CWZ, Nag SS, Alili A, Cantú Reinhard FG, Kumar D, Sastri CV, de Visser SP. Dramatic rate-enhancement of oxygen atom transfer by an iron(iv)-oxo species by equatorial ligand field perturbations. Dalton Trans 2018; 47:14945-14957. [DOI: 10.1039/c8dt02142b] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The reactivity and characterization of a novel iron(iv)-oxo species is reported that gives enhanced reactivity as a result of second-coordination sphere perturbations of the ligand system.
Collapse
Affiliation(s)
- Gourab Mukherjee
- Department of Chemistry
- Indian Institute of Technology Guwahati
- India
| | - Calvin W. Z. Lee
- The Manchester Institute of Biotechnology and the School of Chemical Engineering and Analytical Science
- The University of Manchester
- Manchester M1 7DN
- UK
| | | | - Aligulu Alili
- The Manchester Institute of Biotechnology and the School of Chemical Engineering and Analytical Science
- The University of Manchester
- Manchester M1 7DN
- UK
| | - Fabián G. Cantú Reinhard
- The Manchester Institute of Biotechnology and the School of Chemical Engineering and Analytical Science
- The University of Manchester
- Manchester M1 7DN
- UK
| | - Devesh Kumar
- Department of Applied Physics
- School for Physical Sciences
- Babasaheb Bhimrao Ambedkar University
- Lucknow 226025
- India
| | | | - Sam P. de Visser
- The Manchester Institute of Biotechnology and the School of Chemical Engineering and Analytical Science
- The University of Manchester
- Manchester M1 7DN
- UK
| |
Collapse
|
77
|
Zhang J, Wei WJ, Lu X, Yang H, Chen Z, Liao RZ, Yin G. Nonredox Metal Ions Promoted Olefin Epoxidation by Iron(II) Complexes with H2O2: DFT Calculations Reveal Multiple Channels for Oxygen Transfer. Inorg Chem 2017; 56:15138-15149. [DOI: 10.1021/acs.inorgchem.7b02463] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jisheng Zhang
- School of Chemistry and Chemical Engineering, Key laboratory
of Material Chemistry for Energy Conversion and Storage, Ministry
of Education, Hubei Key Laboratory of Material Chemistry and Service
Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Wen-Jie Wei
- School of Chemistry and Chemical Engineering, Key laboratory
of Material Chemistry for Energy Conversion and Storage, Ministry
of Education, Hubei Key Laboratory of Material Chemistry and Service
Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xiaoyan Lu
- School of Chemistry and Chemical Engineering, Key laboratory
of Material Chemistry for Energy Conversion and Storage, Ministry
of Education, Hubei Key Laboratory of Material Chemistry and Service
Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Hang Yang
- School of Chemistry and Chemical Engineering, Key laboratory
of Material Chemistry for Energy Conversion and Storage, Ministry
of Education, Hubei Key Laboratory of Material Chemistry and Service
Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zhuqi Chen
- School of Chemistry and Chemical Engineering, Key laboratory
of Material Chemistry for Energy Conversion and Storage, Ministry
of Education, Hubei Key Laboratory of Material Chemistry and Service
Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Rong-Zhen Liao
- School of Chemistry and Chemical Engineering, Key laboratory
of Material Chemistry for Energy Conversion and Storage, Ministry
of Education, Hubei Key Laboratory of Material Chemistry and Service
Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Guochuan Yin
- School of Chemistry and Chemical Engineering, Key laboratory
of Material Chemistry for Energy Conversion and Storage, Ministry
of Education, Hubei Key Laboratory of Material Chemistry and Service
Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
78
|
Ansari A, Ansari M, Singha A, Rajaraman G. Interplay of Electronic Cooperativity and Exchange Coupling in Regulating the Reactivity of Diiron(IV)-oxo Complexes towards C−H and O−H Bond Activation. Chemistry 2017; 23:10110-10125. [DOI: 10.1002/chem.201701059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Azaj Ansari
- Department of Chemistry; CUH Haryana; Haryana 123031 India
| | | | - Asmita Singha
- Department of Chemistry; IIT Bombay; Mumbai 400076 India
| | - Gopalan Rajaraman
- Department of Chemistry; Indian Institute of Technology Bombay, Powai; Mumbai, Maharashtra 400076 India
| |
Collapse
|
79
|
