51
|
Khan MK, Butolia P, Jo H, Irshad M, Han D, Nam KW, Kim J. Selective Conversion of Carbon Dioxide into Liquid Hydrocarbons and Long-Chain α-Olefins over Fe-Amorphous AlOx Bifunctional Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02611] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Muhammad Kashif Khan
- School of Mechanical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro,
Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Paresh Butolia
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro,
Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Heuntae Jo
- School of Mechanical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Muhammad Irshad
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro,
Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Daseul Han
- Department of Energy and Materials Engineering, Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul 04620, Republic of Korea
| | - Kyung-Wan Nam
- Department of Energy and Materials Engineering, Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul 04620, Republic of Korea
| | - Jaehoon Kim
- School of Mechanical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro,
Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
- SKKU Advanced Institute of Nano Technology (SAINT), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| |
Collapse
|
52
|
Rui N, Zhang F, Sun K, Liu Z, Xu W, Stavitski E, Senanayake SD, Rodriguez JA, Liu CJ. Hydrogenation of CO2 to Methanol on a Auδ+–In2O3–x Catalyst. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02120] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ning Rui
- Tianjin Co-Innovation Center of Chemical Science & Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Feng Zhang
- Materials Science and Molecular Chemical Engineering Department, Stony Brook University, Stony Brook, New York 11794, United States
| | - Kaihang Sun
- Tianjin Co-Innovation Center of Chemical Science & Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zongyuan Liu
- Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Wenqian Xu
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Eli Stavitski
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Sanjaya D. Senanayake
- Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - José A. Rodriguez
- Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973, United States
- Materials Science and Molecular Chemical Engineering Department, Stony Brook University, Stony Brook, New York 11794, United States
| | - Chang-Jun Liu
- Tianjin Co-Innovation Center of Chemical Science & Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
53
|
Tetragonal zirconia based ternary ZnO-ZrO2-MOx solid solution catalysts for highly selective conversion of CO2 to methanol at High reaction temperature. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.04.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
54
|
Highly efficient hydrogenation of biomass oxygenates to alcohol products on MOF composite catalysts. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.07.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
55
|
Effect of the Preparation Method on the Physicochemical Properties and the CO Oxidation Performance of Nanostructured CeO2/TiO2 Oxides. Processes (Basel) 2020. [DOI: 10.3390/pr8070847] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Ceria-based mixed oxides have been widely studied in catalysis due to their unique surface and redox properties, with implications in numerous energy- and environmental-related applications. In this regard, the rational design of ceria-based composites by means of advanced synthetic routes has gained particular attention. In the present work, ceria–titania composites were synthesized by four different methods (precipitation, hydrothermal in one and two steps, Stöber) and their effect on the physicochemical characteristics and the CO oxidation performance was investigated. A thorough characterization study, including N2 adsorption-desorption, X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDS), transmission electron microscopy (TEM) and H2 temperature-programmed reduction (H2-TPR) was performed. Ceria–titania samples prepared by the Stöber method, exhibited the optimum CO oxidation performance, followed by samples prepared by the hydrothermal method in one step, whereas the precipitation method led to almost inactive oxides. CeO2/TiO2 samples synthesized by the Stöber method display a rod-like morphology of ceria nanoparticles with a uniform distribution of TiO2, leading to enhanced reducibility and oxygen storage capacity (OSC). A linear relationship was disclosed among the catalytic performance of the samples prepared by different methods and the abundance of reducible oxygen species.
Collapse
|
56
|
Duyar MS, Gallo A, Snider JL, Jaramillo TF. Low-pressure methanol synthesis from CO2 over metal-promoted Ni-Ga intermetallic catalysts. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
57
|
Lozano-Reis P, Prats H, Gamallo P, Illas F, Sayós R. Multiscale Study of the Mechanism of Catalytic CO2 Hydrogenation: Role of the Ni(111) Facets. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01599] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pablo Lozano-Reis
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, C. Martí i Franquès 1, 08028 Barcelona, Spain
| | - Hèctor Prats
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, C. Martí i Franquès 1, 08028 Barcelona, Spain
| | - Pablo Gamallo
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, C. Martí i Franquès 1, 08028 Barcelona, Spain
| | - Francesc Illas
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, C. Martí i Franquès 1, 08028 Barcelona, Spain
| | - Ramón Sayós
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, C. Martí i Franquès 1, 08028 Barcelona, Spain
| |
Collapse
|
58
|
Highly active novel CeTi2O6/g-C3N5 photocatalyst with extended spectral response towards removal of endocrine disruptor 2, 4-dichlorophenol in aqueous medium. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124583] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
59
|
Wang L, Guan E, Wang Y, Wang L, Gong Z, Cui Y, Meng X, Gates BC, Xiao FS. Silica accelerates the selective hydrogenation of CO 2 to methanol on cobalt catalysts. Nat Commun 2020; 11:1033. [PMID: 32098956 PMCID: PMC7042257 DOI: 10.1038/s41467-020-14817-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/04/2020] [Indexed: 12/28/2022] Open
Abstract
The reaction pathways on supported catalysts can be tuned by optimizing the catalyst structures, which helps the development of efficient catalysts. Such design is particularly desired for CO2 hydrogenation, which is characterized by complex pathways and multiple products. Here, we report an investigation of supported cobalt, which is known for its hydrocarbon production and ability to turn into a selective catalyst for methanol synthesis in CO2 hydrogenation which exhibits good activity and stability. The crucial technique is to use the silica, acting as a support and ligand, to modify the cobalt species via Co‒O‒SiOn linkages, which favor the reactivity of spectroscopically identified *CH3O intermediates, that more readily undergo hydrogenation to methanol than the C‒O dissociation associated with hydrocarbon formation. Cobalt catalysts in this class offer appealing opportunities for optimizing selectivity in CO2 hydrogenation and producing high-grade methanol. By identifying this function of silica, we provide support for rationally controlling these reaction pathways. The hydrogenation of CO2 into valuable chemicals is greatly demanded, but suffers from complex product distribution. Here, the authors reported that, as a support and ligand, silica boosts cobalt catalysts to selectively hydrogenate CO2 into the desired methanol product.
