51
|
Di J, Hao G, Liu G, Zhou J, Jiang W, Liu Z. Defective materials for CO2 photoreduction: From C1 to C2+ products. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
52
|
Wang J, Wang L, Zhang D, Wang Y, Li J, Zhou F, Huang J, Liu YN. Covalently connected core-shell NH 2-MIL-125@COFs-OH hybrid materials for visible-light-driven CO 2 reduction. J Colloid Interface Sci 2023; 637:1-9. [PMID: 36682113 DOI: 10.1016/j.jcis.2022.12.154] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/10/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022]
Abstract
Herein, the covalently connected core-shell metal-organic frameworks (MOFs)@covalent-organic frameworks (COFs) hybrid materials were successfully constructed by coating the stable COF-OH shell on the NH2-MIL-125 core. The introduction of the NH2-MIL-125 core endowed the hybrid materials with high Brunauer-Emmett-Teller (BET) surface area (SBET) and abundant unsaturated metal sites. And the coating of COF-OH shell endowed the hybrid materials outstanding physicochemical stability and visible-light response, and suitable band gaps. Moreover, the thickness of the COF-OH shell was carefully adjusted according to the feeding amount of NH2-MIL-125. Impressively, the electron transfer pathway in the formed heterostructure was clarified and it was proven that a type-II heterojunction was generated between the MOFs and the COFs. The formed stable CN covalent bonds in the interfacial layer was beneficial to the photogenerated electron transfer and the electron-hole pairs separation, which greatly enhanced the CO2 photocatalytic reduction. The product NH2-MIL-125@COF-3 exhibited the highest CO yield of 22.93 μmol·g-1·h-1, about 2 times higher than NH2-MIL-125 (11.82 μmol·g-1·h-1) and 3 times greater than COF-OH (7.26 μmol·g-1·h-1). This work can provide helpful ideas for the careful design of the novel MOFs@COFs hybrid materials as well as useful exploration for the CO2 photocatalytic reduction.
Collapse
Affiliation(s)
- Jiajia Wang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface Science, Central South University, Changsha 410083, China
| | - Lizhi Wang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface Science, Central South University, Changsha 410083, China
| | - Du Zhang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface Science, Central South University, Changsha 410083, China
| | - You Wang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface Science, Central South University, Changsha 410083, China
| | - Jiawei Li
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface Science, Central South University, Changsha 410083, China.
| | - Fa Zhou
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface Science, Central South University, Changsha 410083, China.
| | - Jianhan Huang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface Science, Central South University, Changsha 410083, China.
| | - You-Nian Liu
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface Science, Central South University, Changsha 410083, China
| |
Collapse
|
53
|
Li W, Mao Y, Liu Z, Zhang J, Luo J, Zhang L, Qiao ZA. Chelated Ion-Exchange Strategy toward BiOCl Mesoporous Single-Crystalline Nanosheets for Boosting Photocatalytic Selective Aromatic Alcohols Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300396. [PMID: 36807380 DOI: 10.1002/adma.202300396] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/07/2023] [Indexed: 05/05/2023]
Abstract
The photoresponse and photocatalytic efficiency of bismuth oxychloride (BiOCl) are greatly limited by rapid recombination of photogenerated carriers. The construction of porous single-crystal BiOCl photocatalyst can effectively alleviate this issue and provide accessible active sites. Herein, a facile chelated ion-exchange strategy is developed to synthesize BiOCl mesoporous single-crystalline nanosheets (BiOCl MSCN) using acetic acid and ammonia solution respectively as chelating agent and ionization promoter. The strong chelation between acetate ions and Bi3+ ions introduces acetate ions into the precipitated product to exchange with Cl- ions, resulting in large lattice mismatch, strain release, and formation of void-like mesopores. The prepared BiOCl MSCN photocatalyst exhibits excellent catalytic performance with 99% conversion and 98% selectivity for oxidation of benzyl alcohol to benzaldehyde and superior general adaptability for various aromatic alcohols. The theoretical calculations and characterizations confirm that the superior performance is mainly attributed to the abundant oxygen vacancies, plenty of accessible adsorption/active sites and fast charge transport path without grain boundaries.
Collapse
Affiliation(s)
- Wei Li
- Jilin University, State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Yumeng Mao
- Jilin University, State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Zhilin Liu
- Jilin University, State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Jinshui Zhang
- Fuzhou University, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, No. 2 Xue Yuan Road, University Town, Fuzhou, 350108, P. R. China
| | - Jiahuan Luo
- Anyang Institute of Technology, School of Chemical and Environmental Engineering, West section of Yellow River Avenue, Anyang, 455000, P. R. China
| | - Ling Zhang
- Jilin University, State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Zhen-An Qiao
- Jilin University, State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Qianjin Street 2699, Changchun, 130012, P. R. China
| |
Collapse
|
54
|
Gong S, Niu Y, Liu X, Xu C, Chen C, Meyer TJ, Chen Z. Selective CO 2 Photoreduction to Acetate at Asymmetric Ternary Bridging Sites. ACS NANO 2023; 17:4922-4932. [PMID: 36800562 DOI: 10.1021/acsnano.2c11977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Photoreduction of CO2 is a promising strategy to synthesize value-added fuels or chemicals and realize carbon neutralization. Noncopper catalysts are seldom reported to generate C2 products, and the selectivity over these catalysts is low. Here, we design rich-interface, heterostructured In2O3/InP (r-In2O3/InP) for highly competitive photocatalytic CO2-to-CH3COOH conversion with a productivity of 96.7 μmol g-1 and selectivity > 96% along with water oxidation to O2 in pure water (no sacrificial agent) under visible light irradiation. The hard X-ray absorption near-edge structure (XANES) shows that the formation of r-In2O3/InP with the isogenesis cation adjusts the coordination environment via interface engineering and forms O-In-P polarized sites at the interface. In situ FT-IR and Raman spectra identify the key intermediates of OCCO* for acetate production with high selectivity. Density functional theory (DFT) calculations reveal that r-In2O3/InP with rich O-In-P polarized sites promotes C-C coupling to form C2 products because of the imbalanced adsorption energies of two carbon atoms. This work reports an interesting indium-based photocatalyst for selective CO2 photoreduction to acetate under strict solution and irradiation conditions and provides significant insights into fabricating interfacial polarization sites to promote the process.
