51
|
Tang M, Song Y, Lu YL, Zhang YM, Yu Z, Xu X, Liu Y. Cyclodextrin-Activated Porphyrin Photosensitization for Boosting Self-Cleavable Drug Release. J Med Chem 2022; 65:6764-6774. [PMID: 35485832 DOI: 10.1021/acs.jmedchem.2c00105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Supramolecular prodrugs that combine the merits of stimuli-responsiveness and targeting ability in a controllable manner have shown appealing prospects in disease diagnostics and therapeutics. Herein, we report that a new theranostic agent with the host-guest-binding-activated photosensitization has been fabricated by a binary supramolecular assembly consisting of the permethyl-β-cyclodextrin-grafted hyaluronic acid and a combretastatin A-4-appended porphyrin derivative. Illuminated by a red-light source, the production efficiency of singlet oxygen (1O2) pronouncedly increases by ∼60-fold once the porphyrin core is encapsulated by cyclodextrins. Consequently, the cell-selective fluorescence emission is dramatically enhanced, the microtubule-targeted drug is rapidly and completely released, and the 1O2-involved combinational treatment is simultaneously achieved both in vitro and in vivo. To be envisaged, this complexation-boosted light-activatable photosensitizing prodrug delivery system with improved photophysical performance and remarkable phototheranostic outcomes will make a significant contribution to the creation of more advanced stimulus-based biomaterials.
Collapse
Affiliation(s)
- Mian Tang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Yanqiu Song
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yi-Lin Lu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Ying-Ming Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiufang Xu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
52
|
Liu M, Chen Y, Guo Y, Yuan H, Cui T, Yao S, Jin S, Fan H, Wang C, Xie R, He W, Guo Z. Golgi apparatus-targeted aggregation-induced emission luminogens for effective cancer photodynamic therapy. Nat Commun 2022; 13:2179. [PMID: 35449133 PMCID: PMC9023483 DOI: 10.1038/s41467-022-29872-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 04/05/2022] [Indexed: 12/21/2022] Open
Abstract
Golgi apparatus (GA) oxidative stress induced by in situ reactive oxygen species (ROS) could severely damage the morphology and function of GA, which may open up an avenue for effective photodynamic therapy (PDT). However, due to the lack of effective design strategy, photosensitizers (PSs) with specific GA targeting ability are in high demand and yet quite challenging. Herein, we report an aggregation-induced emission luminogen (AIEgen) based PS (TPE-PyT-CPS) that can effectively target the GA via caveolin/raft mediated endocytosis with a Pearson correlation coefficient up to 0.98. Additionally, the introduction of pyrene into TPE-PyT-CPS can reduce the energy gap between the lowest singlet state (S1) and the lowest triplet state (T1) (ΔEST) and exhibits enhanced singlet oxygen generation capability. GA fragmentation and cleavage of GA proteins (p115/GM130) are observed upon light irradiation. Meanwhile, the apoptotic pathway is activated through a crosstalk between GA oxidative stress and mitochondria in HeLa cells. More importantly, GA targeting TPE-T-CPS show better PDT effect than its non-GA-targeting counterpart TPE-PyT-PS, even though they possess very close ROS generation rate. This work provides a strategy for the development of PSs with specific GA targeting ability, which is of great importance for precise and effective PDT. Aggregation induced emission luminogen (AIEgen) based photosensitizers (PSs) have been developed for photodynamic cancer therapy. Here the authors report a series of AIEgen-based PSs that selectively target the Golgi apparatus, showing enhanced singlet oxygen generation and photodynamic therapy performance in cancer models.
Collapse
Affiliation(s)
- Minglun Liu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China. .,Nanchuang (Jiangsu) Institute of Chemistry and Health, Nanjing, 210000, China.
| | - Yan Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Hao Yuan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Tongxiao Cui
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Shankun Yao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Suxing Jin
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Huanhuan Fan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Chengjun Wang
- Sinopec Shengli Petroleum Engineering Limited Company, Dongying, 257068, China
| | - Ran Xie
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China. .,Nanchuang (Jiangsu) Institute of Chemistry and Health, Nanjing, 210000, China.
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China. .,Nanchuang (Jiangsu) Institute of Chemistry and Health, Nanjing, 210000, China.
| |
Collapse
|
53
|
Feng X, Xiong X, Ma S. Docetaxel-Loaded Novel Nano-Platform for Synergistic Therapy of Non-Small Cell Lung Cancer. Front Pharmacol 2022; 13:832725. [PMID: 35308235 PMCID: PMC8926142 DOI: 10.3389/fphar.2022.832725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/18/2022] [Indexed: 12/25/2022] Open
Abstract
Nowadays, non-small cell lung cancer (NSCLC) is threatening the health of all mankind. Although many progresses on treatment of lung cancer have been achieved in the past few decades, the current treatment methods are still traditional surgery, radiotherapy, and chemotherapy, which had poor selectivity and side effects. Lower-toxicity and more efficient treatments are in sore need. In this paper, a smart nanodelivery platform based on photothermal therapy, chemotherapy, and immunotherapy was constructed. The nanoparticles are composed of novel photothermal agents, Mn-modified phthalocyanine derivative (MnIIIPC), docetaxel (DTX), and an effective targeting molecule, hyaluronic acid. The nanoplatform could release Mn2+ from MnIIIPC@DTX@PLGA@Mn2+@HA(MDPMH) and probably activate tumor immunity through cGAS-STING and chemotherapy, respectively. Furthermore, DTX could be released in the process for removal of tumor cells. The “one-for-all” nanomaterial may shed some light on treating NSCLC in multiple methods.
Collapse
Affiliation(s)
- Xing Feng
- Department of Thoracic Surgery, The Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou, China.,Department of Thoracic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoling Xiong
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shenglin Ma
- Department of Oncology, The Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou, China
| |
Collapse
|
54
|
Lebedeva NS, Koifman OI. Supramolecular Systems Based on Macrocyclic Compounds with Proteins: Application Prospects. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022010071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
55
|
Holst DP, Friederich P, Aspuru-Guzik A, Bender TP. Updated Calibrated Model for the Prediction of Molecular Frontier Orbital Energies and Its Application to Boron Subphthalocyanines. J Chem Inf Model 2022; 62:829-840. [PMID: 35171589 DOI: 10.1021/acs.jcim.1c01048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A diverse range of computational methods have been used to calibrate against available data and to compare against the correlation for the prediction of frontier orbital energies and optical gaps of novel boron subphthalocyanine (BsubPc) derivatives and related compounds. These properties are of fundamental importance to organic electronic material applications and development, making BsubPcs ideal candidates in pursuit of identifying promising materials for targeted applications. This work employs a database of highly accurate experimental data from materials produced and characterized in-house. The models presented herein calibrate these properties with R2 values > 0.95. We find that computationally inexpensive semiempirical methods such as PM6 and PM7 outperform most density functional theory methods for calibration. We are excited to share these results with the field as it empowers the community to determine key physical properties of BsubPcs with confidence using free software and a standard laptop prior to the arduous synthesis and purification thereof. This study is a follow up to our previous work calibrating PM3, RM1, and B3LYP-6-31G(d), which used a smaller set of BsubPc derivatives at a past point when less data were available.
Collapse
Affiliation(s)
- Devon P Holst
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto M5S 3E5, Ontario, Canada.,Department of Chemistry, University of Toronto, 80 St George Street, Toronto M5S 3H6, Ontario, Canada
| | - Pascal Friederich
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto M5S 3H6, Ontario, Canada.,Department of Computer Science, University of Toronto, 214 College Street, Toronto M5T 3A1, Ontario, Canada.,Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Alán Aspuru-Guzik
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto M5S 3H6, Ontario, Canada.,Department of Computer Science, University of Toronto, 214 College Street, Toronto M5T 3A1, Ontario, Canada.,Vector Institute for Artificial Intelligence, 661 University Ave Suite 710, Toronto M5G 1M1, Ontario, Canada.,Lebovic Fellow, Canadian Institute for Advanced Research (CIFAR), 661 University Avenue, Toronto M5G 1M1, Ontario, Canada
| | - Timothy P Bender
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto M5S 3E5, Ontario, Canada.,Department of Chemistry, University of Toronto, 80 St George Street, Toronto M5S 3H6, Ontario, Canada.,Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto M5S 3E4, Ontario, Canada
| |
Collapse
|
56
|
Zhang S, Li Y, Li T, Zhang Y, Li H, Cheng Z, Peng N, Liu Y, Xu J, He H. Activable Targeted Protein Degradation Platform Based on Light-triggered Singlet Oxygen. J Med Chem 2022; 65:3632-3643. [PMID: 35164509 DOI: 10.1021/acs.jmedchem.1c02037] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Targeted protein degradation technologies (e.g., PROTACs) that can selectively degrade intracellular protein are an emerging class of promising therapeutic modalities. Herein, we describe the conjugation of photosensitizers and protein ligands (PS-Degrons), as an activable targeted protein degradation platform. PS-Degrons are capable of degrading protein of interest via light-triggered 1O2, which is orthogonal and complementary to existing technologies. This generalizable platform allows controllable knockdown of the target protein with high spatiotemporal precision. Our lead compound PSDalpha induces a complete degradation of human estrogen receptor α (ERα) under visible light. The high degrading ERα efficacy of PSDalpha enables an excellent anti-proliferation performance on MCF-7 cells. Our results establish a modular strategy for the controllable degradation of target proteins, which can hopefully overcome the systemic toxicity in clinical treatment of PROTACs. We anticipate that PS-Degrons would open a new chapter for biochemical research and for the therapeutics.