Dai W, Shang S, Lv Y, Li G, Li C, Gao S. Highly Chemoselective and Enantioselective Catalytic Oxidation of Heteroaromatic Sulfides via High-Valent Manganese(IV)–Oxo Cation Radical Oxidizing Intermediates. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00968] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Wen Dai
- Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- Dalian National Laboratory for Clean Energy, Dalian 116023, People’s Republic of China
| | - Sensen Shang
- Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- Dalian National Laboratory for Clean Energy, Dalian 116023, People’s Republic of China
| | - Ying Lv
- Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- Dalian National Laboratory for Clean Energy, Dalian 116023, People’s Republic of China
| | - Guosong Li
- Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- Dalian National Laboratory for Clean Energy, Dalian 116023, People’s Republic of China
| | - Chunsen Li
- State Key Laboratory of Structural
Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People’s Republic of China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, People’s Republic of China
| | - Shuang Gao
- Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- Dalian National Laboratory for Clean Energy, Dalian 116023, People’s Republic of China
| |
Collapse
|
80
|
Han Z, Yan J, Zhu Y, Yi G, Liu C, Zhang D. Theoretical elucidation of the potential possibility of synthesizing arylboronic acids via Rh-catalytic borylations of aryl acetylene and aryl ethylene. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
81
|
Miao C, Yan X, Xu D, Xia C, Sun W. Bioinspired Manganese Complexes and Graphene Oxide Synergistically Catalyzed Asymmetric Epoxidation of Olefins with Aqueous Hydrogen Peroxide. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201600848] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chengxia Miao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, and Laboratory of Clean Energy Chemistry and Materials, Lanzhou Institute of Chemical Physics (LICP); Chinese Academy of Sciences; Lanzhou 730000 People's Republic of China
| | - Xingbin Yan
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, and Laboratory of Clean Energy Chemistry and Materials, Lanzhou Institute of Chemical Physics (LICP); Chinese Academy of Sciences; Lanzhou 730000 People's Republic of China
| | - Daqian Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, and Laboratory of Clean Energy Chemistry and Materials, Lanzhou Institute of Chemical Physics (LICP); Chinese Academy of Sciences; Lanzhou 730000 People's Republic of China
| | - Chungu Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, and Laboratory of Clean Energy Chemistry and Materials, Lanzhou Institute of Chemical Physics (LICP); Chinese Academy of Sciences; Lanzhou 730000 People's Republic of China
| | - Wei Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, and Laboratory of Clean Energy Chemistry and Materials, Lanzhou Institute of Chemical Physics (LICP); Chinese Academy of Sciences; Lanzhou 730000 People's Republic of China
| |
Collapse
|
82
|
Lindhorst AC, Schütz J, Netscher T, Bonrath W, Kühn FE. Catalytic oxidation of aromatic hydrocarbons by a molecular iron–NHC complex. Catal Sci Technol 2017. [DOI: 10.1039/c7cy00557a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An iron–NHC complex bearing a tetradentate bis(N-heterocyclic carbene) ligand is applied as catalyst for the oxidation of methyl substituted arene substrates.
Collapse
Affiliation(s)
- Anja C. Lindhorst
- Molecular Catalysis
- Department of Chemistry and Catalysis Research Center
- Technical University of Munich
- D-85747 Garching bei München
- Germany
| | - Jan Schütz
- DSM Nutritional Products
- Research and Development
- CH-4002 Basel
- Switzerland
| | - Thomas Netscher
- DSM Nutritional Products
- Research and Development
- CH-4002 Basel
- Switzerland
| | - Werner Bonrath
- DSM Nutritional Products
- Research and Development
- CH-4002 Basel
- Switzerland
| | - Fritz E. Kühn
- Molecular Catalysis
- Department of Chemistry and Catalysis Research Center
- Technical University of Munich
- D-85747 Garching bei München
- Germany
| |
Collapse
|
83
|
Wang J, Zhao YY, Lee PH. Computational analysis of site differences in selective aliphatic C–H hydroxylation by nonheme iron–oxo complexes. Phys Chem Chem Phys 2017; 19:13924-13930. [DOI: 10.1039/c7cp01479a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The CH3CN-solvent influences selective C–H hydroxylation by nonheme iron complexes due to interactions in the H-bonding formation in H-abstraction.
