51
|
Wang W, Wu Z, Yang L, Si T, He Q. Rational Design of Polymer Conical Nanoswimmers with Upstream Motility. ACS NANO 2022; 16:9317-9328. [PMID: 35576530 DOI: 10.1021/acsnano.2c01979] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Utilizing bottom-up controllable molecular assembly, the bio-inspired polyelectrolyte multilayer conical nanoswimmers with gold-nanoshell functionalization on different segments are presented to achieve the optimal upstream propulsion performance. The experimental investigation reveals that the presence of the gold nanoshells on the big openings of the nanoswimmers could not only bestow efficient directional propulsion but could also minimize the impact from the external flow. The gold nanoshells at the big openings of nanoswimmers facilitate the acoustically powered propulsion against a flow velocity of up to 2.00 mm s-1, which is higher than the blood velocity in capillaries and thus provides a proof-of-concept design for upstream nanoswimmers.
Collapse
Affiliation(s)
- Wei Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, 1 Jinlian Street, Wenzhou 325000, China
| | - Zhiguang Wu
- Key Laboratory of Micro-systems and Micro-structures Manufacturing (Ministry of Education), Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150080, China
| | - Ling Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, 1 Jinlian Street, Wenzhou 325000, China
| | - Tieyan Si
- Key Laboratory of Micro-systems and Micro-structures Manufacturing (Ministry of Education), Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150080, China
| | - Qiang He
- Wenzhou Institute, University of Chinese Academy of Sciences, 1 Jinlian Street, Wenzhou 325000, China
- Key Laboratory of Micro-systems and Micro-structures Manufacturing (Ministry of Education), Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150080, China
| |
Collapse
|
52
|
Wang H, Yu S, Liao J, Qing X, Sun D, Ji F, Song W, Wang L, Li T. A Robot Platform for Highly Efficient Pollutant Purification. Front Bioeng Biotechnol 2022; 10:903219. [PMID: 35782505 PMCID: PMC9247352 DOI: 10.3389/fbioe.2022.903219] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
In this study, we propose a highly efficient robot platform for pollutant adsorption. This robot system consists of a flapping-wing micro aircraft (FWMA) for long-distance transportation and delivery and cost-effective multifunctional Janus microrobots for pollutant purification. The flapping-wing micro air vehicle can hover for 11.3 km with a flapping frequency of approximately 15 Hz, fly forward up to 31.6 km/h, and drop microrobots to a targeted destination. The Janus microrobot, which is composed of a silica microsphere, nickel layer, and hydrophobic layer, is used to absorb the oil and process organic pollutants. These Janus microrobots can be propelled fast up to 9.6 body lengths per second, and on-demand speed regulation and remote navigation are manageable. These Janus microrobots can continuously carry oil droplets in aqueous environments under the control of a uniform rotating magnetic field. Because of the fluid dynamics induced by the Janus microrobots, a highly efficient removal of Rhodamine B is accomplished. This smart robot system may open a door for pollutant purification.
Collapse
Affiliation(s)
- Haocheng Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Shimin Yu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Junjie Liao
- The Seventh Oil Production Plant of Changqing Oilfield Company, Xi’an, China
| | - Xudong Qing
- The Seventh Oil Production Plant of Changqing Oilfield Company, Xi’an, China
| | - Daxing Sun
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Fengtong Ji
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenping Song
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
- Chongqing Research Institute of HIT, Chongqing, China
| | - Lin Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
- *Correspondence: Lin Wang, ; Tianlong Li,
| | - Tianlong Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
- Chongqing Research Institute of HIT, Chongqing, China
- *Correspondence: Lin Wang, ; Tianlong Li,
| |
Collapse
|
53
|
Li M, Zhang T, Zhang X, Mu J, Zhang W. Vector-Controlled Wheel-Like Magnetic Swarms With Multimodal Locomotion and Reconfigurable Capabilities. Front Bioeng Biotechnol 2022; 10:877964. [PMID: 35547169 PMCID: PMC9081439 DOI: 10.3389/fbioe.2022.877964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Inspired by the biological collective behaviors of nature, artificial microrobotic swarms have exhibited environmental adaptability and tasking capabilities for biomedicine and micromanipulation. Complex environments are extremely relevant to the applications of microswarms, which are expected to travel in blood vessels, reproductive and digestive tracts, and microfluidic chips. Here we present a strategy that reconfigures paramagnetic nanoparticles into a vector-controlled microswarm with 3D collective motions by programming sawtooth magnetic fields. Horizontal swarms can be manipulated to stand vertically and swim like a wheel by adjusting the direction of magnetic-field plane. Compared with horizontal swarms, vertical wheel-like swarms were evaluated to be of approximately 15-fold speed increase and enhanced maneuverability, which was exhibited by striding across complex 3D confinements. Based on analysis of collective behavior of magnetic particles in flow field using molecular dynamics methods, a rotary stepping mechanism was proposed to address the formation and locomotion mechanisms of wheel-like swarm. we present a strategy that actuates swarms to stand and hover in situ under a programming swing magnetic fields, which provides suitable solutions to travel across confined space with unexpected changes, such as stepped pipes. By biomimetic design from fin motion of fish, wheel-like swarms were endowed with multi-modal locomotion and load-carrying capabilities. This design of intelligent microswarms that adapt to complicated biological environments can promote the applications ranging from the construction of smart and multifunctional materials to biomedical engineering.
Collapse
Affiliation(s)
- Mu Li
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tao Zhang
- School of Mechanical Engineering, Zhengzhou University, Zhengzhou, China
- Institute of Intelligent Sensing, Zhengzhou University, Zhengzhou, China
| | - Xiang Zhang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, China
- National Center for International Joint Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China
| | - Jinjiang Mu
- Department of Infectious Diseases, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Jinjiang Mu, ; Weiwei Zhang,
| | - Weiwei Zhang
- School of Mechanical Engineering, Zhengzhou University, Zhengzhou, China
- Institute of Intelligent Sensing, Zhengzhou University, Zhengzhou, China
- *Correspondence: Jinjiang Mu, ; Weiwei Zhang,
| |
Collapse
|
54
|
Luo Y, Fan C, Song Y, Xu T, Zhang X. Ultra-trace enriching biosensing in nanoliter sample. Biosens Bioelectron 2022; 210:114297. [PMID: 35472656 DOI: 10.1016/j.bios.2022.114297] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 11/02/2022]
Abstract
Rapid detection and accurate analysis of trace samples is an important prerequisite for precision medicine. Here we integrated capillary with ultrasound to induce biomarkers enrichment in nanoliter samples, and developed a nanoliter sample enrichment analysis method for ultra-trace miRNA biosensing. The interaction between ultrasonic field and capillary provides a gradient ultrasound field, which is essential for the aggregation of functionalized microspheres along with the enrichment of specific biomarkers. The results indicated that the enrichment of the biomarkers effectively enhanced the fluorescence intensity, and the limit of detection reaches 7.8✕10-12 M in 100 nL. Such integrated device can realize ultrasonic enrichment and visual analysis of target samples, and provides a new idea for rapid and highly sensitive detection of ultra-trace biomarkers in clinical diagnosis.
Collapse
Affiliation(s)
- Yong Luo
- Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Chuan Fan
- Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Yongchao Song
- Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Tailin Xu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, 100083, PR China; School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, PR China.
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| |
Collapse
|
55
|
Yuan S, Lin X, He Q. Reconfigurable assembly of colloidal motors towards interactive soft materials and systems. J Colloid Interface Sci 2022; 612:43-56. [PMID: 34974257 DOI: 10.1016/j.jcis.2021.12.135] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022]
Abstract
Due to the highly flexible reconfiguration of swarms, collective behaviors have provided various natural organisms with a powerful adaptivity to the complex environment. To mimic these natural systems and construct artificial intelligent soft materials, self-propelled colloidal motors that can convert diverse forms of energy into swimming-like movement in fluids afford an ideal model system at the micro-/nanoscales. Through the coupling of local gradient fields, colloidal motors driven by chemical reactions or externally physical fields can assembly into swarms with adaptivity. Here, we summarize the progress on reconfigurable assembly of colloidal motors which is driven and modulated by chemical reactions and external fields (e.g., light, ultrasonic, electric, and magnetic fields). The adaptive reconfiguration behaviors and the corresponding mechanisms are discussed in detail. The future directions and challenges are also addressed for developing colloidal motor-based interactive soft matter materials and systems with adaptation and interactive functions comparable to that of natural systems.
