51
|
Stereoselective synthesis of δ-amino-α,β,γ,δ-unsaturated cycloketones via Mannich-type reaction. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
52
|
Teja C, Babu SN, Noor A, Daniel JA, Devi SA, Nawaz Khan FR. Cu/TEMPO catalyzed dehydrogenative 1,3-dipolar cycloaddition in the synthesis of spirooxindoles as potential antidiabetic agents. RSC Adv 2020; 10:12262-12271. [PMID: 35497611 PMCID: PMC9050786 DOI: 10.1039/d0ra01553a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/15/2020] [Indexed: 12/17/2022] Open
Abstract
A series of spiro-[indoline-3,3'-pyrrolizin/pyrrolidin]-2-ones, 4, 5 and 6 were synthesized in a sequential manner from Cu-TEMPO catalyzed dehydrogenation of alkylated ketones, 1 followed by 1,3-dipolar cycloaddition of azomethine ylides via decarboxylative condensation of isatin, 2 and l-proline/sarcosine, 3 in high regioselectivities and yields. The detailed mechanistic studies were performed to identify the reaction intermediates, which revealed that the reaction proceeds via dehydrogenative cycloaddition. Additionally, the regio and stereochemistry of the synthesized derivatives were affirmed by 2D NMR spectroscopic studies. The synthesized derivatives were explored further with molecular docking, in vitro antioxidant, and anti-diabetic activities.
Collapse
Affiliation(s)
- Chitrala Teja
- Organic and Medicinal Chemistry Research Laboratory, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore-632014 Tamil Nadu India +91-944-423-4609
| | - Spoorthy N Babu
- Centre for Bio Separation Technology, Vellore Institute of Technology Vellore-632014 India
| | - Ayesha Noor
- Centre for Bio Separation Technology, Vellore Institute of Technology Vellore-632014 India
| | - J Arul Daniel
- Department of Biomedical Sciences, School of Bioscience and Technology, Vellore Institute of Technology Vellore-632014 India
| | - S Asha Devi
- Department of Biomedical Sciences, School of Bioscience and Technology, Vellore Institute of Technology Vellore-632014 India
| | - Fazlur Rahman Nawaz Khan
- Organic and Medicinal Chemistry Research Laboratory, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore-632014 Tamil Nadu India +91-944-423-4609
| |
Collapse
|
53
|
Futaki E, Takeda N, Yasui M, Shinada T, Miyata O, Ueda M. γ-C (sp 3)-H bond functionalisation of α,β-unsaturated amides through an umpolung strategy. Org Biomol Chem 2020; 18:1563-1566. [PMID: 32030394 DOI: 10.1039/d0ob00125b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The nucleophilic γ-phenylation and γ-alkylation of α,β-unsaturated amides have been developed. This umpolung reaction allows the regioselective introduction of phenyl and alkyl groups to a vinylketene N,O-acetal, which is generated in situ from an α,β-unsaturated N-alkoxyamide, followed by N-O bond cleavage in a two-step, one-pot process.
Collapse
Affiliation(s)
- Erika Futaki
- Kobe Pharmaceutical University, Motoyamakita, Higashinada, Kobe 658-8558, Japan.
| | - Norihiko Takeda
- Kobe Pharmaceutical University, Motoyamakita, Higashinada, Kobe 658-8558, Japan.
| | - Motohiro Yasui
- Kobe Pharmaceutical University, Motoyamakita, Higashinada, Kobe 658-8558, Japan.
| | - Tetsuro Shinada
- Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| | - Okiko Miyata
- Kobe Pharmaceutical University, Motoyamakita, Higashinada, Kobe 658-8558, Japan. and Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| | - Masafumi Ueda
- Kobe Pharmaceutical University, Motoyamakita, Higashinada, Kobe 658-8558, Japan.