Collapse
Affiliation(s)
- Lingxiang Wang
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China.,Key Laboratory of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, 310028, Hangzhou, China
| | - Erjia Guan
- Department of Chemical Engineering, University of California, Davis, CA, 95616, United States
| | - Yeqing Wang
- Key Laboratory of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, 310028, Hangzhou, China
| | - Liang Wang
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China. .,Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, 310027, Hangzhou, China.
| | - Zhongmiao Gong
- Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 215123, Suzhou, China
| | - Yi Cui
- Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 215123, Suzhou, China
| | - Xiangju Meng
- Key Laboratory of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, 310028, Hangzhou, China
| | - Bruce C Gates
- Department of Chemical Engineering, University of California, Davis, CA, 95616, United States
| | - Feng-Shou Xiao
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China. .,Key Laboratory of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, 310028, Hangzhou, China. .,Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China.
| |
Collapse
|
60
|
Cai X, Hu W, Xu S, Yang D, Chen M, Shu M, Si R, Ding W, Zhu Y. Structural Relaxation Enabled by Internal Vacancy Available in a 24-Atom Gold Cluster Reinforces Catalytic Reactivity. J Am Chem Soc 2020; 142:4141-4153. [DOI: 10.1021/jacs.9b07761] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Xiao Cai
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Weigang Hu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Shun Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Dan Yang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Mingyang Chen
- Center for Green Innovation, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Miao Shu
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai 201204, China
| | - Rui Si
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai 201204, China
| | - Weiping Ding
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yan Zhu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
61
|
Agasti N, Astle MA, Rance GA, Alves Fernandes J, Dupont J, Khlobystov AN. Cerium Oxide Nanoparticles Inside Carbon Nanoreactors for Selective Allylic Oxidation of Cyclohexene. NANO LETTERS 2020; 20:1161-1171. [PMID: 31975606 DOI: 10.1021/acs.nanolett.9b04579] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The confinement of cerium oxide (CeO2) nanoparticles within hollow carbon nanostructures has been achieved and harnessed to control the oxidation of cyclohexene. Graphitized carbon nanofibers (GNF) have been used as the nanoscale tubular host and filled by sublimation of the Ce(tmhd)4 complex (where tmhd = tetrakis(2,2,6,6-tetramethyl-3,5-heptanedionato)) into the internal cavity, followed by a subsequent thermal decomposition to yield the hybrid nanostructure CeO2@GNF, where nanoparticles are preferentially immobilized at the internal graphitic step-edges of the GNF. Control over the size of the CeO2 nanoparticles has been demonstrated within the range of about 4-9 nm by varying the mass ratio of the Ce(tmhd)4 precursor to GNF during the synthesis. CeO2@GNF was effective in promoting the allylic oxidation of cyclohexene in high yield with time-dependent control of product selectivity at a comparatively low loading of CeO2 of 0.13 mol %. Unlike many of the reports to date where ceria catalyzes such organic transformations, we found the encapsulated CeO2 to play the key role of radical initiator due to the presence of Ce3+ included in the structure, with the nanotube acting as both a host, preserving the high performance of the CeO2 nanoparticles anchored at the GNF step-edges over multiple uses, and an electron reservoir, maintaining the balance of Ce3+ and Ce4+ centers. Spatial confinement effects ensure excellent stability and recyclability of CeO2@GNF nanoreactors.
Collapse
Affiliation(s)
- Nityananda Agasti
- School of Chemistry , University of Nottingham , University Park, Nottingham NG7 2RD , United Kingdom
| | - Maxwell A Astle
- School of Chemistry , University of Nottingham , University Park, Nottingham NG7 2RD , United Kingdom
| | - Graham A Rance
- School of Chemistry , University of Nottingham , University Park, Nottingham NG7 2RD , United Kingdom
- Nanoscale and Microscale Research Centre (nmRC) , University of Nottingham , University Park, Nottingham NG7 2RD , United Kingdom
| | - Jesum Alves Fernandes
- School of Chemistry , University of Nottingham , University Park, Nottingham NG7 2RD , United Kingdom
| | - Jairton Dupont
- School of Chemistry , University of Nottingham , University Park, Nottingham NG7 2RD , United Kingdom
- Institute of Chemistry , Universidade Federal do Rio Grande do Sul , Avenida Bento Goncalves 9500 , BR-91501970 Porto Alegre , RS , Brazil
| | - Andrei N Khlobystov
- School of Chemistry , University of Nottingham , University Park, Nottingham NG7 2RD , United Kingdom
- Nanoscale and Microscale Research Centre (nmRC) , University of Nottingham , University Park, Nottingham NG7 2RD , United Kingdom
| |
Collapse
|
62
|
Wang ZJ, Song H, Liu H, Ye J. Coupling of Solar Energy and Thermal Energy for Carbon Dioxide Reduction: Status and Prospects. Angew Chem Int Ed Engl 2020; 59:8016-8035. [PMID: 31309678 DOI: 10.1002/anie.201907443] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Indexed: 11/06/2022]
Abstract
Enormous efforts have been devoted to the reduction of carbon dioxide (CO2 ) by utilizing various driving forces, such as heat, electricity, and radiation. However, the efficient reduction of CO2 is still challenging because of sluggish kinetics. Recent pioneering studies from several groups, including us, have demonstrated that the coupling of solar energy and thermal energy offers a novel and promising strategy to promote the activity and/or manipulate selectivity in CO2 reduction. Herein, we clarify the definition and principles of coupling solar energy and thermal energy, and comprehensively review the status and prospects of CO2 reduction by coupling solar energy and thermal energy. Catalyst design, reactor configuration, photo-mediated activity/selectivity, and mechanism studies in photo-thermo CO2 reduction will be emphasized. The aim of this Review is to promote understanding towards CO2 activation and provide guidelines for the design of new catalysts for the efficient reduction of CO2 .