Collapse
Affiliation(s)
- Shurui Yuan
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), School of Medicine and Health, Harbin Institute of Technology, YiKuangJie 2, Harbin 150080, China
| | - Xiankun Lin
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), School of Medicine and Health, Harbin Institute of Technology, YiKuangJie 2, Harbin 150080, China.
| | - Qiang He
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), School of Medicine and Health, Harbin Institute of Technology, YiKuangJie 2, Harbin 150080, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China; Oujiang Laboratory, Wenzhou 325000, China.
| |
Collapse
|
56
|
Athanassiadis AG, Ma Z, Moreno-Gomez N, Melde K, Choi E, Goyal R, Fischer P. Ultrasound-Responsive Systems as Components for Smart Materials. Chem Rev 2022; 122:5165-5208. [PMID: 34767350 PMCID: PMC8915171 DOI: 10.1021/acs.chemrev.1c00622] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 02/06/2023]
Abstract
Smart materials can respond to stimuli and adapt their responses based on external cues from their environments. Such behavior requires a way to transport energy efficiently and then convert it for use in applications such as actuation, sensing, or signaling. Ultrasound can carry energy safely and with low losses through complex and opaque media. It can be localized to small regions of space and couple to systems over a wide range of time scales. However, the same characteristics that allow ultrasound to propagate efficiently through materials make it difficult to convert acoustic energy into other useful forms. Recent work across diverse fields has begun to address this challenge, demonstrating ultrasonic effects that provide control over physical and chemical systems with surprisingly high specificity. Here, we review recent progress in ultrasound-matter interactions, focusing on effects that can be incorporated as components in smart materials. These techniques build on fundamental phenomena such as cavitation, microstreaming, scattering, and acoustic radiation forces to enable capabilities such as actuation, sensing, payload delivery, and the initiation of chemical or biological processes. The diversity of emerging techniques holds great promise for a wide range of smart capabilities supported by ultrasound and poses interesting questions for further investigations.
Collapse
Affiliation(s)
- Athanasios G. Athanassiadis
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Zhichao Ma
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Nicolas Moreno-Gomez
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Kai Melde
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Eunjin Choi
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Rahul Goyal
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Peer Fischer
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
57
|
Lee H, Lee D, Jeon S. A Two-Dimensional Manipulation Method for a Magnetic Microrobot with a Large Region of Interest Using a Triad of Electromagnetic Coils. MICROMACHINES 2022; 13:mi13030416. [PMID: 35334708 PMCID: PMC8949200 DOI: 10.3390/mi13030416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/25/2022] [Accepted: 03/05/2022] [Indexed: 02/01/2023]
Abstract
This paper proposes an effective method to manipulate the 2D motions of a magnetic small-scale robot (microrobot) within a relatively large working area using a triad of electromagnetic coils (TEC). The TEC is a combination of three identical circular coils placed at the vertices of an equilateral triangle. Since it is geometrically compact and requires only three control variables (input currents), the TEC can be effectively used to generate various magnetic fields that can be used to maneuver various functional microrobots. In this paper, we established several equations to calculate the input currents of the TEC required to move a microrobot along a designated pathway effectively and precisely. We also constructed an experimental setup to demonstrate and validate the controlled motions of the microrobot using the proposed method. The results showed that the proposed method can effectively improve the TEC’s practical working area (region of interest) for manipulating the microrobot, which can possibly be applied to biomedical and biological applications, including minimally invasive surgery, targeted drug and cargo delivery, microfluidic control, etc.
Collapse
|
58
|
Zhou M, Fan C, Wang L, Xu T, Zhang X. Enhanced Isothermal Amplification for Ultrafast Sensing of SARS-CoV-2 in Microdroplets. Anal Chem 2022; 94:4135-4140. [PMID: 35234445 DOI: 10.1021/acs.analchem.2c00008] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Rapid and high-throughput screening is critical to control the COVID-19 pandemic. Recombinase polymerase amplification (RPA) with highly accessible and sensitive nucleic acid amplification has been widely used for point-of-care infection diagnosis. Here, we report an integrated microdroplet array platform composed of an ultrasonic unit and minipillar array to enhance the RPA for ultrafast, high-sensitivity, and high-throughput detection of SARS-CoV-2. On such a platform, the independent microvolume reactions on individual minipillars greatly decrease the consumption of reagents. The microstreaming driven by ultrasound creates on-demand contactless microagitation in the microdroplets and promotes the interaction between RPA components, thus greatly accelerating the amplification. In the presence of microstreaming, the detection time is 6-12 min, which is 38.8-59.3% shorter than that of controls without microstreaming, and the end-point fluorescence intensity also increased 1.3-1.7 times. Furthermore, the microagitation-enhanced RPA also exhibits a lower detection limit (0.42 copy/μL) for SARS-CoV-2 in comparison to the controls. This integrated microdroplet array detection platform is expected to meet the needs for high-throughput nucleic acid testing (NAT) to improve the containment of viral transmission during the epidemic, as well as provide a potential platform for the timely detection of other pathogens or viruses.
Collapse
Affiliation(s)
- Mengyun Zhou
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Chuan Fan
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Lirong Wang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Tailin Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Xueji Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| |
Collapse
|
59
|
Yue H, Chang X, Liu J, Zhou D, Li L. Wheel-like Magnetic-Driven Microswarm with a Band-Aid Imitation for Patching Up Microscale Intestinal Perforation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8743-8752. [PMID: 35133797 DOI: 10.1021/acsami.1c21352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microscale intestinal perforation can cause considerable mortality and is very difficult to treat using conventional methods owing to the numerous challenges associated with microscale operations, which require the development of new body-friendly and effective treatment methods. Swarming micro- and nanomotors have shown great potential in biomedical applications in complex and hard-to-reach environments. Herein, we present a wheel-like magnetic-driven microswarm (WLM) with a band-aid imitation to patch microscale intestinal perforations by pasting on the perforation point in mucus-filled environments. A method called "packing under rolling" was applied to make the formed microswarms denser and rounder. Microswarms with variable aspect ratios can be fabricated by tuning the frequency and strength of the external magnetic field. Actuation and navigation in a confined complex environment, locomotion on three-dimensional surfaces, and multiple switchable motion modes have been realized by combining AC and DC magnetic fields. Moreover, we demonstrated WLM controllable navigation, movement, and microscale perforation patching in the chicken intestines ex vivo. The proposed strategy will contribute to the treatment of microscale intestinal perforation and may be applicable to novel, precise topical medication and microsurgery.
Collapse
Affiliation(s)
- Honger Yue
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
| | - Xiaocong Chang
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing (Harbin Institute of Technology), Ministry of Education, Harbin 150001, China
| | - Junmin Liu
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
| | - Dekai Zhou
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing (Harbin Institute of Technology), Ministry of Education, Harbin 150001, China
| | - Longqiu Li
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing (Harbin Institute of Technology), Ministry of Education, Harbin 150001, China
| |
Collapse
|
60
|
Zhang H, Wang L, Li Z, Ji Y, Wu Z, He Q. Biosafety evaluation of dual-responsive neutrobots. J Mater Chem B 2022; 10:7556-7562. [DOI: 10.1039/d2tb00938b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neutrobots carrying antitumor drugs facilitate considerable safety in vivo upon intravenous administration with high dose.
Collapse
Affiliation(s)
- Hongyue Zhang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, China
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Liting Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, China
| | - Zesheng Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, China
| | - Yuxing Ji
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhiguang Wu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, China
| | - Qiang He
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, China
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
| |
Collapse
|
61
|
Yu S, Sun Z, Zhang Z, Sun H, Liu L, Wang W, Li M, Zhao Q, Li T. Magnetic Microdimer as Mobile Meter for Measuring Plasma Glucose and Lipids. Front Bioeng Biotechnol 2021; 9:779632. [PMID: 34900967 PMCID: PMC8660689 DOI: 10.3389/fbioe.2021.779632] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 10/08/2021] [Indexed: 01/21/2023] Open
Abstract
With the development of designed materials and structures, a wide array of micro/nanomachines with versatile functionalities are employed for specific sensing applications. Here, we demonstrated a magnetic propelled microdimer-based point-of-care testing system, which can be used to provide the real-time data of plasma glucose and lipids relying on the motion feedback of mechanical properties. On-demand and programmable speed and direction of the microdimers can be achieved with the judicious adjustment of the external magnetic field, while their velocity and instantaneous postures provide estimation of glucose, cholesterol, and triglycerides concentrations with high temporal accuracy. Numerical simulations reveal the relationship between motility performance and surrounding liquid properties. Such technology presents a point-of-care testing (POCT) approach to adapt to biofluid measurement, which advances the development of microrobotic system in biomedical fields.
Collapse
Affiliation(s)
- Shimin Yu
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Zhongqi Sun
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhanxiang Zhang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China.,Chongqing Research Institute of HIT, Harbin, China
| | - Haoran Sun
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Lina Liu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Wuyi Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Mu Li
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingsong Zhao
- Department of Endocrinology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianlong Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
62
|
Zhang T, Deng Y, Zhou B, Liu J, Su Y, Li M, Zhang W. Reconfigurable Disk-like Microswarm under a Sawtooth Magnetic Field. MICROMACHINES 2021; 12:mi12121529. [PMID: 34945379 PMCID: PMC8708609 DOI: 10.3390/mi12121529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 12/18/2022]
Abstract
Swarming robotic systems, which stem from insect swarms in nature, exhibit a high level of environmental adaptability and enhanced tasking capabilities for targeted delivery and micromanipulation. Here, we present a strategy that reconfigures paramagnetic nanoparticles into microswarms energized by a sawtooth magnetic field. A rotary-stepping magnetic-chain mechanism is proposed to address the forming principle of disk-like swarms. Based on programming the sawtooth field, the microswarm can perform reversible transformations between a disk, an ellipse and a ribbon, as well as splitting and merging. In addition, the swarms can be steered in any direction with excellent maneuverability and a high level of pattern stability. Under accurate manipulation of a magnetic microswarm, multiple microparts with complicated shapes were successfully combined into a complete assembly. This reconfigurable swarming microrobot may shed light on the understanding of complex morphological transformations in living systems and provide future practical applications of microfabrication and micromanipulation.