| |
Collapse
|
54
|
Li X, Ouyang W, Nie J, Ji S, Chen Q, Huo Y. Recent Development on Cp*Ir(III)‐Catalyzed C−H Bond Functionalization. ChemCatChem 2020. [DOI: 10.1002/cctc.201902150] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Xianwei Li
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Wensen Ouyang
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Jianhong Nie
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Shaomin Ji
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Qian Chen
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| |
Collapse
|
55
|
Pan GF, Zhang XL, Zhu XQ, Guo RL, Wang YQ. Synthesis of (E,E)-Dienones and (E,E)-Dienals via Palladium-Catalyzed γ,δ-Dehydrogenation of Enones and Enals. iScience 2019; 20:229-236. [PMID: 31590075 PMCID: PMC6817633 DOI: 10.1016/j.isci.2019.09.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 11/30/2022] Open
Abstract
A new strategy for the synthesis of conjugated (E,E)-dienones and (E,E)-dienals via a palladium-catalyzed aerobic γ,δ-dehydrogenation of enones and enals has been developed. The method can be employed in the direct and efficient synthesis of various (E,E)-dienones and (E,E)-dienals, including non-substituted α-, β-, and γ- and/or δ-substituted (E,E)-dienones and (E,E)-dienals. The protocol is featured by the ready accessibility and elaboration of the starting materials, good functional group compatibility, and mild reaction conditions. Furthermore, the reaction is of complete E,E-stereoselectivity and uses molecular oxygen as the sole clean oxidant.
Collapse
Affiliation(s)
- Gao-Fei Pan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Xing-Long Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Xue-Qing Zhu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Rui-Li Guo
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Yong-Qiang Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China.
| |
Collapse
|
56
|
Meng K, Sun Y, Zhang J, Zhang K, Ji X, Ding L, Zhong G. Iridium-Catalyzed Cross-Coupling Reactions of Alkenes by Hydrogen Transfer. Org Lett 2019; 21:8219-8224. [PMID: 31589451 DOI: 10.1021/acs.orglett.9b02935] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A range of Ru-, Rh-, or Pd-catalyzed vinylic C-H/C-H cross-coupling reactions of olefins have been demonstrated to provide 1,3-dienes, using a quantitative amount of metal oxidants. Although transfer hydrogenation and C-H alkenylation are two important areas that evolved independently, we herein report the first iridium-catalyzed cross-coupling reactions of alkenes by integration of directed C(alkenyl)-H alkenylation and transfer hydrogenation to obviate the usage of a metal oxidant, employing a hydrogen acceptor such as inexpensive chloranil.
Collapse
Affiliation(s)
- Keke Meng
- College of Materials, Chemistry and Chemical Engineering , Hangzhou Normal University , Hangzhou 311121 , China
| | - Yaling Sun
- College of Materials, Chemistry and Chemical Engineering , Hangzhou Normal University , Hangzhou 311121 , China
| | - Jian Zhang
- College of Materials, Chemistry and Chemical Engineering , Hangzhou Normal University , Hangzhou 311121 , China
| | - Kaiyun Zhang
- College of Materials, Chemistry and Chemical Engineering , Hangzhou Normal University , Hangzhou 311121 , China
| | - Xiaohui Ji
- College of Materials, Chemistry and Chemical Engineering , Hangzhou Normal University , Hangzhou 311121 , China
| | - Liyuan Ding
- College of Materials, Chemistry and Chemical Engineering , Hangzhou Normal University , Hangzhou 311121 , China
| | - Guofu Zhong
- College of Materials, Chemistry and Chemical Engineering , Hangzhou Normal University , Hangzhou 311121 , China
| |
Collapse
|
57
|
Hu R, Chen FJ, Zhang X, Zhang M, Su W. Copper-catalyzed dehydrogenative γ-C(sp 3)-H amination of saturated ketones for synthesis of polysubstituted anilines. Nat Commun 2019; 10:3681. [PMID: 31417081 PMCID: PMC6695438 DOI: 10.1038/s41467-019-11624-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/24/2019] [Indexed: 11/09/2022] Open
Abstract
Metal-catalyzed β-C-H functionalization of saturated carbonyls via dehydrogenative desaturation proved to be a powerful tool for simplifying synthesis of valuable β-substituted carbonyls. Here, we report a copper-catalyzed dehydrogenative γ-C(sp3)-H amination of saturated ketones that initiates the three-component coupling of saturated ketones, amines and N-substituted maleimides to construct polysubstituted anilines. The protocol presented herein enables both linear and α-branched butanones to couple a wide spectrum of amines and various N-substituted maleimides to produce diverse tetra- or penta-substituted anilines in fair-to-excellent yields with good functional group tolerance. The mechanism studies support that this ketone dehydrogenative γ-C(sp3)-H amination was triggered by the ketone α,β-dehydrogenation desaturation that activates the adjacent γ-C(sp3)-H bond towards functionalization. This α,β-dehydrogenation desaturation-triggered cascade sequence opens up a new avenue to the remote C(sp3)-H functionalization of saturated ketones and has the potential to enable the rapid syntheses of complex compounds from simple starting materials.
