51
|
Jiao T, Wu G, Zhang Y, Shen L, Lei Y, Wang C, Fahrenbach AC, Li H. Self‐Assembly in Water with N‐Substituted Imines. Angew Chem Int Ed Engl 2020; 59:18350-18367. [DOI: 10.1002/anie.201910739] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/09/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Tianyu Jiao
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Guangcheng Wu
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Yang Zhang
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Libo Shen
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Ye Lei
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Cai‐Yun Wang
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | | | - Hao Li
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| |
Collapse
|
52
|
Phung Hai TA, De Backer LJS, Cosford NDP, Burkart MD. Preparation of Mono- and Diisocyanates in Flow from Renewable Carboxylic Acids. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Thien An Phung Hai
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Laurent J. S. De Backer
- Cancer Metabolism & Signaling Networks Program, NCI-Designated Cancer Center, Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Nicholas D. P. Cosford
- Cancer Metabolism & Signaling Networks Program, NCI-Designated Cancer Center, Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
- The California Center for Algae Biotechnology, University of California, San Diego, 9500 Gilman Drive, MC 0368, La Jolla, California 92093, United States
| |
Collapse
|
53
|
Caprice K, Aster A, Cougnon FBL, Kumpulainen T. Untying the Photophysics of Quinolinium-Based Molecular Knots and Links. Chemistry 2020; 26:1576-1587. [PMID: 31670851 DOI: 10.1002/chem.201904456] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/30/2019] [Indexed: 01/08/2023]
Abstract
Complex molecular knots and links are still difficult to synthesize and the properties arising from their topology are mostly unknown. Here, we report on a comparative photophysical study carried out on a family of closely related quinolinium-based knots and links to determine the impact exerted by topology on the molecular backbone. Our results indicate that topology has a negligible influence on the behavior of loosely braided molecules, which mostly behave like their unbraided equivalents. On the other hand, tightly braided molecules display distinct features. Their higher packing density results in a pronounced ability to resist deformation, a significant reduction in the solvent-accessible surface area and favors close-range π-π interactions between the quinolinium units and neighboring aromatics. Finally, the sharp alteration in behavior between loosely and tightly braided molecules sheds light on the factors contributing to braiding tightness.
Collapse
Affiliation(s)
- Kenji Caprice
- Department of Organic Chemistry, University of Geneva, 30 Quai Ernest Ansermet, Geneva, Switzerland
| | - Alexander Aster
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest Ansermet, Geneva, Switzerland
| | - Fabien B L Cougnon
- Department of Organic Chemistry, University of Geneva, 30 Quai Ernest Ansermet, Geneva, Switzerland
| | - Tatu Kumpulainen
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest Ansermet, Geneva, Switzerland
| |
Collapse
|
54
|
Guo BB, Azam M, AlResayes SI, Lin YJ, Jin GX. Discrete Supramolecular Stacks Based on Multinuclear Tweezer-Type Rhodium Complexes. Chemistry 2020; 26:558-563. [PMID: 31692129 DOI: 10.1002/chem.201904580] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/03/2019] [Indexed: 12/14/2022]
Abstract
By taking advantage of self-complementary π-π stacking and CH-π interactions, a series of discrete quadruple stacks were constructed through the self-aggregation of U-shaped dirhodium metallotweezer complexes featuring various planar polyaromatic ligands. By altering the conjugate stacking strength and bridging ligands, assemblies with a range of topologies were obtained, including a binuclear D-shaped macrocycle, tetranuclear open-ended cagelike frameworks, and duplex metallotweezer stacking structures. Furthermore, a rare stacking interaction resulting in selective C-H activation was observed during the self-assembly process of these elaborate architectures.
Collapse
Affiliation(s)
- Bei-Bei Guo
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai, 200433, P.R. China
| | - Mohammad Azam
- Department of Chemistry, College of Science, King Saud University, PO BOX 2455, Riyadh, 11451, KSA
| | - Saud I AlResayes
- Department of Chemistry, College of Science, King Saud University, PO BOX 2455, Riyadh, 11451, KSA
| | - Yue-Jian Lin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai, 200433, P.R. China
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai, 200433, P.R. China
| |
Collapse
|
55
|
Nath BD, Takaishi K, Ema T. Macrocyclic multinuclear metal complexes acting as catalysts for organic synthesis. Catal Sci Technol 2020. [DOI: 10.1039/c9cy01894h] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent progress in homogeneous catalysis with macrocyclic multinuclear metal complexes (categories A–C) is overviewed.
