51
|
Watkins LC, DeGrado WF, Voth GA. Influenza A M2 Inhibitor Binding Understood through Mechanisms of Excess Proton Stabilization and Channel Dynamics. J Am Chem Soc 2020; 142:17425-17433. [PMID: 32933245 PMCID: PMC7564090 DOI: 10.1021/jacs.0c06419] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Prevalent resistance to inhibitors
that target the influenza A
M2 proton channel has necessitated a continued drug design effort,
supported by a sustained study of the mechanism of channel function
and inhibition. Recent high-resolution X-ray crystal structures present
the first opportunity to see how the adamantyl amine class of inhibitors
bind to M2 and disrupt and interact with the channel’s water
network, providing insight into the critical properties that enable
their effective inhibition in wild-type M2. In this work, we examine
the hypothesis that these drugs act primarily as mechanism-based inhibitors
by comparing hydrated excess proton stabilization during proton transport
in M2 with the interactions revealed in the crystal structures, using
the Multiscale Reactive Molecular Dynamics (MS-RMD) methodology. MS-RMD,
unlike classical molecular dynamics, models the hydrated proton (hydronium-like
cation) as a dynamic excess charge defect and allows bonds to break
and form, capturing the intricate interactions between the hydrated
excess proton, protein atoms, and water. Through this, we show that
the ammonium group of the inhibitors is effectively positioned to
take advantage of the channel’s natural ability to stabilize
an excess protonic charge and act as a hydronium mimic. Additionally,
we show that the channel is especially stable in the drug binding
region, highlighting the importance of this property for binding the
adamantane group. Finally, we characterize an additional hinge point
near Val27, which dynamically responds to charge and inhibitor binding.
Altogether, this work further illuminates a dynamic understanding
of the mechanism of drug inhibition in M2, grounded in the fundamental
properties that enable the channel to transport and stabilize excess
protons, with critical implications for future drug design efforts.
Collapse
Affiliation(s)
- Laura C Watkins
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, United States
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
52
|
Tzitzoglaki C, McGuire K, Lagarias P, Konstantinidi A, Hoffmann A, Fokina NA, Ma C, Papanastasiou IP, Schreiner PR, Vázquez S, Schmidtke M, Wang J, Busath DD, Kolocouris A. Chemical Probes for Blocking of Influenza A M2 Wild-type and S31N Channels. ACS Chem Biol 2020; 15:2331-2337. [PMID: 32786258 DOI: 10.1021/acschembio.0c00553] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We report on using the synthetic aminoadamantane-CH2-aryl derivatives 1-6 as sensitive probes for blocking M2 S31N and influenza A virus (IAV) M2 wild-type (WT) channels as well as virus replication in cell culture. The binding kinetics measured using electrophysiology (EP) for M2 S31N channel are very dependent on the length between the adamantane moiety and the first ring of the aryl headgroup realized in 2 and 3 and the girth and length of the adamantane adduct realized in 4 and 5. Study of 1-6 shows that, according to molecular dynamics (MD) simulations and molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) calculations, all bind in the M2 S31N channel with the adamantyl group positioned between V27 and G34 and the aryl group projecting out of the channel with the phenyl (or isoxazole in 6) embedded in the V27 cluster. In this outward binding configuration, an elongation of the ligand by only one methylene in rimantadine 2 or using diamantane or triamantane instead of adamantane in 4 and 5, respectively, causes incomplete entry and facilitates exit, abolishing effective block compared to the amantadine derivatives 1 and 6. In the active M2 S31N blockers 1 and 6, the phenyl and isoxazolyl head groups achieve a deeper binding position and high kon/low koff and high kon/high koff rate constants, compared to inactive 2-5, which have much lower kon and higher koff. Compounds 1-5 block the M2 WT channel by binding in the longer area from V27-H37, in the inward orientation, with high kon and low koff rate constants. Infection of cell cultures by influenza virus containing M2 WT or M2 S31N is inhibited by 1-5 or 1-4 and 6, respectively. While 1 and 6 block infection through the M2 block mechanism in the S31N variant, 2-4 may block M2 S31N virus replication in cell culture through the lysosomotropic effect, just as chloroquine is thought to inhibit SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Christina Tzitzoglaki
- Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis-Zografou, Athens 15771, Greece
| | - Kelly McGuire
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah 84602, United States
| | - Panagiotis Lagarias
- Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis-Zografou, Athens 15771, Greece
| | - Athina Konstantinidi
- Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis-Zografou, Athens 15771, Greece
| | - Anja Hoffmann
- Jena University Hospital, Department of Medical Microbiology, Section Experimental Virology, Hans Knoell Str. 2, D-07745 Jena, Germany
| | - Natalie A. Fokina
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Chulong Ma
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Ioannis P. Papanastasiou
- Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis-Zografou, Athens 15771, Greece
| | - Peter R. Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Santiago Vázquez
- Laboratori de Quı́mica Farmacèutica (Unitat Associada al CSIC), Departament de Farmacologia, Toxicologia i Quı́mica Terapèutica, Facultat de Farmàcia i Ciències de l’Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, Barcelona 08028, Spain
| | - Michaela Schmidtke
- Jena University Hospital, Department of Medical Microbiology, Section Experimental Virology, Hans Knoell Str. 2, D-07745 Jena, Germany
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - David D. Busath
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah 84602, United States
| | - Antonios Kolocouris
- Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis-Zografou, Athens 15771, Greece
| |
Collapse
|
53
|
The role of water in ligand binding. Curr Opin Struct Biol 2020; 67:1-8. [PMID: 32942197 DOI: 10.1016/j.sbi.2020.08.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023]
|
54
|
Jalily PH, Duncan MC, Fedida D, Wang J, Tietjen I. Put a cork in it: Plugging the M2 viral ion channel to sink influenza. Antiviral Res 2020; 178:104780. [PMID: 32229237 PMCID: PMC7102647 DOI: 10.1016/j.antiviral.2020.104780] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/12/2020] [Accepted: 03/20/2020] [Indexed: 12/17/2022]
Abstract
The ongoing threat of seasonal and pandemic influenza to human health requires antivirals that can effectively supplement existing vaccination strategies. The M2 protein of influenza A virus (IAV) is a proton-gated, proton-selective ion channel that is required for virus replication and is an established antiviral target. While licensed adamantane-based M2 antivirals have been historically used, M2 mutations that confer major adamantane resistance are now so prevalent in circulating virus strains that these drugs are no longer recommended. Here we review the current understanding of IAV M2 structure and function, mechanisms of inhibition, the rise of drug resistance mutations, and ongoing efforts to develop new antivirals that target resistant forms of M2.