Collapse
Affiliation(s)
- Rong Hu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Fa-Jie Chen
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Xiaofeng Zhang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Min Zhang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Weiping Su
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
| |
Collapse
|
58
|
Wang T, Chen G, Lu Y, Chen Q, Huo Y, Li X. Intermolecular Multiple Dehydrogenative Cross‐Couplings of Ketones with Boronic Acids and Amines via Copper Catalysis. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900419] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tianzhang Wang
- School of Chemical Engineering and Light IndustryGuangdong University of Technology Guangzhou 510006 People's Republic of China
| | - Guowei Chen
- School of Chemical Engineering and Light IndustryGuangdong University of Technology Guangzhou 510006 People's Republic of China
| | - Yu‐Jing Lu
- School of Biomedical and Pharmaceutical SciencesGuangdong University of Technology Guangzhou 510006 People's Republic of China
| | - Qian Chen
- School of Chemical Engineering and Light IndustryGuangdong University of Technology Guangzhou 510006 People's Republic of China
| | - Yanping Huo
- School of Chemical Engineering and Light IndustryGuangdong University of Technology Guangzhou 510006 People's Republic of China
| | - Xianwei Li
- School of Chemical Engineering and Light IndustryGuangdong University of Technology Guangzhou 510006 People's Republic of China
| |
Collapse
|
59
|
Wang MM, Sui GH, Cui XC, Wang H, Qu JP, Kang YB. Radical α,β-Dehydrogenation of Saturated Amides via α-Oxidation with TEMPO under Transition Metal-Free Conditions. J Org Chem 2019; 84:8267-8274. [PMID: 31188594 DOI: 10.1021/acs.joc.9b00872] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A transition metal-free radical process for the selective α,β-dehydrogenation of saturated amides under mild conditions is developed. Utilizing radical activation strategy, the challenging issue associated with the low α-acidity of amides is resolved. For the first time, α,β-unsaturated Weinreb amides and acrylamides could be efficiently prepared directly from corresponding saturated amides. Mechanistic studies confirm the radical nature of this transformation. Two gram scale α,β-dehydrogenation have also been performed to demonstrate the utility of this method.
Collapse
Affiliation(s)
- Mei-Mei Wang
- Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Guo-Hui Sui
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China
| | - Xian-Chao Cui
- Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Hui Wang
- Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Jian-Ping Qu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China
| | - Yan-Biao Kang
- Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China
| |
Collapse
|
60
|
Knecht T, Mondal S, Ye JH, Das M, Glorius F. Intermolecular, Branch-Selective, and Redox-Neutral Cp*Ir III -Catalyzed Allylic C-H Amidation. Angew Chem Int Ed Engl 2019; 58:7117-7121. [PMID: 30892775 DOI: 10.1002/anie.201901733] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Indexed: 01/17/2023]
Abstract
Herein, we report the redox-neutral, intermolecular, and highly branch-selective amidation of allylic C-H bonds enabled by Cp*IrIII catalysis. A variety of readily available carboxylic acids were converted into the corresponding dioxazolones and efficiently coupled with terminal and internal olefins in high yields and selectivities. Mechanistic investigations support the formation of a nucleophilic IrIII -allyl intermediate rather than the direct insertion of an Ir-nitrenoid species into the allylic C-H bond.