Collapse
Affiliation(s)
- Bikash Dev Nath
- Division of Applied Chemistry
- Graduate School of Natural Science and Technology
- Okayama University
- Okayama 700-8530
- Japan
| | - Kazuto Takaishi
- Division of Applied Chemistry
- Graduate School of Natural Science and Technology
- Okayama University
- Okayama 700-8530
- Japan
| | - Tadashi Ema
- Division of Applied Chemistry
- Graduate School of Natural Science and Technology
- Okayama University
- Okayama 700-8530
- Japan
| |
Collapse
|
56
|
Blanco-Gómez A, Neira I, Barriada JL, Melle-Franco M, Peinador C, García MD. Thinking outside the "Blue Box": from molecular to supramolecular pH-responsiveness. Chem Sci 2019; 10:10680-10686. [PMID: 32206250 PMCID: PMC7069232 DOI: 10.1039/c9sc04489b] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/22/2019] [Indexed: 01/01/2023] Open
Abstract
We present herein the development of a new polycationic cyclophane: the "red box", second in a series of hydrazone-based analogues of the well-known organic receptor cyclobis(paraquat-p-phenylene)cyclophane ("blue box"). The macrocycle has been prepared in an excellent yield in aqueous media, and shows both a remarkable pH-responsiveness and unusual hydrolytic stability of the two hydrazone C[double bond, length as m-dash]N bonds, associated with charge delocalization of the amine lone pair. Whilst in aqueous media the "red box" is able to complex a variety of aromatic substrates, both in its acidic and basic form, in organic media the cyclophane is only able to capture those in the acidic form, resulting in supramolecular pH-responsiveness.
Collapse
Affiliation(s)
- Arturo Blanco-Gómez
- Departamento de Química , Centro de Investigacións Científicas Avanzadas (CICA) , Facultad de Ciencias , Universidade da Coruña , 15071 , A Coruña , Spain . ;
| | - Iago Neira
- Departamento de Química , Centro de Investigacións Científicas Avanzadas (CICA) , Facultad de Ciencias , Universidade da Coruña , 15071 , A Coruña , Spain . ;
| | - José L Barriada
- Departamento de Química , Centro de Investigacións Científicas Avanzadas (CICA) , Facultad de Ciencias , Universidade da Coruña , 15071 , A Coruña , Spain . ;
| | - Manuel Melle-Franco
- CICECO-Aveiro Institute of Materials Department of Chemistry , University of Aveiro , 3810-193 Aveiro , Portugal
| | - Carlos Peinador
- Departamento de Química , Centro de Investigacións Científicas Avanzadas (CICA) , Facultad de Ciencias , Universidade da Coruña , 15071 , A Coruña , Spain . ;
| | - Marcos D García
- Departamento de Química , Centro de Investigacións Científicas Avanzadas (CICA) , Facultad de Ciencias , Universidade da Coruña , 15071 , A Coruña , Spain . ;
| |
Collapse
|
57
|
Feng H, Gao W, Lin Y, Jin G. Dynamic Interconversion between Solomon Link and Trapezoidal Metallacycle Ensembles Accompanying Conformational Change of the Linker. Chemistry 2019; 25:15687-15693. [DOI: 10.1002/chem.201904196] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/25/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Hui‐Jun Feng
- State Key Laboratory of Molecular Engineering of PolymersDepartment of ChemistryFudan University Shanghai 200433 P. R. China
| | - Wen‐Xi Gao
- State Key Laboratory of Molecular Engineering of PolymersDepartment of ChemistryFudan University Shanghai 200433 P. R. China
| | - Yue‐Jian Lin
- State Key Laboratory of Molecular Engineering of PolymersDepartment of ChemistryFudan University Shanghai 200433 P. R. China
| | - Guo‐Xin Jin
- State Key Laboratory of Molecular Engineering of PolymersDepartment of ChemistryFudan University Shanghai 200433 P. R. China
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Science Shanghai 200032 P. R. China
| |
Collapse