Collapse
Affiliation(s)
- Pouria H Jalily
- Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Maggie C Duncan
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - David Fedida
- Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tuscon, AZ, USA
| | - Ian Tietjen
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada; The Wistar Institute, Philadelphia, PA, USA.
| |
Collapse
|
55
|
Xie Z, Yang M, Luo L, Lv Y, Song K, Liu S, Chen D, Wang J. Nanochannel sensor for sensitive and selective adamantanamine detection based on host-guest competition. Talanta 2020; 219:121213. [PMID: 32887115 DOI: 10.1016/j.talanta.2020.121213] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/16/2020] [Accepted: 05/21/2020] [Indexed: 01/01/2023]
Abstract
The abuse of adamantanamine (ADA) and its derivatives as veterinary drugs in the poultry industry could cause severe health problems for humans. It is of great need to develop a rapid, cheap and ultrasensitive method for ADA detection. In this study, a sensitive conical nanochannel sensor was established for the rapid quantitative detection of ADA with the distinctive design of the host-guest competition. The sensor was constructed by functionalizing the nanochannel surface with p-toluidine and was then assembled with Cucurbit [7]uril (CB [7]). When ADA is added, it could occupy the cavity of CB [7] due to the host-guest competition and makes CB [7] to release from the CB [7]-p-toluidine complex, resulting in a distinct change of hydrophobicity of the nanochannel, which could be determined by the ionic current. Under the optimal conditions, the strategy permitted sensitive detection of ADA in a linear range of 10-1000 nM. The nanochannel based ADA sensing platform showed both high sensitivity and excellent reproducibility and the limit of detection was 4.54 nM. For the first time, the rapid and sensitive recognition of an illegal medicine was realized based on the host-guest competition method with the nanochannel system and the principle and feasibility of this method were described at length. This strategy provides a simple, reliable, and effective way to apply host-guest system in the development of nanochannel sensor for small-molecule drug detection.
Collapse
Affiliation(s)
- Zhipeng Xie
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China; The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Mingfeng Yang
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Le Luo
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yiping Lv
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Kangjin Song
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Simin Liu
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Daqi Chen
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Jiahai Wang
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
56
|
Li X, Zhang H, Hou J, Ou R, Zhu Y, Zhao C, Qian T, Easton CD, Selomulya C, Hill MR, Wang H. Sulfonated Sub-1-nm Metal–Organic Framework Channels with Ultrahigh Proton Selectivity. J Am Chem Soc 2020; 142:9827-9833. [DOI: 10.1021/jacs.0c03554] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xingya Li
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Huacheng Zhang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jue Hou
- Manufacturing, CSIRO, Clayton, 3168, Australia
| | - Ranwen Ou
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Yinlong Zhu
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Chen Zhao
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Tianyue Qian
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | | | | | - Matthew R. Hill
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
- Manufacturing, CSIRO, Clayton, 3168, Australia
| | - Huanting Wang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
57
|
|
58
|
Abreu GEA, Aguilar MEH, Covarrubias DH, Durán FR. Amantadine as a drug to mitigate the effects of COVID-19. Med Hypotheses 2020; 140:109755. [PMID: 32361100 PMCID: PMC7182751 DOI: 10.1016/j.mehy.2020.109755] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/21/2020] [Indexed: 12/27/2022]
Abstract
The SARS-CoV-2 virus has spread around the world. At this time, there is no vaccine that can help people prevent the spread of coronavirus. We are proposing amantadine as a drug that can be used to mitigate the effects of the virus. It is demonstrated by docking models how amantadine can exert its action on Coronavirus viroporin E.