Collapse
Affiliation(s)
- Tobias Knecht
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Shobhan Mondal
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Jian-Heng Ye
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Mowpriya Das
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| |
Collapse
|
61
|
Knecht T, Mondal S, Ye J, Das M, Glorius F. Intermolekulare, verzweigt‐selektive und redoxneutrale Cp*Ir
III
‐katalysierte allylische C‐H‐Amidierung. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901733] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Tobias Knecht
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Shobhan Mondal
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Jian‐Heng Ye
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Mowpriya Das
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Frank Glorius
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|
62
|
Cui CX, Xu D, Ding BW, Qu LB, Zhang YP, Lan Y. Benchmark study of popular density functionals for calculating binding energies of three-center two-electron bonds. J Comput Chem 2019; 40:657-670. [PMID: 30565268 DOI: 10.1002/jcc.25752] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 12/13/2022]
Abstract
Density functional theory (DFT) can be used to study the three-center two-electron (3c2e) bonding mode, which is universal in catalysts containing alkaline-earth (Ae) and boron-group (Bg) elements. However, because of the delocalization pattern of the 3c2e bond, the wavefunction cannot be accurately described by DFT methods. The calculated energies of Ae and Bg catalysts therefore fluctuate greatly when different functionals are used, largely because of inconsistent DFT-calculated binding energies of 3c2e bonds. Nevertheless, with the development of supercomputers and theoretical calculation software, the DFT method is becoming increasingly popular for studying Ae and Bg catalysts. In this study, we compared the performances of 21 functionals with the high-level composite G3B3 method in calculations for the binding energies of 3c2e bonds. Several frequently used post-Hartree-Fock methods were also tested. The calculation results indicate that the M06-2X, MN12-L, and MN15 functionals give consistent and reliable binding energies for common 3c2e bonds. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Cheng-Xing Cui
- Postdoctoral Station of Food Science and Engineering, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China.,Postdoctoral Research Base, School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, People's Republic of China
| | - Dongdong Xu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, People's Republic of China
| | - Bo-Wen Ding
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Ling-Bo Qu
- Postdoctoral Station of Food Science and Engineering, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Yu-Ping Zhang
- Postdoctoral Research Base, School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, People's Republic of China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, People's Republic of China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
63
|
Lei H, Rovis T. Ir-Catalyzed Intermolecular Branch-Selective Allylic C-H Amidation of Unactivated Terminal Olefins. J Am Chem Soc 2019; 141:2268-2273. [PMID: 30715868 DOI: 10.1021/jacs.9b00237] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An efficient method for intermolecular branch-selective allylic C-H amidation has been accomplished via Ir(III) catalysis. The reaction proceeds through initial allylic C-H activation, supported by the isolation and crystallographic characterization of an allyl-Ir(III) intermediate, followed by a subsequent oxidative amidation with readily available dioxazolones as nitrenoid precursors. A diverse range of amides are successfully installed at the branched position of terminal alkenes in good yields and regioselectivities. Importantly, the reaction allows the use of amide-derived nitrenoid precursors avoiding problematic Curtius-type rearrangements.
Collapse
Affiliation(s)
- Honghui Lei
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | - Tomislav Rovis
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| |
Collapse
|
64
|
Teskey CJ, Adler P, Gonçalves CR, Maulide N. Chemoselective α,β-Dehydrogenation of Saturated Amides. Angew Chem Int Ed Engl 2019; 58:447-451. [PMID: 30332524 PMCID: PMC6348382 DOI: 10.1002/anie.201808794] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/10/2018] [Indexed: 01/12/2023]
Abstract
We report a method for the selective α,β-dehydrogenation of amides in the presence of other carbonyl moieties under mild conditions. Our strategy relies on electrophilic activation coupled to in situ selective selenium-mediated dehydrogenation. The α,β-unsaturated products were obtained in moderate to excellent yields, and their synthetic versatility was demonstrated by a range of transformations. Mechanistic experiments suggest formation of an electrophilic SeIV species.
Collapse
Affiliation(s)
- Christopher J. Teskey
- University of ViennaInstitute of Organic ChemistryWähringer Strasse 381090ViennaAustria
| | - Pauline Adler
- University of ViennaInstitute of Organic ChemistryWähringer Strasse 381090ViennaAustria
| | - Carlos R. Gonçalves
- University of ViennaInstitute of Organic ChemistryWähringer Strasse 381090ViennaAustria
| | - Nuno Maulide
- University of ViennaInstitute of Organic ChemistryWähringer Strasse 381090ViennaAustria
| |
Collapse
|
65
|
Tian X, Cheng X, Yang X, Ren YL, Yao K, Wang H, Wang J. Aerobic conversion of benzylic sp3 C–H in diphenylmethanes and benzyl ethers to CO bonds under catalyst-, additive- and light-free conditions. Org Chem Front 2019. [DOI: 10.1039/c9qo00004f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalyst-, additive- and light-free aerobic conversion of benzylic C–H to CO bonds is, for the first time, reported.