|
58
|
Neira I, Blanco-Gómez A, Quintela JM, Peinador C, García MD. Adjusting the Dynamism of Covalent Imine Chemistry in the Aqueous Synthesis of Cucurbit[7]uril-based [2]Rotaxanes. Org Lett 2019; 21:8976-8980. [DOI: 10.1021/acs.orglett.9b03377] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Iago Neira
- Departamento de Química and Centro de Investigaciones Científicas Avanzadas (CICA), Facultad de Ciencias, Universidade da Coruña, E-15071 A Coruña, Spain
| | - Arturo Blanco-Gómez
- Departamento de Química and Centro de Investigaciones Científicas Avanzadas (CICA), Facultad de Ciencias, Universidade da Coruña, E-15071 A Coruña, Spain
| | - José M. Quintela
- Departamento de Química and Centro de Investigaciones Científicas Avanzadas (CICA), Facultad de Ciencias, Universidade da Coruña, E-15071 A Coruña, Spain
| | - Carlos Peinador
- Departamento de Química and Centro de Investigaciones Científicas Avanzadas (CICA), Facultad de Ciencias, Universidade da Coruña, E-15071 A Coruña, Spain
| | - Marcos D. García
- Departamento de Química and Centro de Investigaciones Científicas Avanzadas (CICA), Facultad de Ciencias, Universidade da Coruña, E-15071 A Coruña, Spain
| |
Collapse
|
59
|
Haynes IW, Wu G, Haque MA, Li H, Do TD. Conformational Preference of Macrocycles Investigated by Ion-Mobility Mass Spectrometry and Distance Geometry Modeling. Anal Chem 2019; 91:13439-13447. [DOI: 10.1021/acs.analchem.9b02100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Isaac W. Haynes
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Guangcheng Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Md. Ashraful Haque
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Hao Li
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Thanh D. Do
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
60
|
Zhong J, Zhang L, August DP, Whitehead GFS, Leigh DA. Self-Sorting Assembly of Molecular Trefoil Knots of Single Handedness. J Am Chem Soc 2019; 141:14249-14256. [PMID: 31389229 DOI: 10.1021/jacs.9b06127] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report on the stereoselective synthesis of trefoil knots of single topological handedness in up to 90% yield (over two steps) through the formation of trimeric circular helicates from ligand strands containing either imine or, unexpectedly, amide chelating units and metal ion templates of the appropriate coordination character (zinc(II) for imines; cobalt(III) for amides). The coordination stereochemistry of the octahedral metal complexes is determined by asymmetric carbon centers in the strands, ultimately translating into trefoil knots that are a single enantiomer, both physically and in terms of their fundamental topology. Both the imine-zinc and amide-cobalt systems display self-sorting behavior, with racemic ligands forming knots that individually contain only building blocks of the same chirality. The knots and the corresponding trimeric circular helicate intermediates (Zn(II)3 complex for the imine ligands; Co(III)3 complex for the amide ligands) were characterized by nuclear magnetic resonance spectroscopy, mass spectrometry, and X-ray crystallography. The latter confirms the trefoil knots as 84-membered macrocycles, with each of the metal ions sited at a crossing point for three regions of the strand. The stereochemistry of the octahedral coordination centers imparts alternating crossings of the same handedness within each circular helicate. The expression of chirality of the knotted molecules was probed by circular dichroism: The topological handedness of the demetalated knots was found to have a greater effect on the CD response than the Euclidean chirality of an individual chiral center.