Collapse
Affiliation(s)
- Tao Zhang
- School of Mechanical Engineering, Zhengzhou University, Zhengzhou 450001, China; (T.Z.); (Y.D.); (B.Z.); (J.L.); (Y.S.)
| | - Yuguo Deng
- School of Mechanical Engineering, Zhengzhou University, Zhengzhou 450001, China; (T.Z.); (Y.D.); (B.Z.); (J.L.); (Y.S.)
| | - Bo Zhou
- School of Mechanical Engineering, Zhengzhou University, Zhengzhou 450001, China; (T.Z.); (Y.D.); (B.Z.); (J.L.); (Y.S.)
| | - Jiayu Liu
- School of Mechanical Engineering, Zhengzhou University, Zhengzhou 450001, China; (T.Z.); (Y.D.); (B.Z.); (J.L.); (Y.S.)
| | - Yufeng Su
- School of Mechanical Engineering, Zhengzhou University, Zhengzhou 450001, China; (T.Z.); (Y.D.); (B.Z.); (J.L.); (Y.S.)
| | - Mu Li
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- Correspondence: (M.L.); (W.Z.)
| | - Weiwei Zhang
- School of Mechanical Engineering, Zhengzhou University, Zhengzhou 450001, China; (T.Z.); (Y.D.); (B.Z.); (J.L.); (Y.S.)
- Correspondence: (M.L.); (W.Z.)
| |
Collapse
|
63
|
Lu X, Wei Y, Ou H, Zhao C, Shi L, Liu W. Universal Control for Micromotor Swarms with a Hybrid Sonoelectrode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104516. [PMID: 34608753 DOI: 10.1002/smll.202104516] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Enabled by active motion of microrobots, conventional biological detection and chemical analyses limited by passive diffusion can be significantly enhanced with fast testing speed and unique sensitiveness. However, controlled release and precise enrichment of microrobot swarms are still difficult to accomplish and thus prohibit them away from practical applications. Here, an efficient and versatile strategy utilizing a needle-shaped hybrid sonoelectrode to disperse and aggregate distinct micromotors is presented, remarkably accelerating mass transfer and enhancing the signal intensity. Hydrogen bubbles generated at the tip of charged electrode can oscillate as actuated by the acoustic field, creating intensified vortexes to disperse micromotors spontaneously. Via removing the attached bubble, the sonoelectrode serving as solid needle isolator is capable of collecting micromotors in a large scale with acoustic streaming in the working reservoir at higher ultrasound frequency. Numerical calculation reveals the streaming profiles with/without microbubbles, and manipulations on classic spherical and tubular micromotor models confirm that the acoustic-powered prototype device is effective for controlling different swarming behaviors in microfluidic channels. Overall, the proposed hybrid sonoelectrode offers a universal and rapid strategy to tailor micromotor swarm behaviors, advancing intelligent microrobots to be featured with active enrichment and compatible for next-generation sensitive portable detection microsystems.
Collapse
Affiliation(s)
- Xiaolong Lu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 210016, China
| | - Ying Wei
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 210016, China
| | - Huan Ou
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 210016, China
| | - Cong Zhao
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 210016, China
| | - Lukai Shi
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 210016, China
| | - Wenjuan Liu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, China
| |
Collapse
|
64
|
Choi H, Yi J, Cho SH, Hahn SK. Multifunctional micro/nanomotors as an emerging platform for smart healthcare applications. Biomaterials 2021; 279:121201. [PMID: 34715638 DOI: 10.1016/j.biomaterials.2021.121201] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 09/23/2021] [Accepted: 10/20/2021] [Indexed: 01/06/2023]
Abstract
Self-propelling micro- and nano-motors (MNMs) are emerging as a multifunctional platform for smart healthcare applications such as biosensing, bioimaging, and targeted drug delivery with high tissue penetration, stirring effect, and rapid drug transport. MNMs can be propelled and/or guided by chemical substances or external stimuli including ultrasound, magnetic field, and light. In addition, enzymatically powered MNMs and biohybrid micromotors have been developed using the biological components in the body. In this review, we describe emerging MNMs focusing on their smart propulsion systems, and diagnostic and therapeutic applications. Finally, we highlight several MNMs for in vivo applications and discuss the future perspectives of MNMs on their current limitations and possibilities toward further clinical applications.
Collapse
Affiliation(s)
- Hyunsik Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Jeeyoon Yi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Seong Hwi Cho
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea.
| |
Collapse
|
65
|
Joh H, Fan DE. Materials and Schemes of Multimodal Reconfigurable Micro/Nanomachines and Robots: Review and Perspective. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101965. [PMID: 34410023 DOI: 10.1002/adma.202101965] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/15/2021] [Indexed: 06/13/2023]
Abstract
Mechanically programmable, reconfigurable micro/nanoscale materials that can dynamically change their mechanical properties or behaviors, or morph into distinct assemblies or swarms in response to stimuli have greatly piqued the interest of the science community due to their unprecedented potentials in both fundamental research and technological applications. To date, a variety of designs of hard and soft materials, as well as actuation schemes based on mechanisms including chemical reactions and magnetic, acoustic, optical, and electric stimuli, have been reported. Herein, state-of-the-art micro/nanostructures and operation schemes for multimodal reconfigurable micro/nanomachines and swarms, as well as potential new materials and working principles, challenges, and future perspectives are discussed.
Collapse
Affiliation(s)
- Hyungmok Joh
- Materials Science and Engineering Program, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Donglei Emma Fan
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
66
|
Ramos-Docampo MA, Brodszkij E, Ceccato M, Foss M, Folkjær M, Lock N, Städler B. Surface polymerization induced locomotion. NANOSCALE 2021; 13:10035-10043. [PMID: 34037649 DOI: 10.1039/d1nr01465j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nano- and micromotors are self-navigating particles that gain locomotion using fuel from the environment or external power sources to outperform Brownian motion. Herein, motors that make use of surface polymerization of hydroxyethylmethylacrylate to gain locomotion are reported, synthetically mimicking microorganisms' way of propulsion. These motors have enhanced Brownian motion with effective diffusion coefficients up to ∼0.5 μm2 s-1 when mesoporous Janus particles are used. Finally, indication of swarming is observed when high numbers of motors homogenously coated with atom-transfer radical polymerization initiators are used, while high-density Janus motors lost their ability to exhibit enhanced Brownian motion. This report illustrates an alternative route to self-propelled particles, employing a polymerization process that has the potential to be applied for various purposes benefiting from the tool box of modern polymer chemistry.
Collapse
Affiliation(s)
- Miguel A Ramos-Docampo
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.
| | | | | | | | | | | | | |
Collapse
|
67
|
Mujtaba J, Liu J, Dey KK, Li T, Chakraborty R, Xu K, Makarov D, Barmin RA, Gorin DA, Tolstoy VP, Huang G, Solovev AA, Mei Y. Micro-Bio-Chemo-Mechanical-Systems: Micromotors, Microfluidics, and Nanozymes for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007465. [PMID: 33893682 DOI: 10.1002/adma.202007465] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Wireless nano-/micromotors powered by chemical reactions and/or external fields generate motive forces, perform tasks, and significantly extend short-range dynamic responses of passive biomedical microcarriers. However, before micromotors can be translated into clinical use, several major problems, including the biocompatibility of materials, the toxicity of chemical fuels, and deep tissue imaging methods, must be solved. Nanomaterials with enzyme-like characteristics (e.g., catalase, oxidase, peroxidase, superoxide dismutase), that is, nanozymes, can significantly expand the scope of micromotors' chemical fuels. A convergence of nanozymes, micromotors, and microfluidics can lead to a paradigm shift in the fabrication of multifunctional micromotors in reasonable quantities, encapsulation of desired subsystems, and engineering of FDA-approved core-shell structures with tuneable biological, physical, chemical, and mechanical properties. Microfluidic methods are used to prepare stable bubbles/microbubbles and capsules integrating ultrasound, optoacoustic, fluorescent, and magnetic resonance imaging modalities. The aim here is to discuss an interdisciplinary approach of three independent emerging topics: micromotors, nanozymes, and microfluidics to creatively: 1) embrace new ideas, 2) think across boundaries, and 3) solve problems whose solutions are beyond the scope of a single discipline toward the development of micro-bio-chemo-mechanical-systems for diverse bioapplications.
Collapse
Affiliation(s)
- Jawayria Mujtaba
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Jinrun Liu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Krishna K Dey
- Discipline of Physics, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India
| | - Tianlong Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, P. R. China
| | - Rik Chakraborty
- Discipline of Physics, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India
| | - Kailiang Xu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
- School of Information Science and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Denys Makarov
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Roman A Barmin
- Center of Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 3 Nobelya Str, Moscow, 121205, Russia
| | - Dmitry A Gorin
- Center of Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 3 Nobelya Str, Moscow, 121205, Russia
| | - Valeri P Tolstoy
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Prospect, Petergof, St. Petersburg, 198504, Russia
| | - Gaoshan Huang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Alexander A Solovev
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yongfeng Mei
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
68
|
Sun Y, Luo Y, Xu T, Cheng G, Cai H, Zhang X. Acoustic aggregation-induced separation for enhanced fluorescence detection of Alzheimer's biomarker. Talanta 2021; 233:122517. [PMID: 34215132 DOI: 10.1016/j.talanta.2021.122517] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 12/21/2022]
Abstract
On-chip microparticle-based separation is a significant activity in analytical and biomedical field. Here, we reported an acoustic aggregation-induced microparticle separation for on-chip fluorescence detection of Alzheimer biomarkers. miRNA-101, an Alzheimer-related biomarker, was used as a model target to validate the performance of the acoustic aggregation-induced separation assay. Under the ultrasound filed, the microparticles would move toward the centre of chip by simply adjusting the frequency and voltage. Such particle aggregation further resulted in fluorescence enhancement comparing with single microparticle. This approach integrated acoustic aggregation-induced microparticle separation with fluorescence enhancement, holding great potential application for the development of lab-on-a-chip based trace biomarkers detection in diagnosis field.