Collapse
Affiliation(s)
- Gonzalo Emiliano Aranda Abreu
- Centro de Investigaciones Cerebrales/Universidad Veracruzana, Av. Luis Castelazo Ayala s/n, carr. Xalapa-Veracruz, km 3.5, C.P. 91190 Xalapa, Veracruz, Mexico
| | - María Elena Hernández Aguilar
- Centro de Investigaciones Cerebrales/Universidad Veracruzana, Av. Luis Castelazo Ayala s/n, carr. Xalapa-Veracruz, km 3.5, C.P. 91190 Xalapa, Veracruz, Mexico
| | - Deissy Herrera Covarrubias
- Centro de Investigaciones Cerebrales/Universidad Veracruzana, Av. Luis Castelazo Ayala s/n, carr. Xalapa-Veracruz, km 3.5, C.P. 91190 Xalapa, Veracruz, Mexico
| | - Fausto Rojas Durán
- Centro de Investigaciones Cerebrales/Universidad Veracruzana, Av. Luis Castelazo Ayala s/n, carr. Xalapa-Veracruz, km 3.5, C.P. 91190 Xalapa, Veracruz, Mexico
| |
Collapse
|
59
|
Vorobjev YN. An effective molecular blocker of ion channel of M2 protein as anti-influenza a drug. J Biomol Struct Dyn 2020; 39:2352-2363. [PMID: 32212957 DOI: 10.1080/07391102.2020.1747550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Design of a drug compound that can effectively bind to the M2 ion channel and block the diffusion of hydrogen ions (H+) through and inhibit influenza A virus replication is an important task. Known anti-influenza drugs amantadine and rimantadine have a weak effect on influenza A virus. A new class of positively charged, +2 e.u., molecules is proposed here to block diffusion of H+ ion through the M2 channel. Several drug candidates, derivatives of a lead compound (diazabicyclooctane), were proposed and investigated. Molecular dynamics of thermal fluctuations of M2 protein structure and ionization-conformation coupling of all the ionizable residues were simulated at physiological pH. The influence of the most probable mutations of key drug-binding amino acid residues in the M2 ion channel were investigated too. It is shown that the suggested new blocker has high binding affinity for the M2 channel. There are two in-channel binding sites of high affinity, the first one has H-bonds with two of four serine residues Ser-31A (B) or Ser-31C(D), and the second one has H-bonds with two of four histidine residues His-37A (B), or His-37C(D). The main advantage of the new drug molecule is the positive charge, +2 e.u., which creates a positive electrostatic potential barrier (in addition to a steric one) for a transfer of H+ ion through M2 channel and may serve as an effective anti-influenza A virus drug.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yury N Vorobjev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
60
|
Thomaston JL, Konstantinidi A, Liu L, Lambrinidis G, Tan J, Caffrey M, Wang J, DeGrado WF, Kolocouris A. X-ray Crystal Structures of the Influenza M2 Proton Channel Drug-Resistant V27A Mutant Bound to a Spiro-Adamantyl Amine Inhibitor Reveal the Mechanism of Adamantane Resistance. Biochemistry 2020; 59:627-634. [PMID: 31894969 PMCID: PMC7224692 DOI: 10.1021/acs.biochem.9b00971] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The V27A mutation confers adamantane resistance on the influenza A matrix 2 (M2) proton channel and is becoming more prevalent in circulating populations of influenza A virus. We have used X-ray crystallography to determine structures of a spiro-adamantyl amine inhibitor bound to M2(22-46) V27A and also to M2(21-61) V27A in the Inwardclosed conformation. The spiro-adamantyl amine binding site is nearly identical for the two crystal structures. Compared to the M2 "wild type" (WT) with valine at position 27, we observe that the channel pore is wider at its N-terminus as a result of the V27A mutation and that this removes V27 side chain hydrophobic interactions that are important for binding of amantadine and rimantadine. The spiro-adamantyl amine inhibitor blocks proton conductance in the WT and V27A mutant channels by shifting its binding site in the pore depending on which residue is present at position 27. Additionally, in the structure of the M2(21-61) V27A construct, the C-terminus of the channel is tightly packed relative to that of the M2(22-46) construct. We observe that residues Asp44, Arg45, and Phe48 face the center of the channel pore and would be well-positioned to interact with protons exiting the M2 channel after passing through the His37 gate. A 300 ns molecular dynamics simulation of the M2(22-46) V27A-spiro-adamantyl amine complex predicts with accuracy the position of the ligands and waters inside the pore in the X-ray crystal structure of the M2(22-46) V27A complex.
Collapse
Affiliation(s)
- Jessica L. Thomaston
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
- Membrane Structural and Functional Biology (MS&FB) Group, School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin D02 R590, Ireland
| | - Athina Konstantinidi
- Department of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Lijun Liu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- DLX Scientific, Lawrence, KS 66049, USA
| | - George Lambrinidis
- Department of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Jingquan Tan
- Membrane Structural and Functional Biology (MS&FB) Group, School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin D02 R590, Ireland
| | - Martin Caffrey
- Membrane Structural and Functional Biology (MS&FB) Group, School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin D02 R590, Ireland
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, USA
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Antonios Kolocouris
- Department of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| |
Collapse
|
61
|
Voronin AP, Volkova TV, Ilyukhin AB, Proshin AN, Perlovich GL. Substituent effect on the packing architecture of adamantane and memantine derivatives of sulfonamide molecular crystals. CrystEngComm 2020. [DOI: 10.1039/c9ce01750j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A specific number of structures described in this paper with adamantane and memantine fragments have been synthesised and characterised.
