51
|
Gao R, Xu L, Hao C, Xu C, Kuang H. Circular Polarized Light Activated Chiral Satellite Nanoprobes for the Imaging and Analysis of Multiple Metal Ions in Living Cells. Angew Chem Int Ed Engl 2019; 58:3913-3917. [DOI: 10.1002/anie.201814282] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Rui Gao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of EducationInternational Joint Research Laboratory for Biointerface and BiodetectionState Key Lab of Food Science and TechnologySchool of Food Science and TechnologyJiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Liguang Xu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of EducationInternational Joint Research Laboratory for Biointerface and BiodetectionState Key Lab of Food Science and TechnologySchool of Food Science and TechnologyJiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Changlong Hao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of EducationInternational Joint Research Laboratory for Biointerface and BiodetectionState Key Lab of Food Science and TechnologySchool of Food Science and TechnologyJiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Chuanlai Xu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of EducationInternational Joint Research Laboratory for Biointerface and BiodetectionState Key Lab of Food Science and TechnologySchool of Food Science and TechnologyJiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Hua Kuang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of EducationInternational Joint Research Laboratory for Biointerface and BiodetectionState Key Lab of Food Science and TechnologySchool of Food Science and TechnologyJiangnan University Wuxi Jiangsu 214122 P. R. China
| |
Collapse
|
52
|
Gao R, Xu L, Hao C, Xu C, Kuang H. Circular Polarized Light Activated Chiral Satellite Nanoprobes for the Imaging and Analysis of Multiple Metal Ions in Living Cells. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814282] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Rui Gao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of EducationInternational Joint Research Laboratory for Biointerface and BiodetectionState Key Lab of Food Science and TechnologySchool of Food Science and TechnologyJiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Liguang Xu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of EducationInternational Joint Research Laboratory for Biointerface and BiodetectionState Key Lab of Food Science and TechnologySchool of Food Science and TechnologyJiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Changlong Hao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of EducationInternational Joint Research Laboratory for Biointerface and BiodetectionState Key Lab of Food Science and TechnologySchool of Food Science and TechnologyJiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Chuanlai Xu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of EducationInternational Joint Research Laboratory for Biointerface and BiodetectionState Key Lab of Food Science and TechnologySchool of Food Science and TechnologyJiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Hua Kuang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of EducationInternational Joint Research Laboratory for Biointerface and BiodetectionState Key Lab of Food Science and TechnologySchool of Food Science and TechnologyJiangnan University Wuxi Jiangsu 214122 P. R. China
| |
Collapse
|
53
|
Zhang L, Peng S, Sun J, Liu R, Liu S, Fang J. A ratiometric fluorescent probe of methionine sulfoxide reductase with an improved response rate and emission wavelength. Chem Commun (Camb) 2019; 55:1502-1505. [DOI: 10.1039/c8cc08879a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A ratiometric fluorescent probe of methionine sulfoxide reductase, Msr-Ratio, showed nearly 400-fold fluorescence change (I550/I430) with an improved response rate and optical characteristics.
Collapse
Affiliation(s)
- Liangwei Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
| | - Shoujiao Peng
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
- Department of Molecular Medicine
| | - Jinyu Sun
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Ruijuan Liu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Shudi Liu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| |
Collapse
|
54
|
Ansari SN, Saini AK, Kumari P, Mobin SM. An imidazole derivative-based chemodosimeter for Zn2+ and Cu2+ ions through “ON–OFF–ON” switching with intracellular Zn2+ detection. Inorg Chem Front 2019. [DOI: 10.1039/c8qi01127c] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Imidazole derivative-based chemodosimeter (HL) for selective detection of Zn2+ and Cu2+ metal ions and intracellular Zn2+ sensing.
Collapse
Affiliation(s)
- Shagufi N. Ansari
- Discipline of Chemistry
- Indian Institute of Technology Indore
- Indore 453552
- India
| | - Anoop K. Saini
- Discipline of Chemistry
- Indian Institute of Technology Indore
- Indore 453552
- India
| | - Pratibha Kumari
- Discipline of Biosciences and Bio-Medical Engineering
- Indian Institute of Technology Indore
- Indore 453552
- India
| | - Shaikh M. Mobin
- Discipline of Chemistry
- Indian Institute of Technology Indore
- Indore 453552
- India
- Discipline of Biosciences and Bio-Medical Engineering
| |
Collapse
|
55
|
Zhang G, Zhao Y, Peng B, Li Z, Xu C, Liu Y, Zhang C, Voelcker NH, Li L, Huang W. A fluorogenic probe based on chelation–hydrolysis-enhancement mechanism for visualizing Zn2+ in Parkinson's disease models. J Mater Chem B 2019; 7:2252-2260. [DOI: 10.1039/c8tb03343a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Developing efficient methods for real-time detection of Zn2+ level in biological systems is highly relevant to improve our understanding of the role of Zn2+ in the progression of Parkinson's disease (PD).