Collapse
Affiliation(s)
- Yue Sun
- School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, Guangdong, 518060, PR China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Yong Luo
- School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, Guangdong, 518060, PR China; School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Tailin Xu
- School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, Guangdong, 518060, PR China; School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China.
| | - Guanzhi Cheng
- Institute of Railway Construction, China Academy of Railway Sciences Co., Ltd, Beijing, 100081, China
| | - Hong Cai
- Department of Chemistry, Hanshan Normal University, Chaozhou, China
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, Guangdong, 518060, PR China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, PR China; School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China.
| |
Collapse
|
69
|
Zhang J, Song J, Mou F, Guan J, Sen A. Titania-Based Micro/Nanomotors: Design Principles, Biomimetic Collective Behavior, and Applications. TRENDS IN CHEMISTRY 2021. [DOI: 10.1016/j.trechm.2021.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
70
|
Zhu J, Wang H, Zhang Z. Shape-Tunable Janus Micromotors via Surfactant-Induced Dewetting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4964-4970. [PMID: 33861610 DOI: 10.1021/acs.langmuir.1c00340] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The ability to tune shapes of micromotors is challenging yet crucial for creating intelligent and functional micromachines with shape-dependent dynamics. Here, we demonstrate a facile strategy to synthesize Janus micromotors in large quantity whose shapes can be precisely tuned by a surfactant-induced dewetting strategy. The Janus micromotor is composed of a TiO2 microparticle partially encapsulated within a polysiloxane microsphere. A range of particle shapes, from approximately spherical to snowman, is achieved, and the shape-tunable dynamics of the micromotors are quantified. Our strategy is versatile and can be applicable to other photoactive materials, such as ZnO and Fe2O3 nanoparticles, demonstrating a general approach to synthesize Janus micromotors with controllable shapes. Such shape-tunable micromotors provide colloidal model systems for fundamental research on active matter, as well as building blocks for the fabrication of micromachines.
Collapse
|
71
|
Lee JG, Al Harraq A, Bishop KJM, Bharti B. Fabrication and Electric Field-Driven Active Propulsion of Patchy Microellipsoids. J Phys Chem B 2021; 125:4232-4240. [PMID: 33876931 PMCID: PMC8279480 DOI: 10.1021/acs.jpcb.1c01644] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Active colloids are a synthetic analogue
of biological microorganisms
that consume external energy to swim through viscous fluids. Such
motion requires breaking the symmetry of the fluid flow in the vicinity
of a particle; however, it is challenging to understand how surface
and shape anisotropies of the colloid lead to a particular trajectory.
Here, we attempt to deconvolute the effects of particle shape and
surface anisotropy on the propulsion of model ellipsoids in alternating
current (AC) electric fields. We first introduce a simple process
for depositing metal patches of various shapes on the surfaces of
ellipsoidal particles. We show that the shape of the metal patch is
governed by the assembled structure of the ellipsoids on the substrate
used for physical vapor deposition. Under high-frequency AC electric
field, ellipsoids dispersed in water show linear, circular, and helical
trajectories which depend on the shapes of the surface patches. We
demonstrate that features of the helical trajectories such as the
pitch and diameter can be tuned by varying the degree of patch asymmetry
along the two primary axes of the ellipsoids, namely longitudinal
and transverse. Our study reveals the role of patch shape on the trajectory
of ellipsoidal particles propelled by induced charge electrophoresis.
We develop heuristics based on patch asymmetries that can be used
to design patchy particles with specified nonlinear trajectories.
Collapse
Affiliation(s)
- Jin Gyun Lee
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Ahmed Al Harraq
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Kyle J M Bishop
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Bhuvnesh Bharti
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
72
|
Lao Z, Xia N, Wang S, Xu T, Wu X, Zhang L. Tethered and Untethered 3D Microactuators Fabricated by Two-Photon Polymerization: A Review. MICROMACHINES 2021; 12:465. [PMID: 33924199 PMCID: PMC8074609 DOI: 10.3390/mi12040465] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/11/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022]
Abstract
Microactuators, which can transform external stimuli into mechanical motion at microscale, have attracted extensive attention because they can be used to construct microelectromechanical systems (MEMS) and/or microrobots, resulting in extensive applications in a large number of fields such as noninvasive surgery, targeted delivery, and biomedical machines. In contrast to classical 2D MEMS devices, 3D microactuators provide a new platform for the research of stimuli-responsive functional devices. However, traditional planar processing techniques based on photolithography are inadequate in the construction of 3D microstructures. To solve this issue, researchers have proposed many strategies, among which 3D laser printing is becoming a prospective technique to create smart devices at the microscale because of its versatility, adjustability, and flexibility. Here, we review the recent progress in stimulus-responsive 3D microactuators fabricated with 3D laser printing depending on different stimuli. Then, an outlook of the design, fabrication, control, and applications of 3D laser-printed microactuators is propounded with the goal of providing a reference for related research.
Collapse
Affiliation(s)
- Zhaoxin Lao
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong 999077, China; (N.X.); (S.W.)
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230022, China
| | - Neng Xia
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong 999077, China; (N.X.); (S.W.)
| | - Shijie Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong 999077, China; (N.X.); (S.W.)
| | - Tiantian Xu
- Guangdong Provincial Key Laboratory of Robotics and Intelligent System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (T.X.); (X.W.)
| | - Xinyu Wu
- Guangdong Provincial Key Laboratory of Robotics and Intelligent System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (T.X.); (X.W.)
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong 999077, China; (N.X.); (S.W.)
| |
Collapse
|
73
|
Soto F, Wang J, Deshmukh S, Demirci U. Reversible Design of Dynamic Assemblies at Small Scales. ADVANCED INTELLIGENT SYSTEMS (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 3:2000193. [PMID: 35663639 PMCID: PMC9165726 DOI: 10.1002/aisy.202000193] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Indexed: 05/08/2023]
Abstract
Emerging bottom-up fabrication methods have enabled the assembly of synthetic colloids, microrobots, living cells, and organoids to create intricate structures with unique properties that transcend their individual components. This review provides an access point to the latest developments in externally driven assembly of synthetic and biological components. In particular, we emphasize reversibility, which enables the fabrication of multiscale systems that would not be possible under traditional techniques. Magnetic, acoustic, optical, and electric fields are the most promising methods for controlling the reversible assembly of biological and synthetic subunits since they can reprogram their assembly by switching on/off the external field or shaping these fields. We feature capabilities to dynamically actuate the assembly configuration by modulating the properties of the external stimuli, including frequency and amplitude. We describe the design principles which enable the assembly of reconfigurable structures. Finally, we foresee that the high degree of control capabilities offered by externally driven assembly will enable broad access to increasingly robust design principles towards building advanced dynamic intelligent systems.
Collapse
Affiliation(s)
- Fernando Soto
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California, 94304-5427, USA
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, USA
| | - Jie Wang
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California, 94304-5427, USA
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, USA
| | - Shreya Deshmukh
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California, 94304-5427, USA
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, USA
- Department of Bioengineering, School of Engineering, School of Medicine, Stanford University, Stanford, California, 94305-4125, USA
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California, 94304-5427, USA
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, USA
| |
Collapse
|
74
|
Du X, Yu J, Jin D, Chiu PWY, Zhang L. Independent Pattern Formation of Nanorod and Nanoparticle Swarms under an Oscillating Field. ACS NANO 2021; 15:4429-4439. [PMID: 33599480 DOI: 10.1021/acsnano.0c08284] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Natural swarms can be formed by various creatures. The swarms can conduct demanded behaviors to adapt to their living environments, such as passing through harsh terrains and protecting each other from predators. At micrometer and nanometer scales, formation of a swarm pattern relies on the physical or chemical interactions between the agents owing to the absence of an on-board device. Independent pattern formation of different swarms, especially under the same input, is a more challenging task. In this work, a swarm of nickel nanorods is proposed and by exploiting its different behavior with the nanoparticle swarm, independent pattern formation of diverse microrobotic swarms under the same environment can be conducted. A mathematical model for the nanorod swarm is constructed, and the mechanism is illustrated. Two-region pattern changing of the nanorod swarm is discovered and compared with the one-region property of the nanoparticle swarm. Experimental characterization of the nanorod swarm pattern is conducted to prove the concept and validate the effectiveness of the theoretical analysis. Furthermore, independent pattern formation of different microrobotic swarms was demonstrated. The pattern of the nanorod swarm could be adjusted while the other swarm was kept unchanged. Simultaneous pattern changing of two swarms was achieved as well. As a fundamental research on the microrobotic swarm, this work presents how the nanoscale magnetic anisotropy of building agents affects their macroscopic swarm behaviors and promotes further development on the independent control of microrobotic swarms under a global field input.
