51
|
Li J, Jin J, Zou Y, Sun H, Zeng X, Huang X, Feng M, Kanatzidis MG. Efficient Removal of Cs + and Sr 2+ Ions by Granulous (Me 2NH 2) 4/3(Me 3NH) 2/3Sn 3S 7·1.25H 2O/Polyacrylonitrile Composite. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13434-13442. [PMID: 33705090 DOI: 10.1021/acsami.1c01983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The need to effectively and selectively remove radioactive 137Cs and 90Sr from nuclear waste solutions persists to mitigate their environmental mobility and high radiotoxicity. Because it is difficult to effectively remove them from acidic environments that degrade most sorbents, new sorbent materials are highly desirable. Here, efficient removal of Cs+ and Sr2+ is achieved by the composite of layered tin sulfide (Me2NH2)4/3(Me3NH)2/3Sn3S7·1.25H2O (FJSM-SnS) and polyacrylonitrile (PAN) (FJSM-SnS/PAN). The granulous composite possesses regular particle morphology and good mechanical strength as an engineered form. It shows excellent acid-base and γ-irradiation resistance, high maximum adsorption capacities (qm) of 296.12 and 62.88 mg/g for Cs+ and Sr2+ ions, respectively, and high selectivity even in the presence of excess Na+ ions or using lake water. Impressively, qmCs of FJSM-SnS/PAN reaches 89.29 mg/g under even acidic conditions (pH = 2.5). The column loaded with FJSM-SnS/PAN granules exhibits high removal rates (R) toward low-concentration Cs+ and Sr2+ ions under both neutral and acidic conditions. Moreover, the composite can be recycled and reused with high RCs and RSr. This work highlights the great potential of metal sulfide ion-exchangers in engineered form for the efficient removal of Cs+ or Sr2+ ions, especially under acidic conditions, for radionuclide remediation.
Collapse
Affiliation(s)
- Jilong Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Jiance Jin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yanmin Zou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Haiyan Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xi Zeng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xiaoying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Meiling Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Mercouri G Kanatzidis
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
52
|
Dong C, Qiao T, Huang Y, Yuan X, Lian J, Duan T, Zhu W, He R. Efficient Photocatalytic Extraction of Uranium over Ethylenediamine Capped Cadmium Sulfide Telluride Nanobelts. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11968-11976. [PMID: 33683098 DOI: 10.1021/acsami.0c22800] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The photocatalysts for hexavalent uranium (U(VI)) reduction suffered from the low uranium uptake capacity and weak long-wavelength light absorption. Herein, we synthesized the CdSxTe1-x nanobelts capped by ethylenediamine (EDA), which provided amino groups as the adsorption sites. With the increase of the Te content, the amino groups on the CdSxTe1-x nanobelts decreased because of the variation of the electron density of Cd2+, whereas the light adsorption was enhanced due to the narrowed bandgap. In photocatalytic reduction of U(VI), the CdS0.95Te0.05-EDA nanobelts exhibited a considerable U(VI) removal ratio of 97.4% with a remarkable equilibrium U(VI) extraction amount on per weight unit of the adsorbent (qe) of 836 mg/g. The bandgap structure and Fourier transform infrared spectroscopy (FT-IR) spectra analysis revealed that the optimum photocatalytic activity of CdSxTe1-x nanobelts was achieved at a 5% of Te2- doping, which balanced the factors of amino groups and bandgap. This adsorption-photoreduction process offers an ultrahigh uranium extraction capacity over wide uranium concentrations.
Collapse
Affiliation(s)
- Changxue Dong
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Institute of Military and Civilian Integration, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of Life Science and Engineering, Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Tiantao Qiao
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Institute of Military and Civilian Integration, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of Life Science and Engineering, Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yubin Huang
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Institute of Military and Civilian Integration, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of Life Science and Engineering, Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Xin Yuan
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Institute of Military and Civilian Integration, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of Life Science and Engineering, Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Jie Lian
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Institute of Military and Civilian Integration, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of Life Science and Engineering, Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Tao Duan
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Institute of Military and Civilian Integration, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of Life Science and Engineering, Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Institute of Military and Civilian Integration, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of Life Science and Engineering, Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Rong He
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Institute of Military and Civilian Integration, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of Life Science and Engineering, Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang, 621010, China
| |
Collapse
|
53
|
Yang G, Jiang X, Wu C, Lin Z, Huang Z, Humphrey MG, Zhang C. Facile syntheses of silver thioantimonates exhibiting second-harmonic generation responses and large birefringence. Dalton Trans 2021; 50:3568-3576. [PMID: 33605965 DOI: 10.1039/d0dt04043f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Two chalcogenide crystalline compounds, [enH2][Ag4Sb2S6] (en = ethylenediamine) and [enH][Ag2SbS3], have been successfully synthesized by mild ionothermal and solvothermal means. [enH][Ag2SbS3] crystallizes in the noncentrosymmetric (NCS) and polar space group Pc, and its linear and nonlinear optical (NLO) properties have been investigated for the first time. Second harmonic generation (SHG) measurements revealed that [enH][Ag2SbS3] affords powder SHG performance values of 2.5 × KDP @1064 nm and 0.2 × AgGaS2 @2100 nm. Additional particle size vs. SHG efficiency measurements indicate that [enH][Ag2SbS3] is phase-matchable. The calculated birefringence Δn is 0.177 at 1064 nm, which is sufficiently large (the largest value among NCS thioantimonates) to achieve phase matching. [enH2][Ag4Sb2S6] crystallizes in the centrosymmetric space group P21/c and its structure features a double-layered variant honeycomb-like anionic network parallel to the ac plane separated by [enH2]2+ cations. The optical band gaps of [enH2][Ag4Sb2S6] and [enH][Ag2SbS3] are found to be 2.37 and 2.53 eV, respectively. Theoretical studies using density functional theory have been implemented to further elucidate the relationship between the band structure and NLO properties in [enH][Ag2SbS3].
Collapse
Affiliation(s)
- Gang Yang
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China and School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China.
| | - Xingxing Jiang
- Key Lab of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chao Wu
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China.
| | - Zheshuai Lin
- Key Lab of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhipeng Huang
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China.
| | - Mark G Humphrey
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Chi Zhang
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China and School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China.
| |
Collapse
|
54
|
Wang H, Yao H, Chen L, Yu Z, Yang L, Li C, Shi K, Li C, Ma S. Highly efficient capture of uranium from seawater by layered double hydroxide composite with benzamidoxime. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143483. [PMID: 33229092 DOI: 10.1016/j.scitotenv.2020.143483] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/13/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
Through swelling/restoration reaction, benzamidoxime (BAO) is introduced into MgAl-LDH interlayers to assemble a new composite of MgAl-BAO-LDH (abbr. BAO-LDH). Wet samples of the BAO-LDH obtained by washing with diverse solvents are present in colloidal state, which facilitates the fabrication of thin film adsorbents convenient for actual application. After drying, the assembled sample exhibits floral morphology composed of thin nanosheets, much different from hexagonal morphology of NO3- intercalated MgAl-LDH precursor (NO3-LDH), demonstrating a phenomenon rarely found in swelling/restoration. The BAO-LDH depicts an extremely large maximum sorption capacity (qmU) of 327 mg·g-1 and ultra-high selectivity for U. At low U concentrations (5-10 ppm), nearly complete capture (~100%) is achieved in a wide pH range of 3-11, while at high U concentrations (110 ppm), quite high U removals (≥93.0%) are obtained at pH = 6-8, meaning perfect suitability for trapping U from seawater. For natural seawater containing trace amounts of U (3.93 ppb) coexisting with high concentration of competitive ions, the BAO-LDH displays significantly high U removal (87%). Complexation between interlayer BAO (N and O as ligands) with UO22+ and synergistic interactions of LDH layer hydroxyls with UO22+ contribute to the highly effective uranium capture. All results demonstrate the BAO-LDH is a promising adsorbent applied in seawater uranium extraction and nuclear wastewater disposal.