Collapse
Affiliation(s)
- Alexander P. Voronin
- G.A. Krestov Institute of Solution Chemistry
- Russian Academy of Sciences
- 153045 Ivanovo
- Russia
| | - Tatyana V. Volkova
- G.A. Krestov Institute of Solution Chemistry
- Russian Academy of Sciences
- 153045 Ivanovo
- Russia
| | - Andrey B. Ilyukhin
- N.S. Kurnakov Institute of General and Inorganic Chemistry
- Russian Academy of Sciences
- 119991 Moscow
- Russia
| | - Alexey N. Proshin
- Institute of Physiologically Active Compounds
- Russian Academy of Sciences
- Chernogolovka
- Russia
| | - German L. Perlovich
- G.A. Krestov Institute of Solution Chemistry
- Russian Academy of Sciences
- 153045 Ivanovo
- Russia
| |
Collapse
|
62
|
Park J, Selvaraj B, McShan AC, Boyken SE, Wei KY, Oberdorfer G, DeGrado W, Sgourakis NG, Cuneo MJ, Myles DAA, Baker D. De novo design of a homo-trimeric amantadine-binding protein. eLife 2019; 8:e47839. [PMID: 31854299 PMCID: PMC6922598 DOI: 10.7554/elife.47839] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 12/03/2019] [Indexed: 12/25/2022] Open
Abstract
The computational design of a symmetric protein homo-oligomer that binds a symmetry-matched small molecule larger than a metal ion has not yet been achieved. We used de novo protein design to create a homo-trimeric protein that binds the C3 symmetric small molecule drug amantadine with each protein monomer making identical interactions with each face of the small molecule. Solution NMR data show that the protein has regular three-fold symmetry and undergoes localized structural changes upon ligand binding. A high-resolution X-ray structure reveals a close overall match to the design model with the exception of water molecules in the amantadine binding site not included in the Rosetta design calculations, and a neutron structure provides experimental validation of the computationally designed hydrogen-bond networks. Exploration of approaches to generate a small molecule inducible homo-trimerization system based on the design highlight challenges that must be overcome to computationally design such systems.
Collapse
Affiliation(s)
- Jooyoung Park
- Department of BiochemistryUniversity of WashingtonSeattleUnited States
- Institute for Protein DesignUniversity of WashingtonSeattleUnited States
| | - Brinda Selvaraj
- Neutron Sciences DirectorateOak Ridge National LaboratoryOak RidgeUnited States
| | - Andrew C McShan
- Department of Chemistry and BiochemistryUniversity of California, Santa CruzSanta CruzUnited States
| | - Scott E Boyken
- Department of BiochemistryUniversity of WashingtonSeattleUnited States
- Institute for Protein DesignUniversity of WashingtonSeattleUnited States
| | - Kathy Y Wei
- Department of BiochemistryUniversity of WashingtonSeattleUnited States
- Institute for Protein DesignUniversity of WashingtonSeattleUnited States
- Department of BioengineeringUniversity of California, BerkeleyBerkeleyUnited States
| | | | - William DeGrado
- Department of Pharmaceutical ChemistryUniversity of California, San FranciscoSan FranciscoUnited States
| | - Nikolaos G Sgourakis
- Department of Chemistry and BiochemistryUniversity of California, Santa CruzSanta CruzUnited States
| | - Matthew J Cuneo
- Neutron Sciences DirectorateOak Ridge National LaboratoryOak RidgeUnited States
- Department of Structural BiologySt. Jude Children’s Research HospitalMemphisUnited States
| | - Dean AA Myles
- Neutron Sciences DirectorateOak Ridge National LaboratoryOak RidgeUnited States
| | - David Baker
- Department of BiochemistryUniversity of WashingtonSeattleUnited States
- Institute for Protein DesignUniversity of WashingtonSeattleUnited States
| |
Collapse
|
63
|
Konstantinidi A, Chountoulesi M, Naziris N, Sartori B, Amenitsch H, Mali G, Čendak T, Plakantonaki M, Triantafyllakou I, Tselios T, Demetzos C, Busath DD, Mavromoustakos T, Kolocouris A. The boundary lipid around DMPC-spanning influenza A M2 transmembrane domain channels: Its structure and potential for drug accommodation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183156. [PMID: 31846647 DOI: 10.1016/j.bbamem.2019.183156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 10/25/2022]
Abstract
We have investigated the perturbation of influenza A M2TM in DMPC bilayers. We have shown that (a) DSC and SAXS detect changes in membrane organization caused by small changes (micromolar) in M2TM or aminoadamantane concentration and aminoadamantane structure, by comparison of amantadine and spiro[pyrrolidine-2,2'-adamantane] (AK13), (b) that WAXS and MD can suggest details of ligand topology. DSC and SAXS show that at a low M2TM micromolar concentration in DPMC bilayers, two lipid domains are observed, which likely correspond to M2TM boundary lipids and bulk-like lipids. At higher M2TM concentrations, one domain only is identified, which constitutes essentially all of the lipid molecules behaving as boundary lipids. According to SAXS, WAXS, and DSC in the absence of M2TM, both aminoadamantane drugs exert a similar perturbing effect on the bilayer at low concentrations. At the same concentrations of the drug when M2TM is present, amantadine and, to a lesser extent, AK13 cause, according to WAXS, a significant disordering of chain-stacking, which also leads to the formation of two lipid domains. This effect is likely due, according to MD simulations, to the preference of the more lipophilic AK13 to locate closer to the lateral surfaces of M2TM when compared to amantadine, which forms stronger ionic interactions with phosphate groups. The preference of AK13 to concentrate inside the lipid bilayer close to the exterior of the hydrophobic M2TM helices may contribute to its higher binding affinity compared to amantadine.