Collapse
Affiliation(s)
- Silong Zhang
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Yuanyuan Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, Wuhan 430023, P.R. China
| | - Tao Li
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Yu Zhang
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Haimei Li
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Zhengzai Cheng
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Na Peng
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Yi Liu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.,College of Chemistry and Chemical Engineering & College of Environmental Science and Engineering, Tiangong University, Tianjin 300378, P. R. China
| | - Juan Xu
- College of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi 435003, P. R. China
| | - Huan He
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
57
|
Zhao PH, Wu YL, Li XY, Feng LL, Zhang L, Zheng BY, Ke MR, Huang JD. Aggregation-Enhanced Sonodynamic Activity of Phthalocyanine-Artesunate Conjugates. Angew Chem Int Ed Engl 2022; 61:e202113506. [PMID: 34761489 DOI: 10.1002/anie.202113506] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/05/2021] [Indexed: 12/15/2022]
Abstract
The clinical prospect of sonodynamic therapy (SDT) has not been fully realized due to the scarcity of efficient sonosensitizers. Herein, we designed phthalocyanine-artesunate conjugates (e.g. ZnPcT4 A), which could generate up to ca. 10-fold more reactive oxygen species (ROS) than the known sonosensitizer protoporphyrin IX. Meanwhile, an interesting and significant finding of aggregation-enhanced sonodynamic activity (AESA) was observed for the first time. ZnPcT4 A showed about 60-fold higher sonodynamic ROS generation in the aggregated form than in the disaggregated form in aqueous solutions. That could be attributed to the boosted ultrasonic cavitation of nanostructures. The level of the AESA effect depended on the aggregation ability of sonosensitizer molecules and the particle size of their aggregates. Moreover, biological studies demonstrated that ZnPcT4 A had high anticancer activities and biosafety. This study thus opens up a new avenue the development of efficient organic sonosensitizers.
Collapse
Affiliation(s)
- Peng-Hui Zhao
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yu-Lin Wu
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Xue-Yan Li
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Lin-Lin Feng
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Ling Zhang
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Bi-Yuan Zheng
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Mei-Rong Ke
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Jian-Dong Huang
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian, 350108, China
| |
Collapse
|
58
|
Zhao P, Wu Y, Li X, Feng L, Zhang L, Zheng B, Ke M, Huang J. Aggregation‐Enhanced Sonodynamic Activity of Phthalocyanine–Artesunate Conjugates. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Peng‐Hui Zhao
- College of Chemistry State Key Laboratory of Photocatalysis on Energy and Environment Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy Fuzhou University Fuzhou Fujian 350108 China
| | - Yu‐Lin Wu
- College of Chemistry State Key Laboratory of Photocatalysis on Energy and Environment Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy Fuzhou University Fuzhou Fujian 350108 China
| | - Xue‐Yan Li
- College of Chemistry State Key Laboratory of Photocatalysis on Energy and Environment Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy Fuzhou University Fuzhou Fujian 350108 China
| | - Lin‐Lin Feng
- College of Chemistry State Key Laboratory of Photocatalysis on Energy and Environment Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy Fuzhou University Fuzhou Fujian 350108 China
| | - Ling Zhang
- College of Chemistry State Key Laboratory of Photocatalysis on Energy and Environment Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy Fuzhou University Fuzhou Fujian 350108 China
| | - Bi‐Yuan Zheng
- College of Chemistry State Key Laboratory of Photocatalysis on Energy and Environment Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy Fuzhou University Fuzhou Fujian 350108 China
| | - Mei‐Rong Ke
- College of Chemistry State Key Laboratory of Photocatalysis on Energy and Environment Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy Fuzhou University Fuzhou Fujian 350108 China
| | - Jian‐Dong Huang
- College of Chemistry State Key Laboratory of Photocatalysis on Energy and Environment Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy Fuzhou University Fuzhou Fujian 350108 China
| |
Collapse
|
59
|
Tan Y, Liu P, Li D, Wang D, Tang BZ. NIR-II Aggregation-Induced Emission Luminogens for Tumor Phototheranostics. BIOSENSORS 2022; 12:46. [PMID: 35049674 PMCID: PMC8774032 DOI: 10.3390/bios12010046] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 05/23/2023]
Abstract
As an emerging and powerful material, aggregation-induced emission luminogens (AIEgens), which could simultaneously provide a precise diagnosis and efficient therapeutics, have exhibited significant superiorities in the field of phototheranostics. Of particular interest is phototheranostics based on AIEgens with the emission in the range of second near-infrared (NIR-II) range (1000-1700 nm), which has promoted the feasibility of their clinical applications by virtue of numerous preponderances benefiting from the extremely long wavelength. In this minireview, we summarize the latest advances in the field of phototheranostics based on NIR-II AIEgens during the past 3 years, including the strategies of constructing NIR-II AIEgens and their applications in different theranostic modalities (FLI-guided PTT, PAI-guided PTT, and multimodal imaging-guided PDT-PTT synergistic therapy); in addition, a brief conclusion of perspectives and challenges in the field of phototheranostics is given at the end.
Collapse
Affiliation(s)
- Yonghong Tan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China; (Y.T.); (P.L.); (D.L.)
| | - Peiying Liu
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China; (Y.T.); (P.L.); (D.L.)
| | - Danxia Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China; (Y.T.); (P.L.); (D.L.)
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China; (Y.T.); (P.L.); (D.L.)
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China;
| |
Collapse
|
60
|
Yue L, Li H, Sun Q, Luo X, Wu F, Zhu X. Organic Nanoparticles Based on D-A-D Small Molecule: Self-Assembly, Photophysical Properties, and Synergistic Photodynamic/Photothermal Effects. MATERIALS (BASEL, SWITZERLAND) 2022; 15:502. [PMID: 35057220 PMCID: PMC8781609 DOI: 10.3390/ma15020502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 02/04/2023]
Abstract
Cancer is one of the major diseases threatening human health. Traditional cancer treatments have notable side-effects as they can damage the immune system. Recently, phototherapy, as a potential strategy for clinical cancer therapy, has received wide attention due to its minimal invasiveness and high efficiency. Herein, a small organic molecule (PTA) with a D-A-D structure was prepared via a Sonogashira coupling reaction between the electron-withdrawing dibromo-perylenediimide and electron-donating 4-ethynyl-N,N-diphenylaniline. The amphiphilic organic molecule was then transformed into nanoparticles (PTA-NPs) through the self-assembling method. Upon laser irradiation at 635 nm, PTA-NPs displayed a high photothermal conversion efficiency (PCE = 43%) together with efficient reactive oxygen species (ROS) generation. The fluorescence images also indicated the production of ROS in cancer cells with PTA-NPs. In addition, the biocompatibility and photocytotoxicity of PTA-NPs were evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and live/dead cell co-staining test. Therefore, the as-prepared organic nanomaterials were demonstrated as promising nanomaterials for cancer phototherapy in the clinic.
Collapse
Affiliation(s)
- Liangliang Yue
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of the Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; (L.Y.); (H.L.); (X.L.)
- Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Hong Kong, China
| | - Haolan Li
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of the Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; (L.Y.); (H.L.); (X.L.)
| | - Qi Sun
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China;
| | - Xiaogang Luo
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of the Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; (L.Y.); (H.L.); (X.L.)
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Fengshou Wu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of the Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; (L.Y.); (H.L.); (X.L.)
| | - Xunjin Zhu
- Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Hong Kong, China
| |
Collapse
|
61
|
Hu Y, Yin SY, Li Z, Qi W, Chen Y, Li J. A novel AIEgen photosensitizer with an elevated intersystem crossing rate for tumor precise imaging and therapy. Chem Commun (Camb) 2022; 58:13143-13146. [DOI: 10.1039/d2cc05313f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An ultraefficient AIEgen photosensitizer (TPE-4QL+) was synthesized based on an alternative elevated intersystem crossing rate for the precise imaging and therapy of tumors.
Collapse
Affiliation(s)
- Yingcai Hu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Sheng-Yan Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zuhao Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Wenchen Qi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yun Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jishan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
62
|
Wang X, Zhao L, Wang C, Feng X, Ma Q, Yang G, Wang T, Yan X, Jiang J. Phthalocyanine-Triggered Helical Dipeptide Nanotubes with Intense Circularly Polarized Luminescence. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104438. [PMID: 34816581 DOI: 10.1002/smll.202104438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Nanotubes with circularly polarized luminescence (CPL) are attracting much attention due to many potential applications, such as chiroptical materials, displays, and sensing. However, it remains a challenge to change the assemblies of ordinarily molecular building blocks into CPL supramolecular nanotubes. Herein, the regulation of quite common dipeptide (Fmoc-FF) assemblies into unprecedented helical nanotubes exhibiting intense CPL is reported by simply doping a few phthalocyanine (octakis(carboxyl)phthalocyaninato zinc complex (Pc)) molecules. Interestingly, altering the Fmoc-FF/Pc molar ratios over a wide range cannot change the nanotubes structures according to transmission electron microscopy (TEM) and atomic force microscope (AFM) measurements. Although molecular dynamics simulations suggest that the noncovalent interactions between Fmoc-FF and Pc are quite weak, few Pc molecules can still change the secondary structures of a large number of Fmoc-FF assemblies, which hierarchically form helical supramolecular nanotubes with long-range ordered molecular packing, leading to intense CPL signals with large luminescence dissymmetry factor (glum = 0.04). Consequently, the chiral reorganization of Fmoc-FF assemblies is dependent on the coassembly between Pc molecule and Fmoc-FF supramolecular architectures. These results open the possibility for the fine-tuning of helix and supramolecular nanotubes with CPL properties by using a small number of cofactors.