Collapse
Affiliation(s)
- Hui Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Huiqin Yao
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Lihong Chen
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zihuan Yu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lixiao Yang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Cheng Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Keren Shi
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Cuiqing Li
- Department of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Shulan Ma
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
55
|
Sun Q, Zhang S, Huang W, Wang R, Chen Z, Cai Z, Lin Z. 4-Mercaptobenzoic acid as a MALDI matrix for highly sensitive analysis of metals. Analyst 2021; 146:1543-1547. [PMID: 33565552 DOI: 10.1039/d1an00022e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
4-Mercaptobenzoic acid (MBA) is introduced as a matrix for laser desorption/ionization time-of-flight mass spectrometry (MS) analysis of metals, exhibiting matrix-interference-free background, greatly enhanced MS signal intensity, and excellent reproducibility. The developed method was successfully extended for the rapid screening and sensitive determination of ultratrace metals in fine particulate matter (PM2.5).
Collapse
Affiliation(s)
- Qianqian Sun
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Shasha Zhang
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Weini Huang
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Ran Wang
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Zihan Chen
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Zongwei Cai
- Partner State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong, SAR, P. R. China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
56
|
Li WA, Li JR, Zhang B, Sun HY, Jin JC, Huang XY, Feng ML. Layered Thiostannates with Distinct Arrangements of Mixed Cations for the Selective Capture of Cs +, Sr 2+, and Eu 3+ Ions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10191-10201. [PMID: 33595279 DOI: 10.1021/acsami.0c22690] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The selective capture of radioactive cesium, strontium, and lanthanides from liquid nuclear waste is of great significance to environmental remediation and human health. Herein, the rapid and selective removal of Cs+, Sr2+, and Eu3+ ions is achieved by two metal sulfides (FJSM-SnS-2 and FJSM-SnS-3). Both structures feature [Sn3S7]n2n- layers with the mixed cations of [CH3NH3]+ and [Bmmim]+ (1-butyl-2,3-dimethylimidazolium) as templates. However, the ratios and arrangements of mixed cations in the interlayered spaces are distinct. It is unprecedented that [CH3NH3]+ and [Bmmim]+ in FJSM-SnS-2 are alternatingly arranged in different interlayered spaces, whereas they in FJSM-SnS-3 are located in the same interlayered spaces. It is the first time that the ionic liquid cation and protonated organic amine have been simultaneously incorporated into metal sulfides. Both compounds show high capacities, rapid kinetics, and a wide pH active range for Cs+, Sr2+, and Eu3+. Even under excess Na+ ions, both show excellent selectivity in capturing trace Sr2+ and Eu3+ ions. FJSM-SnS-3 presents the highest KdEu to date. They still retain high removal efficiency even after intense β and γ radiation. Moreover, it is first confirmed by the in situ tracking method of mass spectrometry that the large-sized [Bmmim]+ ions are exchangeable. It is found that the arrangement of cations between interlayered spaces is a crucial factor affecting ion exchange performance. This work will likely change the consensus that large-sized organic cations are difficult to be exchanged and thus further highlight the great potential of metal sulfide ion exchangers for radionuclide remediation.
Collapse
Affiliation(s)
- Wei-An Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jian-Rong Li
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000, P. R. China
| | - Bo Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, P. R. China
| | - Hai-Yan Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jian-Ce Jin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiao-Ying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Mei-Ling Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
57
|
Zhou L, Xu M, Yin J, Shui R, Yang S, Hua D. Dual Ion-Imprinted Mesoporous Silica for Selective Adsorption of U(VI) and Cs(I) through Multiple Interactions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6322-6330. [PMID: 33508932 DOI: 10.1021/acsami.0c21207] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Separation of uranium and cesium from low-level radioactive effluents (LLRE) is of great significance for sustainable development of the nuclear industry and for the environment. However, high salinity and massive coexisting ions of LLRE are giant challenges for the separation. To address the challenges, we report a strategy for efficient and simultaneous separation of uranium and cesium from a high-salt environment by dual ion-imprinted mesoporous silica based on multiple interactions. The as-prepared adsorbents can reach equilibrium for uranium and cesium within 1 h with a maximum capacity of 221.7 mg U g-1 and 34.5 mg Cs g-1. The sorption mechanism demonstrates that the highly active phenolic hydroxyl groups of imprinted cavities can extract uranium and cesium effectively through multiple interactions, including coulomb attraction, redox, ion exchange, and complexation. The synergism of multiple interactions and imprinted cavity endows the sorbent with good selectivity for uranium and cesium over other cations and with excellent salt tolerance. This work demonstrates a new strategy of selective extraction of nuclides by multifunction adsorbent through multiple interactions.
Collapse
Affiliation(s)
- Lei Zhou
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) & College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Meiyun Xu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) & College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jia Yin
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) & College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Runjie Shui
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) & College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Sen Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) & College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Daoben Hua
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) & College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| |
Collapse
|
58
|
Liao YY, Li JR, Zhang B, Sun HY, Ma W, Jin JC, Feng ML, Huang XY. Robust and Flexible Thioantimonate Materials for Cs + Remediation with Distinctive Structural Transformation: A Clear Insight into the Ion-Exchange Mechanism. ACS APPLIED MATERIALS & INTERFACES 2021; 13:5275-5283. [PMID: 33496170 DOI: 10.1021/acsami.0c21756] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
It is imperative yet challenging to efficiently sequester the 137Cs+ ion from aqueous solutions because of its highly environmental mobility and extremely high radiotoxicity. The systematical clarification for underlying mechanism of Cs+ removal and elution at the molecular level is rare. Here, efficient Cs+ capture is achieved by a thioantimonate [MeNH3]3Sb9S15 (FJSM-SbS) with high capacity, fast kinetics, wide pH durability, excellent β and γ radiation resistances, and facile elution. The Cs+ removal is not significantly impacted by coexisting Na+, K+, Ca2+, Mg2+, and Sr2+ ions which is beneficial to the remediation of Cs+-contaminated real waters. Importantly, the mechanism is directly illuminated by revealing an unprecedented single-crystal to single-crystal structural transformation upon Cs+ uptake and elution processes. The superior Cs+ removal results from an unusual synergy from strong affinity of soft S2- with Cs+, easily exchangeable [MeNH3]+ cations, and the flexible and robust framework of FJSM-SbS with open windows as trappers.