Collapse
Affiliation(s)
- Xingzhou Du
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin NT, Hong Kong, China
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin NT, Hong Kong, China
- Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong, China
| | - Jiangfan Yu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen, 518172, China
| | - Dongdong Jin
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin NT, Hong Kong, China
| | - Philip Wai Yan Chiu
- Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong, China
- Department of Surgery, The Chinese University of Hong Kong, Shatin NT, Hong Kong, China
- CUHK T Stone Robotics Institute, The Chinese University of Hong Kong, Shatin NT, Hong Kong, China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin NT, Hong Kong, China
- Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong, China
- CUHK T Stone Robotics Institute, The Chinese University of Hong Kong, Shatin NT, Hong Kong, China
| |
Collapse
|
75
|
Hortelao AC, Simó C, Guix M, Guallar-Garrido S, Julián E, Vilela D, Rejc L, Ramos-Cabrer P, Cossío U, Gómez-Vallejo V, Patiño T, Llop J, Sánchez S. Swarming behavior and in vivo monitoring of enzymatic nanomotors within the bladder. Sci Robot 2021; 6:6/52/eabd2823. [PMID: 34043548 DOI: 10.1126/scirobotics.abd2823] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 02/16/2021] [Indexed: 01/04/2023]
Abstract
Enzyme-powered nanomotors are an exciting technology for biomedical applications due to their ability to navigate within biological environments using endogenous fuels. However, limited studies into their collective behavior and demonstrations of tracking enzyme nanomotors in vivo have hindered progress toward their clinical translation. Here, we report the swarming behavior of urease-powered nanomotors and its tracking using positron emission tomography (PET), both in vitro and in vivo. For that, mesoporous silica nanoparticles containing urease enzymes and gold nanoparticles were used as nanomotors. To image them, nanomotors were radiolabeled with either 124I on gold nanoparticles or 18F-labeled prosthetic group to urease. In vitro experiments showed enhanced fluid mixing and collective migration of nanomotors, demonstrating higher capability to swim across complex paths inside microfabricated phantoms, compared with inactive nanomotors. In vivo intravenous administration in mice confirmed their biocompatibility at the administered dose and the suitability of PET to quantitatively track nanomotors in vivo. Furthermore, nanomotors were administered directly into the bladder of mice by intravesical injection. When injected with the fuel, urea, a homogeneous distribution was observed even after the entrance of fresh urine. By contrast, control experiments using nonmotile nanomotors (i.e., without fuel or without urease) resulted in sustained phase separation, indicating that the nanomotors' self-propulsion promotes convection and mixing in living reservoirs. Active collective dynamics, together with the medical imaging tracking, constitute a key milestone and a step forward in the field of biomedical nanorobotics, paving the way toward their use in theranostic applications.
Collapse
Affiliation(s)
- Ana C Hortelao
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona Spain
| | - Cristina Simó
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 San Sebastian, Guipúzcoa, Spain
| | - Maria Guix
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona Spain
| | - Sandra Guallar-Garrido
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Esther Julián
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Diana Vilela
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona Spain
| | - Luka Rejc
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 San Sebastian, Guipúzcoa, Spain
| | - Pedro Ramos-Cabrer
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 San Sebastian, Guipúzcoa, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao 48009, Spain
| | - Unai Cossío
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 San Sebastian, Guipúzcoa, Spain
| | - Vanessa Gómez-Vallejo
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 San Sebastian, Guipúzcoa, Spain
| | - Tania Patiño
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona Spain. .,Chemistry Department, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Jordi Llop
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 San Sebastian, Guipúzcoa, Spain.
| | - Samuel Sánchez
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona Spain. .,Institució Catalana de Recerca i Estudis Avancats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
76
|
The Energy Conversion behind Micro-and Nanomotors. MICROMACHINES 2021; 12:mi12020222. [PMID: 33671593 PMCID: PMC7927089 DOI: 10.3390/mi12020222] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 01/09/2023]
Abstract
Inspired by the autonomously moving organisms in nature, artificially synthesized micro-nano-scale power devices, also called micro-and nanomotors, are proposed. These micro-and nanomotors that can self-propel have been used for biological sensing, environmental remediation, and targeted drug transportation. In this article, we will systematically overview the conversion of chemical energy or other forms of energy in the external environment (such as electrical energy, light energy, magnetic energy, and ultrasound) into kinetic mechanical energy by micro-and nanomotors. The development and progress of these energy conversion mechanisms in the past ten years are reviewed, and the broad application prospects of micro-and nanomotors in energy conversion are provided.
Collapse
|
77
|
Soto F, Karshalev E, Zhang F, Esteban Fernandez de Avila B, Nourhani A, Wang J. Smart Materials for Microrobots. Chem Rev 2021; 122:5365-5403. [DOI: 10.1021/acs.chemrev.0c00999] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Fernando Soto
- Department of Nanoengineering, Chemical Engineering Program and Contextual Robotics Institute, University of California San Diego, La Jolla, California 92093, United States
| | - Emil Karshalev
- Department of Nanoengineering, Chemical Engineering Program and Contextual Robotics Institute, University of California San Diego, La Jolla, California 92093, United States
| | - Fangyu Zhang
- Department of Nanoengineering, Chemical Engineering Program and Contextual Robotics Institute, University of California San Diego, La Jolla, California 92093, United States
| | - Berta Esteban Fernandez de Avila
- Department of Nanoengineering, Chemical Engineering Program and Contextual Robotics Institute, University of California San Diego, La Jolla, California 92093, United States
| | - Amir Nourhani
- Department of Mechanical Engineering, Department of Mathematics, Biology, Biomimicry Research and Innovation Center, University of Akron, Akron, Ohio 44325, United States
| | - Joseph Wang
- Department of Nanoengineering, Chemical Engineering Program and Contextual Robotics Institute, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
78
|
Gao C, Wang Y, Ye Z, Lin Z, Ma X, He Q. Biomedical Micro-/Nanomotors: From Overcoming Biological Barriers to In Vivo Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2000512. [PMID: 32578282 DOI: 10.1002/adma.202000512] [Citation(s) in RCA: 167] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/20/2020] [Indexed: 05/20/2023]
Abstract
Self-propelled micro- and nanomotors (MNMs) have shown great potential for applications in the biomedical field, such as active targeted delivery, detoxification, minimally invasive diagnostics, and nanosurgery, owing to their tiny size, autonomous motion, and navigation capacities. To enter the clinic, biomedical MNMs request the biodegradability of their manufacturing materials, the biocompatibility of chemical fuels or externally physical fields, the capability of overcoming various biological barriers (e.g., biofouling, blood flow, blood-brain barrier, cell membrane), and the in vivo visual positioning for autonomous navigation. Herein, the recent advances of synthetic MNMs in overcoming biological barriers and in vivo motion-tracking imaging techniques are highlighted. The challenges and future research priorities are also addressed. With continued attention and innovation, it is believed that, in the future, biomedical MNMs will pave the way to improve the targeted drug delivery efficiency.
Collapse
Affiliation(s)
- Changyong Gao
- Key Laboratory of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150080, China
| | - Yong Wang
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen, 518055, China
| | - Zihan Ye
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen, 518055, China
| | - Zhihua Lin
- Key Laboratory of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150080, China
| | - Xing Ma
- State Key Laboratory of Advanced Welding and Joining (Shenzhen), Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen, 518055, China
| | - Qiang He
- Key Laboratory of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, 150080, China
| |
Collapse
|
79
|
Huang Y, Xu T, Luo Y, Liu C, Gao X, Cheng Z, Wen Y, Zhang X. Ultra-Trace Protein Detection by Integrating Lateral Flow Biosensor with Ultrasound Enrichment. Anal Chem 2021; 93:2996-3001. [DOI: 10.1021/acs.analchem.0c05032] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yan Huang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Tailin Xu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
- School of Biomedical Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
| | - Yong Luo
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Conghui Liu
- School of Biomedical Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
| | - Xuan Gao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Zhihao Cheng
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Xueji Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
- School of Biomedical Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
| |
Collapse
|
80
|
Wang Q, Zhang L. External Power-Driven Microrobotic Swarm: From Fundamental Understanding to Imaging-Guided Delivery. ACS NANO 2021; 15:149-174. [PMID: 33417764 DOI: 10.1021/acsnano.0c07753] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Untethered micro/nanorobots have been widely investigated owing to their potential in performing various tasks in different environments. The significant progress in this emerging interdisciplinary field has benefited from the distinctive features of those tiny active agents, such as wireless actuation, navigation under feedback control, and targeted delivery of small-scale objects. In recent studies, collective behaviors of these tiny machines have received tremendous attention because swarming agents can enhance the delivery capability and adaptability in complex environments and the contrast of medical imaging, thus benefiting the imaging-guided navigation and delivery. In this review, we summarize the recent research efforts on investigating collective behaviors of external power-driven micro/nanorobots, including the fundamental understanding of swarm formation, navigation, and pattern transformation. The fundamental understanding of swarming tiny machines provides the foundation for targeted delivery. We also summarize the swarm localization using different imaging techniques, including the imaging-guided delivery in biological environments. By highlighting the critical steps from understanding the fundamental interactions during swarm control to swarm localization and imaging-guided delivery applications, we envision that the microrobotic swarm provides a promising tool for delivering agents in an active, controlled manner.