Collapse
Affiliation(s)
- Xiqian Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Luyang Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chiming Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xuenan Feng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qing Ma
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Gengxiang Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Tianyu Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
63
|
Maji D, Oh D, Gautam KS, Zhou M, Zhang H, Kao J, Giblin D, Smith M, Lim J, Lee S, Kang Y, Kim WJ, Kim C, Achilefu S. Copper-Catalyzed Covalent Dimerization of Near-Infrared Fluorescent Cyanine Dyes: Synergistic Enhancement of Photoacoustic Signals for Molecular Imaging of Tumors. ANALYSIS & SENSING 2022; 2:e202100045. [PMID: 37621644 PMCID: PMC10448761 DOI: 10.1002/anse.202100045] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Indexed: 08/26/2023]
Abstract
Photoacoustic (PA) imaging relies on the absorption of light by chromophores to generate acoustic waves used to delineate tissue structures and physiology. Here, we demonstrate that Cu(II) efficiently catalyzes the dimerization of diverse near-infrared (NIR) cyanine molecules, including a peptide conjugate. NMR spectroscopy revealed a C-C covalent bond along the heptamethine chains, creating stable molecules under conditions such as a wide range of solvents and pH mediums. Dimerization achieved >90% fluorescence quenching, enhanced photostability, and increased PA signals by a factor of about 4 at equimolar concentrations compared to the monomers. In vivo study with a mouse cancer model revealed that dimerization enhanced tumor retention and PA signal, allowing cancer detection at doses where the monomers are less effective. While the dye dimers highlighted peritumoral blood vessels, the PA signal for dimeric tumor-targeting dye-peptide conjugate, LS301, was diffuse throughout the entire tumor mass. A combination of the ease of synthesis, diversity of molecules that are amenable to Cu(II)-catalyzed dimerization, and the high acoustic wave amplification by these stable dimeric small molecules ushers a new strategy to develop clinically translatable PA molecular amplifiers for the emerging field of molecular photoacoustic imaging.
Collapse
Affiliation(s)
- Dolonchampa Maji
- Optical Radiology Lab, Department of Radiology Washington University School of Medicine St. Louis, MO 63110 (USA)
- Department of Biomedical Engineering Washington University in St. Louis St. Louis, MO 63130 (USA)
| | - Donghyeon Oh
- Department of Electrical Engineering, Convergence IT Engineering, and Mechanical Engineering, Medical Device Innovation Center Pohang University of Science and Technology (POSTECH) Pohang, 37673 (Republic of Korea)
| | - Krishna Sharmah Gautam
- Optical Radiology Lab, Department of Radiology Washington University School of Medicine St. Louis, MO 63110 (USA)
| | - Mingzhou Zhou
- Optical Radiology Lab, Department of Radiology Washington University School of Medicine St. Louis, MO 63110 (USA)
| | - Haini Zhang
- Optical Radiology Lab, Department of Radiology Washington University School of Medicine St. Louis, MO 63110 (USA)
- Department of Biomedical Engineering Washington University in St. Louis St. Louis, MO 63130 (USA)
| | - Jeff Kao
- Department of Chemistry Washington University in St. Louis St. Louis, MO 63130 (USA)
| | - Daryl Giblin
- Department of Chemistry Washington University in St. Louis St. Louis, MO 63130 (USA)
| | - Matthew Smith
- Optical Radiology Lab, Department of Radiology Washington University School of Medicine St. Louis, MO 63110 (USA)
| | - Junha Lim
- School of Interdisciplinary Bioscience and Bioengineering Pohang University of Science and Technology (POSTECH) Pohang, 37673 (Republic of Korea)
| | - Seunghyun Lee
- Department of Electrical Engineering, Convergence IT Engineering, and Mechanical Engineering, Medical Device Innovation Center Pohang University of Science and Technology (POSTECH) Pohang, 37673 (Republic of Korea)
| | - Youngnam Kang
- School of Interdisciplinary Bioscience and Bioengineering Pohang University of Science and Technology (POSTECH) Pohang, 37673 (Republic of Korea)
| | - Won Jong Kim
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang, 37673 (Republic of Korea)
| | - Chulhong Kim
- Department of Electrical Engineering, Convergence IT Engineering, and Mechanical Engineering, Medical Device Innovation Center Pohang University of Science and Technology (POSTECH) Pohang, 37673 (Republic of Korea)
| | - Samuel Achilefu
- Optical Radiology Lab, Department of Radiology Washington University School of Medicine St. Louis, MO 63110 (USA)
- Department of Biomedical Engineering Washington University in St. Louis St. Louis, MO 63130 (USA)
- Department of Medicine Washington University School of Medicine St. Louis, MO 63110 (USA)
| |
Collapse
|
64
|
Chen L, Zhou Z, Zhang Y, Pan J, Wang K, Wang HX. Near-infrared Irradiation Controlled Thermo-Switchable Polymeric Photosensitizer against β-Amyloid Fibrillation. J Mater Chem B 2022; 10:4832-4839. [DOI: 10.1039/d2tb00372d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photothermal therapy (PTT) as an emerging paradigm toward degradation of amyloid-β (Aβ) aggregations has become an effective way of treating Alzheimer’s disease (AD). A promising PTT therapeutic option requires control...
Collapse
|
65
|
Casellas NM, Dai G, Xue Y, Vicente-Arana MJ, Ng DKP, Torres T, García-Iglesias M. Porphyrin-based supramolecular nanofibres as a dynamic and activatable photosensitiser for photodynamic therapy. Biomater Sci 2022; 10:3259-3267. [DOI: 10.1039/d2bm00173j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photodynamic therapy (PDT) represents a promising treatment modality for a range of cancers and other non-malignant diseases due to its non-invasive nature arising from the light-dependent activation. However, PDT has...
Collapse
|
66
|
Li C, Luo Z, Yang L, Chen J, Cheng K, Xue Y, Liu G, Luo X, Wu F. Self-assembled porphyrin polymer nanoparticles with NIR-II emission and highly efficient photothermal performance in cancer therapy. Mater Today Bio 2022; 13:100198. [PMID: 35024599 PMCID: PMC8733341 DOI: 10.1016/j.mtbio.2021.100198] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 12/25/2022] Open
Abstract
The development of new organic nanoagents with extremely high photothermal conversion efficiency and good biocompatibility has gained considerable attention in the area of photothermal cancer therapy. In this work, we designed and synthesized a new porphyrin polymer (P-PPor) with donor-acceptor (D-A) structure. P-PPor displayed intense absorbance in the near-infrared (NIR) region with the maximum peak around at 850 nm. Under excitation of 808 nm, P-PPor demonstrated the significant fluorescence in the NIR-II region (λ max = 1015 nm), with the fluorescence quantum yield of 2.19%. Due to the presence of hydrophilic PEG chains and hydrophobic alkyl chains in the conjugated skeleton, the amphiphilic P-PPor could self-assemble into the nanoparticles (P-PPor NPs) with good dispersibility in water and enhanced absorption in the NIR region. Moreover, P-PPor NPs exhibited quenched fluorescence because of the aggregation-caused quenching (ACQ) effect, resulting in the distinct photothermal effect. The photothermal conversion efficiency (PCE) of P-PPor NPs was measured as 66% under 808 nm laser irradiation, higher than most of PTT agents. The remarkable photothermal effect of P-PPor NPs was further demonstrated in vitro and in vivo using 4T1 tumor mode. Meanwhile, the NIR-II fluorescence imaging in vivo indicated the high distribution of P-PPor NPs in tumor site. These results suggested that P-PPor NPs could effectively damage the cancer cells in mice under 808 nm laser irradiation, and did not cause any obvious side effects after phototherapy. Thus, P-PPor NPs could be used as a potential agent in photothermal cancer therapy with high effectiveness and safety.
Collapse
Affiliation(s)
- Cheng Li
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430072, PR China
| | - Zijin Luo
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430072, PR China
| | - Lixia Yang
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430072, PR China
| | - Jun Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430072, PR China
| | - Kai Cheng
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, PR China
| | - Yanan Xue
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430072, PR China
| | - Genyan Liu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430072, PR China
| | - Xiaogang Luo
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430072, PR China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Fengshou Wu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430072, PR China
| |
Collapse
|
67
|
Targeting Cancer Cell Tight Junctions Enhances PLGA-Based Photothermal Sensitizers' Performance In Vitro and In Vivo. Pharmaceutics 2021; 14:pharmaceutics14010043. [PMID: 35056939 PMCID: PMC8778343 DOI: 10.3390/pharmaceutics14010043] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/11/2021] [Accepted: 12/22/2021] [Indexed: 12/16/2022] Open
Abstract
The development of non-invasive photothermal therapy (PTT) methods utilizing nanoparticles as sensitizers is one of the most promising directions in modern oncology. Nanoparticles loaded with photothermal dyes are capable of delivering a sufficient amount of a therapeutic substance and releasing it with the desired kinetics in vivo. However, the effectiveness of oncotherapy methods, including PTT, is often limited due to poor penetration of sensitizers into the tumor, especially into solid tumors of epithelial origin characterized by tight cellular junctions. In this work, we synthesized 200 nm nanoparticles from the biocompatible copolymer of lactic and glycolic acid, PLGA, loaded with magnesium phthalocyanine, PLGA/Pht-Mg. The PLGA/Pht-Mg particles under the irradiation with NIR light (808 nm), heat the surrounding solution by 40 °C. The effectiveness of using such particles for cancer cells elimination was demonstrated in 2D culture in vitro and in our original 3D model with multicellular spheroids possessing tight cell contacts. It was shown that the mean inhibitory concentration of such nanoparticles upon light irradiation for 15 min worsens by more than an order of magnitude: IC50 increases from 3 µg/mL for 2D culture vs. 117 µg/mL for 3D culture. However, when using the JO-4 intercellular junction opener protein, which causes a short epithelial–mesenchymal transition and transiently opens intercellular junctions in epithelial cells, the efficiency of nanoparticles in 3D culture was comparable or even outperforming that for 2D (IC50 = 1.9 µg/mL with JO-4). Synergy in the co-administration of PTT nanosensitizers and JO-4 protein was found to retain in vivo using orthotopic tumors of BALB/c mice: we demonstrated that the efficiency in the delivery of such nanoparticles to the tumor is 2.5 times increased when PLGA/Pht-Mg nanoparticles are administered together with JO-4. Thus the targeting the tumor cell junctions can significantly increase the performance of PTT nanosensitizers.