Collapse
Affiliation(s)
- Zhou-Jun Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.,International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Hui Song
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-0814, Japan
| | - Huimin Liu
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,TJU-NIMS International Collaboration Laboratory, School of Material Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China.,School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jinhua Ye
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-0814, Japan.,TJU-NIMS International Collaboration Laboratory, School of Material Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| |
Collapse
|
63
|
Wang Z, Song H, Liu H, Ye J. Kopplung von Solarenergie und Wärmeenergie zur Kohlendioxidreduktion: Aktueller Stand und Perspektiven. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201907443] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhou‐jun Wang
- State Key Laboratory of Chemical Resource EngineeringBeijing Key Laboratory of Energy Environmental CatalysisBeijing University of Chemical Technology Beijing 100029 P. R. China
- International Center for Materials Nanoarchitectonics (WPI-MANA)National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Hui Song
- International Center for Materials Nanoarchitectonics (WPI-MANA)National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Graduate School of Chemical Sciences and EngineeringHokkaido University Sapporo 060-0814 Japan
| | - Huimin Liu
- International Center for Materials Nanoarchitectonics (WPI-MANA)National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- TJU-NIMS International Collaboration LaboratorySchool of Material Science and EngineeringTianjin University Tianjin 300072 P. R. China
- School of Chemical and Biomolecular EngineeringThe University of Sydney Sydney NSW 2006 Australien
| | - Jinhua Ye
- International Center for Materials Nanoarchitectonics (WPI-MANA)National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Graduate School of Chemical Sciences and EngineeringHokkaido University Sapporo 060-0814 Japan
- TJU-NIMS International Collaboration LaboratorySchool of Material Science and EngineeringTianjin University Tianjin 300072 P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 P. R. China
| |
Collapse
|
64
|
Zeng C, Zeng Q, Dai C, Hu Y. An oriented built-in electric field induced by cobalt surface gradient diffused doping in MgIn2S4 for enhanced photocatalytic CH4 evolution. Dalton Trans 2020; 49:9213-9217. [DOI: 10.1039/d0dt01686a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Co gradient doping in MgIn2S4 creates an oriented built-in electric field for efficiently extracting carriers from the inside to the surface.
Collapse
Affiliation(s)
- Chao Zeng
- Institute of Advanced Materials (IAM)
- Jiangxi Normal University
- Nanchang
- P. R. China
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes
| | - Qing Zeng
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes
- National Laboratory of Mineral Materials
- School of Materials Science and Technology
- China University of Geosciences
- Beijing 100083
| | - Chunhui Dai
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation
- East China University of Technology
- Nanchang 330013
- P. R. China
| | - Yingmo Hu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes
- National Laboratory of Mineral Materials
- School of Materials Science and Technology
- China University of Geosciences
- Beijing 100083
| |
Collapse
|
65
|
Zhong J, Yang X, Wu Z, Liang B, Huang Y, Zhang T. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol. Chem Soc Rev 2020; 49:1385-1413. [DOI: 10.1039/c9cs00614a] [Citation(s) in RCA: 333] [Impact Index Per Article: 66.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The ever-increasing amount of anthropogenic carbon dioxide (CO2) emissions has resulted in great environmental impacts, the heterogeneous catalysis of CO2 hydrogenation to methanol is of great significance.
Collapse
Affiliation(s)
- Jiawei Zhong
- CAS Key Laboratory of Science and Technology on Applied Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Xiaofeng Yang
- CAS Key Laboratory of Science and Technology on Applied Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Zhilian Wu
- CAS Key Laboratory of Science and Technology on Applied Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Binglian Liang
- CAS Key Laboratory of Science and Technology on Applied Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Yanqiang Huang
- CAS Key Laboratory of Science and Technology on Applied Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| |
Collapse
|
66
|
Wang X, Song S, Zhang H. A redox interaction-engaged strategy for multicomponent nanomaterials. Chem Soc Rev 2020; 49:736-764. [DOI: 10.1039/c9cs00379g] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The review article focuses on the redox interaction-engaged strategy that offers a powerful way to construct multicomponent nanomaterials with precisely-controlled size, shape, composition and hybridization of nanostructures.
Collapse
Affiliation(s)
- Xiao Wang
- School of Chemical and Biological Engineering
- Seoul National University
- Seoul
- Republic of Korea
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| |
Collapse
|
67
|
Ye RP, Ding J, Gong W, Argyle MD, Zhong Q, Wang Y, Russell CK, Xu Z, Russell AG, Li Q, Fan M, Yao YG. CO 2 hydrogenation to high-value products via heterogeneous catalysis. Nat Commun 2019; 10:5698. [PMID: 31836709 PMCID: PMC6910949 DOI: 10.1038/s41467-019-13638-9] [Citation(s) in RCA: 276] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 11/18/2019] [Indexed: 11/12/2022] Open
Abstract
Recently, carbon dioxide capture and conversion, along with hydrogen from renewable resources, provide an alternative approach to synthesis of useful fuels and chemicals. People are increasingly interested in developing innovative carbon dioxide hydrogenation catalysts, and the pace of progress in this area is accelerating. Accordingly, this perspective presents current state of the art and outlook in synthesis of light olefins, dimethyl ether, liquid fuels, and alcohols through two leading hydrogenation mechanisms: methanol reaction and Fischer-Tropsch based carbon dioxide hydrogenation. The future research directions for developing new heterogeneous catalysts with transformational technologies, including 3D printing and artificial intelligence, are provided. Carbon dioxide (CO2) capture and conversion provide an alternative approach to synthesis of useful fuels and chemicals. Here, Ye et al. give a comprehensive perspective on the current state of the art and outlook of CO2 catalytic hydrogenation to the synthesis of light olefins, dimethyl ether, liquid fuels, and alcohols.