Collapse
Affiliation(s)
- Jiankang Zhong
- School of Chemistry , University of Manchester , Manchester M13 9PL , United Kingdom
| | - Liang Zhang
- School of Chemistry and Molecular Engineering , East China Normal University , 200062 Shanghai , China.,School of Chemistry , University of Manchester , Manchester M13 9PL , United Kingdom
| | - David P August
- School of Chemistry , University of Manchester , Manchester M13 9PL , United Kingdom
| | - George F S Whitehead
- School of Chemistry , University of Manchester , Manchester M13 9PL , United Kingdom
| | - David A Leigh
- School of Chemistry and Molecular Engineering , East China Normal University , 200062 Shanghai , China.,School of Chemistry , University of Manchester , Manchester M13 9PL , United Kingdom
| |
Collapse
|
61
|
Kruve A, Caprice K, Lavendomme R, Wollschläger JM, Schoder S, Schröder HV, Nitschke JR, Cougnon FBL, Schalley CA. Ion‐Mobility Mass Spectrometry for the Rapid Determination of the Topology of Interlocked and Knotted Molecules. Angew Chem Int Ed Engl 2019; 58:11324-11328. [DOI: 10.1002/anie.201904541] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Anneli Kruve
- Institut für Chemie und BiochemieFreie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | - Kenji Caprice
- Department of Organic ChemistryUniversity of Geneva 30 Quai Ernest Ansermet 1211 Geneva 4 Switzerland
| | - Roy Lavendomme
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Jan M. Wollschläger
- Institut für Chemie und BiochemieFreie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | - Stefan Schoder
- Institut für Chemie und BiochemieFreie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | - Hendrik V. Schröder
- Institut für Chemie und BiochemieFreie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | - Jonathan R. Nitschke
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Fabien B. L. Cougnon
- Department of Organic ChemistryUniversity of Geneva 30 Quai Ernest Ansermet 1211 Geneva 4 Switzerland
| | - Christoph A. Schalley
- Institut für Chemie und BiochemieFreie Universität Berlin Takustrasse 3 14195 Berlin Germany
- School of Life SciencesNorthwestern Polytechnical University 127 Youyi Xilu, Xi'an Shaanxi 710072 P. R. China
| |
Collapse
|
62
|
Parida A, Choudhuri K, Mal P. Unsymmetrical Disulfides Synthesis via Sulfenium Ion. Chem Asian J 2019; 14:2579-2583. [PMID: 31136094 DOI: 10.1002/asia.201900620] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/24/2019] [Indexed: 12/15/2022]
Abstract
An umpolung approach for the synthesis of unsymmetrical disulfides via sulfenium ion is reported. In situ generated electrophilic sulfenium ion from electron-rich thiols reacted with second thiols to yield unsymmetrical disulfides. Using an iodine catalyst and 4-dimethylaminopyridine (DMAP)/water as promoter, the target syntheses were achieved in one pot under aerobic condition.
Collapse
Affiliation(s)
- Amarchand Parida
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India
| | - Khokan Choudhuri
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India
| |
Collapse
|
63
|
Kruve A, Caprice K, Lavendomme R, Wollschläger JM, Schoder S, Schröder HV, Nitschke JR, Cougnon FBL, Schalley CA. Ion‐Mobility Mass Spectrometry for the Rapid Determination of the Topology of Interlocked and Knotted Molecules. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Anneli Kruve
- Institut für Chemie und BiochemieFreie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | - Kenji Caprice
- Department of Organic ChemistryUniversity of Geneva 30 Quai Ernest Ansermet 1211 Geneva 4 Switzerland
| | - Roy Lavendomme
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Jan M. Wollschläger
- Institut für Chemie und BiochemieFreie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | - Stefan Schoder
- Institut für Chemie und BiochemieFreie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | - Hendrik V. Schröder
- Institut für Chemie und BiochemieFreie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | - Jonathan R. Nitschke
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Fabien B. L. Cougnon
- Department of Organic ChemistryUniversity of Geneva 30 Quai Ernest Ansermet 1211 Geneva 4 Switzerland
| | - Christoph A. Schalley
- Institut für Chemie und BiochemieFreie Universität Berlin Takustrasse 3 14195 Berlin Germany
- School of Life SciencesNorthwestern Polytechnical University 127 Youyi Xilu, Xi'an Shaanxi 710072 P. R. China
| |
Collapse
|
64
|
Guo BB, Lin YJ, Jin GX. Design of and Stability Studies on Trefoil Knots Featuring RhCp* Building Blocks. Chemistry 2019; 25:9721-9727. [PMID: 31033058 DOI: 10.1002/chem.201901728] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 04/25/2019] [Indexed: 01/17/2023]
Abstract
Four flexible ligands with different lengths, degrees of flexibility, and steric bulk were synthesized and used to prepare metal-directed assemblies. Interestingly, minor differences among the ligands led to products with dramatically different topologies: a binuclear D-shaped macrocycle, tetranuclear rectangles, and hexanuclear trefoil knots. The interconversion of the trefoil-shaped complexes was also investigated. This contribution introduces a rare ligand-controlled trefoil-rectangle shape transformation in solution.