Collapse
Affiliation(s)
- Yi-Yu Liao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jian-Rong Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Bo Zhang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, P.R. China
| | - Hai-Yan Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wen Ma
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jian-Ce Jin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Mei-Ling Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Fujian Province Joint Innovation Key Laboratory of Fuel and Materials in Clean Nuclear Energy System, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Xiao-Ying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Fujian Province Joint Innovation Key Laboratory of Fuel and Materials in Clean Nuclear Energy System, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| |
Collapse
|
59
|
Zhang M, Gu P, Yan S, Liu Y, Zhang G. Effective removal of radioactive cobalt from aqueous solution by a layered metal sulfide adsorbent: Mechanism, adsorption performance, and practical application. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117775] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
60
|
Jiang W, Peng D, Cui WR, Liang RP, Qiu JD. Charge-Enhanced Separation of Organic Pollutants in Water by Anionic Covalent Organic Frameworks. ACS OMEGA 2020; 5:32002-32010. [PMID: 33344854 PMCID: PMC7745399 DOI: 10.1021/acsomega.0c04904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
The effective removal of organic pollutants in wastewater is a key environmental challenge. In this work, an anionic covalent organic framework (named TpPa-SO3Na) was synthesized through a green two-in-one synthesis strategy with autocatalytic imine formation. The slowly generated acetic acid as a catalyst is favorable to sustain the reversibility of the covalent organic framework (COF) formation reaction and improve the crystallinity of TpPa-SO3Na. TpPa-SO3Na consists of a homogeneous distribution of sulfonate groups to produce negatively charged regular channels. The strong electrostatic and hydrogen-bonding interactions between the sulfonate groups anchored in the nanochannels and the amine groups in organic pollutants improve the adsorption selectivity and capacity. These structures allow a high degree of control over adsorption processes to boost the adsorption kinetics and improve selective separation. TpPa-SO3Na exhibits ultrafast adsorption (<1 min) of cationic antibiotics and dyes (average over 95%). Furthermore, TpPa-SO3Na exhibits high selectivity for the uptake of dye molecules on the basis of the differences in charge and molecular size. This work explored functional designs and green manufacturing of anionic COFs for removal of hydrophilic organic pollutants.
Collapse
Affiliation(s)
- Wei Jiang
- College
of Chemistry, Nanchang University, Nanchang 330031, China
- Nanchang
Institute for Food and Drug Control, Nanchang 330038, China
| | - Dong Peng
- College
of Chemistry, Nanchang University, Nanchang 330031, China
| | - Wei-Rong Cui
- College
of Chemistry, Nanchang University, Nanchang 330031, China
| | - Ru-Ping Liang
- College
of Chemistry, Nanchang University, Nanchang 330031, China
| | - Jian-Ding Qiu
- College
of Chemistry, Nanchang University, Nanchang 330031, China
- College
of Materials and Chemical Engineering, Pingxiang
University, Pingxiang 337055, China
| |
Collapse
|
61
|
Wang M, Liu Z, Zhou X, Xiao H, You Y, Huang W. Anthracene-Based Lanthanide Coordination Polymer: Structure, Luminescence, and Detections of UO22+, PO43–, and 2-Thiazolidinethione-4-carboxylic Acid in Water. Inorg Chem 2020; 59:18027-18034. [DOI: 10.1021/acs.inorgchem.0c02446] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ming Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Zhipeng Liu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Xinhui Zhou
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Hongping Xiao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yujian You
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Wei Huang
- Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
62
|
Cheng Y, bin Samsudin I, Jaenicke S, Chuah G. Ion‐exchange Properties of γ‐Zirconium Phosphate. Chem Asian J 2020; 15:3542-3550. [DOI: 10.1002/asia.202000893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 09/11/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Yu Cheng
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Ismail bin Samsudin
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Stephan Jaenicke
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Gaik‐Khuan Chuah
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| |
Collapse
|
63
|
A review on emerging composite materials for cesium adsorption and environmental remediation on the latest decade. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117340] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
64
|
Highly efficient removal of uranium(VI) from aqueous solution using poly(cyclotriphosphazene-co-polyethyleneimine) microspheres. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07455-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
65
|
Wu S, Wu Z, Wang XL, Wang X, Zhou R, Li DS, Wu T. Two new layered metal chalcogenide frameworks as photocatalysts for highly efficient and selective dye degradation. Dalton Trans 2020; 49:13276-13281. [PMID: 32936156 DOI: 10.1039/d0dt02454f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dye photodegradation is an important research topic, and great efforts have been made to target the photocatalysts with highly efficient and selective performance. Reported here are two layered anion chalcogenide frameworks with semiconducting properties combined with highly open interlayer spaces, which are used as efficient photocatalysts to show excellent size and charge selectivity towards organic dye molecules. In addition, the organic templates inside the chalcogenide frameworks are exchanged via an ion-exchange process, and the resulting host frameworks with much looser internal spaces play significant roles in improving the photocatalytic activity.
Collapse
Affiliation(s)
- Sijie Wu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China.
| | | | | | | | | | | | | |
Collapse
|
66
|
Sun M, Wang KY, Ding D, Zhu JY, Zhao YM, Cheng L, Wang C. Removal of Sr 2+ Ions by a High-Capacity Indium Sulfide Exchanger Containing Permeable Layers with Large Pores. Inorg Chem 2020; 59:13822-13826. [PMID: 32959655 DOI: 10.1021/acs.inorgchem.0c02113] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An ethylammonium-templated indium sulfide, [CH3CH2NH3]6In8S15 (InS-2), featuring anionic layers perforated with large, 24-membered rings that facilitate the accommodation of hydrated Sr2+ ions is reported. InS-2 exhibits an excellent adsorption performance toward Sr2+ with a top-ranked capacity (qm = 143.29 mg g-1), rapid kinetics, wide pH durability (3-14), β- and γ-radiation resistances, and a facile elution.