Collapse
Affiliation(s)
- Shuaiqi Gong
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yanli Niu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xuan Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Chen Xu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Chuncheng Chen
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Thomas J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Zuofeng Chen
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
55
|
Li Z, Sun B, Xiao D, Wang Z, Liu Y, Zheng Z, Wang P, Dai Y, Cheng H, Huang B. Electron-Rich Bi Nanosheets Promote CO 2 ⋅ - Formation for High-Performance and pH-Universal Electrocatalytic CO 2 Reduction. Angew Chem Int Ed Engl 2023; 62:e202217569. [PMID: 36658095 DOI: 10.1002/anie.202217569] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 01/19/2023] [Indexed: 01/21/2023]
Abstract
Electrochemical CO2 reduction reaction (CO2 RR) to chemical fuels such as formate offers a promising pathway to carbon-neutral future, but its practical application is largely inhibited by the lack of effective activation of CO2 molecules and pH-universal feasibility. Here, we report an electronic structure manipulation strategy to electron-rich Bi nanosheets, where electrons transfer from Cu donor to Bi acceptor in bimetallic Cu-Bi, enabling CO2 RR towards formate with concurrent high activity, selectivity and stability in pH-universal (acidic, neutral and alkaline) electrolytes. Combined in situ Raman spectra and computational calculations unravel that electron-rich Bi promotes CO2 ⋅- formation to activate CO2 molecules, and enhance the adsorption strength of *OCHO intermediate with an up-shifted p-band center, thus leading to its superior activity and selectivity of formate. Further integration of the robust electron-rich Bi nanosheets into III-V-based photovoltaic solar cell results in an unassisted artificial leaf with a high solar-to-formate (STF) efficiency of 13.7 %.
Collapse
Affiliation(s)
- Zaiqi Li
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Bin Sun
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Difei Xiao
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Zeyan Wang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Peng Wang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Ying Dai
- School of Physics, Shandong University, Jinan, 250100, China
| | - Hefeng Cheng
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| |
Collapse
|
56
|
Zhao Z, Wang P, Song C, Zhang T, Zhan S, Li Y. Enhanced Interfacial Electron Transfer by Asymmetric Cu-O v -In Sites on In 2 O 3 for Efficient Peroxymonosulfate Activation. Angew Chem Int Ed Engl 2023; 62:e202216403. [PMID: 36646650 DOI: 10.1002/anie.202216403] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/18/2023]
Abstract
Enhancing the peroxymonosulfate (PMS) activation efficiency to generate more radicals is vital to promote the Fenton-like reaction activity, however, how to promote the PMS adsorption and accelerate the interfacial electron transfer to boost its activation kinetics remains a great challenge. Herein, we prepared Cu-doped defect-rich In2 O3 (Cu-In2 O3 /Ov ) catalysts containing asymmetric Cu-Ov -In sites for PMS activation in water purification. The intrinsic catalytic activity is that the side-on adsorption configuration of the O-O bond (Cu-O-O-In) at the Cu-Ov -In sites significantly stretches the O-O bond length. Meanwhile, the Cu-Ov -In sites increase the electron density near the Fermi energy level, promoting more and faster electron transfer to the O-O bond for generating more SO4 ⋅- and ⋅OH. The degradation rate constant of tetracycline achieved by Cu-In2 O3 /Ov is 31.8 times faster than In2 O3 /Ov , and it shows the possibility of membrane reactor for practical wastewater treatment.
Collapse
Affiliation(s)
- Zhiyong Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Pengfei Wang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Chunlin Song
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Tao Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Sihui Zhan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Yi Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
57
|
Wang Y, Chen J, Chen L, Li Y. Breaking the Linear Scaling Relationship of the Reverse Water–Gas–Shift Reaction via Construction of Dual-Atom Pt–Ni Pairs. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Yajing Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
- Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Jianmin Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
- Guangxi Key Laboratory for Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Liyu Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yingwei Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
58
|
Zhang S, Yi X, Hu G, Chen M, Shen H, Li B, Yang L, Dai W, Zou J, Luo S. Configuration regulation of active sites by accurate doping inducing self-adapting defect for enhanced photocatalytic applications: A review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
59
|
Shen Y, Ren C, Zheng L, Xu X, Long R, Zhang W, Yang Y, Zhang Y, Yao Y, Chi H, Wang J, Shen Q, Xiong Y, Zou Z, Zhou Y. Room-temperature photosynthesis of propane from CO 2 with Cu single atoms on vacancy-rich TiO 2. Nat Commun 2023; 14:1117. [PMID: 36849519 PMCID: PMC9970977 DOI: 10.1038/s41467-023-36778-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 02/14/2023] [Indexed: 03/01/2023] Open
Abstract
Photochemical conversion of CO2 into high-value C2+ products is difficult to achieve due to the energetic and mechanistic challenges in forming multiple C-C bonds. Herein, an efficient photocatalyst for the conversion of CO2 into C3H8 is prepared by implanting Cu single atoms on Ti0.91O2 atomically-thin single layers. Cu single atoms promote the formation of neighbouring oxygen vacancies (VOs) in Ti0.91O2 matrix. These oxygen vacancies modulate the electronic coupling interaction between Cu atoms and adjacent Ti atoms to form a unique Cu-Ti-VO unit in Ti0.91O2 matrix. A high electron-based selectivity of 64.8% for C3H8 (product-based selectivity of 32.4%), and 86.2% for total C2+ hydrocarbons (product-based selectivity of 50.2%) are achieved. Theoretical calculations suggest that Cu-Ti-VO unit may stabilize the key *CHOCO and *CH2OCOCO intermediates and reduce their energy levels, tuning both C1-C1 and C1-C2 couplings into thermodynamically-favourable exothermal processes. Tandem catalysis mechanism and potential reaction pathway are tentatively proposed for C3H8 formation, involving an overall (20e- - 20H+) reduction and coupling of three CO2 molecules at room temperature.