Collapse
Affiliation(s)
- Athina Konstantinidi
- Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Maria Chountoulesi
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Nikolaos Naziris
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Barbara Sartori
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9/IV, A-8010 Graz, Austria
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9/IV, A-8010 Graz, Austria
| | - Gregor Mali
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Ljubljana SI-1001, Slovenia
| | - Tomaž Čendak
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Ljubljana SI-1001, Slovenia
| | - Maria Plakantonaki
- Department of Chemistry, School of Natural Sciences, University of Patras, Rion, Patras 26500, Greece
| | - Iro Triantafyllakou
- Department of Chemistry, School of Natural Sciences, University of Patras, Rion, Patras 26500, Greece
| | - Theodore Tselios
- Department of Chemistry, School of Natural Sciences, University of Patras, Rion, Patras 26500, Greece
| | - Costas Demetzos
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - David D Busath
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | - Thomas Mavromoustakos
- Section of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece.
| | - Antonios Kolocouris
- Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15771, Greece.
| |
Collapse
|
64
|
Moreno N, Recio R, Valdivia V, Khiar N, Fernández I. N-Isopropylsulfinylimines vs. N-tert-butylsulfinylimines in the stereoselective synthesis of sterically hindered amines: an improved synthesis of enantiopure (R)- and (S)-rimantadine and the trifluoromethylated analogues. Org Biomol Chem 2019; 17:9854-9858. [PMID: 31720674 DOI: 10.1039/c9ob02241d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An improved fully stereoselective synthesis of both enantiomers of rimantadine and its trifluoromethylated analogues has been developed, using N-isopropylsulfinylimines as a starting chiral material, proving the superiority of the isopropyl group as a chiral inducer over the tert-butyl group in the case of hindered N-sulfinylimines.
Collapse
Affiliation(s)
- Nazaret Moreno
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García González, 2, 41012, Sevilla, Spain.
| | | | | | | | | |
Collapse
|
65
|
Musharrafieh R, Ma C, Wang J. Discovery of M2 channel blockers targeting the drug-resistant double mutants M2-S31N/L26I and M2-S31N/V27A from the influenza A viruses. Eur J Pharm Sci 2019; 141:105124. [PMID: 31669761 DOI: 10.1016/j.ejps.2019.105124] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/17/2019] [Accepted: 10/25/2019] [Indexed: 12/29/2022]
Abstract
Influenza virus infections are a persistent threat to human health due to seasonal outbreaks and sporadic pandemics. Amantadine and rimantadine are FDA-approved influenza antiviral drugs and work by inhibiting the viral M2 proton channel. However, the therapeutic potential for the antiviral amantadine/rimantadine was curtailed by the emergence of drug-resistant mutations in its target protein M2. In this study, we identified four amantadine-resistant M2 mutants among avian and human influenza A H5N1 strains circulating between 2002 and 2019: the single S31N and V27A mutants, and the S31N/L26I and S31N/V27A double mutants. Herein, utilizing two-electrode voltage clamp (TEVC) assays, we screened a panel of structurally diverse M2 inhibitors against these single and double mutant channels. Three compounds 6, 7, and 15 were found to significantly block all three M2 mutants: M2-S31N, M2-S31N/L26I, and M2-S31N/V27A. Using recombinant viruses generated from reverse genetics, we further showed that these compounds also inhibited the replication of recombinant viruses harboring either the single S31N or double S31N/L26I and S31N/V27A mutants. This work represents the first example in developing antivirals by targeting the drug-resistant double mutants of M2 proton channels.
Collapse
Affiliation(s)
- Rami Musharrafieh
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721 USA
| | - Chunlong Ma
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721 USA
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721 USA.
| |
Collapse
|
66
|
Mir FM, Crisma M, Toniolo C, Lubell WD. Isolated α-turn and incipient γ-helix. Chem Sci 2019; 10:6908-6914. [PMID: 31391913 PMCID: PMC6640192 DOI: 10.1039/c9sc01683j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/07/2019] [Indexed: 12/17/2022] Open
Abstract
The unique abilities of homo-oligo-adamantyl peptides to adopt α- and γ-turn conformations are demonstrated by X-ray diffraction, and NMR and FT-IR absorption spectroscopies. Assembled by an Ugi multiple component reaction strategy, N α-formyl-adamantyl tripeptide iso-propyl and tert-butyl amides are respectively found to adopt an isolated α-turn and an incipient γ-helix conformation by X-ray diffraction crystallography. The shortest example of a single α-turn with ideal geometry is observed in the crystalline state. In solution both peptides predominantly assume γ-helical structures.