Collapse
Affiliation(s)
- Meng Sun
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Kai-Yao Wang
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Dong Ding
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Jia-Ying Zhu
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Yi-Ming Zhao
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Lin Cheng
- College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Cheng Wang
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| |
Collapse
|
67
|
Ding Y, Zhang J, Liu C, Wang XL, Wu Z, Wang X, Zhou R, Li DS, Wu T. Antimony-Assisted Assembly of Basic Supertetrahedral Clusters into Heterometallic Chalcogenide Supraclusters. Inorg Chem 2020; 59:13000-13004. [DOI: 10.1021/acs.inorgchem.0c02097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yayun Ding
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jiaxu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Chengdong Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiao-Li Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhou Wu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiang Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Rui Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Dong-Sheng Li
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Tao Wu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
68
|
Tachibana Y, Kalak T, Nogami M, Tanaka M. Combined use of tannic acid-type organic composite adsorbents and ozone for simultaneous removal of various kinds of radionuclides in river water. WATER RESEARCH 2020; 182:116032. [PMID: 32574820 DOI: 10.1016/j.watres.2020.116032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 05/25/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Tannic acid-type organic composite adsorbents (PA316TAS, AR-01TAS, PYRTAS, WA10TAS, WA20TAS, and WA30TAS), combined with hydrolyzed and sulfonated tannic acid (TAS) and porous-type strongly basic anion-exchange resin (PA316), benzimidazole-type anion-exchange resin embedded in high-porous silica beads (AR-01), pyridine-type anion-exchange resin (PYR), acrylic-type weakly basic anion-exchange resin (WA10), or styrene-type weakly basic anion-exchange resins (WA20 and WA30) for simultaneous removal of various kinds of radionuclides in river water were successfully synthesized. The adsorption behavior of twelve kinds of simulated radionuclides (Mn, Co, Sr, Y, Ru, Rh, Sb, Te, Cs, Ba, Eu, and I (I- and IO3-)) on these composite adsorbents has been studied in real river water at room temperature. PA316TAS adsorbents showed much higher distribution coefficients (Kd) for all metal ions. TAS structure has more selective adsorption ability for Mn, Co, Sr, Y, Cs, Ba, Eu, and IO3-. On the other hand, Y, Ru, Rh, Sb, Te, Eu, I (I- and IO3-) were adsorbed on both PA316 and TAS structures. To evaluate the validity of these mechanistic expectations, the respective chemical adsorption behaviors of Mn, Co, Sr, etc. and PA316TAS adsorbent were examined in river water ranging in temperature from 278 to 333 K. As was expected, one adsorption mechanism for Mn, Co, Sr, Cs, and Ba systems and two types of adsorption mechanisms for Y, Ru, Rh, Sb, Te, Eu, I (I- and IO3-) systems were observed. On the other hand, the precipitation of Mn, Co, Y, Ru, Rh, Te, and Eu was formed by ozonation for river water, that is, ozone can transform Mn, Co, Y, Ru, Rh, Te, and Eu ions into the insoluble precipitates. Hence, one straight line for Sr, Cs, Ba systems and two types of straight lines for Sb, I (I- and IO3-) systems were obtained in river water treated with ozone. The chromatography experiments of Cs, Sr, I (I- and IO3-) were carried out to calculate their maximum adsorption capacities. The obtained maximum adsorption capacities of Cs, Sr, and I- mixed with IO3- were 1.7 × 10-4 (Cs), 1.8 × 10-3 (Cs/O3), 7.8 × 10-5 (Sr), 5.6 × 10-4 (Sr/O3), 5.4 × 10-2 (I- and IO3-), 3.1 × 10-2 (I- and IO3-/O3) mol/g - PA316TAS. It was discovered that the maximum adsorption capacities of I- and IO3- for the composite adsorbent is unprecedented high and the capacity become much greater than an order of magnitude, compared with those of previous reports. This phenomenon suggests the formation of electron-donor-acceptor (EDA) complexes or pseudo EDA complex. Based on these results, it was concluded that the combined use of tannic acid-type organic composite adsorbents and ozone made it possible to remove simultaneously and effectively various kinds of radionuclides in river water in the wide pH and temperature ranges.
Collapse
Affiliation(s)
- Yu Tachibana
- Department of Nuclear System Safety Engineering, Graduate School of Engineering, Nagaoka University of Technology, 1603-1, Kamitomioka-machi, Nagaoka-shi, Niigata, 940-2188, Japan.
| | - Tomasz Kalak
- Department of Industrial Products and Packaging Quality, Institute of Quality Science, Poznań University of Economics and Business, Niepodległości 10, Poznań, 61-875, Poland
| | - Masanobu Nogami
- Department of Electric and Electronic Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka-shi, Osaka, 577-8502, Japan
| | - Masahiro Tanaka
- National Institute for Fusion Science, 322-6, Oroshi-cho, Toki-shi, Gifu, 509-5292, Japan
| |
Collapse
|
69
|
Yu JM, Cai T, Ma ZJ, Wang F, Wang H, Yu JP, Xiao LL, Cheng FF, Xiong WW. Using thiol-amine solvent mixture to prepare main group heterometallic chalcogenides. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
70
|
Li Y, Song X, Liu Y, Guo Y, Sun Y, Ji M, You Z, An Y. Syntheses, structures, and photocatalytic properties of open-framework Ag-Sn-S compounds. Dalton Trans 2020; 49:11708-11714. [PMID: 32789373 DOI: 10.1039/d0dt02513e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Four open-framework Ag-Sn-S compounds K2Ag2Sn2S6 (1); K2Ag2SnS4 (2); Rb2Ag2SnS4 (3); and Cs2Ag2SnS4 (4) have been synthesized using a solvothermal method. Compound 1 possesses a unique three-dimensional (3D) structure in which Ag+ ions are two-coordinated. Compounds 2-4 have the same layered structure in which Ag+ ions are tetrahedrally coordinated. Photocatalytic degradation properties of methylene blue have been investigated and compound 1 displays excellent photodegradation activities. The photoelectric response properties, optical properties, and theoretical calculations of these compounds have also been studied.
Collapse
Affiliation(s)
- Yanhua Li
- Department of Chemistry, Dalian University of Technology, Dalian 116024, PR China.
| | - Xuedan Song
- Department of Chemistry, Dalian University of Technology, Dalian 116024, PR China.
| | - Yan Liu
- Department of Chemistry, Dalian University of Technology, Dalian 116024, PR China.
| | - Yongkang Guo
- Department of Chemistry, Dalian University of Technology, Dalian 116024, PR China.
| | - Yu Sun
- Department of Chemistry, Dalian University of Technology, Dalian 116024, PR China.
| | - Min Ji
- Department of Chemistry, Dalian University of Technology, Dalian 116024, PR China.
| | - Zhonglu You
- Department of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, PR China.
| | - Yonglin An
- Department of Chemistry, Dalian University of Technology, Dalian 116024, PR China.
| |
Collapse
|
71
|
Ding D, Cheng L, Wang KY, Liu HW, Sun M, Wang C. Efficient Cs +-Sr 2+ Separation over a Microporous Silver Selenidostannate Synthesized in Deep Eutectic Solvent. Inorg Chem 2020; 59:9638-9647. [PMID: 32479064 DOI: 10.1021/acs.inorgchem.0c00770] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Efficient Cs+-Sr2+ separation, highly desirable for radionuclide recovery in medical and industrial applications, was achieved by the ion exchange technique over a novel microporous silver selenidostannate, [NH3CH3]0.5[NH2(CH3)2]0.25Ag1.25SnSe3 (AgSnSe-1). This material was synthesized in deep eutectic solvent (DES), where the alkylammonium cations play significant structure-directing roles in the construction of micropores that allow for selective ion exchange toward Cs+ against Sr2+. The much greater KdCs (1.06 × 104 mL g-1) over KdSr (87.7 mL g-1) contributes to an outstanding separation factor SFCs/Sr of ∼121.4 that is top-ranked among inorganic materials. An ion exchange column filled with AgSnSe-1 exhibits a remarkable separation effect for 10 000 bed volumes of continuous flow, with removal rates of ∼99.9% and ∼0 ± 5.5% for Cs+ and Sr2+, respectively. AgSnSe-1 exhibits excellent β and γ radiation resistances and a chemical stability over a broad pH range of 1-12. The Se leaching level below the safe guideline value for drinking water highlights the environmental-friendly nature of AgSnSe-1. The high Cs+ exchange performance is almost unaffected by Na+, Mg2+, and Ca2+ cations. The Cs+-laden product AgSnSe-1Cs can be facilely eluted for recycling use, highlighting the great potential of open framework metal selenides in nuclear waste treatment and renewable energy utilization.