Collapse
|
56
|
Forshaw S, Knighton RC, Reber J, Parker JS, Chmel NP, Wills M. A strained alkyne-containing bipyridine reagent; synthesis, reactivity and fluorescence properties. RSC Adv 2019; 9:36154-36161. [PMID: 35540623 PMCID: PMC9074932 DOI: 10.1039/c9ra06866j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/29/2019] [Indexed: 01/18/2023] Open
Abstract
We report the synthesis of a bipyridyl reagent containing a strained alkyne, which significantly restricts its flexibility. Upon strain-promoted alkyne-azide cycloaddition (SPAAC) with an azide, which does not require a Cu catalyst, the structure becomes significantly more flexible and an increase in fluorescence is observed. Upon addition of Zn(ii), the fluorescence is enhanced further. The reagent has the potential to act as a fluorescent labelling agent with azide-containing substrates, including biological molecules. A bipyridyl reagent containing a strained alkyne 7, reacts with benzyl azide to give a significantly more flexible product 10 and an increase in fluorescence is observed. Upon addition of Zn(ii), the fluorescence is enhanced further.![]()
Collapse
Affiliation(s)
- Sam Forshaw
- Department of Chemistry
- The University of Warwick
- Coventry
- UK
| | | | - Jami Reber
- Department of Chemistry
- The University of Warwick
- Coventry
- UK
| | - Jeremy S. Parker
- Early Chemical Development, Pharmaceutical Sciences
- IMED Biotech Unit
- AstraZeneca
- Macclesfield
- UK
| | | | - Martin Wills
- Department of Chemistry
- The University of Warwick
- Coventry
- UK
| |
Collapse
|
57
|
Cao Q, Yang J, Zhang H, Hao L, Yang GG, Ji LN, Mao ZW. Traceable in-cell synthesis and cytoplasm-to-nucleus translocation of a zinc Schiff base complex as a simple and economical anticancer strategy. Chem Commun (Camb) 2019; 55:7852-7855. [DOI: 10.1039/c9cc03480c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A facile and cheap strategy based on visualized in-cell synthesis of theranostic Zn Schiff base complexes realizes cancer-specific therapy.
Collapse
Affiliation(s)
- Qian Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Jing Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Hang Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Liang Hao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Gang-Gang Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Liang-Nian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| |
Collapse
|
58
|
Han L, Shi R, Xin C, Ci Q, Ge J, Liu J, Wu Q, Zhang C, Li L, Huang W. Mitochondrial Specific H 2S n Fluorogenic Probe for Live Cell Imaging by Rational Utilization of a Dual-Functional-Photocage Group. ACS Sens 2018; 3:1622-1626. [PMID: 30145883 DOI: 10.1021/acssensors.8b00456] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Reactive sulfur species play a very important role in modulating neural signal transmission. Hydrogen polysulfides (H2S n, n > 1) are recently suggested to be the actual signaling molecules. There are still few spatiotemporal controllable-based probes to detect H2S n. In this work, for the first time, we proposed the photocleavage product of the common photoremovable protecting group (2-nitrophenyl moiety) capable of trapping H2S n. Taking advantage of this, we constructed the probe H1 containing a photocontrollable group, a mitochondrial directing unit and a signal reporter fluorescein dye. H1 exhibited excellent fluorescence enhancement (50-fold) in response to H2S n under the aqueous buffer only after UV irradiation. H1 also showed high selectivity and sensitivity for H2S n over other reactive sulfur species, reactive oxygen species, and other analytes, especially biothoils including hydrogen sulfide, cysteine, homocysteine, and glutathione. We showed the utility of H1 to image H2S n in living cells with high spatiotemporal resolution.