Collapse
|
68
|
Zheng BD, Ye J, Huang YY, Xiao MT. Phthalocyanine-based photoacoustic contrast agents for imaging and theranostics. Biomater Sci 2021; 9:7811-7825. [PMID: 34755723 DOI: 10.1039/d1bm01435h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Phthalocyanine, as an organic dye, has attracted much attention due to its high molar absorption coefficient in the near-infrared region (NIR). It is precisely because of this advantage that phthalocyanine is very beneficial to photoacoustic imaging (PAI). At present, many different strategies have been adopted to design phthalocyanine-based contrast agents with photoacoustic (PA) effect, including increasing water solubility, changing spectral properties, prolonging the circulation time, constructing activatable supramolecular nanoparticles, increasing targeting, etc. Based on this, this minireview highlighted the above ways to enhance the PA effect of phthalocyanine. What's more, the application of phthalocyanine-based PA contrast agents in biomedical imaging and image-guided phototherapy has been discussed. Finally, this minireview also provides the prospects and challenges of phthalocyanine-based PA contrast agents in order to provide some reference for the application of phthalocyanine-based PA contrast agents in biomedical imaging and guiding tumor treatment.
Collapse
Affiliation(s)
- Bing-De Zheng
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Jing Ye
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Ya-Yan Huang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Mei-Tian Xiao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| |
Collapse
|
69
|
Pham TC, Nguyen VN, Choi Y, Lee S, Yoon J. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chem Rev 2021; 121:13454-13619. [PMID: 34582186 DOI: 10.1021/acs.chemrev.1c00381] [Citation(s) in RCA: 702] [Impact Index Per Article: 175.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review presents a robust strategy to design photosensitizers (PSs) for various species. Photodynamic therapy (PDT) is a photochemical-based treatment approach that involves the use of light combined with a light-activated chemical, referred to as a PS. Attractively, PDT is one of the alternatives to conventional cancer treatment due to its noninvasive nature, high cure rates, and low side effects. PSs play an important factor in photoinduced reactive oxygen species (ROS) generation. Although the concept of photosensitizer-based photodynamic therapy has been widely adopted for clinical trials and bioimaging, until now, to our surprise, there has been no relevant review article on rational designs of organic PSs for PDT. Furthermore, most of published review articles in PDT focused on nanomaterials and nanotechnology based on traditional PSs. Therefore, this review aimed at reporting recent strategies to develop innovative organic photosensitizers for enhanced photodynamic therapy, with each example described in detail instead of providing only a general overview, as is typically done in previous reviews of PDT, to provide intuitive, vivid, and specific insights to the readers.
Collapse
Affiliation(s)
- Thanh Chung Pham
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Van-Nghia Nguyen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Yeonghwan Choi
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Songyi Lee
- Department of Chemistry, Pukyong National University, Busan 48513, Korea.,Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
70
|
Recent advances in supramolecular activatable phthalocyanine-based photosensitizers for anti-cancer therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214155] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
71
|
Bindra AK, Wang D, Zheng Z, Jana D, Zhou W, Yan S, Wu H, Zheng Y, Zhao Y. Self-assembled semiconducting polymer based hybrid nanoagents for synergistic tumor treatment. Biomaterials 2021; 279:121188. [PMID: 34678649 DOI: 10.1016/j.biomaterials.2021.121188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 12/18/2022]
Abstract
There is an impending need for the development of carrier-free nanosystems for single laser triggered activation of phototherapy, as such approach can overcome the drawbacks associated with irradiation by two distinct laser sources for avoiding prolonged treatment time and complex treatment protocols. Herein, we developed a self-assembled nanosystem (SCP-CS) consisting of a new semiconducting polymer (SCP) and encapsulated ultrasmall CuS (CS) nanoparticles. The SCP component displays remarkable near infrared (NIR) induced photothermal ability, enhanced reactive oxygen species (ROS) generation, and incredible photoacoustic (PA) signals upon activation by 808 nm laser for phototherapy mediated cancer ablation. The CuS component improves the PA imaging ability of SCP-CS, and also enhances photo-induced chemodynamic efficacy. Attributed to promoted single laser-triggered hyperthermia and enhanced ROS generation, the SCP-CS nanosystem shows effective intracellular uptake and intratumoral accumulation, enhanced tumor suppression with reduced treatment time, and devoid of any noticeable toxicity.
Collapse
Affiliation(s)
- Anivind Kaur Bindra
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Dongdong Wang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Zesheng Zheng
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Deblin Jana
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Weiqiang Zhou
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Suxia Yan
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Hongwei Wu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China.
| | - Yuanjin Zheng
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore; School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.
| |
Collapse
|
72
|
Zhang LP, Li X, Zhao H, Kang L, Liu S, Liu T, Zhao Y. Ultra-high photoactive thiadiazolo[3,4- g]quinoxaline nanoparticles with active-targeting capability for deep photodynamic therapy. J Mater Chem B 2021; 9:8330-8340. [PMID: 34523660 DOI: 10.1039/d1tb01306h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Improving the effective treatment depth of photodynamic therapy (PDT) is an important issue to resolve for its clinical application. In this study, a new biocompatible photosensitizer (PS), namely TQs-PEG4, based on thiadiazolo[3,4-g]quinoxaline (TQ) with ultra-high photoactive property is designed and synthesized. TQs-PEG4 possesses an ultra-high singlet oxygen quantum yield (ΦΔ = 1.04). After encapsulating it with a biodegradable copolymer (DSPE-mPEG2000-cRGD), well distributed organic TQs-PEG4 nanoparticles (NPs) are formed with good water dispersity and excellent active tumor-targeting property. In vitro PDT experiments reveal that TQs-PEG4 NPs present excellent phototoxicities towards different cancer cell lines with an ultra-low dosage (<0.3 μg mL-1). TQs-PEG4 NP mediated PDT significantly inhibited tumor growth even when the tumor was covered with a 6 mm thick piece of pork tissue under 660 nm laser irradiation. Both the histological analysis and biochemical testing demonstrated the good biosafety of TQs-PEG4 NPs towards mice. This study not only develops an ultra-high photoactive organic PS, TQs-PEG4, but also proves the great potential of TQs-PEG4 NPs for application in deep PDT.
Collapse
Affiliation(s)
- Li-Peng Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 Zhongguancun East Road, Haidian District, Beijing, 100190, P. R. China.
| | - Xianqiang Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 Zhongguancun East Road, Haidian District, Beijing, 100190, P. R. China. .,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Hongyou Zhao
- Institute of Engineering Medicine, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, P. R. China.
| | - Lin Kang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 Zhongguancun East Road, Haidian District, Beijing, 100190, P. R. China. .,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Shiyang Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 Zhongguancun East Road, Haidian District, Beijing, 100190, P. R. China. .,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Tianlong Liu
- Laboratory of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, No. 2 West Road Yuanmingyuan, Beijing, 100193, P. R. China.
| | - Yuxia Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 Zhongguancun East Road, Haidian District, Beijing, 100190, P. R. China. .,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
73
|
Recent Progress in Phthalocyanine-Polymeric Nanoparticle Delivery Systems for Cancer Photodynamic Therapy. NANOMATERIALS 2021; 11:nano11092426. [PMID: 34578740 PMCID: PMC8469866 DOI: 10.3390/nano11092426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022]
Abstract
This perspective article summarizes the last decade’s developments in the field of phthalocyanine (Pc)-polymeric nanoparticle (NP) delivery systems for cancer photodynamic therapy (PDT), including studies with at least in vitro data. Moreover, special attention will be paid to the various strategies for enhancing the behavior of Pc-polymeric NPs in PDT, underlining the great potential of this class of nanomaterials as advanced Pcs’ nanocarriers for cancer PDT. This review shows that there is still a lot of research to be done, opening the door to new and interesting nanodelivery systems.
Collapse
|
74
|
Nwahara N, Abrahams G, Prinsloo E, Nyokong T. Folic acid-modified phthalocyanine-nanozyme loaded liposomes for targeted photodynamic therapy. Photodiagnosis Photodyn Ther 2021; 36:102527. [PMID: 34517120 DOI: 10.1016/j.pdpdt.2021.102527] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/29/2021] [Accepted: 09/07/2021] [Indexed: 01/25/2023]
Abstract
The hypoxic tumour microenvironment and poor spatiotemporal localization of photosensitizers are two significant obstacles that limit practical applications of photodynamic therapy. In response, a biocompatible, light-activatable liposome integrated with both a zinc phthalocyanine photodynamic component and Pt nanoparticles-decorated with MnO2 catalase-mimicking component are engineered. This multifunctional system was rationally designed using unsaturated phospholipids to achieve on-demand drug release following light irradiation. Specificity was achieved by folic acid functionalization resulting in folate-modified liposomes (FTLiposomes). We demonstrated its specific uptake by fluorescence imaging using folate receptor (FR) overexpressing HeLa and MCF-7 cells as in vitro models. This multifunctional liposome exhibits superior hypoxic anti-tumour effects and holds the potential to reduce side effects associated with untargeted therapy. Fluorescence of the constituent ZnPc and folate-receptor targeting could enable tracking and permit spatiotemporal regulation for improved cancer treatment.
Collapse
Affiliation(s)
| | - Garth Abrahams
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa
| | | | | |
Collapse
|
75
|
Park EY, Oh D, Park S, Kim W, Kim C. New contrast agents for photoacoustic imaging and theranostics: Recent 5-year overview on phthalocyanine/naphthalocyanine-based nanoparticles. APL Bioeng 2021; 5:031510. [PMID: 34368604 PMCID: PMC8325568 DOI: 10.1063/5.0047660] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
The phthalocyanine (Pc) and naphthalocyanine (Nc) nanoagents have drawn much attention as contrast agents for photoacoustic (PA) imaging due to their large extinction coefficients and long absorption wavelengths in the near-infrared region. Many investigations have been conducted to enhance Pc/Ncs' photophysical properties and address their poor solubility in an aqueous solution. Many diverse strategies have been adopted, including centric metal chelation, structure modification, and peripheral substitution. This review highlights recent advances on Pc/Nc-based PA agents and their extended use for multiplexed biomedical imaging, multimodal diagnostic imaging, and image-guided phototherapy.