Collapse
Affiliation(s)
- Jian Wang
- Department of Civil and Environmental Engineering
- The Hong Kong Polytechnic University
- Hong Kong
- China
| | - Yuan-yuan Zhao
- Frankfurt Institute for Advanced Studies (FIAS)
- Goethe-University
- D-60438 Frankfurt am Main
- Germany
| | - Po-Heng Lee
- Department of Civil and Environmental Engineering
- The Hong Kong Polytechnic University
- Hong Kong
- China
| |
Collapse
|
84
|
Rokob TA. Pathways for Arene Oxidation in Non-Heme Diiron Enzymes: Lessons from Computational Studies on Benzoyl Coenzyme A Epoxidase. J Am Chem Soc 2016; 138:14623-14638. [PMID: 27682344 DOI: 10.1021/jacs.6b06987] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxygenation of aromatic rings using O2 is catalyzed by several non-heme carboxylate-bridged diiron enzymes. In order to provide a general mechanistic description for these reactions, computational studies were carried out at the ONIOM(B3LYP/BP86/Amber) level on the non-heme diiron enzyme benzoyl coenzyme A epoxidase, BoxB. The calculations revealed four possible pathways for attacking the aromatic ring: (a) electrophilic (2e-) attack by a bis(μ-oxo)-diiron(IV) species (Q pathway); (b) electrophilic (2e-) attack via the σ* orbital of a μ-η2:η2-peroxo-diiron(III) intermediate (Pσ* pathway); (c) radical (1e-) attack via the π*-orbital of a superoxo-diiron(II,III) species (Pπ* pathway); (d) radical (1e-) attack of a partially quenched bis(μ-oxo)-diiron(IV) intermediate (Q' pathway). The results allowed earlier work of de Visser on olefin epoxidation by diiron complexes and QM-cluster studies of Liao and Siegbahn on BoxB to be put into a broader perspective. Parallels with epoxidation using organic peracids were also examined. Specifically for the BoxB enzyme, the Q pathway was found to be the most preferred, but the corresponding bis(μ-oxo)-diiron(IV) species is significantly destabilized and not expected to be directly observable. Epoxidation via the Pσ* pathway represents an energetically somewhat higher lying alternative; possible strategies for experimental discrimination are discussed. The selectivity toward epoxidation is shown to stem from a combination of inherent electronic properties of the thioacyl substituent and enzymatic constraints. Possible implications of the results for toluene monooxygenases are considered as well.
Collapse
Affiliation(s)
- Tibor András Rokob
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Magyar Tudósok körútja 2, 1117 Budapest, Hungary
| |
Collapse
|
85
|
Sahu S, Zhang B, Pollock CJ, Dürr M, Davies CG, Confer AM, Ivanović-Burmazović I, Siegler MA, Jameson GNL, Krebs C, Goldberg DP. Aromatic C-F Hydroxylation by Nonheme Iron(IV)-Oxo Complexes: Structural, Spectroscopic, and Mechanistic Investigations. J Am Chem Soc 2016; 138:12791-12802. [PMID: 27656776 PMCID: PMC5628738 DOI: 10.1021/jacs.6b03346] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The synthesis and reactivity of a series of mononuclear nonheme iron complexes that carry out intramolecular aromatic C-F hydroxylation reactions is reported. The key intermediate prior to C-F hydroxylation, [FeIV(O)(N4Py2Ar1)](BF4)2 (1-O, Ar1 = -2,6-difluorophenyl), was characterized by single-crystal X-ray diffraction. The crystal structure revealed a nonbonding C-H···O═Fe interaction with a CH3CN molecule. Variable-field Mössbauer spectroscopy of 1-O indicates an intermediate-spin (S = 1) ground state. The Mössbauer parameters for 1-O include an unusually small quadrupole splitting for a triplet FeIV(O) and are reproduced well by density functional theory calculations. With the aim of investigating the initial step for C-F hydroxylation, two new ligands were synthesized, N4Py2Ar2 (L2, Ar2 = -2,6-difluoro-4-methoxyphenyl) and N4Py2Ar3 (L3, Ar3 = -2,6-difluoro-3-methoxyphenyl), with -OMe substituents in the meta or ortho/para positions with respect to the C-F bonds. FeII complexes [Fe(N4Py2Ar2)(CH3CN)](ClO4)2 (2) and [Fe(N4Py2Ar3)(CH3CN)](ClO4)2 (3) reacted with isopropyl 2-iodoxybenzoate to give the C-F hydroxylated FeIII-OAr products. The FeIV(O) intermediates 2-O and 3-O were trapped at low temperature and characterized. Complex 2-O displayed a C-F hydroxylation rate similar to that of 1-O. In contrast, the kinetics (via stopped-flow UV-vis) for complex 3-O displayed a significant rate enhancement for C-F hydroxylation. Eyring analysis revealed the activation barriers for the C-F hydroxylation reaction for the three complexes, consistent with the observed difference in reactivity. A terminal FeII(OH) complex (4) was prepared independently to investigate the possibility of a nucleophilic aromatic substitution pathway, but the stability of 4 rules out this mechanism. Taken together the data fully support an electrophilic C-F hydroxylation mechanism.