Collapse
Affiliation(s)
- Run-Ping Ye
- Departments of Chemical and Petroleum Engineering, University of Wyoming, Laramie, WY, 82071, USA.,Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Ding
- Departments of Chemical and Petroleum Engineering, University of Wyoming, Laramie, WY, 82071, USA.,School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, P.R. China
| | - Weibo Gong
- Departments of Chemical and Petroleum Engineering, University of Wyoming, Laramie, WY, 82071, USA
| | - Morris D Argyle
- Department of Chemical Engineering, Brigham Young University, 330 EB, Provo, UT, 84602, USA
| | - Qin Zhong
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, P.R. China
| | - Yujun Wang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Christopher K Russell
- Departments of Chemical and Petroleum Engineering, University of Wyoming, Laramie, WY, 82071, USA.,Departments of Civil and Environmental Engineering, Stanford University, Stanford, 94305, CA, USA
| | - Zhenghe Xu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Armistead G Russell
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Mason Building, 790 Atlantic Drive, Atlanta, GA, 30332, USA
| | - Qiaohong Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Maohong Fan
- Departments of Chemical and Petroleum Engineering, University of Wyoming, Laramie, WY, 82071, USA. .,School of Civil and Environmental Engineering, Georgia Institute of Technology, Mason Building, 790 Atlantic Drive, Atlanta, GA, 30332, USA. .,School of Energy Resources, University of Wyoming, Laramie, WY, 82071, USA.
| | - Yuan-Gen Yao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.
| |
Collapse
|
68
|
Wang Z, Huang L, Su B, Xu J, Ding Z, Wang S. Unravelling the Promotional Effect of La
2
O
3
in Pt/La‐TiO
2
Catalysts for CO
2
Hydrogenation. Chemistry 2019; 26:517-523. [DOI: 10.1002/chem.201903946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/13/2019] [Indexed: 02/03/2023]
Affiliation(s)
- Zhaoyu Wang
- Fujian Provincial Key Lab of Coastal Basin EnvironmentsFuqing Branch of Fujian Normal University Fuqing 350300, Fujian Province P. R. China
- State Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University Fuzhou 350002 P. R. China
| | - Lijuan Huang
- State Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University Fuzhou 350002 P. R. China
| | - Bo Su
- State Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University Fuzhou 350002 P. R. China
| | - Junli Xu
- State Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University Fuzhou 350002 P. R. China
| | - Zhengxin Ding
- State Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University Fuzhou 350002 P. R. China
| | - Sibo Wang
- State Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University Fuzhou 350002 P. R. China
| |
Collapse
|
69
|
Affiliation(s)
- Kuan Chang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Haochen Zhang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Mu-jeng Cheng
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Qi Lu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
70
|
Wang J, Tang C, Li G, Han Z, Li Z, Liu H, Cheng F, Li C. High-Performance MaZrOx (Ma = Cd, Ga) Solid-Solution Catalysts for CO2 Hydrogenation to Methanol. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03449] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jijie Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian, Liaoning 116023, People’s Republic of China
| | - Chizhou Tang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian, Liaoning 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Guanna Li
- Inorganic Systems Engineering, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Zhe Han
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian, Liaoning 116023, People’s Republic of China
| | - Zelong Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian, Liaoning 116023, People’s Republic of China
| | - Hailong Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian, Liaoning 116023, People’s Republic of China
| | - Feng Cheng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian, Liaoning 116023, People’s Republic of China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian, Liaoning 116023, People’s Republic of China
| |
Collapse
|
71
|
Pawar AA, Kim H. Reaction parameters dependence of the CO2/epoxide coupling reaction catalyzed by tunable ionic liquids, optimization of comonomer-alternating enhancement pathway. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2019.07.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
72
|
Zhang Z, Zhang L, Hülsey MJ, Yan N. Zirconia phase effect in Pd/ZrO2 catalyzed CO2 hydrogenation into formate. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.110461] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
73
|
Support-dependent rate-determining step of CO2 hydrogenation to formic acid on metal oxide supported Pd catalysts. J Catal 2019. [DOI: 10.1016/j.jcat.2019.06.048] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
74
|
Guzmán-Cruz MA, Ramesh-Kumar C, Acosta-Alejandro M, Frías-Márquez DM, Domiguez D, Zepeda TA, Fuentes-Moyado S, Díaz de León JN. Synthesis of Aluminium Doped Na-Titanate Nanorods and Its Application as Potential CO2 Hydrogenation Catalysts. Catal Letters 2019. [DOI: 10.1007/s10562-019-02902-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
75
|
Nguyen L, Tao FF, Tang Y, Dou J, Bao XJ. Understanding Catalyst Surfaces during Catalysis through Near Ambient Pressure X-ray Photoelectron Spectroscopy. Chem Rev 2019; 119:6822-6905. [DOI: 10.1021/acs.chemrev.8b00114] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Luan Nguyen
- Institute of In Situ/Operando Studies of Catalysis and State Key Laboratory of Photocatalysis on Energy and Environment and College of Chemistry, Fuzhou University, Fuzhou 350116, China
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - Franklin Feng Tao
- Institute of In Situ/Operando Studies of Catalysis and State Key Laboratory of Photocatalysis on Energy and Environment and College of Chemistry, Fuzhou University, Fuzhou 350116, China
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - Yu Tang
- Institute of In Situ/Operando Studies of Catalysis and State Key Laboratory of Photocatalysis on Energy and Environment and College of Chemistry, Fuzhou University, Fuzhou 350116, China
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - Jian Dou
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - Xiao-Jun Bao
- School of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
76
|
Recent In Situ/Operando Spectroscopy Studies of Heterogeneous Catalysis with Reducible Metal Oxides as Supports. Catalysts 2019. [DOI: 10.3390/catal9050477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
For heterogeneous catalysis, the metal catalysts supported on reducible metal oxides, especially CeO2 and TiO2, have long been a research focus because of their excellent catalytic performance in a variety of catalytic reactions. Detailed understanding of the promotion effect of reducible metal oxides on catalytic reactions is beneficial to the rational design of new catalysts. The important catalytic roles of reducible metal oxides are attributed to their intimate interactions with the supported metals (e.g., strong metal-support interaction, electronic metal-support interaction) and unique support structures (e.g., oxygen vacancy, reversible valence change, surface hydroxyl). However, the structures of the catalysts and reaction mechanisms are strongly affected by environmental conditions. For this reason, in situ/operando spectroscopy studies under working conditions are necessary to obtain accurate information about the structure-activity relationship. In this review, the recent applications of the in situ/operando spectroscopy methodology on metal catalysts with reducible metal oxides as supports are summarized.