Collapse
Affiliation(s)
| | - Donghyeon Oh
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, South Korea
| | - Sinyoung Park
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, South Korea
| | - Wangyu Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, South Korea
| | - Chulhong Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, South Korea
| |
Collapse
|
76
|
Sarbadhikary P, George BP, Abrahamse H. Recent Advances in Photosensitizers as Multifunctional Theranostic Agents for Imaging-Guided Photodynamic Therapy of Cancer. Theranostics 2021; 11:9054-9088. [PMID: 34522227 PMCID: PMC8419035 DOI: 10.7150/thno.62479] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/27/2021] [Indexed: 12/20/2022] Open
Abstract
In recent years tremendous effort has been invested in the field of cancer diagnosis and treatment with an overall goal of improving cancer management, therapeutic outcome, patient survival, and quality of life. Photodynamic Therapy (PDT), which works on the principle of light-induced activation of photosensitizers (PS) leading to Reactive Oxygen Species (ROS) mediated cancer cell killing has received increased attention as a promising alternative to overcome several limitations of conventional cancer therapies. Compared to conventional therapies, PDT offers the advantages of selectivity, minimal invasiveness, localized treatment, and spatio-temporal control which minimizes the overall therapeutic side effects and can be repeated as needed without interfering with other treatments and inducing treatment resistance. Overall PDT efficacy requires proper planning of various parameters like localization and concentration of PS at the tumor site, light dose, oxygen concentration and heterogeneity of the tumor microenvironment, which can be achieved with advanced imaging techniques. Consequently, there has been tremendous interest in the rationale design of PS formulations to exploit their theranostic potential to unleash the imperative contribution of medical imaging in the context of successful PDT outcomes. Further, recent advances in PS formulations as activatable phototheranostic agents have shown promising potential for finely controlled imaging-guided PDT due to their propensity to specifically turning on diagnostic signals simultaneously with photodynamic effects in response to the tumor-specific stimuli. In this review, we have summarized the recent progress in the development of PS-based multifunctional theranostic agents for biomedical applications in multimodal imaging combined with PDT. We also present the role of different imaging modalities; magnetic resonance, optical, nuclear, acoustic, and photoacoustic in improving the pre-and post-PDT effects. We anticipate that the information presented in this review will encourage future development and design of PSs for improved image-guided PDT for cancer treatment.
Collapse
Affiliation(s)
| | - Blassan P. George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| | | |
Collapse
|
77
|
Li G, Wang Q, Liu J, Wu M, Ji H, Qin Y, Zhou X, Wu L. Innovative strategies for enhanced tumor photodynamic therapy. J Mater Chem B 2021; 9:7347-7370. [PMID: 34382629 DOI: 10.1039/d1tb01466h] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photodynamic therapy (PDT) is an approved and promising treatment approach that utilizes a photosensitizer (PS) to produce cytotoxic reactive oxygen species (ROS) through irradiation to achieve tumor noninvasive therapy. However, the limited singlet oxygen generation, the nonspecific uptake of PS in normal cells, and tumor hypoxia have become major challenges in conventional PDT, impeding its development and further clinical application. This review summarizes an overview of recent advances for the enhanced PDT. The development of PDT with innovative strategies, including molecular engineering and heavy atom-free photosensitizers is presented and future directions in this promising field are also provided. This review aims to highlight the recent advances in PDT and discuss the potential strategies that show promise in overcoming the challenges of PDT.
Collapse
Affiliation(s)
- Guo Li
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, China.
| | - Qi Wang
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, China.
| | - Jinxia Liu
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, China.
| | - Mingmin Wu
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, China.
| | - Haiwei Ji
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, China.
| | - Yuling Qin
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, China.
| | - Xiaobo Zhou
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, China.
| | - Li Wu
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, China.
| |
Collapse
|
78
|
He Y, Wang S, Yu P, Yan K, Ming J, Yao C, He Z, El-Toni AM, Khan A, Zhu X, Sun C, Lei Z, Zhang F. NIR-II cell endocytosis-activated fluorescent probes for in vivo high-contrast bioimaging diagnostics. Chem Sci 2021; 12:10474-10482. [PMID: 34447540 PMCID: PMC8356747 DOI: 10.1039/d1sc02763h] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/29/2021] [Indexed: 11/21/2022] Open
Abstract
Fluorescence probes have great potential to empower bioimaging, precision clinical diagnostics and surgery. However, current probes are limited to in vivo high-contrast diagnostics, due to the substantial background interference from tissue scattering and nonspecific activation in blood and normal tissues. Here, we developed a kind of cell endocytosis-activated fluorescence (CEAF) probe, which consists of a hydrophilic polymer unit and an acid pH-sensitive small-molecule fluorescent moiety that operates in the "tissue-transparent" second near-infrared (NIR-II) window. The CEAF probe stably presents in the form of quenched nanoaggregates in water and blood, and can be selectively activated and retained in lysosomes through cell endocytosis, driven by a synergetic mechanism of disaggregation and protonation. In vivo imaging of tumor and inflammation with a passive-targeting and affinity-tagged CEAF probe, respectively, yields highly specific signals with target-to-background ratios over 15 and prolonged observation time up to 35 hours, enabling positive implications for surgical, diagnostic and fundamental biomedical studies.
Collapse
Affiliation(s)
- Yue He
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200433 China
| | - Shangfeng Wang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200433 China
| | - Peng Yu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200433 China
| | - Kui Yan
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200433 China
| | - Jiang Ming
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200433 China
| | - Chenzhi Yao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200433 China
| | - Zuyang He
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200433 China
| | - Ahmed Mohamed El-Toni
- King Abdullah Institute for Nanotechnology, King Saud University Riyadh 11451 Saudi Arabia
| | - Aslam Khan
- King Abdullah Institute for Nanotechnology, King Saud University Riyadh 11451 Saudi Arabia
| | - Xinyan Zhu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200433 China
| | - Caixia Sun
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200433 China
| | - Zuhai Lei
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200433 China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200433 China
| |
Collapse
|
79
|
Chen B, Cao J, Zhang K, Zhang YN, Lu J, Zubair Iqbal M, Zhang Q, Kong X. Synergistic photodynamic and photothermal therapy of BODIPY-conjugated hyaluronic acid nanoparticles. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:2028-2045. [PMID: 34251996 DOI: 10.1080/09205063.2021.1954138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The combination of photodynamic therapy (PDT) and photothermal therapy (PTT) has emerged as a promising strategy for complete tumor ablation therapy. Herein, a boron dipyrromethene (BODIPY)-conjugated hyaluronic acid polymer that can self-assemble to form the nanoparticles (BODIPY-HA NPs) was prepared for combined cancer PDT and PTT. The fluorescence emission and reactive oxygen species (ROS) generation of BODIPY-HA NPs were inhibited because of the π-π stacking behavior of BODIPY, resulting in photothermal effect under 808 nm light irradiation. Upon the internalization by cancer cells, the BODIPY-HA NPs could disassemble into BODIPY-HA molecules, with the recovery of the fluorescence and ROS generation for PDT. Importantly, in vitro results confirmed that combined PTT and PDT have exhibited better anticancer effect than PTT alone upon 808 nm laser irradiation. These results showed that the self-assembled BODIPY-HA NPs may be a promising nanomedicine for synergistic cancer PDT and PTT.
Collapse
Affiliation(s)
- Bowen Chen
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China.,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jie Cao
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Kebiao Zhang
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yuan-Ning Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jiaju Lu
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China.,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Muhammad Zubair Iqbal
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China.,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Quan Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China.,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China.,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
80
|
Wang Z, Sun Q, Liu B, Kuang Y, Gulzar A, He F, Gai S, Yang P, Lin J. Recent advances in porphyrin-based MOFs for cancer therapy and diagnosis therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213945] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
81
|
Shen J, Chen D, Liu Y, Gao G, Liu Z, Wang G, Wu C, Fang X. A biodegradable nano-photosensitizer with photoactivatable singlet oxygen generation for synergistic phototherapy. J Mater Chem B 2021; 9:4826-4831. [PMID: 34121099 DOI: 10.1039/d1tb00937k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Photodynamic therapy (PDT) is a promising method for cancer therapy and also may initiate unexpected damages to normal cells and tissues. Herein, we develop a near-infrared (NIR) light-activatable nanophotosensitizer, which shows negligible phototoxicity before photoactivation to improve the specificity of PDT. The nanophotosensitizer is prepared by indocyanine green carboxylic (ICG), Chlorin e6 (Ce6), and biodegradable poly (lactic acid) (PLA) and poly (lactic-co-glycolic acid) (PLGA), and all these materials have been approved by the Food and Drug Administration. Initially the phototoxicity of Ce6 is effectively inhibited by ICG through fluorescence resonance energy transfer (FRET). Upon 808 nm laser activation, ICG generate hyperthermia for photothermal therapy (PTT) and simultaneously is degraded due to the inherently poor photostability. The FRET is disrupted and followed by the recovery of phototoxicity of Ce6 for PDT. We investigated the photoactivation and the resulting phototherapy by cellular assays and mouse models, which indicate a superior synergistic treatment effect and selective PDT activated by near-infrared 808 nm light. This study presents a promising strategy for activatable and synergistic phototherapy with minimal damage to normal tissues.