Collapse
Affiliation(s)
- Dong Ding
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Lin Cheng
- College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Kai-Yao Wang
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Hua-Wei Liu
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Meng Sun
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Cheng Wang
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| |
Collapse
|
72
|
Kim Y, Eom HH, Kim YK, Harbottle D, Lee JW. Effective removal of cesium from wastewater via adsorptive filtration with potassium copper hexacyanoferrate-immobilized and polyethyleneimine-grafted graphene oxide. CHEMOSPHERE 2020; 250:126262. [PMID: 32114342 DOI: 10.1016/j.chemosphere.2020.126262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
As an attractive alternative to radioactive cesium removal, we introduced an adsorptive filtration method using a composite membrane consisting of potassium copper hexacyanoferrate (KCuHCF) and graphene-based support. Polyethyleneimine-grafted reduced graphene oxide (PEI-rGO), used as an immobilizing matrix, was effective not only in distributing KCuHCF inside the composite with the aid of abundant amino-functionality, but also in achieving high water flux by increasing the interlayer spacing of the laminar membrane structure. Due to the rapid and selective cesium adsorption properties of KCuHCF, the fabricated membrane was found to be effective in achieving complete removal of cesium ions under a high flux (over 500 L m-2 h-1), which is difficult in a conventional membrane utilizing the molecular sieving effect. This approach offers strong potential in the field of elimination of radionuclides that require rapid and complete decontamination.
Collapse
Affiliation(s)
- Yonghwan Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Ho Hyeon Eom
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yun Kon Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - David Harbottle
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Jae W Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
73
|
Klepov VV, Berseneva AA, Pace KA, Kocevski V, Sun M, Qiu P, Wang H, Chen F, Besmann TM, Loye H. NaGaS
2
: An Elusive Layered Compound with Dynamic Water Absorption and Wide‐Ranging Ion‐Exchange Properties. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Vladislav V. Klepov
- Department of Chemistry and Biochemistry University of South Carolina 631 Sumter St. Columbia SC 29208 USA
| | - Anna A. Berseneva
- Department of Chemistry and Biochemistry University of South Carolina 631 Sumter St. Columbia SC 29208 USA
| | - Kristen A. Pace
- Department of Chemistry and Biochemistry University of South Carolina 631 Sumter St. Columbia SC 29208 USA
| | - Vancho Kocevski
- Department of Mechanical Engineering University of South Carolina 300 Main St. Columbia SC 29208 USA
- Current address: MST-8 Los Alamos National Laboratory Los Alamos NM 87545 USA
| | - Mengqi Sun
- Department of Chemistry and Biochemistry University of South Carolina 631 Sumter St. Columbia SC 29208 USA
| | - Peng Qiu
- Department of Mechanical Engineering University of South Carolina 300 Main St. Columbia SC 29208 USA
| | - Hui Wang
- Department of Chemistry and Biochemistry University of South Carolina 631 Sumter St. Columbia SC 29208 USA
| | - Fanglin Chen
- Department of Mechanical Engineering University of South Carolina 300 Main St. Columbia SC 29208 USA
| | - Theodore M. Besmann
- Department of Mechanical Engineering University of South Carolina 300 Main St. Columbia SC 29208 USA
| | - Hans‐Conrad Loye
- Department of Chemistry and Biochemistry University of South Carolina 631 Sumter St. Columbia SC 29208 USA
| |
Collapse
|
74
|
Ma W, Hu B, Li JL, Zhang ZZ, Zeng X, Jin J, Li Z, Zheng ST, Feng ML, Huang XY. The Uptake of Hazardous Metal Ions into a High-Nuclearity Cluster-Based Compound with Structural Transformation and Proton Conduction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:26222-26231. [PMID: 32401005 DOI: 10.1021/acsami.0c06082] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The discovery of novel high-nuclearity oxo-clusters considerably promotes the development of cluster science. We report a high-nuclearity oxo-cluster-based compound with acid/alkali-resistance and radiation stabilities, namely, (H3O)7[Cd7Sb24O24(l-tta)9(l-Htta)3(H2O)6]·29H2O (FJSM-CA; l-H4tta = l-tartaric acid), which features a two-dimensionally anionic layer based on the largest Sb-oxo-clusters with 28-metal-ion-core [Cd4Sb24O24]. It is challenging to efficiently capture Sr2+, Ba2+ (analogue of 226Ra), and [UO2]2+ ions from aqueous solutions due to their high water solubility and environmental mobility, while it is unprecedented that a novel Sb-oxo-cluster-based framework material FJSM-CA can efficiently remove these hazardous ions accompanied with intriguing structural transformations. Especially, it shows fast ion-exchange abilities for Sr2+, Ba2+, and [UO2]2+ (reaches equilibrium within 2, 10, and 20 min, respectively) and high exchange capacity (121.91 mg/g), removal rate R (96%), and distribution coefficient KdU (2.46 × 104 mL/g) for uranium. Moreover, the underlying mechanism is clearly revealed, which is attributed to strong electrostatic interactions between exchanged cations and highly negative-charged frameworks and the strong affinity of (COO)- groups for these cations. Proton conduction of the pristine and Sr2+, Ba2+, [UO2]2+-loaded products was investigated. This work highlights the design of new oxo-cluster-based materials for radionuclide remediation and proton conduction performance.
Collapse
Affiliation(s)
- Wen Ma
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bing Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Ji-Long Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- College of Materials Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Zhi-Zhuan Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- College of Materials Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Xi Zeng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jiance Jin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhong Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P.R. China
| | - Shou-Tian Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P.R. China
| | - Mei-Ling Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Xiao-Ying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| |
Collapse
|
75
|
Chen S, Hu J, Guo Y, Deng T. Facile Synthesis of Porous Polymer Using Biomass Polyphenol Source for Highly Efficient Separation of Cs + from Aqueous Solution. Sci Rep 2020; 10:8221. [PMID: 32427956 PMCID: PMC7237466 DOI: 10.1038/s41598-020-65099-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/23/2020] [Indexed: 11/09/2022] Open
Abstract
In this work, a series of polyphenol porous polymers were derived from biomass polyphenols via a facile azo-coupling method. The structure and morphologies of the polymer were characterized by BET, TEM, SEM, XRD, TGA and FT-IR techniques. Batch experiments demonstrated their potentialities for adsorptive separation of Cs+ from aqueous solution. Among them, porous polymers prepared with gallic acid as starting material (GAPP) could adsorb Cs+ at wide pH value range effectively, and the optimal adsorption capacity was up to 163.6 mg/g, placing it at top material for Cs+ adsorption. GAPP exhibited significantly high adsorption performance toward Cs+ compared to Na+ and K+, making it possible in selective removal of Cs+ from ground water in presence of co-existing competitive ions. Moreover, the Cs-laden GAPP could be facilely eluted and reused in consecutive adsorption-desorption processes. As a result, we hope this work could provide ideas about the potential utilization of biomass polyphenol in environmental remediation.