Collapse
Affiliation(s)
- Yan Shen
- grid.41156.370000 0001 2314 964XKey Laboratory of Modern Acoustics (MOE), Institute of Acoustics, School of Physics, Jiangsu Key Laboratory of Nanotechnology, Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China ,grid.41156.370000 0001 2314 964XCollege of Engineering and Applied Sciences, Nanjing University, Nanjing, China
| | - Chunjin Ren
- grid.263826.b0000 0004 1761 0489School of Physics, Southeast University, Nanjing, China
| | - Lirong Zheng
- grid.9227.e0000000119573309Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Xiaoyong Xu
- grid.268415.cChemistry Interdisciplinary Research Center, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Ran Long
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, China
| | - Wenqing Zhang
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, China
| | - Yong Yang
- grid.410579.e0000 0000 9116 9901Key Laboratory of Soft Chemistry and Functional Materials (MOE), Nanjing University of Science and Technology, Nanjing, China
| | - Yongcai Zhang
- grid.268415.cChemistry Interdisciplinary Research Center, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Yingfang Yao
- grid.41156.370000 0001 2314 964XKey Laboratory of Modern Acoustics (MOE), Institute of Acoustics, School of Physics, Jiangsu Key Laboratory of Nanotechnology, Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China ,grid.41156.370000 0001 2314 964XCollege of Engineering and Applied Sciences, Nanjing University, Nanjing, China ,grid.10784.3a0000 0004 1937 0482School of Science and Engineering, the Chinese University of Hong Kong (Shenzhen), Shenzhen, China
| | - Haoqiang Chi
- grid.41156.370000 0001 2314 964XKey Laboratory of Modern Acoustics (MOE), Institute of Acoustics, School of Physics, Jiangsu Key Laboratory of Nanotechnology, Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Jinlan Wang
- School of Physics, Southeast University, Nanjing, China.
| | - Qing Shen
- University of Electrocommunication, Graduate School of Informatics and Engineering, Chofu, Tokyo Japan
| | - Yujie Xiong
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, China.
| | - Zhigang Zou
- grid.41156.370000 0001 2314 964XKey Laboratory of Modern Acoustics (MOE), Institute of Acoustics, School of Physics, Jiangsu Key Laboratory of Nanotechnology, Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China ,grid.41156.370000 0001 2314 964XCollege of Engineering and Applied Sciences, Nanjing University, Nanjing, China ,grid.10784.3a0000 0004 1937 0482School of Science and Engineering, the Chinese University of Hong Kong (Shenzhen), Shenzhen, China
| | - Yong Zhou
- Key Laboratory of Modern Acoustics (MOE), Institute of Acoustics, School of Physics, Jiangsu Key Laboratory of Nanotechnology, Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China. .,School of Science and Engineering, the Chinese University of Hong Kong (Shenzhen), Shenzhen, China. .,School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, China.
| |
Collapse
|
60
|
Lv C, Bai X, Ning S, Song C, Guan Q, Liu B, Li Y, Ye J. Nanostructured Materials for Photothermal Carbon Dioxide Hydrogenation: Regulating Solar Utilization and Catalytic Performance. ACS NANO 2023; 17:1725-1738. [PMID: 36734978 DOI: 10.1021/acsnano.2c09025] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Converting carbon dioxide (CO2) into value-added fuels or chemicals through photothermal catalytic CO2 hydrogenation is a promising approach to alleviate the energy shortage and global warming. Understanding the nanostructured material strategies in the photothermal catalytic CO2 hydrogenation process is vital for designing photothermal devices and catalysts and maximizing the photothermal CO2 hydrogenation performance. In this Perspective, we first describe several essential nanomaterial design concepts to enhance sunlight absorption and utilization in photothermal CO2 hydrogenation. Subsequently, we review the latest progress in photothermal CO2 hydrogenation into C1 (e.g., CO, CH4, and CH3OH) and multicarbon hydrocarbon (C2+) products. Finally, the relevant challenges and opportunities in this exciting research realm are discussed. This perspective provides a comprehensive understanding for the light-heat synergy over nanomaterials and instruction for rational photothermal catalyst design for CO2 utilization.
Collapse
Affiliation(s)
- Cuncai Lv
- Research Center for Solar Driven Carbon Neutrality, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, 071002 Baoding, People's Republic of China
| | - Xianhua Bai
- Research Center for Solar Driven Carbon Neutrality, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, 071002 Baoding, People's Republic of China
| | - Shangbo Ning
- Research Center for Solar Driven Carbon Neutrality, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, 071002 Baoding, People's Republic of China
| | - Chenxi Song
- Research Center for Solar Driven Carbon Neutrality, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, 071002 Baoding, People's Republic of China
| | - Qingqing Guan
- Research Center for Solar Driven Carbon Neutrality, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, 071002 Baoding, People's Republic of China
| | - Bang Liu
- Research Center for Solar Driven Carbon Neutrality, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, 071002 Baoding, People's Republic of China
| | - Yaguang Li
- Research Center for Solar Driven Carbon Neutrality, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, 071002 Baoding, People's Republic of China
| | - Jinhua Ye
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0814, Japan
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
61
|
Lu L, Cheng Y, Liang Z, Yan S, Qiao G, Zou Z. Multifunctional Au/Hydroxide Interface toward Enhanced C-C Coupling for Solar-Driven CO 2 Reduction into C 2H 6. Inorg Chem 2023; 62:2934-2941. [PMID: 36729017 DOI: 10.1021/acs.inorgchem.2c04419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The high-grade C2+ products from CO2 photoreduction are limited by the kinetic bottleneck. Herein, a multifunctional Au/hydroxide interface was put forward to improve the C-C coupling. As a prototype, the synthesized Au/ZnSn(OH)6 tuned the CO generation and afforded about 50% electrons toward C2H6 selectivity. The prominent enhancement resulted from the following effects: (1) strong metal-support electronic interactions built an electric field at the interface of ZnSn(OH)6 nearby the Au nanoparticles, leading to fast transfer of electrons for the C-H and C-C bonding reactions. (2) The surface solid-state Sn-OH and Zn-OH lattice hydroxyls served as donors to feed rich H+ and oxygen vacancies (OVs) via hole-induced oxidation for the boosted C2H6 formation. (3) The synergetic OVs and Au sites allowed efficient e-/H+ to boost *CO hydrogenation toward *CH3 and *CH3*CH3 formation into the C2H6 product.