Collapse
Affiliation(s)
- Sumit Sahu
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Bo Zhang
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Christopher J. Pollock
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Maximilian Dürr
- Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Casey G. Davies
- Department of Chemistry & MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Alex M. Confer
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | | | - Maxime A. Siegler
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Guy N. L. Jameson
- Department of Chemistry & MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Carsten Krebs
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - David P. Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
86
|
Tanaka S, Kon Y, Ogawa A, Uesaka Y, Tamura M, Sato K. Mixed Picolinate and Quinaldinate Iron(III) Complexes for the Catalytic Oxidation of Alcohols with Hydrogen Peroxide. ChemCatChem 2016. [DOI: 10.1002/cctc.201600362] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shinji Tanaka
- Interdisciplinary Research Center for Catalytic Chemistry; National Institute of Advanced Industrial Science and Technology (AIST); Central 5 Higashi 1-1-1 Tsukuba Japan
| | - Yoshihiro Kon
- Interdisciplinary Research Center for Catalytic Chemistry; National Institute of Advanced Industrial Science and Technology (AIST); Central 5 Higashi 1-1-1 Tsukuba Japan
| | - Atsuko Ogawa
- Interdisciplinary Research Center for Catalytic Chemistry; National Institute of Advanced Industrial Science and Technology (AIST); Central 5 Higashi 1-1-1 Tsukuba Japan
| | - Yumiko Uesaka
- Interdisciplinary Research Center for Catalytic Chemistry; National Institute of Advanced Industrial Science and Technology (AIST); Central 5 Higashi 1-1-1 Tsukuba Japan
| | - Masanori Tamura
- Interdisciplinary Research Center for Catalytic Chemistry; National Institute of Advanced Industrial Science and Technology (AIST); Central 5 Higashi 1-1-1 Tsukuba Japan
| | - Kazuhiko Sato
- Interdisciplinary Research Center for Catalytic Chemistry; National Institute of Advanced Industrial Science and Technology (AIST); Central 5 Higashi 1-1-1 Tsukuba Japan
| |
Collapse
|
87
|
Dutta AK, Samanta S, Dutta S, Lucas CR, Dawe LN, Biswas P, Adhikary B. Iron(III) complexes of 2-(1H-benzo[d]imidazol-2-yl)phenol and acetate or nitrate as catalysts for epoxidation of olefins with hydrogen peroxide. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.02.101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
88
|
Mobin SM, Tauqeer M, Mohammad A, Mishra V, Kumari P. Thiophene-containing thiolato dimers, oxygen inserted Cu(II) complex, crystal structures, molecular docking and theoretical studies. J COORD CHEM 2016. [DOI: 10.1080/00958972.2016.1192611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Shaikh M. Mobin
- Discipline of Chemistry, Indian Institute of Technology Indore, Indore, India
- Centre for Biosciences and Bio-Medical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Mohd. Tauqeer
- Department of Chemistry, Aligarh Muslim University, Aligarh, India
| | - Akbar Mohammad
- Discipline of Chemistry, Indian Institute of Technology Indore, Indore, India
| | - Veenu Mishra
- Discipline of Chemistry, Indian Institute of Technology Indore, Indore, India
| | - Pratibha Kumari
- Centre for Biosciences and Bio-Medical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
89
|
Mono- and binuclear non-heme iron chemistry from a theoretical perspective. J Biol Inorg Chem 2016; 21:619-44. [DOI: 10.1007/s00775-016-1357-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/29/2016] [Indexed: 10/21/2022]
|
90
|