Collapse
Affiliation(s)
- Shangqing Chen
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
| | - Jiayin Hu
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China.
| | - Yafei Guo
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
| | - Tianlong Deng
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China.
| |
Collapse
|
76
|
Luo HB, Ren Q, Liu Y, Zhang J, Ren XM. Proton Conduction of an Acid-Resistant Open-Framework Chalcogenidometalate Hybrid in Anhydrous versus Humid Environments. Inorg Chem 2020; 59:7283-7289. [PMID: 32374989 DOI: 10.1021/acs.inorgchem.0c00707] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Solid proton conductors are broadly applicable to various electrochemical devices; therefore, it is highly desirable to develop robust materials with high proton conductivity under both anhydrous and humid environments within a wide temperature range. In this work, we investigated the proton conducting properties of a 3D open-framework chalcogenidometalate hybrid, [CH3NH3]2[H3O]Ag5Sn4Se12·C2H5OH (1), which exhibited both anhydrous and water-assisted proton conduction. Importantly, the excellent thermal and chemical stabilities of hybrid 1 are superior to many MOF-based proton conducting materials. This present study proved to be a considerable advance based on open-framework chalcogenidometalates in the design of robust solid proton conducting materials that are capable of operating under humid and anhydrous environments in a wide temperature range.
Collapse
Affiliation(s)
- Hong-Bin Luo
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P.R. China.,Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032-8202, United States
| | - Qiu Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Yangyang Liu
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032-8202, United States
| | - Jin Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Xiao-Ming Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P.R. China.,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P.R. China
| |
Collapse
|
77
|
Klepov VV, Berseneva AA, Pace KA, Kocevski V, Sun M, Qiu P, Wang H, Chen F, Besmann TM, Loye H. NaGaS
2
: An Elusive Layered Compound with Dynamic Water Absorption and Wide‐Ranging Ion‐Exchange Properties. Angew Chem Int Ed Engl 2020; 59:10836-10841. [DOI: 10.1002/anie.202001203] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/20/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Vladislav V. Klepov
- Department of Chemistry and Biochemistry University of South Carolina 631 Sumter St. Columbia SC 29208 USA
| | - Anna A. Berseneva
- Department of Chemistry and Biochemistry University of South Carolina 631 Sumter St. Columbia SC 29208 USA
| | - Kristen A. Pace
- Department of Chemistry and Biochemistry University of South Carolina 631 Sumter St. Columbia SC 29208 USA
| | - Vancho Kocevski
- Department of Mechanical Engineering University of South Carolina 300 Main St. Columbia SC 29208 USA
- Current address: MST-8 Los Alamos National Laboratory Los Alamos NM 87545 USA
| | - Mengqi Sun
- Department of Chemistry and Biochemistry University of South Carolina 631 Sumter St. Columbia SC 29208 USA
| | - Peng Qiu
- Department of Mechanical Engineering University of South Carolina 300 Main St. Columbia SC 29208 USA
| | - Hui Wang
- Department of Chemistry and Biochemistry University of South Carolina 631 Sumter St. Columbia SC 29208 USA
| | - Fanglin Chen
- Department of Mechanical Engineering University of South Carolina 300 Main St. Columbia SC 29208 USA
| | - Theodore M. Besmann
- Department of Mechanical Engineering University of South Carolina 300 Main St. Columbia SC 29208 USA
| | - Hans‐Conrad Loye
- Department of Chemistry and Biochemistry University of South Carolina 631 Sumter St. Columbia SC 29208 USA
| |
Collapse
|
78
|
Wang F, Yang DD, Liao YY, Ma ZJ, Hu B, Wang YQ, Xiong WW, Huang XY. Synthesizing Crystalline Chalcogenidoarsenates in Thiol-Amine Solvent Mixtures. Inorg Chem 2020; 59:2337-2347. [PMID: 31999443 DOI: 10.1021/acs.inorgchem.9b03165] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thiol-amine solvent mixtures have been widely applied in the solution processing of binary chalcogenide thin films due to their excellent ability to dissolve various bulk binary chalcogenides. However, application of this solvent system in preparing new crystalline chalcogenidometalates has not been explored. In this work, by using a thiol-amine solvent mixture of n-butylamine (BA) and 1,2-ethanedithiol (EDT) as the reaction medium and protonated piperazine (pip) cation as the template, we synthesized a series of new chalcogenidoarsenates with structures ranging from discrete clusters to two-dimensional layers, namely, [pipH2][pipH][AsS4] (1), [pipH2][pipH][As(Se0.4S0.6)4] (2), [pipH2]2[pipH]2[In2AsIII2AsV2S13.3(S2)0.7] (3), [pipH2]2[pipH]2[In2AsIII2AsV2S10.2Se3.1(Se2)0.7] (4), [pipH2]0.5[AsS(S2)] (5), [pipH2]0.5[AsS2] (6), [pipH]2[AgAsS4] (7), [pipH2]1.5[GaAsIIIAsVS7] (8), and Cs2[pipH]2[InAs6S12]Cl (9). Particularly, compounds 3, 4, and 8 contain mixed-valent AsIII and AsV ions in their discrete clusters and one-dimensional chain. In addition, compound 5 could thermodynamically transform to compound 6 with increasing reaction temperature, which may be attributed to the thermodynamically unstable S-S species in the chains of 5. The BA-EDT solvent mixture was crucial to the synthesis of these compounds, since no title crystals can be prepared by replacing the BA-EDT solvent mixture with other conventional solvents or removing one component of the BA-EDT solvent mixture from the reaction system. Our research demonstrates that thiol-amine solvent systems could be promising reaction media for growing novel crystalline chalcogenidometalates.
Collapse
Affiliation(s)
- Fei Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P.R. China
| | - Dan-Dan Yang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P.R. China
| | - Yi-Yu Liao
- State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou , Fujian 350002 , P. R. China
| | - Zhong-Jie Ma
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P.R. China
| | - Bing Hu
- State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou , Fujian 350002 , P. R. China
| | - Yan-Qi Wang
- State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou , Fujian 350002 , P. R. China
| | - Wei-Wei Xiong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P.R. China
| | - Xiao-Ying Huang
- State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou , Fujian 350002 , P. R. China
| |
Collapse
|
79
|
Klepov VV, Pace KA, Breton LS, Kocevski V, Besmann TM, Zur Loye HC. Nearly Identical but Not Isotypic: Influence of Lanthanide Contraction on Cs 2NaLn(PS 4) 2 (Ln = La-Nd, Sm, and Gd-Ho). Inorg Chem 2020; 59:1905-1916. [PMID: 31965796 DOI: 10.1021/acs.inorgchem.9b03200] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effect of lanthanide contraction often results in topological and symmetry changes in compounds with the same compositions as a function of lanthanide cation size. Here we report on the first example of a lanthanide thiophosphate exhibiting a change in the lanthanide cation environment without any topological or symmetry change. A series of new lanthanide thiophosphates with mixed alkali cations were obtained via a flux crystal growth technique using a CsI flux. The obtained compounds Cs2NaLn(PS4)2 (Ln = La-Nd, Sm, and Gd-Ho) were grown as large single crystals (∼0.1-1 mm3) and characterized using single-crystal X-ray diffraction and magnetic susceptibility measurements. As we moved across the series, the structural studies revealed a change in the lanthanide coordination environment depending on the identity of the lanthanide. Although all compounds in the Cs2NaLn(PS4)2 series crystallize in the same space group and have the same Wyckoff atom positions, a slight change in size between Sm3+ and Gd3+ causes a subtle change in coordination number from 9 (for Ln = La-Sm) to 8 (for Ln = Gd-Ho), resulting in two distinct but virtually identical structure types. Ab initio calculations were performed, and the observed experimental trend was corroborated computationally. Magnetic measurements performed on the Cs2NaLn(PS4)2 (Ln = Ce, Pr, Nd, Gd, and Tb) compounds revealed paramagnetic behavior.