Collapse
Affiliation(s)
- Lei Lu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang212013, China.,Eco-Materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing210093, China
| | - Yu Cheng
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang212013, China
| | - Zhiping Liang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang212013, China
| | - Shicheng Yan
- Eco-Materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing210093, China
| | - Guanjun Qiao
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang212013, China
| | - Zhigang Zou
- Eco-Materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing210093, China
| |
Collapse
|
62
|
Ni B, Zhang G, Wang H, Min Y, Jiang K, Li H. Correlating Oxidation State and Surface Ligand Motifs with the Selectivity of CO 2 Photoreduction to C 2 Products. Angew Chem Int Ed Engl 2023; 62:e202215574. [PMID: 36479970 DOI: 10.1002/anie.202215574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/27/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
The design for non-Cu-based catalysts with the function of producing C2+ products requires systematic knowledge of the intrinsic connection between the surface state as well as the catalytic activity and selectivity. In this work, photochemical in situ spectral surface characterization techniques combined with the first principle calculations (DFT) were applied to investigate the relationships between the composition of surface states, coordinated motifs, and catalytic selectivity of a titanium oxynitride catalyst. When the catalyst mediates CO2 photoreduction, C2 product selectivity is positively correlated with the surface Ti2+ /Ti3+ ratio and the surface oxidation state is regulated and controlled by coordinated motifs of N-Ti-O/V[O], which can reduce the potential dimerization energy barriers of *CO-CO* and promote spontaneous formation of the subsequent *CO-CH2 * intermediate. This phenomenon provides a new perspective for the design of heterogeneous catalysts for photoreduction of CO2 into useful products.
Collapse
Affiliation(s)
- Baoxin Ni
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai, 200090, P. R. China.,Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guiru Zhang
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huiming Wang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Yulin Min
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai, 200090, P. R. China.,Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, P. R. China
| | - Kun Jiang
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hexing Li
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai, 200090, P. R. China.,Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, P. R. China
| |
Collapse
|
63
|
Shao W, Zhang X, Xie Y. Engineering active sites and recognizing mechanisms for CO2 fixation to dimethyl carbonate. TRENDS IN CHEMISTRY 2023. [DOI: 10.1016/j.trechm.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
64
|
Wu X, Zhang W, Li J, Xiang Q, Liu Z, Liu B. Identification of the Active Sites on Metallic MoO 2-x Nano-Sea-Urchin for Atmospheric CO 2 Photoreduction Under UV, Visible, and Near-Infrared Light Illumination. Angew Chem Int Ed Engl 2023; 62:e202213124. [PMID: 36321396 DOI: 10.1002/anie.202213124] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/07/2022]
Abstract
We report an oxygen vacancy (Vo )-rich metallic MoO2-x nano-sea-urchin with partially occupied band, which exhibits super CO2 (even directly from the air) photoreduction performance under UV, visible and near-infrared (NIR) light illumination. The Vo -rich MoO2-x nano-sea-urchin displays a CH4 evolution rate of 12.2 and 5.8 μmol gcatalyst -1 h-1 under full spectrum and NIR light illumination in concentrated CO2 , which is ca. 7- and 10-fold higher than the Vo -poor MoO2-x , respectively. More interestingly, the as-developed Vo -rich MoO2-x nano-sea-urchin can even reduce CO2 directly from the air with a CO evolution rate of 6.5 μmol gcatalyst -1 h-1 under NIR light illumination. Experiments together with theoretical calculations demonstrate that the oxygen vacancy in MoO2-x can facilitate CO2 adsorption/activation to generate *COOH as well as the subsequent protonation of *CO towards the formation of CH4 because of the formation of a highly stable Mo-C-O-Mo intermediate.