Collapse
Affiliation(s)
- Qianqian Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
- Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
- T Stone Robotics Institute, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| |
Collapse
|
81
|
Fan C, Luo Y, Xu T, Song Y, Zhang X. On-demand mixing and dispersion in mini-pillar based microdroplets. NANOSCALE 2021; 13:739-745. [PMID: 33410448 DOI: 10.1039/d0nr08011j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The analysis and detection of ultra-trace biomarkers are often carried out in microliter droplets. Common stirring approaches have some difficulties in precise and contactless mixing and dispersion in microdroplets. In this work, an open mini-pillar-based platform that integrates with ultrasound units is developed to achieve contactless mixing and dispersion in microliter samples. On such a platform, mini-pillars can anchor microdroplets as individual microreactors, and each ultrasound unit can be remotely controlled to achieve on-demand contactless micro-stirring, which is also confirmed by mixing and dispersing of Fe3O4 nanoparticles (1 μm) in microdroplets (10 μL). Such on-demand high-throughput mixing and dispersion that integrates ultrasound mixing with microdroplet technology provides a potential robot-based platform for achieving high-throughput and ultra-trace biosensing in microliter droplets.
Collapse
Affiliation(s)
- Chuan Fan
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Yong Luo
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Tailin Xu
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China. and Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), School of Biomedical Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
| | - Yongchao Song
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China. and Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), School of Biomedical Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
| |
Collapse
|
82
|
|
83
|
Gao C, Lin Z, Zhou C, Wang D, He Q. Acoustophoretic Motion of Erythrocyte‐mimicking Hemoglobin Micromotors. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Changyong Gao
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), Harbin Institute of Technology 92 West Dazhi Street Harbin Heilongjiang 150001 China
| | - Zhihua Lin
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), Harbin Institute of Technology 92 West Dazhi Street Harbin Heilongjiang 150001 China
| | - Chang Zhou
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), Harbin Institute of Technology 92 West Dazhi Street Harbin Heilongjiang 150001 China
| | - Daolin Wang
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), Harbin Institute of Technology 92 West Dazhi Street Harbin Heilongjiang 150001 China
| | - Qiang He
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), Harbin Institute of Technology 92 West Dazhi Street Harbin Heilongjiang 150001 China
| |
Collapse
|
84
|
Wang J, Ahmed R, Zeng Y, Fu K, Soto F, Sinclair B, Soh HT, Demirci U. Engineering the Interaction Dynamics between Nano-Topographical Immunocyte-Templated Micromotors across Scales from Ions to Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2005185. [PMID: 33174334 DOI: 10.1002/smll.202005185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/10/2020] [Indexed: 06/11/2023]
Abstract
Manufacturing mobile artificial micromotors with structural design factors, such as morphology nanoroughness and surface chemistry, can improve the capture efficiency through enhancing contact interactions with their surrounding targets. Understanding the interplay of such parameters targeting high locomotion performance and high capture efficiency at the same time is of paramount importance, yet, has so far been overlooked. Here, an immunocyte-templated nano-topographical micromotor is engineered and their interactions with various targets across multiple scales, from ions to cells are investigated. The macrophage templated nanorough micromotor demonstrates significantly increased surface interactions and significantly improved and highly efficient removal of targets from complex aqueous solutions, including in plasma and diluted blood, when compared to smooth synthetic material templated micromotors with the same size and surface chemistry. These results suggest that the surface nanoroughness of the micromotors for the locomotion performance and interactions with the multiscale targets should be considered simultaneously, for they are highly interconnected in design considerations impacting applications across scales.
Collapse
Affiliation(s)
- Jie Wang
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Rajib Ahmed
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Yitian Zeng
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305-4034, USA
| | - Kaiyu Fu
- Department of Electrical Engineering and Department of Radiology, Stanford University, Stanford, CA, 94305-4034, USA
| | - Fernando Soto
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Bob Sinclair
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305-4034, USA
| | - Hyongsok Tom Soh
- Department of Electrical Engineering and Department of Radiology, Stanford University, Stanford, CA, 94305-4034, USA
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| |
Collapse
|
85
|
Celik Cogal G, Das PK, Li S, Uygun Oksuz A, Bhethanabotla VR. Unraveling the Autonomous Motion of Polymer‐Based Catalytic Micromotors Under Chemical−Acoustic Hybrid Power. ADVANCED NANOBIOMED RESEARCH 2020. [DOI: 10.1002/anbr.202000009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Gamze Celik Cogal
- Department of Chemistry Suleyman Demirel University 32260 Isparta Turkey
| | - Pradipta Kr. Das
- Department of Chemical & Biomedical Engineering University of South Florida Tampa FL 33620-5250 USA
| | - Shuangming Li
- Department of Chemical & Biomedical Engineering University of South Florida Tampa FL 33620-5250 USA
| | | | - Venkat R. Bhethanabotla
- Department of Chemical & Biomedical Engineering University of South Florida Tampa FL 33620-5250 USA
| |
Collapse
|
86
|
Mohanty S, Khalil ISM, Misra S. Contactless acoustic micro/nano manipulation: a paradigm for next generation applications in life sciences. Proc Math Phys Eng Sci 2020; 476:20200621. [PMID: 33363443 PMCID: PMC7735305 DOI: 10.1098/rspa.2020.0621] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022] Open
Abstract
Acoustic actuation techniques offer a promising tool for contactless manipulation of both synthetic and biological micro/nano agents that encompass different length scales. The traditional usage of sound waves has steadily progressed from mid-air manipulation of salt grains to sophisticated techniques that employ nanoparticle flow in microfluidic networks. State-of-the-art in microfabrication and instrumentation have further expanded the outreach of these actuation techniques to autonomous propulsion of micro-agents. In this review article, we provide a universal perspective of the known acoustic micromanipulation technologies in terms of their applications and governing physics. Hereby, we survey these technologies and classify them with regards to passive and active manipulation of agents. These manipulation methods account for both intelligent devices adept at dexterous non-contact handling of micro-agents, and acoustically induced mechanisms for self-propulsion of micro-robots. Moreover, owing to the clinical compliance of ultrasound, we provide future considerations of acoustic manipulation techniques to be fruitfully employed in biological applications that range from label-free drug testing to minimally invasive clinical interventions.
Collapse
Affiliation(s)
- Sumit Mohanty
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, 7522 NB Enschede, The Netherlands
| | - Islam S. M. Khalil
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, 7522 NB Enschede, The Netherlands
| | - Sarthak Misra
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, 7522 NB Enschede, The Netherlands
- Surgical Robotics Laboratory, Department of Biomedical Engineering, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| |
Collapse
|
87
|
Xing Y, Du X, Xu T, Zhang X. Janus dendritic silica/carbon@Pt nanomotors with multiengines for H 2O 2, near-infrared light and lipase powered propulsion. SOFT MATTER 2020; 16:9553-9558. [PMID: 32969461 DOI: 10.1039/d0sm01355b] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hybrid micro/nanomotors with multiple distinct propulsion modes are expected to improve their motion ability in complex body fluids. Herein, we report a multi-stimuli propelled Janus lipase-modified dendritic silica/carbon@Pt (DMS/C@Pt) nanomotor with built-in engines for hybrid propulsions of H2O2, light, and enzyme. The enhanced motion of the DMS/C@Pt nanomotor is achieved under the stimulus of H2O2 that produces an oxygen concentration gradient derived from the asymmetric catalysis of Pt nanoparticles. Irradiated with near-infrared (NIR) light, the uneven photothermal effect of the carbon part propels this nanomotor by self-thermophoresis. Besides, lipase is efficiently loaded into the dendritic pores, which decomposes triglyceride on the silica part and induces self-diffusiophoretic propulsion. These multiple propulsions shed light on the rational integration of various functional building blocks into one micro/nanomotor for complex tasks in biomedical applications.
Collapse
Affiliation(s)
- Yi Xing
- Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China.
| | - Xin Du
- Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China.
| | - Tailin Xu
- Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China.
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China.
| |
Collapse
|
88
|
Binkley MM, Cui M, Berezin MY, Meacham JM. Antibody Conjugate Assembly on Ultrasound-Confined Microcarrier Particles. ACS Biomater Sci Eng 2020; 6:6108-6116. [PMID: 33449635 DOI: 10.1021/acsbiomaterials.0c01162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bioconjugates are important next-generation drugs and imaging agents. Assembly of these increasingly complex constructs requires precise control over processing conditions, which is a challenge for conventional manual synthesis. This inadequacy has motivated the pursuit of new approaches for efficient, controlled modification of high-molecular-weight biologics such as proteins, carbohydrates, and nucleic acids. We report a novel, hands-free, semiautomated platform for synthetic manipulation of biomolecules using acoustically responsive microparticles as three-dimensional reaction substrates. The microfluidic reactor incorporates a longitudinal acoustic trap that controls the chemical reactions within a localized acoustic field. Forces generated by this field immobilize the microscale substrates against the continuous flow of participating chemical reagents. Thus, the motion of substrates and reactants is decoupled, enabling exquisite control over multistep reaction conditions and providing high-yield, high-purity products with minimal user input. We demonstrate these capabilities by conjugating clinically relevant antibodies with a small molecule. The on-bead synthesis comprises capture of the antibody, coupling of a fluorescent tag, product purification, and product release. Successful capture and modification of a fluorescently labeled antibody are confirmed via fold increases of 49 and 11 in the green (antibody)- and red (small-molecule dye)-channel median intensities determined using flow cytometry. Antibody conjugates assembled on acoustically responsive, ultrasound-confined microparticles exhibit similar quality and quantity to those prepared manually by a skilled technician.