Collapse
|
77
|
Lu P, Chizema LG, Hondo E, Tong M, Xing C, Lu C, Mei Y, Yang R. CO
2
Hydrogenation to Methanol via In‐situ Reduced Cu/ZnO Catalyst Prepared by Formic acid Assisted Grinding. ChemistrySelect 2019. [DOI: 10.1002/slct.201900860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Peng Lu
- Zhejiang Provincial Key Lab for Chem. & Bio. Processing Technology of Farm Product Hangzhou 310023 PR China
- School of Biological and Chemical EngineeringZhejiang University of Science and Technology Hangzhou 310023 PR China
| | - Linet Gapu Chizema
- School of Biological and Chemical EngineeringZhejiang University of Science and Technology Hangzhou 310023 PR China
| | - Emmerson Hondo
- School of Biological and Chemical EngineeringZhejiang University of Science and Technology Hangzhou 310023 PR China
| | - Mingliang Tong
- School of Biological and Chemical EngineeringZhejiang University of Science and Technology Hangzhou 310023 PR China
| | - Chuang Xing
- Zhejiang Provincial Key Lab for Chem. & Bio. Processing Technology of Farm Product Hangzhou 310023 PR China
- School of Biological and Chemical EngineeringZhejiang University of Science and Technology Hangzhou 310023 PR China
| | - Chengxue Lu
- School of Biological and Chemical EngineeringZhejiang University of Science and Technology Hangzhou 310023 PR China
| | - Yongfei Mei
- School of Biological and Chemical EngineeringZhejiang University of Science and Technology Hangzhou 310023 PR China
| | - Ruiqin Yang
- Zhejiang Provincial Key Lab for Chem. & Bio. Processing Technology of Farm Product Hangzhou 310023 PR China
- School of Biological and Chemical EngineeringZhejiang University of Science and Technology Hangzhou 310023 PR China
| |
Collapse
|
78
|
Chang K, Wang T, Chen JG. Methanol Synthesis from CO2 Hydrogenation over CuZnCeTi Mixed Oxide Catalysts. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00554] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kuan Chang
- Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Tiefeng Wang
- Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Jingguang G. Chen
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
79
|
Bao J, Yang G, Yoneyama Y, Tsubaki N. Significant Advances in C1 Catalysis: Highly Efficient Catalysts and Catalytic Reactions. ACS Catal 2019. [DOI: 10.1021/acscatal.8b03924] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jun Bao
- National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230029, P.R. China
| | - Guohui Yang
- Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, P.R. China
| | - Yoshiharu Yoneyama
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - Noritatsu Tsubaki
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| |
Collapse
|
80
|
Affiliation(s)
- Zhiqiang Ma
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Marc D. Porosoff
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
81
|
Li P, Cao Z. Catalytic coupling of CO 2 with epoxide by metal macrocycles functionalized with imidazolium bromide: insights into the mechanism and activity regulation from density functional calculations. Dalton Trans 2019; 48:1344-1350. [PMID: 30608088 DOI: 10.1039/c8dt04684k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cycloaddition of CO2 and epoxide catalysed by metalloporphyrins (IL-M(TPP)) and metallocorroles (IL-M(Cor)) containing imidazolium bromide has been studied extensively using density functional theory calculations. Possible mechanisms and catalytic effects of the hydrogen substitution on the imidazolium ring and the metal replacement in the macrocycles have been investigated. The results showed that the synergistic effect between the electrophilic metal centre and the flexible nucleophilic Br- of the bifunctional catalysts was responsible for the high catalytic activity. The coupling reaction of CO2 and ethylene oxide catalysed by IL-Al(Cor) experiences a free energy barrier of 9.7 kcal mol-1 for the rate-determining ring-opening step, which is much lower than ∼20 kcal mol-1 for that catalysed by IL-Zn(TPP). The metallocorrole-based bifunctional catalyst seems quite promising for the catalytic conversion of CO2 into five-membered heterocyclic compounds.
Collapse
Affiliation(s)
- Ping Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, China.
| | | |
Collapse
|
82
|
Fang X, Men Y, Wu F, Zhao Q, Singh R, Xiao P, Du T, Webley PA. Improved methanol yield and selectivity from CO2 hydrogenation using a novel Cu-ZnO-ZrO2 catalyst supported on Mg-Al layered double hydroxide (LDH). J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2018.11.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
83
|
Nie X, Li W, Jiang X, Guo X, Song C. Recent advances in catalytic CO2 hydrogenation to alcohols and hydrocarbons. ADVANCES IN CATALYSIS 2019. [DOI: 10.1016/bs.acat.2019.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
84
|
Wang P, Qiao M, Shao Q, Pi Y, Zhu X, Li Y, Huang X. Phase and structure engineering of copper tin heterostructures for efficient electrochemical carbon dioxide reduction. Nat Commun 2018; 9:4933. [PMID: 30467320 PMCID: PMC6250663 DOI: 10.1038/s41467-018-07419-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 10/29/2018] [Indexed: 11/14/2022] Open
Abstract
While engineering the phase and structure of electrocatalysts could regulate the performance of many typical electrochemical processes, its importance to the carbon dioxide electroreduction has been largely unexplored. Herein, a series of phase and structure engineered copper-tin dioxide catalysts have been created and thoroughly exploited for the carbon dioxide electroreduction to correlate performance with their unique structures and phases. The copper oxide/hollow tin dioxide heterostructure catalyst exhibits promising performance, which can tune the products from carbon monoxide to formic acid at high faradaic efficiency by simply changing the electrolysis potentials from −0.7 VRHE to −1.0 VRHE. The excellent performance is attributed to the abundant copper/tin dioxide interfaces involved in the copper oxide/hollow tin dioxide heterostructure during the electrochemical process, decreasing the reaction free-energies for the formation of COOH* species. Our work reported herein emphasizes the importance of phase and structure modulating of catalysts for enhancing electrochemical CO2 reduction and beyond. While CO2 removal will play a crucial role in limiting climate change, it is challenging to understand the factors that control materials’ selectivity to convert CO2 to valuable products. Here, authors show copper and tin oxide interfaces to impact activities for CO2 reduction products.