Collapse
Affiliation(s)
- Xi Wu
- Henan Institute of Advanced Technology, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, P.R. China
| | - Wenlei Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P.R. China
| | - Jun Li
- Henan Institute of Advanced Technology, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, P.R. China.,College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P.R. China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Quanjun Xiang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P.R. China
| | - Zhongyi Liu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P.R. China
| | - Bin Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.,Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
65
|
Yan K, Wu D, Wang T, Chen C, Liu S, Hu Y, Gao C, Chen H, Li B. Highly Selective Ethylene Production from Solar-Driven CO 2 Reduction on the Bi 2S 3@In 2S 3 Catalyst with In–S V–Bi Active Sites. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Ke Yan
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang310018, P. R. China
| | - Donghai Wu
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan450006, P. R. China
| | - Ting Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang310018, P. R. China
| | - Cong Chen
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang310018, P. R. China
| | - Shoujie Liu
- Guangdong Laboratory of Chemistry and Fine Chemical Engineering, Shantou, Guangdong515063, P. R. China
| | - Yangguang Hu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui230026, P. R. China
| | - Chao Gao
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui230026, P. R. China
| | - Houyang Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing400714, P. R. China
- Chongqing College, University of Chinese Academy of Sciences, Chongqing400714, P. R. China
| | - Benxia Li
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang310018, P. R. China
| |
Collapse
|
66
|
Jiao X, Hu Z, Zheng K, Zhu J, Wu Y, Zhang X, Hu J, Yan W, Zhu J, Sun Y, Xie Y. Direct Polyethylene Photoreforming into Exclusive Liquid Fuel over Charge-Asymmetrical Dual Sites under Mild Conditions. NANO LETTERS 2022; 22:10066-10072. [PMID: 36515999 DOI: 10.1021/acs.nanolett.2c03813] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Direct polyethylene photoreforming to high-energy-density C2 fuels under mild conditions is of great significance and still faces a huge challenge, which is partly attributed to the extreme instability of *CH2CH2 adsorbed on the traditional catalysts with single catalytic sites. Herein, charge-asymmetrical dual sites are designed to boost the adsorption of *CH2CH2 for direct polyethylene photoreforming into C2 fuels under normal temperature and pressure. As a prototype, the synthetic Zr-doped CoFe2O4 quantum dots with charge-asymmetrical dual metal sites realize direct polyethylene photoreforming into acetic acid, with 100% selectivity of liquid fuel and the evolution rate of 1.10 mmol g-1 h-1, outperforming those of most previously reported photocatalysts under similar conditions. In situ X-ray photoelectron spectra, density-functional-theory calculations, and control experiments reveal the charge-asymmetrical Zr-Fe dual sites may act as the predominate catalytic sites, which can simultaneously bond with the *CH2CH2 intermediates for the following stepwise oxidation to form C2 products.
Collapse
Affiliation(s)
- Xingchen Jiao
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Zexun Hu
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Kai Zheng
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Juncheng Zhu
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yang Wu
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiaojing Zhang
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jun Hu
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Wensheng Yan
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Junfa Zhu
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yongfu Sun
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yi Xie
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
67
|
Wu X, Zhang W, Li J, Xiang Q, Liu Z, Liu B. Identification of the Active Sites on Metallic MoO
2−
x
Nano‐Sea‐Urchin for Atmospheric CO
2
Photoreduction Under UV, Visible, and Near‐Infrared Light Illumination. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202213124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Xi Wu
- Henan Institute of Advanced Technology School of Materials Science and Engineering Zhengzhou University Zhengzhou 450052 P.R. China
| | - Wenlei Zhang
- College of Chemistry Zhengzhou University Zhengzhou 450001 P.R. China
| | - Jun Li
- Henan Institute of Advanced Technology School of Materials Science and Engineering Zhengzhou University Zhengzhou 450052 P.R. China
- College of Chemistry Zhengzhou University Zhengzhou 450001 P.R. China
- School of Chemistry, Chemical Engineering and Biotechnology Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Quanjun Xiang
- State Key Laboratory of Electronic Thin Film and Integrated Devices University of Electronic Science and Technology of China Chengdu 610054 P.R. China
| | - Zhongyi Liu
- College of Chemistry Zhengzhou University Zhengzhou 450001 P.R. China
| | - Bin Liu
- School of Chemistry, Chemical Engineering and Biotechnology Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
- Department of Materials Science and Engineering City University of Hong Kong Hong Kong 999077 China
| |
Collapse
|
68
|
Xiong J, Li H, Zhou J, Di J. Recent progress of indium-based photocatalysts: Classification, regulation and diversified applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
69
|
Ou H, Li G, Ren W, Pan B, Luo G, Hu Z, Wang D, Li Y. Atomically Dispersed Au-Assisted C–C Coupling on Red Phosphorus for CO 2 Photoreduction to C 2H 6. J Am Chem Soc 2022; 144:22075-22082. [DOI: 10.1021/jacs.2c09424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Honghui Ou
- Department of Chemistry, Tsinghua University, Beijing100084, China
| | - Guosheng Li
- College of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing526061, China
| | - Wei Ren
- School of Food and Bioengineering, Fujian Polytechnic Normal University, Fuzhou350300, China
| | - Boju Pan
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou510006, P. R. China
| | - Guanghui Luo
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou510006, P. R. China
| | - Zhuofeng Hu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou510006, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing100084, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing100084, China
- College of Chemistry, Beijing Normal University, Beijing100875, P. R. China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu241002P. R. China
| |
Collapse
|
70
|
Li CF, Guo RT, Wu T, Pan WG. Progress and perspectives on 1D nanostructured catalysts applied in photo(electro)catalytic reduction of CO 2. NANOSCALE 2022; 14:16033-16064. [PMID: 36300511 DOI: 10.1039/d2nr04063h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Reducing CO2 into value-added chemicals and fuels by artificial photosynthesis (photocatalysis and photoelectrocatalysis) is one of the considerable solutions to global environmental and energy issues. One-dimensional (1D) nanostructured catalysts (nanowires, nanorods, nanotubes and so on.) have attracted extensive attention due to their superior light-harvesting ability, co-catalyst loading capacity, and high carrier separation rate. This review analyzed the basic principle of the photo(electro)catalytic CO2 reduction reaction (CO2 RR) briefly. The preparation methods and properties of 1D nanostructured catalysts are introduced. Next, the applications of 1D nanostructured catalysts in the field of photo(electro)catalytic CO2 RR are introduced in detail. In particular, we introduced the design of composite catalysts with 1D nanostructures, for example loading 0D, 1D, 2D, and 3D materials on a 1D nanostructured semiconductor to construct a heterojunction to optimize the photo-response range, carrier separation and transport efficiency, CO2 adsorption and activation capacity, and stability of the catalyst. Finally, the development prospects of 1D nanostructured catalysts are discussed and summarized. This review can provide guidance for the rational design of advanced catalysts for photo(electro)catalytic CO2 RR.