Collapse
|
80
|
Huang T, Song D, Yin LX, Zhang SW, Liu LF, Zhou L. Microwave irradiation assisted sodium hexametaphosphate modification on the alkali-activated blast furnace slag for enhancing immobilization of strontium. CHEMOSPHERE 2020; 241:125069. [PMID: 31614313 DOI: 10.1016/j.chemosphere.2019.125069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/01/2019] [Accepted: 10/06/2019] [Indexed: 06/10/2023]
Abstract
An inadvertent leakage of 90Sr into the environment can induce an easy accumulation in biosphere and cause a continuous radiation to the surrounding ecosystem. In this study, sodium hexametaphosphate (Na6O18P6) was employed to modify the blast furnace slags (BFS) to enhance the chemical stabilization of Sr2+ ions in the BFS-based cementitious materials. Microwave irradiation (MW) was used to further increase the binder activity of BFS samples and strengthened the mechanical strengths and durability of BFS-based blocks. A combination of experimental factors including the mass ratio of Na6O18P6 to BFS-Sr0.1 of 15%, the ratio of solid to liquid of 1:4 mg/L, the output power of 650 W, and the activation time of 3 min was most conductive to achieving an optimal microwave-irradiation process. Four extraction solutions were sorted by their leaching abilities following as MgSO4 solution > H2SO4 solution > CH3OOH solution > deionized (DI) water based on their leaching results. Compared with microwave irradiation, an addition of Na6O18P6 to BFS samples obtained a better compressive strength for BFS-based blocks. However, a microwave-irradiation treatment was more effective in improving the resistances of blocks to gamma irradiation and thermal-thaw changes. Exposing to gamma irradiation over 6 months and enduring to thermal-thaw tests over 15 cycles, the microwave-treated blocks only lost 3.29% and 2.23% of leaching removal efficiencies in deionized water, respectively. Microwave irradiation increased the mechanical strengths of BFS-based blocks and inhibited leaching of Sr2+ ions from matrices mainly by strengthening hydration reactions and Sr2+ encapsulation.
Collapse
Affiliation(s)
- Tao Huang
- School of Chemistry and Materials Engineering, Changshu Institute of Technology, No. 99, South 3rd Ring Road, Changshu, 215500, China; Suzhou Key Laboratory of Functional Ceramic Materials, Changshu Institute of Technology, Changshu, 215500, China; School of Chemical Engineering & Technology China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China.
| | - Dongping Song
- School of Chemistry and Materials Engineering, Changshu Institute of Technology, No. 99, South 3rd Ring Road, Changshu, 215500, China.
| | - Li-Xin Yin
- School of Economics and Management, Changshu Institute of Technology, No. 99, South 3rd Ring Road, Changshu, 215500, China.
| | - Shu-Wen Zhang
- Nuclear Resources Engineering College, University of South China, 421001, China
| | - Long-Fei Liu
- School of Chemistry and Materials Engineering, Changshu Institute of Technology, No. 99, South 3rd Ring Road, Changshu, 215500, China; Suzhou Key Laboratory of Functional Ceramic Materials, Changshu Institute of Technology, Changshu, 215500, China
| | - Lulu Zhou
- School of Chemistry and Materials Engineering, Changshu Institute of Technology, No. 99, South 3rd Ring Road, Changshu, 215500, China
| |
Collapse
|
81
|
Sun H, Liu Y, Lin J, Yue Z, Li W, Jin J, Sun Q, Ai Y, Feng M, Huang X. Highly Selective Recovery of Lanthanides by Using a Layered Vanadate with Acid and Radiation Resistance. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Haiyan Sun
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- College of Materials Science and EngineeringFujian Normal University Fuzhou Fujian 350007 P. R. China
| | - Yang Liu
- MOE Key Laboratory of Resources and Environmental System OptimizationCollege of Environmental Science and EngineeringNorth China Electric Power University Beijing 102206 P. R. China
| | - Jian Lin
- Shanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 P. R. China
| | - Zenghui Yue
- Shanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 P. R. China
| | - Weian Li
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Jiance Jin
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant ConversionInstitute of Urban EnvironmentChinese Academy of Sciences Xiamen 361021 P. R. China
| | - Yuejie Ai
- MOE Key Laboratory of Resources and Environmental System OptimizationCollege of Environmental Science and EngineeringNorth China Electric Power University Beijing 102206 P. R. China
| | - Meiling Feng
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Xiaoying Huang
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| |
Collapse
|
82
|
Sun H, Liu Y, Lin J, Yue Z, Li W, Jin J, Sun Q, Ai Y, Feng M, Huang X. Highly Selective Recovery of Lanthanides by Using a Layered Vanadate with Acid and Radiation Resistance. Angew Chem Int Ed Engl 2020; 59:1878-1883. [DOI: 10.1002/anie.201912040] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Haiyan Sun
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- College of Materials Science and EngineeringFujian Normal University Fuzhou Fujian 350007 P. R. China
| | - Yang Liu
- MOE Key Laboratory of Resources and Environmental System OptimizationCollege of Environmental Science and EngineeringNorth China Electric Power University Beijing 102206 P. R. China
| | - Jian Lin
- Shanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 P. R. China
| | - Zenghui Yue
- Shanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 P. R. China
| | - Weian Li
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Jiance Jin
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant ConversionInstitute of Urban EnvironmentChinese Academy of Sciences Xiamen 361021 P. R. China
| | - Yuejie Ai
- MOE Key Laboratory of Resources and Environmental System OptimizationCollege of Environmental Science and EngineeringNorth China Electric Power University Beijing 102206 P. R. China
| | - Meiling Feng
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Xiaoying Huang
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| |
Collapse
|
83
|
Xiong J, Fan Y, Luo F. Grafting functional groups in metal–organic frameworks for U(vi) sorption from aqueous solutions. Dalton Trans 2020; 49:12536-12545. [DOI: 10.1039/d0dt02088e] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent highlights of the organic groups-functionalized MOFs for uranium extraction from aqueous solution are discussed.