Collapse
Affiliation(s)
- Pengtang Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Jiangsu, China
| | - Man Qiao
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Jiangsu, China
| | - Yecan Pi
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Jiangsu, China
| | - Xing Zhu
- Testing & Analysis Center, Soochow University, 215123, Jiangsu, China
| | - Yafei Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, China
| | - Xiaoqing Huang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Jiangsu, China.
| |
Collapse
|
85
|
Ling C, Li Q, Du A, Wang J. Computation-Aided Design of Single-Atom Catalysts for One-Pot CO 2 Capture, Activation, and Conversion. ACS APPLIED MATERIALS & INTERFACES 2018; 10:36866-36872. [PMID: 30302997 DOI: 10.1021/acsami.8b10394] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Lowering the concentration of CO2 in atmosphere is a global concern but yet remains one of the most challenging processes in chemistry. Herein, we report a rational design of single-atom catalyst (SAC), namely, vanadium atom supported on newly synthesized β12 boron monolayer (V1/β12-BM), for one-pot CO2 capture, activation, and efficient conversion into methanol. Our first-principles computations reveal that strong interaction ensures V1/β12-BM can capture CO2 at ambient and elevated temperatures. Substantial charge transfer between V1/β12-BM and CO2 triggers the activation of CO2 into anionic CO2-, which can be efficiently hydrogenated into CH3OH with an ultralow limiting potential of 0.54 V and a rather low rate-determining barrier of 1.04 eV. Moreover, the adsorption of H2O molecules can make the reaction intermediates closer to the hydrogen source by the steric hindrance, which plays a key role in lowering the reaction barrier. Our findings present the first SAC for one-pot CO2 capture, activation, and conversion, which may open a new avenue for recycling CO2.
Collapse
Affiliation(s)
- Chongyi Ling
- School of Physics , Southeast University , Nanjing 211189 , People's Republic of China
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty , Queensland University of Technology , Gardens Point Campus , Brisbane , Queensland 4001 , Australia
| | - Qiang Li
- School of Physics , Southeast University , Nanjing 211189 , People's Republic of China
| | - Aijun Du
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty , Queensland University of Technology , Gardens Point Campus , Brisbane , Queensland 4001 , Australia
| | - Jinlan Wang
- School of Physics , Southeast University , Nanjing 211189 , People's Republic of China
- Synergetic Innovation Center for Quantum Effects and Applications (SICQEA) , Hunan Normal University , Changsha 410081 , People's Republic of China
| |
Collapse
|
86
|
Affiliation(s)
- Bin Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Yong Qin
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| |
Collapse
|
87
|
Tosoni S, Pacchioni G. Oxide‐Supported Gold Clusters and Nanoparticles in Catalysis: A Computational Chemistry Perspective. ChemCatChem 2018. [DOI: 10.1002/cctc.201801082] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Sergio Tosoni
- Dipartimento di Scienza dei MaterialiUniversità di Milano Bicocca Via Roberto Cozzi 55 Milano I-20125 Italy
| | - Gianfranco Pacchioni
- Dipartimento di Scienza dei MaterialiUniversità di Milano Bicocca Via Roberto Cozzi 55 Milano I-20125 Italy
| |
Collapse
|
88
|
Zeng G, Yang X, Tan CK, Marvel CJ, Koel BE, Tansu N, Krick BA. Shear-Induced Changes of Electronic Properties in Gallium Nitride. ACS APPLIED MATERIALS & INTERFACES 2018; 10:29048-29057. [PMID: 29954172 DOI: 10.1021/acsami.8b02271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We show that sliding on the surface of GaN can permanently change the surface band structure, resulting in an increased degree of band bending by more than 0.5 eV. We hypothesize that shear and contact stresses introduce vacancies that cause a spatially variant band bending. Band bending is observed by shifts and broadening of core-level binding energies toward lower values in X-ray photoelectron spectroscopy. The extent of band bending is controlled by humidity, number of sliding cycles and applied load, presenting opportunities for scalable tuning of the degree of band bending on a GaN surface. Scanning transmission electron microscopy revealed that the epitaxy of GaN was preserved up to the surface with regions of defects near the surface. The hypothesized mechanism of band bending is shear-induced defect generation, which has been shown to affect the surface states. The ability to introduce band bending at the GaN surface is promising for applications in photovoltaics, photocatalysis, gas sensing, and photoelectrochemical processes.