Collapse
Affiliation(s)
- Fatemeh M Mir
- Département de Chimie , Université de Montréal , C. P. 6128, Succursale Centre-Ville , Montréal , Québec , Canada H3C 3J7 .
| | - Marco Crisma
- Department of Chemistry , University of Padova and Institute of Biomolecular Chemistry , Padova Unit , CNR , 35131 Padova , Italy
| | - Claudio Toniolo
- Department of Chemistry , University of Padova and Institute of Biomolecular Chemistry , Padova Unit , CNR , 35131 Padova , Italy
| | - William D Lubell
- Département de Chimie , Université de Montréal , C. P. 6128, Succursale Centre-Ville , Montréal , Québec , Canada H3C 3J7 .
| |
Collapse
|
67
|
Dey D, Siddiqui SI, Mamidi P, Ghosh S, Kumar CS, Chattopadhyay S, Ghosh S, Banerjee M. The effect of amantadine on an ion channel protein from Chikungunya virus. PLoS Negl Trop Dis 2019; 13:e0007548. [PMID: 31339886 PMCID: PMC6655611 DOI: 10.1371/journal.pntd.0007548] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 06/11/2019] [Indexed: 01/01/2023] Open
Abstract
Viroporins like influenza A virus M2, hepatitis C virus p7, HIV-1 Vpu and picornavirus 2B associate with host membranes, and create hydrophilic corridors, which are critical for viral entry, replication and egress. The 6K proteins from alphaviruses are conjectured to be viroporins, essential during egress of progeny viruses from host membranes, although the analogue in Chikungunya Virus (CHIKV) remains relatively uncharacterized. Using a combination of electrophysiology, confocal and electron microscopy, and molecular dynamics simulations we show for the first time that CHIKV 6K is an ion channel forming protein that primarily associates with endoplasmic reticulum (ER) membranes. The ion channel activity of 6K can be inhibited by amantadine, an antiviral developed against the M2 protein of Influenza A virus; and CHIKV infection of cultured cells can be effectively inhibited in presence of this drug. Our study provides crucial mechanistic insights into the functionality of 6K during CHIKV-host interaction and suggests that 6K is a potential therapeutic drug target, with amantadine and its derivatives being strong candidates for further development. Chikungunya fever is a severe crippling illness caused by the arthropod-borne virus CHIKV. Originally from the African subcontinent, the virus has now spread worldwide and is responsible for substantial morbidity and economic loss. The existing treatment against CHIKV is primarily symptomatic, and it is imperative that specific therapeutics be devised. The present study provides detailed insight into the functionality of 6K, an ion channel forming protein of CHIKV. Amantadine, a known antiviral against influenza virus, also inhibits CHIKV replication in cell culture and drastically alters the morphology of virus particles. This work highlights striking parallels among functionalities of virus-encoded membrane-interacting proteins, which may be exploited for developing broad-spectrum antivirals.
Collapse
Affiliation(s)
- Debajit Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, India
| | | | | | - Sukanya Ghosh
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, India
| | | | | | - Subhendu Ghosh
- Department of Biophysics, University of Delhi (South Campus), Delhi, India
| | - Manidipa Banerjee
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, India
- * E-mail:
| |
Collapse
|
68
|
Watkins LC, Liang R, Swanson JMJ, DeGrado WF, Voth GA. Proton-Induced Conformational and Hydration Dynamics in the Influenza A M2 Channel. J Am Chem Soc 2019; 141:11667-11676. [PMID: 31264413 DOI: 10.1021/jacs.9b05136] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The influenza A M2 protein is an acid-activated proton channel responsible for acidification of the inside of the virus, a critical step in the viral life cycle. This channel has four central histidine residues that form an acid-activated gate, binding protons from the outside until an activated state allows proton transport to the inside. While previous work has focused on proton transport through the channel, the structural and dynamic changes that accompany proton flux and enable activation have yet to be resolved. In this study, extensive Multiscale Reactive Molecular Dynamics simulations with explicit Grotthuss-shuttling hydrated excess protons are used to explore detailed molecular-level interactions that accompany proton transport in the +0, + 1, and +2 histidine charge states. The results demonstrate how the hydrated excess proton strongly influences both the protein and water hydrogen-bonding network throughout the channel, providing further insight into the channel's acid-activation mechanism and rectification behavior. We find that the excess proton dynamically, as a function of location, shifts the protein structure away from its equilibrium distributions uniquely for different pH conditions consistent with acid-activation. The proton distribution in the xy-plane is also shown to be asymmetric about the channel's main axis, which has potentially important implications for the mechanism of proton conduction and future drug design efforts.
Collapse
Affiliation(s)
- Laura C Watkins
- Department of Chemistry, Institute for Biophysical Dynamics and James Franck Institute , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Ruibin Liang
- Department of Chemistry, Institute for Biophysical Dynamics and James Franck Institute , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Jessica M J Swanson
- Department of Chemistry, Institute for Biophysical Dynamics and James Franck Institute , The University of Chicago , Chicago , Illinois 60637 , United States
| | - William F DeGrado
- Department of Pharmaceutical Chemistry , University of California , San Francisco , California 94158 , United States
| | - Gregory A Voth
- Department of Chemistry, Institute for Biophysical Dynamics and James Franck Institute , The University of Chicago , Chicago , Illinois 60637 , United States
| |
Collapse
|
69
|
Thomaston JL, Wu Y, Polizzi N, Liu L, Wang J, DeGrado WF. X-ray Crystal Structure of the Influenza A M2 Proton Channel S31N Mutant in Two Conformational States: An Open and Shut Case. J Am Chem Soc 2019; 141:11481-11488. [PMID: 31184871 DOI: 10.1021/jacs.9b02196] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The amantadine-resistant S31N mutant of the influenza A M2 proton channel has become prevalent in currently circulating viruses. Here, we have solved an X-ray crystal structure of M2(22-46) S31N that contains two distinct conformational states within its asymmetric unit. This structure reveals the mechanism of adamantane resistance in both conformational states of the M2 channel. In the Inwardopen conformation, the mutant Asn31 side chain faces the channel pore and sterically blocks the adamantane binding site. In the Inwardclosed conformation, Asn31 forms hydrogen bonds with carbonyls at the monomer-monomer interface, which twists the monomer helices and constricts the channel pore at the drug binding site. We also examine M2(19-49) WT and S31N using solution NMR spectroscopy and show that distribution of the two conformational states is dependent on both detergent choice and experimental pH.