de Ruiter G, Thompson NB, Takase MK, Agapie T. Intramolecular C-H and C-F Bond Oxygenation Mediated by a Putative Terminal Oxo Species in Tetranuclear Iron Complexes. J Am Chem Soc 2016; 138:1486-9. [PMID: 26760217 PMCID: PMC4871154 DOI: 10.1021/jacs.5b12214] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Herein we report the intramolecular arene C-H and C-F bond oxygenation by tetranuclear iron complexes. Treatment of [LFe3(PhPz)3OFe][OTf]2 (1) or its fluorinated analog [LFe3(F2ArPz)3OFe][OTf]2 (5) with iodosobenzene results in the regioselective hydroxylation of a bridging pyrazolate ligand, converting a C-H or C-F bond into a C-O bond. The observed reactivity suggests the formation of terminal and reactive Fe-oxo intermediates. With the possibility of intramolecular electron transfer within clusters in 1 and 5, different reaction pathways (Fe(IV)-oxo vs Fe(III)-oxo) might be responsible for the observed arene hydroxylation.
Collapse
Affiliation(s)
- Graham de Ruiter
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Niklas B. Thompson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Michael K. Takase
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
91
|
Miao C, Wang B, Wang Y, Xia C, Lee YM, Nam W, Sun W. Proton-Promoted and Anion-Enhanced Epoxidation of Olefins by Hydrogen Peroxide in the Presence of Nonheme Manganese Catalysts. J Am Chem Soc 2016; 138:936-43. [DOI: 10.1021/jacs.5b11579] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Chengxia Miao
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou
Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Bin Wang
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong Wang
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou
Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Chungu Xia
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou
Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yong-Min Lee
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wei Sun
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou
Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
92
|
Jayapal P, Ansari A, Rajaraman G. Computational Examination on the Active Site Structure of a (Peroxo)diiron(III) Intermediate in the Amine Oxygenase AurF. Inorg Chem 2015; 54:11077-82. [PMID: 26588098 DOI: 10.1021/acs.inorgchem.5b00872] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this work, we report the first computational investigation on the structure and properties of the (peroxo)diiron(III) intermediate of the AurF enzyme. Our calculations predict that, in the oxidized state of the AurF enzyme, the peroxo ligand is depicted in a μ-1,1-coordination mode with a protonated bridging ligand and is not in a μ-η(2):η(2) or μ-1,2 mode. Computed spectral data for the μ-1,1-coordination mode correlate well with experimental observations and unravel the potential of the energetics-spectroscopic approach adapted here.
Collapse
Affiliation(s)
- Prabha Jayapal
- Department of Chemistry, Indian Institute of Technology Bombay , Mumbai 400076, India
| | - Azaj Ansari
- Department of Chemistry, Indian Institute of Technology Bombay , Mumbai 400076, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay , Mumbai 400076, India
| |
Collapse
|
93
|
Machala L, Procházka V, Miglierini M, Sharma VK, Marušák Z, Wille HC, Zbořil R. Direct evidence of Fe(V) and Fe(IV) intermediates during reduction of Fe(VI) to Fe(III): a nuclear forward scattering of synchrotron radiation approach. Phys Chem Chem Phys 2015; 17:21787-90. [PMID: 26248056 DOI: 10.1039/c5cp03784k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Identification of unstable high-valent iron species in electron transfer reactions of ferrate(VI) (Fe(VI)O4(2-), Fe(VI)) has been an important challenge in advancing the understanding of the oxidative mechanisms of ferrates. This paper presents the first example of distinguishing various phases differing in the valence state of iron in the solid state reduction of Fe(VI) to Fe(III) oxides at 235 °C using hyperfine parameters, isomer shift and hyperfine magnetic field, obtained from nuclear forward scattering of synchrotron radiation (NFS). The NFS technique enables a fast data accumulation resulting in high time resolution of in situ experiments. The results suggest a reaction mechanism, involving Fe(V) and Fe(IV) species, in the thermal decomposition of K2FeO4 to KFeO2. The present study opens up an approach to exploring the unambiguous identification of Fe(VI), Fe(V), Fe(IV), and Fe(III) in electron-transfer reaction mechanisms of ferrates in solid and aqueous phase systems.