Collapse
Affiliation(s)
- Bei-Bei Guo
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Yue-Jian Lin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
65
|
Katoono R, Kusaka K, Saito Y, Sakamoto K, Suzuki T. Chiral diversification through the assembly of achiral phenylacetylene macrocycles with a two-fold bridge. Chem Sci 2019; 10:4782-4791. [PMID: 31160955 PMCID: PMC6510063 DOI: 10.1039/c9sc00972h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/30/2019] [Indexed: 12/15/2022] Open
Abstract
We demonstrate so-called "chiral diversification", which is a design strategy to create multiple chiral molecules through the assembly and double-bridging of achiral components. We used phenylacetylene macrocycles (PAMs) as an achiral element. In a molecule, two achiral rings of [6]PAM are stacked one above the other, or bound to each other mechanically. As an alternative, a single enlarged ring of [12]PAM was also assumed to be a doubled form of [6]PAM. In any case, one or two ring(s) are doubly-bridged by covalent bonds to exert chirality. Through intramolecular two-bond formation, these multiple chiral molecules were obtained as a set of products in one reaction. The dynamic chirality generated in molecules with either two helically-stacked rings of [6]PAM or a single helically-folded ring of [12]PAM was characterized by induced Cotton effects with the aid of an external chiral source. Thus, a chiral structure based on [12]PAM could be demonstrated as the first success. Alternatively, enantiomeric separation was achieved for molecules with two interlocked rings of [6]PAM to show remarkable chiroptical properties.
Collapse
Affiliation(s)
- Ryo Katoono
- Department of Chemistry , Faculty of Science , Hokkaido University , Sapporo 060-0810 , Japan . ; ; Tel: +81 11 706-3396
| | - Keiichi Kusaka
- Department of Chemistry , Faculty of Science , Hokkaido University , Sapporo 060-0810 , Japan . ; ; Tel: +81 11 706-3396
| | - Yuki Saito
- Department of Chemistry , Faculty of Science , Hokkaido University , Sapporo 060-0810 , Japan . ; ; Tel: +81 11 706-3396
| | - Kazuki Sakamoto
- Department of Chemistry , Faculty of Science , Hokkaido University , Sapporo 060-0810 , Japan . ; ; Tel: +81 11 706-3396
| | - Takanori Suzuki
- Department of Chemistry , Faculty of Science , Hokkaido University , Sapporo 060-0810 , Japan . ; ; Tel: +81 11 706-3396
| |
Collapse
|
66
|
Caprice K, Pupier M, Bauzá A, Frontera A, Cougnon FBL. Synchronized On/Off Switching of Four Binding Sites for Water in a Molecular Solomon Link. Angew Chem Int Ed Engl 2019; 58:8053-8057. [DOI: 10.1002/anie.201902278] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Kenji Caprice
- Department of Organic Chemistry University of Geneva 30 Quai Ernest Ansermet Geneva Switzerland
| | - Marion Pupier
- Department of Organic Chemistry University of Geneva 30 Quai Ernest Ansermet Geneva Switzerland
| | - Antonio Bauzá
- Department de Química Universitat de les Illes Balears Carretera de Valldemossa km 7.5 07122 Palma de Mallorca Baleares Spain
| | - Antonio Frontera
- Department de Química Universitat de les Illes Balears Carretera de Valldemossa km 7.5 07122 Palma de Mallorca Baleares Spain
| | - Fabien B. L. Cougnon
- Department of Organic Chemistry University of Geneva 30 Quai Ernest Ansermet Geneva Switzerland
| |
Collapse
|
67
|
Caprice K, Pupier M, Bauzá A, Frontera A, Cougnon FBL. Synchronized On/Off Switching of Four Binding Sites for Water in a Molecular Solomon Link. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kenji Caprice
- Department of Organic Chemistry University of Geneva 30 Quai Ernest Ansermet Geneva Switzerland
| | - Marion Pupier
- Department of Organic Chemistry University of Geneva 30 Quai Ernest Ansermet Geneva Switzerland
| | - Antonio Bauzá
- Department de Química Universitat de les Illes Balears Carretera de Valldemossa km 7.5 07122 Palma de Mallorca Baleares Spain
| | - Antonio Frontera
- Department de Química Universitat de les Illes Balears Carretera de Valldemossa km 7.5 07122 Palma de Mallorca Baleares Spain
| | - Fabien B. L. Cougnon
- Department of Organic Chemistry University of Geneva 30 Quai Ernest Ansermet Geneva Switzerland
| |
Collapse
|
68
|
Sluysmans D, Stoddart JF. The Burgeoning of Mechanically Interlocked Molecules in Chemistry. TRENDS IN CHEMISTRY 2019. [DOI: 10.1016/j.trechm.2019.02.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
69
|
Leigh DA, Pirvu L, Schaufelberger F. Stereoselective Synthesis of Molecular Square and Granny Knots. J Am Chem Soc 2019; 141:6054-6059. [PMID: 30892025 PMCID: PMC6492950 DOI: 10.1021/jacs.9b01819] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
![]()
We
report on the stereoselective synthesis of both molecular granny
and square knots through the use of lanthanide-complexed overhand
knots of specific handedness as three-crossing “entanglement
synthons”. The composite knots are assembled by combining two
entanglement synthons (of the same chirality for a granny knot; of
opposite handedness for a square knot) in three synthetic steps: first,
a CuAAC reaction joins together one end of each overhand knot. Ring-closing
olefin metathesis (RCM) then affords the closed-loop knot, locking
the topology. This allows the lanthanide ions necessary for stabilizing
the entangled conformation of the synthons to subsequently be removed.