Collapse
Affiliation(s)
- Michael M Binkley
- Washington University in St. Louis, 1 Brookings Drive, Jubel Hall, Room 203K, St. Louis, Missouri 63130, United States
| | - Mingyang Cui
- Washington University in St. Louis, 1 Brookings Drive, Jubel Hall, Room 203K, St. Louis, Missouri 63130, United States
| | - Mikhail Y Berezin
- Washington University in St. Louis, 1 Brookings Drive, Jubel Hall, Room 203K, St. Louis, Missouri 63130, United States
| | - J Mark Meacham
- Washington University in St. Louis, 1 Brookings Drive, Jubel Hall, Room 203K, St. Louis, Missouri 63130, United States
| |
Collapse
|
89
|
Zhou M, Xing Y, Li X, Du X, Xu T, Zhang X. Cancer Cell Membrane Camouflaged Semi-Yolk@Spiky-Shell Nanomotor for Enhanced Cell Adhesion and Synergistic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003834. [PMID: 32877017 DOI: 10.1002/smll.202003834] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Cell adhesion of nanosystems is significant for efficient cellular uptake and drug delivery in cancer therapy. Herein, a near-infrared (NIR) light-driven biomimetic nanomotor is reported to achieve the improved cell adhesion and cellular uptake for synergistic photothermal and chemotherapy of breast cancer. The nanomotor is composed of carbon@silica (C@SiO2 ) with semi-yolk@spiky-shell structure, loaded with the anticancer drug doxorubicin (DOX) and camouflaged with MCF-7 breast cancer cell membrane (i.e., mC@SiO2 @DOX). Such biomimetic mC@SiO2 @DOX nanomotors display efficient self-thermophoretic propulsion due to a thermal gradient generated by asymmetrically spatial distribution. Moreover, the MCF-7 cancer cell membrane coating can remarkably reduce the bioadhesion of nanomotors in biological medium and exhibit highly specific self-recognition of the source cell line. The combination of effective propulsion and homologous targeting dramatically improves cell adhesion and the resultant cellular uptake efficiency in vitro from 26.2% to 67.5%. Therefore, the biomimetic mC@SiO2 @DOX displays excellent synergistic photothermal and chemotherapy with over 91% MCF-7 cell growth inhibition rate. Such smart design of the fuel-free, NIR light-powered biomimetic nanomotor may pave the way for the application of self-propelled nanomotors in biomedicine.
Collapse
Affiliation(s)
- Mengyun Zhou
- Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, P. R. China
| | - Yi Xing
- Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, P. R. China
| | - Xiaoyu Li
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academic of Sciences, Beijing, 100190, P. R. China
| | - Xin Du
- Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, P. R. China
| | - Tailin Xu
- Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, P. R. China
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
90
|
Kauffman JE, Laskar A, Shklyaev OE, Balazs AC, Sen A. Light-Induced Dynamic Control of Particle Motion in Fluid-Filled Microchannels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10022-10032. [PMID: 32787023 DOI: 10.1021/acs.langmuir.0c00972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The design of remotely programmable microfluidic systems with controlled fluid flow and particle transport is a significant challenge. Herein, we describe a system that harnesses the intrinsic thermal response of a fluid to spontaneously pump solutions and regulate the transport of immersed microparticles. Irradiating a silver-coated channel with ultraviolet (UV) light generates local convective vortexes, which, in addition to the externally imposed flow, can be used to guide particles along specific trajectories or to arrest their motion. The method provides the distinct advantage that the flow and the associated convective patterns can be dynamically altered by relocating the source of UV light. Moreover, the flow can be initiated and terminated "on-demand" by turning the light on or off.
Collapse
Affiliation(s)
- Joshua E Kauffman
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Abhrajit Laskar
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Oleg E Shklyaev
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Anna C Balazs
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Ayusman Sen
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
91
|
Li Z, Zhang H, Wang D, Gao C, Sun M, Wu Z, He Q. Reconfigurable Assembly of Active Liquid Metal Colloidal Cluster. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007911] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zesheng Li
- Micro/Nanotechnology Research Centre Harbin Institute of Technology No. 92 XiDaZhi Street Harbin 150001 China
| | - Hongyue Zhang
- Micro/Nanotechnology Research Centre Harbin Institute of Technology No. 92 XiDaZhi Street Harbin 150001 China
| | - Daolin Wang
- Micro/Nanotechnology Research Centre Harbin Institute of Technology No. 92 XiDaZhi Street Harbin 150001 China
| | - Changyong Gao
- Micro/Nanotechnology Research Centre Harbin Institute of Technology No. 92 XiDaZhi Street Harbin 150001 China
| | - Mengmeng Sun
- Micro/Nanotechnology Research Centre Harbin Institute of Technology No. 92 XiDaZhi Street Harbin 150001 China
| | - Zhiguang Wu
- Micro/Nanotechnology Research Centre Harbin Institute of Technology No. 92 XiDaZhi Street Harbin 150001 China
| | - Qiang He
- Micro/Nanotechnology Research Centre Harbin Institute of Technology No. 92 XiDaZhi Street Harbin 150001 China
| |
Collapse
|
92
|
Reconfigurable Assembly of Active Liquid Metal Colloidal Cluster. Angew Chem Int Ed Engl 2020; 59:19884-19888. [DOI: 10.1002/anie.202007911] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Indexed: 11/07/2022]
|
93
|
Tezel G, Timur SS, Kuralay F, Gürsoy RN, Ulubayram K, Öner L, Eroğlu H. Current status of micro/nanomotors in drug delivery. J Drug Target 2020; 29:29-45. [PMID: 32672079 DOI: 10.1080/1061186x.2020.1797052] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Synthetic micro/nanomotors (MNMs) are novel, self-propelled nano or microscale devices that are widely used in drug transport, cell stimulation and isolation, bio-imaging, diagnostic and monitoring, sensing, photocatalysis and environmental remediation. Various preparation methods and propulsion mechanisms make MNMs "tailormade" nanosystems for the intended purpose or use. As the one of the newest members of nano carriers, MNMs open a new perspective especially for rapid drug transport and gene delivery. Although there exists limited number of in-vivo studies for drug delivery purposes, existence of in-vitro supportive data strongly encourages researchers to move on in this field and benefit from the manoeuvre capability of these novel systems. In this article, we reviewed the preparation and propulsion mechanisms of nanomotors in various fields with special attention to drug delivery systems.
Collapse
Affiliation(s)
- Gizem Tezel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Selin Seda Timur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Filiz Kuralay
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - R Neslihan Gürsoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Kezban Ulubayram
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Levent Öner
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Hakan Eroğlu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
94
|
Vyskočil J, Mayorga-Martinez CC, Jablonská E, Novotný F, Ruml T, Pumera M. Cancer Cells Microsurgery via Asymmetric Bent Surface Au/Ag/Ni Microrobotic Scalpels Through a Transversal Rotating Magnetic Field. ACS NANO 2020; 14:8247-8256. [PMID: 32544324 DOI: 10.1021/acsnano.0c01705] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The actuation of micro/nanomachines by means of a magnetic field is a promising fuel-free way to transport cargo in microscale dimensions. This type of movement has been extensively studied for a variety of micro/nanomachine designs, and a special magnetic field configuration results in a near-surface walking. We developed "walking" micromachines which transversally move in a magnetic field, and we used them as microrobotic scalpels to enter and exit an individual cancer cell and cut a small cellular fragment. In these microscalpels, the center of mass lies approximately in the middle of their length. The microrobotic scalpels show good propulsion efficiency and high step-out frequencies of the magnetic field. Au/Ag/Ni microrobotic scalpels controlled by a transversal rotating magnetic field can enter the cytoplasm of cancer cells and also are able to remove a piece of the cytosol while leaving the cytoplasmic membrane intact in a microsurgery-like manner. We believe that this concept can be further developed for potential biological or medical applications.
Collapse
Affiliation(s)
- Jan Vyskočil
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology, Prague 166 28, Czech Republic
| | - Carmen C Mayorga-Martinez
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology, Prague 166 28, Czech Republic
| | - Eva Jablonská
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 166 28, Czech Republic
| | - Filip Novotný
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology, Prague 166 28, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 166 28, Czech Republic
| | - Martin Pumera
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology, Prague 166 28, Czech Republic
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402 Taiwan
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Korea
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Brno 612 00, Czech Republic
| |
Collapse
|
95
|
Affiliation(s)
- Wei Wang
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education) Harbin Institute of Technology Harbin China
| | - Zhiguang Wu
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education) Harbin Institute of Technology Harbin China
| | - Qiang He
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education) Harbin Institute of Technology Harbin China
| |
Collapse
|
96
|
Zhou C, Gao C, Lin Z, Wang D, Li Y, Yuan Y, Zhu B, He Q. Autonomous Motion of Bubble-Powered Carbonaceous Nanoflask Motors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7039-7045. [PMID: 31927899 DOI: 10.1021/acs.langmuir.9b03398] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report a carbonaceous nanomotor with a characteristic flask-like hollow structure that can autonomously move under the propulsion of oxygen bubbles. The carbonaceous nanoflask (CNF) motor was fabricated by encapsulating platinum nanoparticles (Pt NPs) into the hollow cavity of the CNF. The internally encapsulated Pt NPs act as catalysts to decompose hydrogen peroxide (H2O2) fuel into oxygen bubbles. The generated oxygen bubbles recoil the motion of the CNF motors. Besides, the velocity of CNF motors can be controlled by adjusting the concentration of the H2O2 solution. The motion velocity increases with the increase of H2O2 concentration, up to 109.25 μm s-1 at 10% H2O2. This study provides important implications for understanding the motion behaviors of nanomotors with an internal cavity, and the self-propelled CNF motors as smart carrier systems have potential applications in the future.