Collapse
Affiliation(s)
- Jiaxin Shen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Wang M, Murata K, Ishii K. Distorted Porphyrins with High Stability: Synthesis and Characteristic Electronic Properties of Mono- and Di-Nuclear Tricarbonyl Rhenium Tetraazaporphyrin Complexes. Chemistry 2021; 27:8994-9002. [PMID: 33913188 DOI: 10.1002/chem.202005042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Indexed: 11/07/2022]
Abstract
Mono- and di-nuclear tricarbonyl Re(I) tetraazaporphyrin complexes (Re1 TAP and Re2 TAP) are investigated and compared with Re(I) phthalocyanine complexes (Re1 Pc and Re2 Pc). Although Re2 Pc is unstable in polar solvents, and easily undergoes demetallation reaction, the coordination of the TAP ligand significantly improves the tolerance toward polar solvents, affording more stability to Re2 TAP. Additionally, the incorporation of [Re(CO)3 ]+ unit(s) and the TAP ligand results in remarkable positive shifts in both oxidation and reduction potentials. Consequently, the more positive oxidation potentials of the ReTAP complexes significantly increase the tolerance toward oxidation, while the reduction potential indicates that Re2 TAP is suitable for a soluble electron acceptor. In contrast to Re1 Pc and Re2 Pc, Re1 TAP and Re2 TAP show unique broad Q bands, which can be attributed to the admixture of the π-π* and metal-to-ligand charge transfer characters, owing to the lowered π orbital energy in the TAP complexes. This study is useful for controlling electronic properties and realizing high stability in Pc analogues.
Collapse
Affiliation(s)
- Mengfei Wang
- Institute of Industrial Science, The University of Tokyo 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Kei Murata
- Institute of Industrial Science, The University of Tokyo 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Kazuyuki Ishii
- Institute of Industrial Science, The University of Tokyo 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| |
Collapse
|
83
|
Li J, Wang J, Zhang J, Hu X, Wang D, Tang BZ. Switching energy dissipation pathway: in situ proton-induced transformation of AIE-active self-assemblies to boost photodynamic therapy. Biomater Sci 2021; 9:4301-4307. [PMID: 33619512 DOI: 10.1039/d1bm00044f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the morphological transformation of fluorescent self-assembled nanostructures, their functions can be varied simultaneously. However, little attention has been paid to the function variation in this process. Herein, we present aggregation-induced emission (AIE)-active self-assembled nanospheres to investigate the transformation-induced function variation by switching the energy dissipation pathway. The self-assembled nanospheres showed strong emission under neutral conditions, indicating that radiative decay dominates the energy dissipation. Under acidic conditions, the spheres transformed to vesicles and nanotubes, in which the excited energy was largely consumed by the intersystem crossing pathway and highly efficient reactive oxygen species (ROS) generation was afforded. In particular, this morphological transformation and function variation can smoothly proceed in acidic lysosomes, thus drastically boosting photodynamic cancer therapy.
Collapse
Affiliation(s)
- Jie Li
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China. and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jianxing Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China. and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jianyu Zhang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xiyao Hu
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Ben Zhong Tang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
84
|
Gunaydin G, Gedik ME, Ayan S. Photodynamic Therapy-Current Limitations and Novel Approaches. Front Chem 2021; 9:691697. [PMID: 34178948 PMCID: PMC8223074 DOI: 10.3389/fchem.2021.691697] [Citation(s) in RCA: 255] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/14/2021] [Indexed: 12/17/2022] Open
Abstract
Photodynamic therapy (PDT) mostly relies on the generation of singlet oxygen, via the excitation of a photosensitizer, so that target tumor cells can be destroyed. PDT can be applied in the settings of several malignant diseases. In fact, the earliest preclinical applications date back to 1900’s. Dougherty reported the treatment of skin tumors by PDT in 1978. Several further studies around 1980 demonstrated the effectiveness of PDT. Thus, the technique has attracted the attention of numerous researchers since then. Hematoporphyrin derivative received the FDA approval as a clinical application of PDT in 1995. We have indeed witnessed a considerable progress in the field over the last century. Given the fact that PDT has a favorable adverse event profile and can enhance anti-tumor immune responses as well as demonstrating minimally invasive characteristics, it is disappointing that PDT is not broadly utilized in the clinical setting for the treatment of malignant and/or non-malignant diseases. Several issues still hinder the development of PDT, such as those related with light, tissue oxygenation and inherent properties of the photosensitizers. Various photosensitizers have been designed/synthesized in order to overcome the limitations. In this Review, we provide a general overview of the mechanisms of action in terms of PDT in cancer, including the effects on immune system and vasculature as well as mechanisms related with tumor cell destruction. We will also briefly mention the application of PDT for non-malignant diseases. The current limitations of PDT utilization in cancer will be reviewed, since identifying problems associated with design/synthesis of photosensitizers as well as application of light and tissue oxygenation might pave the way for more effective PDT approaches. Furthermore, novel promising approaches to improve outcome in PDT such as selectivity, bioengineering, subcellular/organelle targeting, etc. will also be discussed in detail, since the potential of pioneering and exceptional approaches that aim to overcome the limitations and reveal the full potential of PDT in terms of clinical translation are undoubtedly exciting. A better understanding of novel concepts in the field (e.g. enhanced, two-stage, fractional PDT) will most likely prove to be very useful for pursuing and improving effective PDT strategies.
Collapse
Affiliation(s)
- Gurcan Gunaydin
- Department of Basic Oncology, Hacettepe University Cancer Institute, Sihhiye, Ankara, Turkey
| | - M Emre Gedik
- Department of Basic Oncology, Hacettepe University Cancer Institute, Sihhiye, Ankara, Turkey
| | - Seylan Ayan
- Department of Chemistry, Bilkent University, Ankara, Turkey
| |
Collapse
|
85
|
Zhang Y, Zhao R, Liu J, Kong H, Zhang K, Zhang YN, Kong X, Zhang Q, Zhao Y. Hierarchical nano-to-molecular disassembly of boron dipyrromethene nanoparticles for enhanced tumor penetration and activatable photodynamic therapy. Biomaterials 2021; 275:120945. [PMID: 34126410 DOI: 10.1016/j.biomaterials.2021.120945] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/18/2022]
Abstract
The development of activatable photosensitizers (PSs) is of particular interest for achieving tumor photodynamic therapy (PDT) with minimal side effects. However, the in vivo applications of PSs are limited by complex physiological and biological delivery barriers. Herein, boron dipyrromethene (BDP)-based nanoparticles are developed through the self-assembly of a multifunctional "one-for-all" building block for enhanced tumor penetration and activatable PDT. The nanoparticles show excellent colloidal stability and long circulation lifetime in blood. Once they reach the tumor site, the first-stage size reduction occurs due to the hydrolysis of the Schiff base bond between polyethylene glycol and the cyclic Arg-Gly-Asp peptide in the acidic tumor microenvironment (pH~6.5), facilitating tumor penetration and specific recognition by cancer cells overexpressing integrin ανβ3 receptors. Upon the endocytosis by cancer cells, the second-stage size reduction is triggered by more acidic pH in lysosomes (pH~4.5). Importantly, the protonated diethylamino groups can block photoinduced electron transfer from the amine donor to the excited PSs and accelerate complete disassembly of the nanoparticles into single PS molecule, with the recovery of the fluorescence and photoactivity for efficient PDT. This study presents a smart PS delivery strategy involving acidity-triggered hierarchical disassembly from the nano to molecular scale for precise tumor PDT.
Collapse
Affiliation(s)
- Yonghe Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China; Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Ruibo Zhao
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jia Liu
- Tianjin Key Laboratory of Molecular Optoelectronics, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Hao Kong
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Kebiao Zhang
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yuan-Ning Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Quan Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.
| |
Collapse
|
86
|
Zhou Y, Li Y, Zhang R, Zhao D, Yan Q. White Light Luminescence from a Homo-conjugated Molecule with Thermally Activated Delayed Fluorescence. Chem Asian J 2021; 16:1893-1896. [PMID: 34014616 DOI: 10.1002/asia.202100397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/19/2021] [Indexed: 11/07/2022]
Abstract
Luminophores with tunable emission properties are appealing due to various applications. Among those properties, thermally activated delayed fluorescence (TADF) has been attracting enormous research interests. Herein, we synthesized a 9,9'-spirobifluorene based homo-conjugated molecule 1, which connects a diphenylamino moiety as electron donor and a naphthalimide group as electron acceptor via 2,2'-positions of spirofluorene. Compound 1 displays dual emission behaviour with both blue and orange fluorescence. The one orange fluorescence around 555 nmshows sensitivity to oxygen and a prolonged lifetime of 284 ns in degassed toluene. Such characteristics imply TADF nature for this emission from a charge-transfer excited state. The other emission at 440 nm with blue colour displayed resistance to oxygen quenching and a normal fluorescence lifetime of 1.5 ns. Compared with control molecule, this emission band is assigned as conventional fluorescence from a localized excited state. In addition, dual emission property allows molecule 1 to be modulated to emit white photoluminescence in thin film with a CIE color coordinate of (0.25, 0.33).
Collapse
Affiliation(s)
- Ying Zhou
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yao Li
- Beijing National Laboratory for Molecular Sciences, Centre for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, P. R. China
| | - Rong Zhang
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Dahui Zhao
- Beijing National Laboratory for Molecular Sciences, Centre for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, P. R. China
| | - Qifan Yan
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
87
|
Kwon N, Kim H, Li X, Yoon J. Supramolecular agents for combination of photodynamic therapy and other treatments. Chem Sci 2021; 12:7248-7268. [PMID: 34163818 PMCID: PMC8171357 DOI: 10.1039/d1sc01125a] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/04/2021] [Indexed: 12/17/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising treatment for cancers such as superficial skin cancers, esophageal cancer, and cervical cancer. Unfortunately, PDT often does not have sufficient therapeutic benefits due to its intrinsic oxygen dependence and the limited permeability of irradiating light. Side effects from "always on" photosensitizers (PSs) can be problematic, and PDT cannot treat tumor metastases or recurrences. In recent years, supramolecular approaches using non-covalent interactions have attracted attention due to their potential in PS development. A supramolecular PS assembly could be built to maximize photodynamic effects and minimize side effects. A combination of two or more therapies can effectively address shortcomings while maximizing the benefits of each treatment regimen. Using the supramolecular assembly, it is possible to design a multifunctional supramolecular PS to exert synergistic effects by combining PDT with other treatment methods. This review provides a summary of important research progress on supramolecular systems that can be used to combine PDT with photothermal therapy, chemotherapy, and immunotherapy to compensate for the shortcomings of PDT, and it provides an overview of the prospects for future cancer treatment advances and clinical applications.