The composite knots were characterized by 1H and 13C NMR spectroscopy and mass spectrometry and the chirality of the
knot stereoisomers compared by circular dichroism. The synthetic strategy
of combining building blocks of defined stereochemistry (here overhand
knots of Λ- or Δ-handed entanglement) is reminiscent of
the chiron approach of using minimalist chiral synthons in the stereoselective
synthesis of molecules with multiple asymmetric centers.
Collapse
Affiliation(s)
- David A Leigh
- School of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , U.K
| | - Lucian Pirvu
- School of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , U.K
| | | |
Collapse
|
70
|
Zhang L, Stephens AJ, Lemonnier JF, Pirvu L, Vitorica-Yrezabal IJ, Robinson CJ, Leigh DA. Coordination Chemistry of a Molecular Pentafoil Knot. J Am Chem Soc 2019; 141:3952-3958. [PMID: 30742430 PMCID: PMC6438588 DOI: 10.1021/jacs.8b12548] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The binding of Zn(II) cations to
a pentafoil (51) knotted
ligand allows the synthesis of otherwise inaccessible metalated molecular
pentafoil knots via transmetalation, affording the corresponding “first-sphere”
coordination Co(II), Ni(II), and Cu(II) pentanuclear knots in good
yields (≥85%). Each of the knot complexes was characterized
by mass spectrometry, the diamagnetic (zinc) knot complex was characterized
by 1H and 13C NMR spectroscopy, and the zinc,
cobalt, and nickel pentafoil knots afforded single crystals whose
structures were determined by X-ray crystallography. Lehn-type circular
helicates generally only form with tris-bipy ligand strands and Fe(II)
(and, in some cases, Ni(II) and Zn(II)) salts, so such architectures
become accessible for other metal cations only through the use of
knotted ligands. The different metalated knots all exhibit “second-sphere”
coordination of a single chloride ion within the central cavity of
the knot through CH···Cl– hydrogen
bonding and electrostatic interactions. The chloride binding affinities
were determined in MeCN by isothermal titration calorimetry, and the
strength of binding was shown to vary over 3 orders of magnitude for
the different metal-ion–knotted-ligand second-sphere coordination
complexes.