Collapse
Affiliation(s)
- Jessica L Thomaston
- Department of Pharmaceutical Chemistry , University of California , San Francisco , California 94158 , United States
| | - Yibing Wu
- Department of Pharmaceutical Chemistry , University of California , San Francisco , California 94158 , United States
| | - Nicholas Polizzi
- Department of Pharmaceutical Chemistry , University of California , San Francisco , California 94158 , United States
| | - Lijun Liu
- State Key Laboratory of Chemical Oncogenomics , Peking University Shenzhen Graduate School , Shenzhen 518055 , China.,DLX Scientific , Lawrence , Kansas 66049 , United States
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy , University of Arizona , Tucson , Arizona 85721 , United States
| | - William F DeGrado
- Department of Pharmaceutical Chemistry , University of California , San Francisco , California 94158 , United States
| |
Collapse
|
70
|
To J, Torres J. Viroporins in the Influenza Virus. Cells 2019; 8:cells8070654. [PMID: 31261944 PMCID: PMC6679168 DOI: 10.3390/cells8070654] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/21/2019] [Accepted: 06/27/2019] [Indexed: 12/28/2022] Open
Abstract
Influenza is a highly contagious virus that causes seasonal epidemics and unpredictable pandemics. Four influenza virus types have been identified to date: A, B, C and D, with only A–C known to infect humans. Influenza A and B viruses are responsible for seasonal influenza epidemics in humans and are responsible for up to a billion flu infections annually. The M2 protein is present in all influenza types and belongs to the class of viroporins, i.e., small proteins that form ion channels that increase membrane permeability in virus-infected cells. In influenza A and B, AM2 and BM2 are predominantly proton channels, although they also show some permeability to monovalent cations. By contrast, M2 proteins in influenza C and D, CM2 and DM2, appear to be especially selective for chloride ions, with possibly some permeability to protons. These differences point to different biological roles for M2 in types A and B versus C and D, which is also reflected in their sequences. AM2 is by far the best characterized viroporin, where mechanistic details and rationale of its acid activation, proton selectivity, unidirectionality, and relative low conductance are beginning to be understood. The present review summarizes the biochemical and structural aspects of influenza viroporins and discusses the most relevant aspects of function, inhibition, and interaction with the host.
Collapse
Affiliation(s)
- Janet To
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jaume Torres
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
71
|
Musharrafieh R, Lagarias PI, Ma C, Tan GS, Kolocouris A, Wang J. The L46P mutant confers a novel allosteric mechanism of resistance toward the influenza A virus M2 S31N proton channel blockers. Mol Pharmacol 2019; 96:148-157. [PMID: 31175183 DOI: 10.1124/mol.119.116640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/30/2019] [Indexed: 12/14/2022] Open
Abstract
The Food and Drug Administration-approved influenza A antiviral amantadine inhibits the wild-type (WT) AM2 channel but not the S31N mutant predominantly found in circulating strains. In this study, serial viral passages were applied to select resistance against a newly developed isoxazole-conjugated adamantane inhibitor that targets the AM2 S31N channel. This led to the identification of the novel drug-resistant mutation L46P located outside the drug-binding site, which suggests an allosteric resistance mechanism. Intriguingly, when the L46P mutant was introduced to AM2 WT, the channel remained sensitive toward amantadine inhibition. To elucidate the molecular mechanism, molecular dynamics simulations and binding free energy molecular mechanics-generalized born surface area (MM-GBSA) calculations were performed on WT and mutant channels. It was found that the L46P mutation caused a conformational change in the N terminus of transmembrane residues 22-31 that ultimately broadened the drug-binding site of AM2 S31N inhibitor 4, which spans residues 26-34, but not of AM2 WT inhibitor amantadine, which spans residues 31-34. The MM-GBSA calculations showed stronger binding stability for 4 in complex with AM2 S31N compared with 4 in complex with AM2 S31N/L46P, and equal binding free energies of amantadine in complex with AM2 WT and AM2 L46P. Overall, these results demonstrate a unique allosteric resistance mechanism toward AM2 S31N channel blockers, and the L46P mutant represents the first experimentally confirmed drug-resistant AM2 mutant that is located outside of the pore where drug binds. SIGNIFICANCE STATEMENT: AM2 S31N is a high-profile antiviral drug target, as more than 95% of currently circulating influenza A viruses carry this mutation. Understanding the mechanism of drug resistance is critical in designing the next generation of AM2 S31N channel blockers. Using a previously developed AM2 S31N channel blocker as a chemical probe, this study was the first to identify a novel resistant mutant, L46P. The L46P mutant is located outside of the drug-binding site. Molecular dynamics simulations showed that L46P causes a dilation of drug-binding site between residues 22 and 31, which affects the binding of AM2 S31N channel blockers, but not the AM2 WT inhibitor amantadine.