Collapse
Affiliation(s)
- Chu-Fan Li
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
| | - Rui-Tang Guo
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
- Shanghai Engineering Research Center of Power Generation Environment Protection, Shanghai 200090, People's Republic of China
| | - Tong Wu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
| | - Wei-Guo Pan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
- Shanghai Engineering Research Center of Power Generation Environment Protection, Shanghai 200090, People's Republic of China
| |
Collapse
|
71
|
Yu X, Liu G, Wang T, Gong H, Qu H, Meng X, He J, Ye J. Recent Advances in the Research of Photo‐Assisted Lithium‐Based Rechargeable Batteries. Chemistry 2022; 28:e202202104. [DOI: 10.1002/chem.202202104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Xingyu Yu
- Centre for Hydrogenergy College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing Jiangsu 210016 P. R. China
| | - Guoping Liu
- Hebei Provincial Laboratory of Inorganic Nonmetallic Materials College of Materials Science and Engineering North China University of Science and Technology Tangshan Hebei 063210 P. R. China
| | - Tao Wang
- Centre for Hydrogenergy College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing Jiangsu 210016 P. R. China
| | - Hao Gong
- Department of Chemistry and Materials Science College of Science Nanjing Forestry University Nanjing Jiangsu 210037 P. R. China
| | - Hongjiao Qu
- Centre for Hydrogenergy College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing Jiangsu 210016 P. R. China
| | - Xianguang Meng
- Hebei Provincial Laboratory of Inorganic Nonmetallic Materials College of Materials Science and Engineering North China University of Science and Technology Tangshan Hebei 063210 P. R. China
| | - Jianping He
- Centre for Hydrogenergy College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing Jiangsu 210016 P. R. China
| | - Jinhua Ye
- TJU-NIMS International Collaboration Laboratory School of Material Science and Engineering Tianjin University Tianjin 300072 P. R. China
- International Center for Materials Nanoarchitectonics (WPI-MANA) National Institute for Materials Science (NIMS) Tsukuba Ibaraki 305-0044 Japan
| |
Collapse
|
72
|
Ran L, Li Z, Ran B, Cao J, Zhao Y, Shao T, Song Y, Leung MKH, Sun L, Hou J. Engineering Single-Atom Active Sites on Covalent Organic Frameworks for Boosting CO 2 Photoreduction. J Am Chem Soc 2022; 144:17097-17109. [PMID: 36066387 DOI: 10.1021/jacs.2c06920] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Solar carbon dioxide (CO2) conversion is an emerging solution to meet the challenges of sustainable energy systems and environmental/climate concerns. However, the construction of isolated active sites not only influences catalytic activity but also limits the understanding of the structure-catalyst relationship of CO2 reduction. Herein, we develop a universal synthetic protocol to fabricate different single-atom metal sites (e.g., Fe, Co, Ni, Zn, Cu, Mn, and Ru) anchored on the triazine-based covalent organic framework (SAS/Tr-COF) backbone with the bridging structure of metal-nitrogen-chlorine for high-performance catalytic CO2 reduction. Remarkably, the as-synthesized Fe SAS/Tr-COF as a representative catalyst achieved an impressive CO generation rate as high as 980.3 μmol g-1 h-1 and a selectivity of 96.4%, over approximately 26 times higher than that of the pristine Tr-COF under visible light irradiation. From X-ray absorption fine structure analysis and density functional theory calculations, the superior photocatalytic performance is attributed to the synergic effect of atomically dispersed metal sites and Tr-COF host, decreasing the reaction energy barriers for the formation of *COOH intermediates and promoting CO2 adsorption and activation as well as CO desorption. This work not only affords rational design of state-of-the-art catalysts at the molecular level but also provides in-depth insights for efficient CO2 conversion.
Collapse
Affiliation(s)
- Lei Ran
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.,Ability R&D Energy Research Centre, School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, P. R. China
| | - Zhuwei Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Bei Ran
- Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610064, P. R. China
| | - Jiaqi Cao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yue Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Teng Shao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yurou Song
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Michael K H Leung
- Ability R&D Energy Research Centre, School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, P. R. China
| | - Licheng Sun
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou 310024, P. R. China.,Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Jungang Hou
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
73
|
Efficient simultaneous removal of tetracycline hydrochloride and Cr(VI) through photothermal-assisted photocatalytic-Fenton-like processes with CuOx/γ-Al2O3. J Colloid Interface Sci 2022; 622:526-538. [DOI: 10.1016/j.jcis.2022.04.091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/07/2022] [Accepted: 04/16/2022] [Indexed: 11/23/2022]
|
74
|
Di J, Jiang W, Liu Z. Symmetry breaking for semiconductor photocatalysis. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
75
|
Recent advances in 1D nanostructured catalysts for photothermal and photocatalytic reduction of CO2. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
76
|
Di J, Chen C, Wu Y, Zhao Y, Zhu C, Zhang Y, Wang C, Chen H, Xiong J, Xu M, Xia J, Zhou J, Weng Y, Song L, Li S, Jiang W, Liu Z. Polarized Cu-Bi Site Pairs for Non-Covalent to Covalent Interaction Tuning toward N 2 Photoreduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204959. [PMID: 35863016 DOI: 10.1002/adma.202204959] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/20/2022] [Indexed: 06/15/2023]
Abstract
A universal atomic layer confined doping strategy is developed to prepare Bi24 O31 Br10 materials incorporating isolated Cu atoms. The local polarization can be created along the CuOBi atomic interface, which enables better electron delocalization for effective N2 activation. The optimized Cu-Bi24 O31 Br10 atomic layers show 5.3× and 88.2× improved photocatalytic nitrogen fixation activity than Bi24 O31 Br10 atomic layer and bulk Bi24 O31 Br10 , respectively, with the NH3 generation rate reaching 291.1 µmol g-1 h-1 in pure water. The polarized Cu-Bi site pairs can increase the non-covalent interaction between the catalyst's surface and N2 molecules, then further weaken the covalent bond order in NN. As a result, the hydrogenation pathways can be altered from the associative distal pathway for Bi24 O31 Br10 to the alternating pathway for Cu-Bi24 O31 Br10 . This strategy provides an accessible pathway for designing polarized metal site pairs or tuning the non-covalent interaction and covalent bond order.