Collapse
Affiliation(s)
- Chang Zhou
- Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Micro/Nanotechnology Research Centre, Harbin Institute of Technology, Yi Kuang Jie 2, Harbin 150080, China
| | - Changyong Gao
- Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Micro/Nanotechnology Research Centre, Harbin Institute of Technology, Yi Kuang Jie 2, Harbin 150080, China
| | - Zhihua Lin
- Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Micro/Nanotechnology Research Centre, Harbin Institute of Technology, Yi Kuang Jie 2, Harbin 150080, China
| | - Daolin Wang
- Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Micro/Nanotechnology Research Centre, Harbin Institute of Technology, Yi Kuang Jie 2, Harbin 150080, China
| | - Yue Li
- Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Micro/Nanotechnology Research Centre, Harbin Institute of Technology, Yi Kuang Jie 2, Harbin 150080, China
| | - Ye Yuan
- Chemistry and Chemical Engineering College, Inner Mongolia University, College Road 235, Hohhot 010021, China
| | - Baohua Zhu
- Chemistry and Chemical Engineering College, Inner Mongolia University, College Road 235, Hohhot 010021, China
| | - Qiang He
- Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Micro/Nanotechnology Research Centre, Harbin Institute of Technology, Yi Kuang Jie 2, Harbin 150080, China
| |
Collapse
|
97
|
Huang T, Gobeil S, Wang X, Misko V, Nori F, De Malsche W, Fassbender J, Makarov D, Cuniberti G, Baraban L. Anisotropic Exclusion Effect between Photocatalytic Ag/AgCl Janus Particles and Passive Beads in a Dense Colloidal Matrix. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7091-7099. [PMID: 32011149 DOI: 10.1021/acs.langmuir.0c00012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Synthetic nano- and micromotors interact with each other and their surroundings in a complex manner. Here, we report on the anisotropy of active-passive particle interaction in a soft matter system containing an immobile yet photochemical Ag/AgCl-based Janus particle embedded in a dense matrix of passive beads in pure water. The asymmetry in the chemical gradient around the Janus particle, triggered upon visible light illumination, distorts the isotropy of the surrounding electric potential and results in the repulsion of adjacent passive beads to a certain distance away from the Janus particle. This exclusion effect is found to be anisotropic with larger distances to passive beads in front of the Ag/AgCl cap of the Janus particle. We provide insight into this phenomenon by performing the angular analysis of the radii of exclusion and tracking their time evolution at the level of a single bead. Our study provides a novel fundamental insight into the collective behavior of a complex mixture of active and passive particles and is relevant for various application scenarios, e.g., particle transport at micro- and nanoscale and local chemical sensing.
Collapse
Affiliation(s)
- Tao Huang
- Max Bergmann Center of Biomaterials and Institute for Materials Science, Technische Universität Dresden, 01062 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Sophie Gobeil
- Max Bergmann Center of Biomaterials and Institute for Materials Science, Technische Universität Dresden, 01062 Dresden, Germany
| | - Xu Wang
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Vyacheslav Misko
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako shi, Saitama 351-0198, Japan
- μFlow group, Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Franco Nori
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako shi, Saitama 351-0198, Japan
- Physics Department, University of Michigan, Ann Arbor, Michigan 48109-1040, United States
| | - Wim De Malsche
- μFlow group, Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Jürgen Fassbender
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Denys Makarov
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Gianaurelio Cuniberti
- Max Bergmann Center of Biomaterials and Institute for Materials Science, Technische Universität Dresden, 01062 Dresden, Germany
| | - Larysa Baraban
- Max Bergmann Center of Biomaterials and Institute for Materials Science, Technische Universität Dresden, 01062 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| |
Collapse
|
98
|
Wu Z, Chen Y, Mukasa D, Pak OS, Gao W. Medical micro/nanorobots in complex media. Chem Soc Rev 2020; 49:8088-8112. [PMID: 32596700 DOI: 10.1039/d0cs00309c] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Medical micro/nanorobots have received tremendous attention over the past decades owing to their potential to be navigated into hard-to-reach tissues for a number of biomedical applications ranging from targeted drug/gene delivery, bio-isolation, detoxification, to nanosurgery. Despite the great promise, the majority of the past demonstrations are primarily under benchtop or in vitro conditions. Many developed micro/nanoscale propulsion mechanisms are based on the assumption of a homogeneous, Newtonian environment, while realistic biological environments are substantially more complex. Moving toward practical medical use, the field of micro/nanorobotics must overcome several major challenges including propulsion through complex media (such as blood, mucus, and vitreous) as well as deep tissue imaging and control in vivo. In this review article, we summarize the recent research efforts on investigating how various complexities in biological environments impact the propulsion of micro/nanoswimmers. We also highlight the emerging technological approaches to enhance the locomotion of micro/nanorobots in complex environments. The recent demonstrations of in vivo imaging, control and therapeutic medical applications of such micro/nanorobots are introduced. We envision that continuing materials and technological innovations through interdisciplinary collaborative efforts can bring us steps closer to the fantasy of "swallowing a surgeon".
Collapse
Affiliation(s)
- Zhiguang Wu
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA.
| | | | | | | | | |
Collapse
|
99
|
Kabir AMR, Inoue D, Kakugo A. Molecular swarm robots: recent progress and future challenges. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2020; 21:323-332. [PMID: 32939158 PMCID: PMC7476543 DOI: 10.1080/14686996.2020.1761761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Recent advancements in molecular robotics have been greatly contributed by the progress in various fields of science and technology, particularly in supramolecular chemistry, bio- and nanotechnology, and informatics. Yet one of the biggest challenges in molecular robotics has been controlling a large number of robots at a time and employing the robots for any specific task as flocks in order to harness emergent functions. Swarming of molecular robots has emerged as a new paradigm with potentials to overcome this hurdle in molecular robotics. In this review article, we comprehensively discuss the latest developments in swarm molecular robotics, particularly emphasizing the effective utilization of bio- and nanotechnology in swarming of molecular robots. Importance of tuning the mutual interaction among the molecular robots in regulation of their swarming is introduced. Successful utilization of DNA, photoresponsive molecules, and natural molecular machines in swarming of molecular robots to provide them with processing, sensing, and actuating ability is highlighted. The potentials of molecular swarm robots for practical applications by means of their ability to participate in logical operations and molecular computations are also discussed. Prospects of the molecular swarm robots in utilizing the emergent functions through swarming are also emphasized together with their future perspectives.
Collapse
Affiliation(s)
| | - Daisuke Inoue
- Faculty of Design, Department of Human Science, Kyushu University, Fukuoka, Japan
| | - Akira Kakugo
- Faculty of Science, Hokkaido University, Sapporo, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
- CONTACT Akira Kakugo Hokkaido University, Sapporo shi, Kita ku, Kita 10, Nishi 8, Science building-7, Room-215, Sapporo060-0810, Japan
| |
Collapse
|
100
|
Yu S, Yu T, Song W, Yu X, Qiao J, Wang W, Dong H, Wu Z, Dai L, Li T. Ultrasound-assisted cyanide extraction of gold from gold concentrate at low temperature. ULTRASONICS SONOCHEMISTRY 2020; 64:105039. [PMID: 32097866 DOI: 10.1016/j.ultsonch.2020.105039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/01/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
A sonochemical reactor was developed to study the ultrasound-assisted cyanide extraction of gold from gold ore at low temperature. The effects of ultrasound on gold leaching in low temperature and conventional conditions were investigated. At the low temperature of 10 °C, ultrasound-assisted extraction increased extraction rate of gold by 0.6%-0.8% and reduced the gold content of cyanide tailings to 0.28 g/t in the leaching of gold concentrate and cyanide tailings, respectively. At the conventional temperature of 25 °C, ultrasound-assisted extraction obtained a 0.1% higher extraction rate of gold compared with conventional extraction, with the unit consumption of NaCN reduction of 15%. The analysis of kinetic model also demonstrated that sonication indeed improved the reaction of gold leaching greatly. The mineralogy and morphology of ore were further analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM) and particle size analyzer to explore the strengthening mechanism of gold leaching. The results showed that the ore particles were smashed, the ore particle surface was peeled, the passive film was destroyed and the reaction resistance decreased under ultrasonic processing. Therefore, the extraction rate of gold was improved and the extraction time was shortened significantly in ultrasound-assisted cyanide extraction.
Collapse
Affiliation(s)
- Shimin Yu
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Tingting Yu
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany; Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Wenping Song
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Xiyang Yu
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jianxin Qiao
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Wuyi Wang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Huijuan Dong
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Zhiguang Wu
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China; Institute of Pharmacy, Sechenov University, Moscow 119991, Russia
| | - Lizhou Dai
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Tianlong Li
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China; Institute of Pharmacy, Sechenov University, Moscow 119991, Russia.
| |
Collapse
|