Collapse
Affiliation(s)
| | - Xiaofang Yang
- Department of Chemical and Biological Engineering , Princeton University , Princeton , New Jersey 08544 , United States
| | - Chee-Keong Tan
- Department of Electrical and Computer Engineering , Clarkson University , Potsdam , New York 13699 , United States
| | | | - Bruce E Koel
- Department of Chemical and Biological Engineering , Princeton University , Princeton , New Jersey 08544 , United States
| | | | | |
Collapse
|
89
|
Ortiz PD, Castillo-Rodriguez J, Zarate X, Martin-Trasanco R, Benito M, Mata I, Molins E, Schott E. Synthesis of Au Nanoparticles Assisted by Linker-Modified TiO 2 Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9402-9409. [PMID: 30021439 DOI: 10.1021/acs.langmuir.7b04195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Plasmonic nanoparticles, especially gold ones, have been widely employed as photosensitizers in photoelectrovoltaic or photocatalytic systems. To improve the system's performance, a greater interaction of the nanoparticles with the semiconductor, generally TiO2, is desired. Moreover, this performance is enhanced when an efficient covering of TiO2 surface by the sensitizer is achieved. The Brust-Schiffrin-like methods are of the most employed approaches for nanoparticles synthesis. In a traditional approach, the reduction of the gold precursor is performed in the presence of a stabilizer (typically a thiol molecule) free in solution. A second step in which the obtained nanoparticles are anchored to the semiconductor surface is necessary in the case of photosensitive applications. Drawbacks like steric hindrance turn more difficult the covering of the semiconductor's surface by nanoparticles. In this paper, we report a variation of this methodology, where the linker is previously anchored to the TiO2 nanoparticles surface. The resulting system is employed as the stabilizer in the gold reduction step. This strategy is carried out in aqueous media in two simple steps. A great covering of the titania surface by gold nanoparticles is achieved in all cases and the gold nanoparticles in the resulting nanoaggregate might be useful for photoelectrovoltaic or photocatalytic applications.
Collapse
Affiliation(s)
- Pedro D Ortiz
- Departamento de Química Inorgánica, Facultad de Química , Pontificia Universidad Católica de Chile , Avenida Vicuña Mackenna, 4860 , Santiago 7820436 , Chile
| | - Judith Castillo-Rodriguez
- Departamento de Química Inorgánica, Facultad de Química , Pontificia Universidad Católica de Chile , Avenida Vicuña Mackenna, 4860 , Santiago 7820436 , Chile
| | - Ximena Zarate
- Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería , Universidad Autónoma de Chile , Av. Pedro de Valdivia 425 , Santiago 7500912 , Chile
| | - Rudy Martin-Trasanco
- Centro de Nanociencias Aplicadas , Universidad Andres Bello , Santiago 8370146 , Chile
| | - Mónica Benito
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) , Campus UAB Bellaterra, Barcelona 0813 , España
| | - Ignasi Mata
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) , Campus UAB Bellaterra, Barcelona 0813 , España
| | - Elies Molins
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) , Campus UAB Bellaterra, Barcelona 0813 , España
| | - Eduardo Schott
- Departamento de Química Inorgánica, Facultad de Química , Pontificia Universidad Católica de Chile , Avenida Vicuña Mackenna, 4860 , Santiago 7820436 , Chile
| |
Collapse
|
90
|
Han F, Zhang Z, Niu N, Li J. Preparation and Characterization of SiO2/Co and C/Co Nanocomposites as Fisher-Tropsch Catalysts for CO2 Hydrogenation. Chem Res Chin Univ 2018. [DOI: 10.1007/s40242-018-7381-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
91
|
Bobadilla LF, Santos JL, Ivanova S, Odriozola JA, Urakawa A. Unravelling the Role of Oxygen Vacancies in the Mechanism of the Reverse Water–Gas Shift Reaction by Operando DRIFTS and Ultraviolet–Visible Spectroscopy. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02121] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Luis F. Bobadilla
- Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, Av. Américo Vespucio 49, 41092 Sevilla, Spain
| | - José L. Santos
- Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, Av. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Svetlana Ivanova
- Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, Av. Américo Vespucio 49, 41092 Sevilla, Spain
| | - José A. Odriozola
- Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, Av. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Atsushi Urakawa
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| |
Collapse
|
92
|
Selective Hydrogenation of CO
2
to Ethanol over Cobalt Catalysts. Angew Chem Int Ed Engl 2018; 57:6104-6108. [DOI: 10.1002/anie.201800729] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/26/2018] [Indexed: 11/07/2022]
|
93
|
Wang L, Wang L, Zhang J, Liu X, Wang H, Zhang W, Yang Q, Ma J, Dong X, Yoo SJ, Kim J, Meng X, Xiao F. Selective Hydrogenation of CO
2
to Ethanol over Cobalt Catalysts. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800729] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lingxiang Wang
- Department of Chemistry Zhejiang University Hangzhou 310028 China
| | - Liang Wang
- Department of Chemistry Zhejiang University Hangzhou 310028 China
| | - Jian Zhang
- Department of Chemistry Zhejiang University Hangzhou 310028 China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Xiaolong Liu
- Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences Wuhan 430071 China
| | - Hai Wang
- Department of Chemistry Zhejiang University Hangzhou 310028 China
| | - Wei Zhang
- Key Laboratory of Mobile Materials MOE & School of Materials Science and Engineering Jilin University Changchun 130012 China
| | - Qi Yang
- Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201204 China
| | - Jingyuan Ma
- Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201204 China
| | - Xue Dong
- Department of Chemistry and Biochemistry Texas Tech University Lubbock TX 79409 USA
| | - Seung Jo Yoo
- Electron Microscopy Research Center Korea Basic Science Institute Daejeon 34133 South Korea
| | - Jin‐Gyu Kim
- Electron Microscopy Research Center Korea Basic Science Institute Daejeon 34133 South Korea
| | - Xiangju Meng
- Department of Chemistry Zhejiang University Hangzhou 310028 China
| | - Feng‐Shou Xiao
- Department of Chemistry Zhejiang University Hangzhou 310028 China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
94
|
Xiao G, Zhao Y, Li L, Pratt JO, Su H, Tan T. Facile synthesis of dispersed Ag nanoparticles on chitosan-TiO 2 composites as recyclable nanocatalysts for 4-nitrophenol reduction. NANOTECHNOLOGY 2018; 29:155601. [PMID: 29389668 DOI: 10.1088/1361-6528/aaac74] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
This paper presents a facile, rapid, and controllable procedure for the recovery of trace Ag+ ions and in situ assembly of well dispersed Ag nanoparticles on chitosan-TiO2 composites through bioaffinity adsorption followed by photocatalytic reduction. The prepared Ag nanoparticles are proven to be efficient and recyclable nanocatalysts for the reduction of 4-nitrophenol to 4-aminophenol in the presence of NaBH4. Well dispersed quasi-spherical Ag NPs are synthesized in 20 min in the designed inner-irradiated photocatalytic system under a wide range of Ag+ concentrations (50-200 mg l-1), temperatures (10 °C-25 °C) conditions, and UV or visible light irradiation. The synthesized Ag NPs can catalyze the reduction of 4-nitrophenol by NaBH4 at 100% conversion in 120 min and preserve the catalytic activity in five successive cycles. This procedure for trace Ag+ ions recovery and Ag NPs assembly has the potential to be scaled up for the mass production of recyclable Ag nanocatalysts. The present work provides a green and efficient procedure for the conversion of hazardous 4-nitrophenol to industrially important 4-aminophenol and also sheds a light on designing scaled-up procedures for treating high volumes of wastewater with dilute heavy metals to produce recyclable metallic nanocatalysts in aqueous systems.