Collapse
Affiliation(s)
- Libor Machala
- Regional Centre of Advanced Technologies and Materials, Departments of Experimental Physics and Physical Chemistry, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
94
|
Raba A, Cokoja M, Herrmann WA, Kühn FE. Catalytic hydroxylation of benzene and toluene by an iron complex bearing a chelating di-pyridyl-di-NHC ligand. Chem Commun (Camb) 2015; 50:11454-7. [PMID: 24840886 DOI: 10.1039/c4cc02178a] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work reports on iron-catalysed hydroxylation of benzene and toluene using aqueous H2O2. While benzene is hydroxylated with a high selectivity to phenol, toluene is hydroxylated to cresols with a high selectivity for the ortho and para-position. An inverse KIE indicates the presence of a high valent Fe=O species during catalysis.
Collapse
Affiliation(s)
- Andreas Raba
- Chair of Inorganic Chemistry/Molecular Catalysis, Catalysis Research Center, Technische Universität München, Ernst-Otto-Fischer-Straße 1, D-85747 Garching bei München, Germany.
| | | | | | | |
Collapse
|
95
|
Ansari A, Rajaraman G. ortho-Hydroxylation of aromatic acids by a non-heme Fe(V)=O species: how important is the ligand design? Phys Chem Chem Phys 2015; 16:14601-13. [PMID: 24812659 DOI: 10.1039/c3cp55430a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There is a growing interest in probing the mechanism of catalytic transformations effected by non-heme iron-oxo complexes as these reactions set a platform for understanding the relevant enzymatic reactions. The ortho-hydroxylation of aromatic compounds is one such reaction catalysed by iron-oxo complexes. Experimentally [Fe(II)(BPMEN)(CH3CN)2](2+) (1) and [Fe(II)(TPA)(CH3CN)2](2+) (2) (where TPA = tris(2-pyridylmethyl)amine and BPMEN = N,N′-dimethyl-N,N′-bis(2-pyridylmethyl)ethane-1,2-diamine) complexes containing amino pyridine ligands along with H2O2 are employed to carry out these transformations where complex 1 is found to be more reactive than complex 2. Herein, using density functional methods employing B3LYP and dispersion corrected B3LYP (B3LYP-D) functionals, we have explored the mechanism of this reaction to reason out the importance of ligand design in fine-tuning the reactivity of such catalytic transformations. Dispersion corrected B3LYP is found to be superior to B3LYP in predicting the correct ground state of these species and also yields lower barrier heights than the B3LYP functional. Starting the reaction from the Fe(III)–OOH species, both homolytic and heterolytic cleavage of the O···O bond is explored leading to the formation of the transient Fe(IV)=O and Fe(V)=O species. For both the ligand systems, heterolytic cleavage was energetically preferable and our calculations suggest that both the reactions are catalyzed by an elusive high-valent Fe(V)=O species. The Fe(V)=O species undergoes the reaction via an electrophilic attack of the benzene ring to effect the ortho-hydroxylation reaction. The reactivity pattern observed for 1 and 2 are reflected in the computed barrier heights for the ortho-hydroxylation reaction. Electronic structure analysis reveals that the difference in reactivity between the ligand architectures described in complex 1 and 2 arise due to orientation of the pyridine ring(s) parallel or perpendicular to the Fe(V)=O bond. The parallel orientation of the pyridine ring is found to mix with the (πFe(dyz)–O(py))* orbital of the Fe-oxo bond leading to a reduction in the electrophilicity of the ferryl oxygen atom. Our calculations highlight the importance of ligand design in this chemistry and suggest that this concept can be used to (i) stabilize high-valent intermediates which can be trapped and thoroughly characterized (ii) enhance the reactivity and efficiency of the oxidants by increasing the electrophilicity of the ferryl oxygen containing FeVO species. Our computed results are in general agreement with the experimental results.