Collapse
Affiliation(s)
- Liang Zhang
- School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China.,School of Chemistry , University of Manchester , Manchester M13 9PL , United Kingdom
| | - Alexander J Stephens
- School of Chemistry , University of Manchester , Manchester M13 9PL , United Kingdom
| | | | - Lucian Pirvu
- School of Chemistry , University of Manchester , Manchester M13 9PL , United Kingdom
| | | | - Christopher J Robinson
- SYNBIOCHEM, Manchester Institute of Biotechnology , University of Manchester , Manchester M1 7DN , United Kingdom
| | - David A Leigh
- School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China.,School of Chemistry , University of Manchester , Manchester M13 9PL , United Kingdom
| |
Collapse
|
71
|
Blanco-Gómez A, Fernández-Blanco Á, Blanco V, Rodríguez J, Peinador C, García MD. Thinking Outside the “Blue Box”: Induced Fit within a Unique Self-Assembled Polycationic Cyclophane. J Am Chem Soc 2019; 141:3959-3964. [DOI: 10.1021/jacs.8b12599] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Arturo Blanco-Gómez
- Departamento de Química and Centro de Investigacións Científicas Avanzadas (CICA). Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Spain
| | - Ángel Fernández-Blanco
- Departamento de Química and Centro de Investigacións Científicas Avanzadas (CICA). Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Spain
| | - Víctor Blanco
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
| | - Jaime Rodríguez
- Departamento de Química and Centro de Investigacións Científicas Avanzadas (CICA). Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Spain
| | - Carlos Peinador
- Departamento de Química and Centro de Investigacións Científicas Avanzadas (CICA). Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Spain
| | - Marcos D. García
- Departamento de Química and Centro de Investigacións Científicas Avanzadas (CICA). Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Spain
| |
Collapse
|
72
|
Ng AWH, Au‐Yeung HY. Molecular Links and Knots from Naphthalenediimide: A Balance of Weak Interactions. Chem Asian J 2019; 14:1602-1612. [DOI: 10.1002/asia.201801681] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Antony Wing Hung Ng
- Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Ho Yu Au‐Yeung
- Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong P. R. China
| |
Collapse
|
73
|
Yee CC, Ng AWH, Au-Yeung HY. Control over the macrocyclisation pathway and product topology in a copper-templated catenane synthesis. Chem Commun (Camb) 2019; 55:6169-6172. [DOI: 10.1039/c9cc02263e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Strategies to control building block intertwining and the efficient assembly of a linear [4]catenane are presented.
Collapse
Affiliation(s)
- Chi-Chung Yee
- Department of Chemistry
- The University of Hong Kong
- P. R. China
| | | | - Ho Yu Au-Yeung
- Department of Chemistry
- The University of Hong Kong
- P. R. China
| |
Collapse
|
74
|
Shen L, Cao N, Tong L, Zhang X, Wu G, Jiao T, Yin Q, Zhu J, Pan Y, Li H. Dynamic Covalent Self-Assembly Based on Oxime Condensation. Angew Chem Int Ed Engl 2018; 57:16486-16490. [PMID: 30334325 DOI: 10.1002/anie.201811025] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Indexed: 01/04/2023]
Abstract
Oxime, whose dynamic nature was reported to be switchable between ON/OFF by tuning the acidity, is employed in a novel type of dynamic covalent approach that is amenable to use in water for self-assembly of purely organic molecules with complex topology. In strongly acidic conditions, the dynamic nature of oxime is turned ON, allowing occurrence of error-checking and therefore a catenane and a macrocycle self-assembled in high yields. In neutral conditions, oxime ceases to be dynamic, which helps to trap the self-assembled products even when the driving forces of their formation are removed. We envision that this switchable behaviour might help, at least partially, to resolve a commonly encountered drawback of dynamic covalent chemistry, namely that the intrinsic stability of the self-assembled products containing dynamic bonds, such as imine or hydrazone, are often jeopardized by their reversible nature.
Collapse
Affiliation(s)
- Libo Shen
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Ning Cao
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Lu Tong
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Xinjiang Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Guangcheng Wu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Tianyu Jiao
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Qi Yin
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jiaqi Zhu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Hao Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
75
|
Shen L, Cao N, Tong L, Zhang X, Wu G, Jiao T, Yin Q, Zhu J, Pan Y, Li H. Dynamic Covalent Self-Assembly Based on Oxime Condensation. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Libo Shen
- Department of Chemistry; Zhejiang University; Hangzhou 310027 China
| | - Ning Cao
- Department of Chemistry; Zhejiang University; Hangzhou 310027 China
| | - Lu Tong
- Department of Chemistry; Zhejiang University; Hangzhou 310027 China
| | - Xinjiang Zhang
- Department of Chemistry; Zhejiang University; Hangzhou 310027 China
| | - Guangcheng Wu
- Department of Chemistry; Zhejiang University; Hangzhou 310027 China
| | - Tianyu Jiao
- Department of Chemistry; Zhejiang University; Hangzhou 310027 China
| | - Qi Yin
- Department of Chemistry; Zhejiang University; Hangzhou 310027 China
| | - Jiaqi Zhu
- Department of Chemistry; Zhejiang University; Hangzhou 310027 China
| | - Yuanjiang Pan
- Department of Chemistry; Zhejiang University; Hangzhou 310027 China
| | - Hao Li
- Department of Chemistry; Zhejiang University; Hangzhou 310027 China
| |
Collapse
|