Collapse
Affiliation(s)
- Gang Xiao
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | | | | | | | | | | |
Collapse
|
95
|
Olajire AA. Recent progress on the nanoparticles-assisted greenhouse carbon dioxide conversion processes. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.02.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
96
|
Oliver-Meseguer J, Boronat M, Vidal-Moya A, Concepción P, Rivero-Crespo MÁ, Leyva-Pérez A, Corma A. Generation and Reactivity of Electron-Rich Carbenes on the Surface of Catalytic Gold Nanoparticles. J Am Chem Soc 2018; 140:3215-3218. [DOI: 10.1021/jacs.7b13696] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Judit Oliver-Meseguer
- Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 Valencia, Spain
| | - Mercedes Boronat
- Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 Valencia, Spain
| | - Alejandro Vidal-Moya
- Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 Valencia, Spain
| | - Patricia Concepción
- Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 Valencia, Spain
| | - Miguel Ángel Rivero-Crespo
- Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 Valencia, Spain
| | - Antonio Leyva-Pérez
- Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 Valencia, Spain
| | - Avelino Corma
- Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 Valencia, Spain
| |
Collapse
|
97
|
Tian D, Li K, Wei Y, Zhu X, Zeng C, Cheng X, Zheng Y, Wang H. DFT insights into oxygen vacancy formation and CH4 activation over CeO2 surfaces modified by transition metals (Fe, Co and Ni). Phys Chem Chem Phys 2018; 20:11912-11929. [DOI: 10.1039/c7cp08376a] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effects of transition metal (Fe, Co and Ni) modification (adsorption, insertion and substitution) of CeO2 surfaces on oxygen vacancy formation and CH4 activation are studied on the basis of first principles calculations.
Collapse
Affiliation(s)
- Dong Tian
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization
- Kunming University of Science and Technology
- Kunming 650093
- China
- Faculty of Metallurgical and Energy Engineering
| | - Kongzhai Li
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization
- Kunming University of Science and Technology
- Kunming 650093
- China
- Faculty of Metallurgical and Energy Engineering
| | - Yonggang Wei
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization
- Kunming University of Science and Technology
- Kunming 650093
- China
- Faculty of Metallurgical and Energy Engineering
| | - Xing Zhu
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization
- Kunming University of Science and Technology
- Kunming 650093
- China
- Faculty of Metallurgical and Energy Engineering
| | - Chunhua Zeng
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization
- Kunming University of Science and Technology
- Kunming 650093
- China
- Institute of Physical and Engineering Science
| | - Xianming Cheng
- Faculty of Metallurgical and Energy Engineering
- Kunming University of Science and Technology
- Kunming 650093
- China
| | - Yane Zheng
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization
- Kunming University of Science and Technology
- Kunming 650093
- China
| | - Hua Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization
- Kunming University of Science and Technology
- Kunming 650093
- China
- Faculty of Metallurgical and Energy Engineering
| |
Collapse
|
98
|
Ye RP, Lin L, Li Q, Zhou Z, Wang T, Russell CK, Adidharma H, Xu Z, Yao YG, Fan M. Recent progress in improving the stability of copper-based catalysts for hydrogenation of carbon–oxygen bonds. Catal Sci Technol 2018. [DOI: 10.1039/c8cy00608c] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Five different strategies to enhance the stability of Cu-based catalysts for hydrogenation of C–O bonds are summarized in this review.
Collapse
Affiliation(s)
- Run-Ping Ye
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- P.R. China
| | - Ling Lin
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- P.R. China
| | - Qiaohong Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- P.R. China
| | - Zhangfeng Zhou
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- P.R. China
| | - Tongtong Wang
- Department of Chemical and Petroleum Engineering
- University of Wyoming
- Laramie
- USA
| | | | - Hertanto Adidharma
- Department of Chemical and Petroleum Engineering
- University of Wyoming
- Laramie
- USA
| | - Zhenghe Xu
- Department of Chemical and Materials Engineering
- University of Alberta
- Edmonton
- Canada
| | - Yuan-Gen Yao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- P.R. China
| | - Maohong Fan
- Department of Chemical and Petroleum Engineering
- University of Wyoming
- Laramie
- USA
- School of Energy Resources
| |
Collapse
|
99
|
Ru/FeO x catalyst performance design: Highly dispersed Ru species for selective carbon dioxide hydrogenation. CHINESE JOURNAL OF CATALYSIS 2018. [DOI: 10.1016/s1872-2067(17)62967-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
100
|
Rong N, Qiu T, Qian R, Lü L, Huang X, Ma Z, Cui C. Three pyrazole-3-carboxylic acid complexes as efficient solvent-free heterogeneous catalysts for C C bond formation. INORG CHEM COMMUN 2017. [DOI: 10.1016/j.inoche.2017.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|