Collapse
Affiliation(s)
- Jun Di
- School of Chemistry and Chemical Engineering, National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Chao Chen
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yao Wu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yunxuan Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Chao Zhu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yi Zhang
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Changda Wang
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Hailong Chen
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jun Xiong
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Manzhang Xu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jiexiang Xia
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Jiadong Zhou
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yuxiang Weng
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Li Song
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Shuzhou Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Wei Jiang
- School of Chemistry and Chemical Engineering, National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- School of Electrical and Electronic Engineering and The Photonics Institute, Nanyang Technological University, Singapore, 639798, Singapore
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, Singapore, Singapore
| |
Collapse
|
77
|
Zhang Q, Yang C, Guan A, Kan M, Zheng G. Photocatalytic CO 2 conversion: from C1 products to multi-carbon oxygenates. NANOSCALE 2022; 14:10268-10285. [PMID: 35801565 DOI: 10.1039/d2nr02588d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photocatalytic CO2 conversion into high-value chemicals has been emerging as an attractive research direction in achieving carbon resource sustainability. The chemical products can be categorized into C1 and multi-carbon (C2+) products. In this review, we describe the recent research progress in photocatalytic CO2 conversion systems from C1 products to multi-carbon oxygenates, and analyze the reasons related to their catalytic mechanisms, as the production of multi-carbon oxygenates is generally more difficult than that of C1 products. Then we discuss several examples in promoting the photoconversion of CO2 to value-added multi-carbon products in the aspects of photocatalyst design, mass transfer control, determination of active sites, and intermediate regulation. Finally, we summarize perspectives on the challenges and propose potential directions in this fast-developing field, such as the prospect of CO2 transformation to long-chain hydrocarbons like salicylic acid or even plastics.
Collapse
Affiliation(s)
- Quan Zhang
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Faculty of Chemistry and Materials Science, Fudan University, Shanghai 200438, China.
| | - Chao Yang
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Faculty of Chemistry and Materials Science, Fudan University, Shanghai 200438, China.
| | - Anxiang Guan
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Faculty of Chemistry and Materials Science, Fudan University, Shanghai 200438, China.
| | - Miao Kan
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Faculty of Chemistry and Materials Science, Fudan University, Shanghai 200438, China.
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Faculty of Chemistry and Materials Science, Fudan University, Shanghai 200438, China.
| |
Collapse
|
78
|
Ou H, Ning S, Zhu P, Chen S, Han A, Kang Q, Hu Z, Ye J, Wang D, Li Y. Carbon Nitride Photocatalysts with Integrated Oxidation and Reduction Atomic Active Centers for Improved CO2 Conversion. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Honghui Ou
- Tsinghua University Department of Chemistry CHINA
| | - Shangbo Ning
- Tianjin University School of Materials Science and Engineering CHINA
| | - Peng Zhu
- Tsinghua University Department of Chemistry CHINA
| | | | - Ali Han
- Tsinghua University Department of Chemistry CHINA
| | - Qing Kang
- University of Jinan Department Institute of Surface Analysis and Chemical Biology CHINA
| | - Zhuofeng Hu
- SYSU: Sun Yat-Sen University School of Environmental Science and Engineering CHINA
| | - Jinhua Ye
- Tianjin University School of Materials Science and Engineering CHINA
| | | | - Yadong Li
- Tsinghua University Department of Chemistry District of Haidian 100084 Beijing CHINA
| |
Collapse
|
79
|
Ou H, Ning S, Zhu P, Chen S, Han A, Kang Q, Hu Z, Ye J, Wang D, Li Y. Carbon Nitride Photocatalysts with Integrated Oxidation and Reduction Atomic Active Centers for Improved CO 2 Conversion. Angew Chem Int Ed Engl 2022; 61:e202206579. [PMID: 35715933 DOI: 10.1002/anie.202206579] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Indexed: 02/06/2023]
Abstract
Single-atom active-site catalysts have attracted significant attention in the field of photocatalytic CO2 conversion. However, designing active sites for CO2 reduction and H2 O oxidation simultaneously on a photocatalyst and combining the corresponding half-reaction in a photocatalytic system is still difficult. Here, we synthesized a bimetallic single-atom active-site photocatalyst with two compatible active centers of Mn and Co on carbon nitride (Mn1 Co1 /CN). Our experimental results and density functional theory calculations showed that the active center of Mn promotes H2 O oxidation by accumulating photogenerated holes. In addition, the active center of Co promotes CO2 activation by increasing the bond length and bond angle of CO2 molecules. Benefiting from the synergistic effect of the atomic active centers, the synthesized Mn1 Co1 /CN exhibited a CO production rate of 47 μmol g-1 h-1 , which is significantly higher than that of the corresponding single-metal active-site photocatalyst.
Collapse
Affiliation(s)
- Honghui Ou
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Shangbo Ning
- TJU-NIMS International Collaboration Laboratory, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China.,Department Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Peng Zhu
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Shenghua Chen
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Ali Han
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Qing Kang
- Department Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Zhuofeng Hu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Jinhua Ye
- TJU-NIMS International Collaboration Laboratory, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China.,International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, 305-0047, Japan
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
80
|
Direct Conversion of CO2 into Hydrocarbon Solar Fuels by a Synergistic Photothermal Catalysis. Catalysts 2022. [DOI: 10.3390/catal12060612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Photothermal coupling catalysis technology has been widely studied in recent years and may be a promising method for CO2 reduction. Photothermal coupling catalysis can improve chemical reaction rates and realize the controllability of reaction pathways and products, even in a relatively moderate reaction condition. It has inestimable value in the current energy and global environmental crisis. This review describes the application of photothermal catalysis in CO2 reduction from different aspects. Firstly, the definition and advantages of photothermal catalysis are briefly described. Then, different photothermal catalytic reductions of CO2 products and catalysts are introduced. Finally, several strategies to improve the activity of photothermal catalytic reduction of CO2 are described and we present our views on the future development and challenges of photothermal coupling. Ultimately, the purpose of this review is to bring more researchers’ attention to this promising technology and promote this technology in solar fuels and chemicals production, to realize the value of the technology and provide a better path for its development.