Collapse
Affiliation(s)
- Nahyun Kwon
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Korea
| | - Heejeong Kim
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Korea
| | - Xingshu Li
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University Fuzhou 350116 China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Korea
| |
Collapse
|
88
|
Kubota R, Tanaka W, Hamachi I. Microscopic Imaging Techniques for Molecular Assemblies: Electron, Atomic Force, and Confocal Microscopies. Chem Rev 2021; 121:14281-14347. [DOI: 10.1021/acs.chemrev.0c01334] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ryou Kubota
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Wataru Tanaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| |
Collapse
|
89
|
Nguyen VN, Park SJ, Qi S, Ha J, Heo S, Yim Y, Baek G, Lim CS, Lee DJ, Kim HM, Yoon J. Design and synthesis of efficient heavy-atom-free photosensitizers for photodynamic therapy of cancer. Chem Commun (Camb) 2021; 56:11489-11492. [PMID: 32857074 DOI: 10.1039/d0cc04644b] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Novel thiocarbonyl derivatives (NIS and CRNS) with excellent ROS generation abilities are synthesized and studied as potential photosensitizers for one- and two-photon excited photodynamic therapy. In particular, NIS-Me and CRNS display outstanding phototoxicity toward HeLa cells under two-photon excitation (800 nm) with negligible dark toxicity.
Collapse
Affiliation(s)
- Van-Nghia Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Pan J, Ouyang A, Fang W, Cheng G, Liu W, Wang F, Zhao D, Le K, Jiang J. cis-Silicon phthalocyanine conformation endows J-aggregated nanosphere with unique near-infrared absorbance and fluorescence enhancement: a tumor sensitive phototheranostic agent with deep tissue penetrating ability. J Mater Chem B 2021; 8:2895-2908. [PMID: 32195527 DOI: 10.1039/d0tb00192a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Organic phototheranostic nanomedicines with an optimized near-infrared (NIR) biological transparent window (700-900 nm) are highly desirable for the diagnosis and treatment of deep-seated tumors in clinic. As excellent organic photosensitizers for photodynamic therapy (PDT) with outstanding photo- and thermo-stability, phthalocyanines (Pcs) have been used as the building blocks of single-component nanomedicines. However, to the best of our knowledge, all the Pc-based single-component self-assemblies reported to date are of an H-aggregate nature. This results in the simultaneous self-quenching of fluorescence emission and photodynamic activity as well as greatly reduced tissue penetration due to blue-shifted absorption. In the present work, intramolecular hydrogen bonding was formed between the two long and flexible axial NH2-terminated diethylene glycol ligands of the amphiphilic SiPc molecule (SiPc-NH2) in solution, leading to the employment of a cis-conformation of this molecule according to the 1H-NMR spectroscopy result, which as a building block then further self-assembled into monodisperse nanospheres (SiPcNano) with a J-aggregation nature on the basis of electronic absorption spectroscopic results. As a result, SiPcNano exhibited significantly enhanced red-shifted absorption in the NIR range of 750-850 nm and fluorescence emission. This in combination with the increased photodynamic effect for SiPcNano triggered by the protonation of amine groups due to the acidic nature of tumors endowed effective synergistic NIR photodynamic and photothermal effects in different cancer cells and thus effective inhibition of tumor growth in A549 tumor-bearing mice on the basis of a series of in vitro and in vivo evaluations. The present result provides a new approach for constructing novel single-component NIR organic nanomedicines for multifunctional cancer therapy.
Collapse
Affiliation(s)
- Jiabao Pan
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Ancheng Ouyang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Wenjuan Fang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Guanghui Cheng
- Central Research Laboratory, Institute of Medical Science, The Second Hospital of Shandong University, Jinan 250100, P. R. China
| | - Wei Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Fang Wang
- Central Research Laboratory, Institute of Medical Science, The Second Hospital of Shandong University, Jinan 250100, P. R. China
| | - Dongmu Zhao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Kai Le
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology, Beijing 100083, P. R. China.
| |
Collapse
|
91
|
Zhu Y, Guo Y, Liu M, Wei L, Wang X. An oroxylin A-loaded aggregation-induced emission active polymeric system greatly increased the antitumor efficacy against squamous cell carcinoma. J Mater Chem B 2021; 8:2040-2047. [PMID: 32100790 DOI: 10.1039/c9tb01818b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Squamous cell carcinoma (SCC) is a usually responds poorly to treatment suffers from poor therapeutic benefits while oroxylin A (OA) is a promising flavonoid with high anticancer efficacy against various cancer types. Here in our study, in order to reveal the potential of OA based drug delivery systems (DDSs) in the treatment of SCC, we firstly revealed that OA had a certain pharmacodynamic effect on skin SCC (A431 cells). Afterwards, OA was loaded into a newly synthesized aggregation-induced emission (AIE)-active polymer to construct OA-loaded PDots for the first time. Our results revealed that OA-loaded PDots showed preferable drug loading and enhanced stability. Moreover, the DDS was also capable of self-illumination in the aggregate state to reveal the uptake profile. Most importantly, the DDS showed much more elevated anticancer benefits than free OA in vitro and advanced tumor targetability in vivo, suggesting that it might be a promising system against SCC.
Collapse
Affiliation(s)
- Yejin Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, 210009, P. R. China. and Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA.
| | - Yongjian Guo
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA.
| | - Mengdi Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, 210009, P. R. China.
| | - Libin Wei
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, 210009, P. R. China.
| | - Xiaotang Wang
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA.
| |
Collapse
|
92
|
Chen Y, Zhao X, Xiong T, Du J, Sun W, Fan J, Peng X. NIR photosensitizers activated by γ-glutamyl transpeptidase for precise tumor fluorescence imaging and photodynamic therapy. Sci China Chem 2021. [DOI: 10.1007/s11426-020-9947-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
93
|
Engineering molecular self-assembly of theranostic nanoprobes for dual-modal imaging-guided precise chemotherapy. Sci China Chem 2021. [DOI: 10.1007/s11426-021-9970-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
94
|
Liu S, Bu L, Zhang Y, Yan J, Li L, Li G, Song Z, Huang J. Subtle Structural Changes of Dyes Lead to Distinctly Different Fluorescent Behaviors in Cellular Context: The Role of G-Quadruplex DNA Interaction Using Coumarin-Quinazolinone Conjugates as a Case Study. Anal Chem 2021; 93:5267-5276. [PMID: 33724782 DOI: 10.1021/acs.analchem.1c00301] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fluorogenic organic materials have gained tremendous attention due to their unique properties. However, only a few of them are suitable for bioimaging. Their different behaviors in organic and cellular environments hinder their application in bioimaging. Thus understanding the photoluminescent behaviors of organic materials in a cellular context is particularly important for their rational design. Herein, we describe two coumarin-quinazolinone conjugates: CQ and MeCQ. The high structure similarity makes them possess similar physical and photophysical properties, including bright fluorescence ascribed to the monomer forms in organic solvents and aggregation-caused quenching (ACQ) effect due to self-assembly aggregation in aqueous solution. However, they behave quite differently in cellular context: that is, CQ exhibits bright fluorescence in living cells, while the fluorescence of MeCQ is almost undetectable. The different performance between CQ and MeCQ in living cells is attributed to their different scenario in G-quadruplex (G4) DNA interaction. CQ selectively binds with G4 DNA to recover its fluorescence via aggregation-disaggregation switching in living cells, while MeCQ remained in the aggregate form due to its poor interplay with G4 DNA. Furthermore, CQ is applied as a two-photon fluorescent dye, and its photoswitchable fluorescence capability is exploited for super-resolution imaging of the specific mitochondrial structure in living cells via the STORM technique.
Collapse
Affiliation(s)
- Song Liu
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, P. R. China.,Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Lingli Bu
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, P. R. China.,Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Yuming Zhang
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Jiangyu Yan
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Ling Li
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, P. R. China.,Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Guorui Li
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Zhibin Song
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi, P.R. China
| | - Jing Huang
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, P. R. China.,Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| |
Collapse
|
95
|
Zheng BD, Huang ZL, Lv LL, Lan WL, Hu JQ, Li X, Zheng BY, Ke MR, Huang JD. A pH-sensitive nanoagent self-assembled from a highly negatively-charged phthalocyanine with excellent biosafety for photothermal therapy. J Mater Chem B 2021; 9:2845-2853. [PMID: 33704321 DOI: 10.1039/d0tb02981e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photothermal therapy (PTT) is a promising strategy for cancer treatment. However, the development of highly efficient photothermal agents with excellent biosafety, particularly with low liver retention, is very meaningful for clinical applications, but it is also challenging. We herein prepared a pH-sensitive nanoagent (NanoPc3) by the self-assembly of a zinc(ii) phthalocyanine substituted with hexadeca-sulphonates linked by hydrazone bonds for photoacoustic imaging and PTT. Due to the highly negative surface potential (-30.80 mV in water), NanoPc3 could effectively escape the phagocytosis of the reticuloendothelial system and be rapidly cleared from normal tissues, leading to little accumulation in the liver and excellent biosafety. The highly negatively-charged NanoPc3 changed into nearly neutral nanoparticles (NanoPc3H) under slightly acidic conditions, resulting in enhanced cellular uptake and retention time in tumor tissues. Moreover, the tumor of H22 tumor-bearing mice treated with NanoPc3 almost disappeared, suggesting an outstanding photothermal antitumor effect. NanoPc3 also hardly showed skin phototoxicity under irradiation. Its excellent antitumor effect and biosafety make NanoPc3 highly promising in clinical applications. This work will provide a new strategy for the design of tumor-targeted photothermal nanoagents with high biosafety.