Collapse
Affiliation(s)
- Linqi Han
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Riri Shi
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Chenqi Xin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Qiaoqiao Ci
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310014, P. R. China
| | - Jinhua Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Chengwu Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, P. R. China
| |
Collapse
|
59
|
Yao Y, Wang F, Zhang X, Wang D, Song L, Zhang Y, Liu L, Chen Y. A small molecular boron-phenylpyrrin sensor for H+/Fe3+ and its application as a digital demultiplexer. J PORPHYR PHTHALOCYA 2018. [DOI: 10.1142/s1088424618500682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A julolidine-based boron-phenylpyrrin small molecule has been designed and synthesized through a one-pot condensation-complexation procedure. Systematic optical studies show that this compound displays two distinct optical responses to the addition of HCl and Fe[Formula: see text] in succession: the addition of HCl induces an obvious red shift in its maximum absorption and fluorescence emission bands accompanied with the fluorescence quenching, whereas after synchronously adding H[Formula: see text] and Fe[Formula: see text], the maximum absorption and fluorescence emission wavelength were found to shift little but with an obvious decrease in the absorbance and fluorescence intensity, suggesting the dual-detecting nature of this compound to H[Formula: see text] and Fe[Formula: see text] under acid conditions. More interestingly, based on the HCl/Fe[Formula: see text]-mediated absorption and fluorescence signal features, JBPP can function as AND, NAND, INH and IMP logic gates which can be further developed into a 2:4 digital demultiplexer These will endow this small molecule compound with great potential for applications in molecular logic material, chemosensors and biological fields.
Collapse
Affiliation(s)
- Yiwei Yao
- Department of Chemistry, Dezhou University, Dezhou 253023, China
| | - Fang Wang
- Department of Chemistry, Dezhou University, Dezhou 253023, China
| | - Xiuling Zhang
- Department of Chemistry, Dezhou University, Dezhou 253023, China
| | - Dunqing Wang
- Department of Chemistry, Dezhou University, Dezhou 253023, China
| | - Lingyun Song
- Department of Chemistry, Dezhou University, Dezhou 253023, China
| | - Yu Zhang
- Department of Chemistry, Dezhou University, Dezhou 253023, China
| | - Leifang Liu
- Department of Chemistry, Dezhou University, Dezhou 253023, China
| | - Yuting Chen
- Department of Chemistry, Dezhou University, Dezhou 253023, China
| |
Collapse
|
60
|
Liu H, Liu T, Li J, Zhang Y, Li J, Song J, Qu J, Wong WY. A simple Schiff base as dual-responsive fluorescent sensor for bioimaging recognition of Zn 2+ and Al 3+ in living cells. J Mater Chem B 2018; 6:5435-5442. [PMID: 32254602 DOI: 10.1039/c8tb01743c] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A simple Schiff base fluorescent sensor (BDNOL) was synthesized from the reaction of picolinohydrazide and 4-(diethylamino)salicylaldehyde, and developed for selective detection of Al3+ and Zn2+. This non-fluorescent sensor displayed obvious fluorescence enhancement after binding to Al3+/Zn2+ ions with high sensitivity and selectivity, accompanied by obvious fluorescence emission enhancement (504 nm for Al3+ and 575 nm for Zn2+). The detection limits were found to be 8.30 × 10-8 M for Al3+ and 1.24 × 10-7 M for Zn2+. The binding mechanisms between BDNOL and Al3+/Zn2+ ions were supported by 1H NMR and HR-MS analysis, and a density functional theory (DFT) study. The sensing behavior was also studied with molecular logic functions of OR, AND, and NOT gates. Furthermore, the fluorescent sensor was successfully used to recognize Al3+ and Zn2+ in living cells, suggesting that this simple biosensor has great potential in biological imaging applications.
Collapse
Affiliation(s)
- Haiyang Liu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Fang L, Trigiante G, Kousseff CJ, Crespo-Otero R, Philpott MP, Watkinson M. Biotin-tagged fluorescent sensor to visualize ‘mobile’ Zn2+ in cancer cells. Chem Commun (Camb) 2018; 54:9619-9622. [DOI: 10.1039/c8cc05425h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A biotin-tagged fluorescent sensor was developed to image Zn2+ in cancer cells specifically, which showed no entry to normal cells.
Collapse
Affiliation(s)
- Le Fang
- The Joseph Priestley Building
- School of Biological and Chemical Sciences
- Queen Mary University of London
- London
- UK
| | - Giuseppe Trigiante
- Centre for Cutaneous Research, Institute of Cell and Molecular Science
- Barts and The London School of Medicine and Dentistry
- Queen Mary University of London
- London E1 2AT
- UK
| | - Christina J. Kousseff
- The Joseph Priestley Building
- School of Biological and Chemical Sciences
- Queen Mary University of London
- London
- UK
| | - Rachel Crespo-Otero
- The Joseph Priestley Building
- School of Biological and Chemical Sciences
- Queen Mary University of London
- London
- UK
| | - Michael P. Philpott
- Centre for Cutaneous Research, Institute of Cell and Molecular Science
- Barts and The London School of Medicine and Dentistry
- Queen Mary University of London
- London E1 2AT
- UK
| | - Michael Watkinson
- The Joseph Priestley Building
- School of Biological and Chemical Sciences
- Queen Mary University of London
- London
- UK
| |
Collapse
|