Collapse
|
81
|
Liang X, Ji S, Chen Y, Wang D. Synthetic strategies for MOF-based single-atom catalysts for photo- and electro-catalytic CO 2 reduction. iScience 2022; 25:104177. [PMID: 35434562 PMCID: PMC9010762 DOI: 10.1016/j.isci.2022.104177] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The excessive CO2 emission has resulted in climate changes, which has threatened human existence. Photocatalytic and electrocatalytic CO2 reduction, driven by wind electricity and solar energy, are feasible ways of tackling carbon dioxide emission, as both energies are clean and renewable. Single-atom catalyst (SAC) is a candidate owing to excellent electrocatalytic and photocatalytic performance. Methods for preparing an SAC by using metal-organic frameworks (MOFs) as support or precursors are summarized. Also, applications in energy conversion are exhibited. However, the real challenge is to improve the selectivity of catalytic reactions to yield higher value products, which is to be discussed.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shufang Ji
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S3H6, Canada
| | - Yuanjun Chen
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S3G4, Canada
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
82
|
|
83
|
Ma Y, Yi X, Wang S, Li T, Tan B, Chen C, Majima T, Waclawik ER, Zhu H, Wang J. Selective photocatalytic CO 2 reduction in aerobic environment by microporous Pd-porphyrin-based polymers coated hollow TiO 2. Nat Commun 2022; 13:1400. [PMID: 35301319 PMCID: PMC8930982 DOI: 10.1038/s41467-022-29102-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 02/23/2022] [Indexed: 12/13/2022] Open
Abstract
Direct photocatalytic CO2 reduction from primary sources, such as flue gas and air, into fuels, is highly desired, but the thermodynamically favored O2 reduction almost completely impedes this process. Herein, we report on the efficacy of a composite photocatalyst prepared by hyper-crosslinking porphyrin-based polymers on hollow TiO2 surface and subsequent coordinating with Pd(II). Such composite exhibits high resistance against O2 inhibition, leading to 12% conversion yield of CO2 from air after 2-h UV-visible light irradiation. In contrast, the CO2 reduction over Pd/TiO2 without the polymer is severely inhibited by the presence of O2 ( ≥ 0.2 %). This study presents a feasible strategy, building Pd(II) sites into CO2-adsorptive polymers on hollow TiO2 surface, for realizing CO2 reduction with H2O in an aerobic environment by the high CO2/O2 adsorption selectivity of polymers and efficient charge separation for CO2 reduction and H2O oxidation on Pd(II) sites and hollow TiO2, respectively.
Collapse
Affiliation(s)
- Yajuan Ma
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaoxuan Yi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shaolei Wang
- Key Laboratory of Polyoxometalate Science of Education Institution, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Tao Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bien Tan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chuncheng Chen
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tetsuro Majima
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Eric R Waclawik
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Huaiyong Zhu
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Jingyu Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
84
|
Wang T, Chen L, Chen C, Huang M, Huang Y, Liu S, Li B. Engineering Catalytic Interfaces in Cu δ+/CeO 2-TiO 2 Photocatalysts for Synergistically Boosting CO 2 Reduction to Ethylene. ACS NANO 2022; 16:2306-2318. [PMID: 35137588 DOI: 10.1021/acsnano.1c08505] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photocatalytic CO2 conversion into a high-value-added C2 product is a highly challenging task because of insufficient electron deliverability and sluggish C-C coupling kinetics. Engineering catalytic interfaces in photocatalysts provides a promising approach to manipulate photoinduced charge carriers and create multiple catalytic sites for boosting the generation of C2 product from CO2 reduction. Herein, a Cuδ+/CeO2-TiO2 photocatalyst that contains atomically dispersed Cuδ+ sites anchored on the CeO2-TiO2 heterostructures consisting of highly dispersed CeO2 nanoparticles on porous TiO2 is designedly constructed by the pyrolytic transformation of a Cu2+-Ce3+/MIL-125-NH2 precursor. In the designed photocatalyst, TiO2 acts as a light-harvesting material for generating electron-hole pairs that are efficiently separated by CeO2-TiO2 interfaces, and the Cu-Ce dual active sites synergistically facilitate the generation and dimerization of *CO intermediates, thus lowering the energy barrier of C-C coupling. As a consequence, the Cuδ+/CeO2-TiO2 photocatalyst exhibits a production rate of 4.51 μmol-1·gcat-1·h-1 and 73.9% selectivity in terms of electron utilization for CO2 to C2H4 conversion under simulated sunlight, with H2O as hydrogen source and hole scavenger. The photocatalytic mechanism is revealed by operando spectroscopic methods as well as theoretical calculations. This study displays the rational construction of heterogeneous photocatalysts for boosting CO2 conversion and emphasizes the synergistic effect of multiple active sites in enhancing the selectivity of C2 product.
Collapse
Affiliation(s)
- Ting Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Liang Chen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| | - Cong Chen
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Mengtian Huang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Youju Huang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| | - Shoujie Liu
- Chemistry and Chemical Engineering of Guangdong Laboratory, Shantou 515063, P. R. China
| | - Benxia Li
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| |
Collapse
|
85
|
Zhou Y, Zou Z, Han Q, Shen Y, Jiang C, Zhang YC, Xiong Y, Ye J, Li Z, Gao W. State-of-the-Art Advancements of Atomically Thin Two-Dimensional Photocatalysts for Energy Conversion. Chem Commun (Camb) 2022; 58:9594-9613. [DOI: 10.1039/d2cc02708a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Excessive use of fossil fuels leads to energy shortages and environmental pollution, threatening human health and social development. As a clean, green, and sustainable technology, generation of renewable energy from...
Collapse
|