Collapse
Affiliation(s)
- Bing-De Zheng
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350116, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Chen J, Wang X, Yuan Y, Chen H, Zhang L, Xiao H, Chen J, Zhao Y, Chang J, Guo W, Liang XJ. Exploiting the acquired vulnerability of cisplatin-resistant tumors with a hypoxia-amplifying DNA repair-inhibiting (HYDRI) nanomedicine. SCIENCE ADVANCES 2021; 7:7/13/eabc5267. [PMID: 33771859 PMCID: PMC7997498 DOI: 10.1126/sciadv.abc5267] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 02/08/2021] [Indexed: 05/27/2023]
Abstract
Various cancers treated with cisplatin almost invariably develop drug resistance that is frequently caused by substantial DNA repair. We searched for acquired vulnerabilities of cisplatin-resistant cancers to identify undiscovered therapy. We herein found that cisplatin resistance of cancer cells comes at a fitness cost of increased intracellular hypoxia. Then, we conceived an inspired strategy to combat the tumor drug resistance by exploiting the increased intracellular hypoxia that occurs as the cells develop drug resistance. Here, we constructed a hypoxia-amplifying DNA repair-inhibiting liposomal nanomedicine (denoted as HYDRI NM), which is formulated from a platinum(IV) prodrug as a building block and payloads of glucose oxidase (GOx) and hypoxia-activatable tirapazamine (TPZ). In studies on clinically relevant models, including patient-derived organoids and patient-derived xenograft tumors, the HYDRI NM is able to effectively suppress the growth of cisplatin-resistant tumors. Thus, this study provides clinical proof of concept for the therapy identified here.
Collapse
Affiliation(s)
- Jing Chen
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- Translational Medicine Center, Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P. R. China
- School of Pharmacy, Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai 264003, P. R. China
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro Nano Biomaterials and Detection Treatment Technology Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| | - Xue Wang
- Department of Obstetrics and Gynecology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P. R. China
| | - Yuan Yuan
- Translational Medicine Center, Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P. R. China
| | - Haoting Chen
- Translational Medicine Center, Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P. R. China
| | - Lingpu Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jingqi Chen
- Translational Medicine Center, Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P. R. China
| | - Yongxiang Zhao
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumour Theranostics and Therapy, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Jin Chang
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro Nano Biomaterials and Detection Treatment Technology Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China.
| | - Weisheng Guo
- Translational Medicine Center, Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P. R. China.
| | - Xing-Jie Liang
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
- Translational Medicine Center, Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P. R. China
| |
Collapse
|
97
|
Zou Y, Long S, Xiong T, Zhao X, Sun W, Du J, Fan J, Peng X. Single-Molecule Förster Resonance Energy Transfer-Based Photosensitizer for Synergistic Photodynamic/Photothermal Therapy. ACS CENTRAL SCIENCE 2021; 7:327-334. [PMID: 33655070 PMCID: PMC7908039 DOI: 10.1021/acscentsci.0c01551] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Indexed: 05/08/2023]
Abstract
Photosensitizers (PSs) inevitably release a large amount of energy in the form of fluorescence during photodynamic therapy (PDT). However, under the premise of satisfying fluorescence imaging, a large amount of energy is lost, which limits the efficiency of tumor therapy. Accordingly, in this study, we developed a new strategy (BDP-CR) using the single-molecule Förster resonance energy transfer (smFRET) mechanism to transfer part of the fluorescent energy into heat for combined PDT and photothermal therapy (PTT) featuring the "1 + 1 > 2" amplification effect. Under the 671 nm light irradiation, BDP-CR can produce singlet oxygen (1O2) for PDT based on the BDP moiety and also generate hyperthermia to achieve the PTT effect by exciting CR based on the smFRET effect, which effectively kills cancer cells both in vitro and in vivo. This strategy exhibits a broad absorption peak with strong light-harvesting ability, which improves photon utilization for treatment while realizing fluorescence imaging. Of note, owing to the smFRET effect, we achieve a combination treatment outcome at relatively low concentrations and light doses. Thus, we believe that this design concept will provide a new strategy for single-molecule FRET photosensitizers in combination therapy of cancer with potential clinical application prospects.
Collapse
Affiliation(s)
- Yang Zou
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, Dalian 116024, China
| | - Saran Long
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, Dalian 116024, China
| | - Tao Xiong
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, Dalian 116024, China
| | - Xueze Zhao
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, Dalian 116024, China
| | - Wen Sun
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, Dalian 116024, China
- Ningbo
Institute of Dalian University of Technology, Ningbo 315016, China
| | - Jianjun Du
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, Dalian 116024, China
- Ningbo
Institute of Dalian University of Technology, Ningbo 315016, China
| | - Jiangli Fan
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, Dalian 116024, China
- Ningbo
Institute of Dalian University of Technology, Ningbo 315016, China
- E-mail:
| | - Xiaojun Peng
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, Dalian 116024, China
| |
Collapse
|
98
|
Revuelta‐Maza MÁ, Heras E, Agut M, Nonell S, Torres T, Torre G. Self‐Assembled Binaphthyl‐Bridged Amphiphilic AABB Phthalocyanines: Nanostructures for Efficient Antimicrobial Photodynamic Therapy. Chemistry 2021; 27:4955-4963. [DOI: 10.1002/chem.202005060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/02/2021] [Indexed: 12/17/2022]
Affiliation(s)
| | - Elena Heras
- Institut Químic de Sarrià Universitat Ramon Llull 08017 Barcelona Spain
| | - Montserrat Agut
- Institut Químic de Sarrià Universitat Ramon Llull 08017 Barcelona Spain
| | - Santi Nonell
- Institut Químic de Sarrià Universitat Ramon Llull 08017 Barcelona Spain
| | - Tomás Torres
- Universidad Autónoma de Madrid C/ Francisco Tomás y Valiente 7 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem) Universidad Autónoma de Madrid 28049 Madrid Spain
- Instituto Madrileño de Estudios Avanzados (IMDEA)-Nanociencia C/ Faraday 9 Cantoblanco 28049, Madrid Spain
| | - Gema Torre
- Universidad Autónoma de Madrid C/ Francisco Tomás y Valiente 7 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem) Universidad Autónoma de Madrid 28049 Madrid Spain
| |
Collapse
|
99
|
Zhao X, Liu J, Fan J, Chao H, Peng X. Recent progress in photosensitizers for overcoming the challenges of photodynamic therapy: from molecular design to application. Chem Soc Rev 2021; 50:4185-4219. [PMID: 33527104 DOI: 10.1039/d0cs00173b] [Citation(s) in RCA: 533] [Impact Index Per Article: 133.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Photodynamic therapy (PDT), a therapeutic mode involving light triggering, has been recognized as an attractive oncotherapy treatment. However, nonnegligible challenges remain for its further clinical use, including finite tumor suppression, poor tumor targeting, and limited therapeutic depth. The photosensitizer (PS), being the most important element of PDT, plays a decisive role in PDT treatment. This review summarizes recent progress made in the development of PSs for overcoming the above challenges. This progress has included PSs developed to display enhanced tolerance of the tumor microenvironment, improved tumor-specific selectivity, and feasibility of use in deep tissue. Based on their molecular photophysical properties and design directions, the PSs are classified by parent structures, which are discussed in detail from the molecular design to application. Finally, a brief summary of current strategies for designing PSs and future perspectives are also presented. We expect the information provided in this review to spur the further design of PSs and the clinical development of PDT-mediated cancer treatments.
Collapse
Affiliation(s)
- Xueze Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China.
| | | | | | | | | |
Collapse
|
100
|
Cheng HB, Qiao B, Li H, Cao J, Luo Y, Kotraiah Swamy KM, Zhao J, Wang Z, Lee JY, Liang XJ, Yoon J. Protein-Activatable Diarylethene Monomer as a Smart Trigger of Noninvasive Control Over Reversible Generation of Singlet Oxygen: A Facile, Switchable, Theranostic Strategy for Photodynamic-Immunotherapy. J Am Chem Soc 2021; 143:2413-2422. [PMID: 33507066 DOI: 10.1021/jacs.0c12851] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The development of activatable photosensitizers to allow for the reversible control of singlet oxygen (1O2) production for photodynamic therapy (PDT) faces great challenges. Fortunately, the flourishing field of supramolecular biotechnology provides more effective strategies for activatable PDT systems. Here, we developed a new reversible PDT on a switch that controls the 1O2 generation of self-assembled albumin nanotheranostics in vitro and in vivo. A new molecular design principle of aggregation-induced self-quenching photochromism and albumin on-photoswitching was demonstrated using a new asymmetric, synthetic diarylethene moiety DIA. The photosensitizer porphyrin and DIA were incorporated as building blocks in a glutaraldehyde-induced covalent albumin cross-linking nanoplatform, HSA-DIA-porphyrin nanoparticles (NPs). More importantly, the excellent photoswitching property of DIA enables the resultant nanoplatform to act as a facile, switchable strategy for photodynamic-immunotherapy.
Collapse
Affiliation(s)
- Hong-Bo Cheng
- State Key Laboratory of Chemical Resource Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing 100029, P. R. China
| | - Bin Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.,The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Hao Li
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Jin Cao
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yuanli Luo
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Kunemadihalli Mathada Kotraiah Swamy
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Korea.,Department of Pharmaceutical Chemistry, V. L. College of Pharmacy, Raichur 584 103, Karnataka State, India
| | - Jing Zhao
- State Key Laboratory of Chemical Resource Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing 100029, P. R. China
| | - Zhigang Wang
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Korea
| |
Collapse
|