Collapse
Affiliation(s)
- Rami Musharrafieh
- Department of Pharmacology and Toxicology, College of Pharmacy (R.M., C.M., J.W.) and Department of Chemistry and Biochemistry (R.M.), University of Arizona, Tucson, Arizona; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Greece (P.I.L., A.K.); J. Craig Venter Institute, La Jolla, California (G.S.T.); and Department of Medicine, University of California, San Diego, La Jolla, California (G.S.T.)
| | - Panagiotis I Lagarias
- Department of Pharmacology and Toxicology, College of Pharmacy (R.M., C.M., J.W.) and Department of Chemistry and Biochemistry (R.M.), University of Arizona, Tucson, Arizona; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Greece (P.I.L., A.K.); J. Craig Venter Institute, La Jolla, California (G.S.T.); and Department of Medicine, University of California, San Diego, La Jolla, California (G.S.T.)
| | - Chunlong Ma
- Department of Pharmacology and Toxicology, College of Pharmacy (R.M., C.M., J.W.) and Department of Chemistry and Biochemistry (R.M.), University of Arizona, Tucson, Arizona; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Greece (P.I.L., A.K.); J. Craig Venter Institute, La Jolla, California (G.S.T.); and Department of Medicine, University of California, San Diego, La Jolla, California (G.S.T.)
| | - Gene S Tan
- Department of Pharmacology and Toxicology, College of Pharmacy (R.M., C.M., J.W.) and Department of Chemistry and Biochemistry (R.M.), University of Arizona, Tucson, Arizona; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Greece (P.I.L., A.K.); J. Craig Venter Institute, La Jolla, California (G.S.T.); and Department of Medicine, University of California, San Diego, La Jolla, California (G.S.T.)
| | - Antonios Kolocouris
- Department of Pharmacology and Toxicology, College of Pharmacy (R.M., C.M., J.W.) and Department of Chemistry and Biochemistry (R.M.), University of Arizona, Tucson, Arizona; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Greece (P.I.L., A.K.); J. Craig Venter Institute, La Jolla, California (G.S.T.); and Department of Medicine, University of California, San Diego, La Jolla, California (G.S.T.)
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy (R.M., C.M., J.W.) and Department of Chemistry and Biochemistry (R.M.), University of Arizona, Tucson, Arizona; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Greece (P.I.L., A.K.); J. Craig Venter Institute, La Jolla, California (G.S.T.); and Department of Medicine, University of California, San Diego, La Jolla, California (G.S.T.)
| |
Collapse
|
72
|
Li Z, Zou Z, Jiang Z, Huang X, Liu Q. Biological Function and Application of Picornaviral 2B Protein: A New Target for Antiviral Drug Development. Viruses 2019; 11:v11060510. [PMID: 31167361 PMCID: PMC6630369 DOI: 10.3390/v11060510] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 05/31/2019] [Accepted: 06/02/2019] [Indexed: 12/22/2022] Open
Abstract
Picornaviruses are associated with acute and chronic diseases. The clinical manifestations of infections are often mild, but infections may also lead to respiratory symptoms, gastroenteritis, myocarditis, meningitis, hepatitis, and poliomyelitis, with serious impacts on human health and economic losses in animal husbandry. Thus far, research on picornaviruses has mainly focused on structural proteins such as VP1, whereas the non-structural protein 2B, which plays vital roles in the life cycle of the viruses and exhibits a viroporin or viroporin-like activity, has been overlooked. Viroporins are viral proteins containing at least one amphipathic α-helical structure, which oligomerizes to form transmembrane hydrophilic pores. In this review, we mainly summarize recent research data on the viroporin or viroporin-like activity of 2B proteins, which affects the biological function of the membrane, regulates cell death, and affects the host immune response. Considering these mechanisms, the potential application of the 2B protein as a candidate target for antiviral drug development is discussed, along with research challenges and prospects toward realizing a novel treatment strategy for picornavirus infections.
Collapse
Affiliation(s)
- Zengbin Li
- School of Public Health, Nanchang University, Nanchang 330006, China.
| | - Zixiao Zou
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang 330006, China.
| | - Zeju Jiang
- Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
| | - Xiaotian Huang
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang 330006, China.
| | - Qiong Liu
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
73
|
Wu G, Zhao T, Kang D, Zhang J, Song Y, Namasivayam V, Kongsted J, Pannecouque C, De Clercq E, Poongavanam V, Liu X, Zhan P. Overview of Recent Strategic Advances in Medicinal Chemistry. J Med Chem 2019; 62:9375-9414. [PMID: 31050421 DOI: 10.1021/acs.jmedchem.9b00359] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introducing novel strategies, concepts, and technologies that speed up drug discovery and the drug development cycle is of great importance both in the highly competitive pharmaceutical industry as well as in academia. This Perspective aims to present a "big-picture" overview of recent strategic innovations in medicinal chemistry and drug discovery.
Collapse
Affiliation(s)
- Gaochan Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Tong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Jian Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Yuning Song
- Department of Clinical Pharmacy , Qilu Hospital of Shandong University , 250012 Ji'nan , China
| | - Vigneshwaran Namasivayam
- Pharmaceutical Institute, Pharmaceutical Chemistry II , University of Bonn , 53121 Bonn , Germany
| | - Jacob Kongsted
- Department of Physics, Chemistry, and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , K.U. Leuven , Herestraat 49 Postbus 1043 (09.A097) , B-3000 Leuven , Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , K.U. Leuven , Herestraat 49 Postbus 1043 (09.A097) , B-3000 Leuven , Belgium
| | - Vasanthanathan Poongavanam
- Department of Physics, Chemistry, and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| |
Collapse
|