Collapse
Affiliation(s)
- Xinzhe Tian
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
- School of Chemical Engineering & Pharmaceutics
| | - Xinqiang Cheng
- School of Chemical Engineering & Pharmaceutics
- Henan University of Science and Technology
- Luoyang
- P. R. China
| | - Xinzheng Yang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Yun-Lai Ren
- School of Chemical Engineering & Pharmaceutics
- Henan University of Science and Technology
- Luoyang
- P. R. China
| | - Kaisheng Yao
- School of Chemical Engineering & Pharmaceutics
- Henan University of Science and Technology
- Luoyang
- P. R. China
| | - Huiyong Wang
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
- P. R. China
| | - Jianji Wang
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
- P. R. China
| |
Collapse
|
66
|
Teskey CJ, Adler P, Gonçalves CR, Maulide N. Chemoselektive α,β‐Dehydrierung von gesättigten Amiden. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Christopher J. Teskey
- Universität WienInstitut für organische Chemie Währinger Straße 38 1090 Wien Österreich
| | - Pauline Adler
- Universität WienInstitut für organische Chemie Währinger Straße 38 1090 Wien Österreich
| | - Carlos R. Gonçalves
- Universität WienInstitut für organische Chemie Währinger Straße 38 1090 Wien Österreich
| | - Nuno Maulide
- Universität WienInstitut für organische Chemie Währinger Straße 38 1090 Wien Österreich
| |
Collapse
|
67
|
Chen M, Rago AJ, Dong G. Platinum-Catalyzed Desaturation of Lactams, Ketones, and Lactones. Angew Chem Int Ed Engl 2018; 57:16205-16209. [PMID: 30325556 DOI: 10.1002/anie.201811197] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Indexed: 12/16/2022]
Abstract
The development of a general platinum-catalyzed desaturation of N-protected lactams, ketones, and lactones to their conjugated α,β-unsaturated counterparts is reported. The reaction operates under mildly acidic conditions at room temperature or 50 °C. It is scalable and tolerates a wide range of functional groups. The complementary reactivity to the palladium-catalyzed desaturation is demonstrated in the efficient conversion of iodide, bromide, and sulfur-containing substrates.
Collapse
Affiliation(s)
- Ming Chen
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA
| | - Alexander J Rago
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
68
|
Chen M, Rago AJ, Dong G. Platinum‐Catalyzed Desaturation of Lactams, Ketones, and Lactones. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811197] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ming Chen
- Department of ChemistryUniversity of Chicago Chicago IL 60637 USA
| | | | - Guangbin Dong
- Department of ChemistryUniversity of Chicago Chicago IL 60637 USA
| |
Collapse
|
69
|
Pan GF, Zhu XQ, Guo RL, Gao YR, Wang YQ. Synthesis of Enones and Enals via Dehydrogenation of Saturated Ketones and Aldehydes. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801058] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Gao-Fei Pan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education; Department of Chemistry & Materials Science; Northwest University; Xi'an 710069 People's Republic of China
| | - Xue-Qing Zhu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education; Department of Chemistry & Materials Science; Northwest University; Xi'an 710069 People's Republic of China
| | - Rui-Li Guo
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education; Department of Chemistry & Materials Science; Northwest University; Xi'an 710069 People's Republic of China
| | - Ya-Ru Gao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education; Department of Chemistry & Materials Science; Northwest University; Xi'an 710069 People's Republic of China
| | - Yong-Qiang Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education; Department of Chemistry & Materials Science; Northwest University; Xi'an 710069 People's Republic of China
| |
Collapse
|
70
|
Cooper P, Crisenza GEM, Feron LJ, Bower JF. Iridium-Catalyzed α-Selective Arylation of Styrenes by Dual C-H Functionalization. Angew Chem Int Ed Engl 2018; 57:14198-14202. [PMID: 30171652 PMCID: PMC6391973 DOI: 10.1002/anie.201808299] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/21/2018] [Indexed: 11/21/2022]
Abstract
An IrI -system modified with a ferrocene derived bisphosphine ligand promotes α-selective arylation of styrenes by dual C-H functionalization. These studies offer a regioisomeric alternative to the Pd-catalyzed Fujiwara-Moritani reaction.