Collapse
Affiliation(s)
- Azaj Ansari
- Department of Chemistry, Indian Institute of Technology-Bombay, Powai, Mumbai, India.
| | | |
Collapse
|
96
|
Structures, bonding and reactivity of iron and manganese high-valent metal-oxo complexes: A computational investigation. J CHEM SCI 2015. [DOI: 10.1007/s12039-015-0770-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
97
|
Faponle AS, Quesne MG, Sastri CV, Banse F, de Visser SP. Differences and comparisons of the properties and reactivities of iron(III)-hydroperoxo complexes with saturated coordination sphere. Chemistry 2015; 21:1221-36. [PMID: 25399782 PMCID: PMC4316188 DOI: 10.1002/chem.201404918] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Indexed: 11/06/2022]
Abstract
Heme and nonheme monoxygenases and dioxygenases catalyze important oxygen atom transfer reactions to substrates in the body. It is now well established that the cytochrome P450 enzymes react through the formation of a high-valent iron(IV)-oxo heme cation radical. Its precursor in the catalytic cycle, the iron(III)-hydroperoxo complex, was tested for catalytic activity and found to be a sluggish oxidant of hydroxylation, epoxidation and sulfoxidation reactions. In a recent twist of events, evidence has emerged of several nonheme iron(III)-hydroperoxo complexes that appear to react with substrates via oxygen atom transfer processes. Although it was not clear from these studies whether the iron(III)-hydroperoxo reacted directly with substrates or that an initial O-O bond cleavage preceded the reaction. Clearly, the catalytic activity of heme and nonheme iron(III)-hydroperoxo complexes is substantially different, but the origins of this are still poorly understood and warrant a detailed analysis. In this work, an extensive computational analysis of aromatic hydroxylation by biomimetic nonheme and heme iron systems is presented, starting from an iron(III)-hydroperoxo complex with pentadentate ligand system (L5(2)). Direct C-O bond formation by an iron(III)-hydroperoxo complex is investigated, as well as the initial heterolytic and homolytic bond cleavage of the hydroperoxo group. The calculations show that [(L5(2))Fe(III)(OOH)](2+) should be able to initiate an aromatic hydroxylation process, although a low-energy homolytic cleavage pathway is only slightly higher in energy. A detailed valence bond and thermochemical analysis rationalizes the differences in chemical reactivity of heme and nonheme iron(III)-hydroperoxo and show that the main reason for this particular nonheme complex to be reactive comes from the fact that they homolytically split the O-O bond, whereas a heterolytic O-O bond breaking in heme iron(III)-hydroperoxo is found.
Collapse
Affiliation(s)
- Abayomi S Faponle
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester131 Princess Street, Manchester M1 7DN (UK) E-mail:
| | - Matthew G Quesne
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester131 Princess Street, Manchester M1 7DN (UK) E-mail:
| | - Chivukula V Sastri
- Department of Chemistry, Indian Institute of Technology Guwahati781039, Assam (India)
| | - Frédéric Banse
- Institut de Chimie Moleculaire et des Materiaux d'Orsay, Laboratoire de Chimie Inorganique, Université Paris-Sud11 91405 Orsay Cedex (France) E-mail:
| | - Sam P de Visser
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester131 Princess Street, Manchester M1 7DN (UK) E-mail:
| |
Collapse
|
98
|
Ansari M, Vyas N, Ansari A, Rajaraman G. Oxidation of methane by an N-bridged high-valent diiron–oxo species: electronic structure implications on the reactivity. Dalton Trans 2015; 44:15232-43. [DOI: 10.1039/c5dt01060h] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Methane activation by dinuclear high-valent iron–oxo species: do we need two metals to activate such inert bonds? Our theoretical study using DFT methods where electronic structure details and mechanistic aspects are established answers this intriguing question.
Collapse
Affiliation(s)
- Mursaleem Ansari
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| | - Nidhi Vyas
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| | - Azaj Ansari
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| | - Gopalan Rajaraman
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| |
Collapse
|
99
|
Ansari A, Jayapal P, Rajaraman G. CH Bond Activation by Metal-Superoxo Species: Magnetic Coupling Correlated to High Reactivity in Metal-Superoxo species. Angew Chem Int Ed Engl 2014; 54:564-8. [DOI: 10.1002/anie.201409844] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Indexed: 11/12/2022]
|
100
|
Ansari A, Jayapal P, Rajaraman G. CH Bond Activation by Metal-Superoxo Species: What Drives High Reactivity? Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201409844] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|