Collapse
Affiliation(s)
| | | | - Lyman J. Feron
- Medicinal ChemistryOncology, IMED Biotech UnitAstraZenecaCambridgeUK
| | - John F. Bower
- School of ChemistryUniversity of BristolBristolBS8 1TSUK
| |
Collapse
|
71
|
Cooper P, Crisenza GEM, Feron LJ, Bower JF. Iridium-Catalyzed α-Selective Arylation of Styrenes by Dual C−H Functionalization. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808299] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
| | | | - Lyman J. Feron
- Medicinal Chemistry; Oncology, IMED Biotech Unit; AstraZeneca; Cambridge UK
| | - John F. Bower
- School of Chemistry; University of Bristol; Bristol BS8 1TS UK
| |
Collapse
|
72
|
Wang Q, Chen J, Huang Y. Aerobic Oxidation/Annulation Cascades through Synergistic Catalysis of RuCl3
and N-Heterocyclic Carbenes. Chemistry 2018; 24:12806-12810. [DOI: 10.1002/chem.201803254] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Qian Wang
- State Key Laboratory of Chemical Oncogenomics; Key Laboratory of Chemical Genomics; Peking University; Shenzhen Graduate School; Shenzhen 518055 P. R. China
| | - Jiean Chen
- State Key Laboratory of Chemical Oncogenomics; Key Laboratory of Chemical Genomics; Peking University; Shenzhen Graduate School; Shenzhen 518055 P. R. China
| | - Yong Huang
- State Key Laboratory of Chemical Oncogenomics; Key Laboratory of Chemical Genomics; Peking University; Shenzhen Graduate School; Shenzhen 518055 P. R. China
| |
Collapse
|
73
|
Jiang B, Liang QJ, Han Y, Zhao M, Xu YH, Loh TP. Copper-Catalyzed Dehydrogenative Diels-Alder Reaction. Org Lett 2018; 20:3215-3219. [PMID: 29790760 DOI: 10.1021/acs.orglett.8b01067] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A practical and effective copper-catalyzed dehydrogenative Diels-Alder reaction of gem-diesters and ketone with dienes has been established. The active dienophiles were generated in situ via a radical-based dehydrogenation process, which reacted with a wide variety of dienes to afford various polysubstituted cyclohexene derivatives in good to excellent yields.
Collapse
Affiliation(s)
- Bing Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry , University of Science and Technology of China , Hefei 230026 , China
| | - Qiu-Ju Liang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry , University of Science and Technology of China , Hefei 230026 , China
| | - Yu Han
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry , University of Science and Technology of China , Hefei 230026 , China
| | - Meng Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry , University of Science and Technology of China , Hefei 230026 , China
| | - Yun-He Xu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry , University of Science and Technology of China , Hefei 230026 , China
| | - Teck-Peng Loh
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry , University of Science and Technology of China , Hefei 230026 , China.,Institute of Advanced Synthesis, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 210009 , P. R. China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371
| |
Collapse
|
74
|
Li H, Jiang Q, Jie X, Shang Y, Zhang Y, Goossen LJ, Su W. Rh/Cu-Catalyzed Ketone β-Functionalization by Merging Ketone Dehydrogenation and Carboxyl-Directed C–H Alkylation. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00923] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hongyi Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Quandi Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Xiaoming Jie
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People’s Republic of China
| | - Yaping Shang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People’s Republic of China
| | - Yuanfei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People’s Republic of China
| | - Lukas J. Goossen
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801 Bochum, Germany
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People’s Republic of China
| |
Collapse
|
75
|
Chuentragool P, Parasram M, Shi Y, Gevorgyan V. General, Mild, and Selective Method for Desaturation of Aliphatic Amines. J Am Chem Soc 2018; 140:2465-2468. [PMID: 29400959 PMCID: PMC5821538 DOI: 10.1021/jacs.8b00488] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A novel method for desaturation of aliphatic amines into enamines as well as allylic and homoallylic amines has been developed. This general protocol operates via putative aryl hybrid Pd-radical intermediates, which combine the signature features of radical chemistry, a hydrogen atom transfer (HAT) process, and transition metal chemistry, a selective β-hydride elimination step, to achieve efficient and selective desaturation of amines. These hybrid Pd-radical intermediates are efficiently generated under mild photoinduced conditions and are capable of a 1,n-HAT (n = 5-7) event at C(sp3)-H sites. The selectivity of HAT is tunable by varying different auxiliaries, which highlight the generality of this method. Remarkably, this desaturation method, which operates under mild conditions and does not require employment of exogenous photosensitizers or oxidants, can be performed in a practical scalable fashion from simple amines.
Collapse
Affiliation(s)
- Padon Chuentragool
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7061, United States
| | - Marvin Parasram
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7061, United States
| | - Yi Shi
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7061, United States
| | - Vladimir Gevorgyan
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7061, United States
| |
Collapse
|