Collapse
Affiliation(s)
- Jianbo Xiong
- State Key Laboratory of Nuclear Resources and Environment
- School of Chemistry
- Biology and Materials Science
- East China University of Technology
- Nanchang 330013
| | - Yaling Fan
- State Key Laboratory of Nuclear Resources and Environment
- School of Chemistry
- Biology and Materials Science
- East China University of Technology
- Nanchang 330013
| | - Feng Luo
- State Key Laboratory of Nuclear Resources and Environment
- School of Chemistry
- Biology and Materials Science
- East China University of Technology
- Nanchang 330013
| |
Collapse
|
84
|
Wang KY, Sun M, Ding D, Liu HW, Cheng L, Wang C. Di-lacunary [In6S15]12− cluster: the building block of a highly negatively charged framework for superior Sr2+ adsorption capacities. Chem Commun (Camb) 2020; 56:3409-3412. [DOI: 10.1039/d0cc00441c] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Reported is the construction of a highly negatively charged layered material [CH3CH2NH3]6In6S12 (InS-1) by introducing a lacunary cluster as the building block. InS-1 exhibits an effective adsorption for Sr2+ ion with a high qm of 105.35 mg g−1.
Collapse
Affiliation(s)
- Kai-Yao Wang
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies
- School of Materials Science and Engineering
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
| | - Meng Sun
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies
- School of Materials Science and Engineering
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
| | - Dong Ding
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies
- School of Materials Science and Engineering
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
| | - Hua-Wei Liu
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies
- School of Materials Science and Engineering
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
| | - Lin Cheng
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| | - Cheng Wang
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies
- School of Materials Science and Engineering
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
| |
Collapse
|
85
|
Hsieh J, Chen JY, Li HY, Liu HK, Tu HL, Wang CM. A thio-functionalized zinc phosphite with a large-channel framework and enhanced removal ability of mercury ion from aqueous solutions. Dalton Trans 2020; 49:11085-11089. [DOI: 10.1039/d0dt02270e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New thio-functionalized zinc phosphite (NTOU-2S) exhibited the different structural properties and removal ability of Hg2+ cation from the sulfur-free NTOU-2.
Collapse
Affiliation(s)
- Jui Hsieh
- Department of Bioscience and Biotechnology
- Notional Taiwan Ocean University
- Keelung 202
- Taiwan
| | - Ju-Ying Chen
- Department of Bioscience and Biotechnology
- Notional Taiwan Ocean University
- Keelung 202
- Taiwan
| | - Han-Ying Li
- Department of Chemistry
- Notional Central University
- Jhongli
- Taiwan
| | - Hsin-Kuan Liu
- Department of Chemistry
- Notional Central University
- Jhongli
- Taiwan
| | - Hsiung-Lin Tu
- Institute of Chemistry
- Academia Sinica
- Taipei 11529
- Taiwan
| | - Chih-Min Wang
- Department of Bioscience and Biotechnology
- Notional Taiwan Ocean University
- Keelung 202
- Taiwan
| |
Collapse
|
86
|
Zhang B, Sun HY, Li J, Li LZ, Deng YL, Liu SH, Feng ML, Huang XY. Fast and Selective Removal of Aqueous Uranium by a K +-Activated Robust Zeolitic Sulfide with Wide pH Resistance. Inorg Chem 2019; 58:11622-11629. [PMID: 31411464 DOI: 10.1021/acs.inorgchem.9b01531] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For the nuclear industry, uranium is not only an important strategic resource but also a serious global contaminant with radiotoxicity and high chemotoxicity. It is very important to efficiently capture uranium from complex aqueous solutions for further treatment and disposal of nuclear wastes. Herein, we first demonstrate the suitability of a three-dimensional (3D) water-stable K+-exchanged zeolitic sulfide, namely K@GaSnS-1, for the remediation of radioactive and toxic uranium by ion exchange. In comparison to the pristine compound GaSnS-1, the K+-activated porous sulfide K@GaSnS-1 exhibits faster [UO2]2+ ion uptake kinetics, following the pseudo-second-order adsorption model. Further studies indicate that K@GaSnS-1 shows high exchange capacity (qmU = 147.6 mg/g) and wide pH resistance (pH 2.75-10.87). In particular, it can efficiently capture [UO2]2+ ion even when excessive amounts of Na+, K+, Mg2+, and Ca2+ ions are present. The highest distribution coefficient value Kd, signifying the affinity and selectivity for [UO2]2+ ion, reaches as high as 1.24 × 104 mL/g. More importantly, the uranium in corresponding exchanged samples can be facilely and effectively eluted by a low-cost and eco-friendly method. These merits of K@GaSnS-1 make it promising for the effective and selective removal of uranium from complex contaminated water.
Collapse
Affiliation(s)
- Bo Zhang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory and Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology , Liaocheng University , Liaocheng , Shandong 252059 , People's Republic of China.,State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou , Fujian 350002 , People's Republic of China
| | - Hai-Yan Sun
- State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou , Fujian 350002 , People's Republic of China
| | - Jun Li
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory and Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology , Liaocheng University , Liaocheng , Shandong 252059 , People's Republic of China.,State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou , Fujian 350002 , People's Republic of China
| | - Lian-Zhi Li
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory and Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology , Liaocheng University , Liaocheng , Shandong 252059 , People's Republic of China
| | - Yan-Li Deng
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory and Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology , Liaocheng University , Liaocheng , Shandong 252059 , People's Republic of China
| | - Shu-Hua Liu
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory and Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology , Liaocheng University , Liaocheng , Shandong 252059 , People's Republic of China
| | - Mei-Ling Feng
- State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou , Fujian 350002 , People's Republic of China
| | - Xiao-Ying Huang
- State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou , Fujian 350002 , People's Republic of China
| |
Collapse
|
87
|
Xiong XH, Yu ZW, Gong LL, Tao Y, Gao Z, Wang L, Yin WH, Yang LX, Luo F. Ammoniating Covalent Organic Framework (COF) for High-Performance and Selective Extraction of Toxic and Radioactive Uranium Ions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900547. [PMID: 31453066 PMCID: PMC6702651 DOI: 10.1002/advs.201900547] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/18/2019] [Indexed: 05/22/2023]
Abstract
An ideal porous adsorbent toward uranium with not only large adsorption capacity and high selectivity but also broad applicability even under rigorous conditions is highly desirable but still extremely scarce. In this work, a porous adsorbent, namely [NH4]+[COF-SO3 -], prepared by ammoniating a SO3H-decorated covalent organic framework (COF) enables remarkable performance for uranium extraction. Relative to the pristine SO3H-decorated COF (COF-SO3H) with uranium adsorption capacity of 360 mg g-1, the ammoniated counterpart of [NH4]+[COF-SO3 -] affords ultrahigh uranium uptake up to 851 mg g-1, creating a 2.4-fold enhancement. Such a value is the highest among all reported porous adsorbents for uranium. Most importantly, a large distribution coefficient, K d U, up to 9.8 × 106 mL g-1 is observed, implying extremely strong affinity toward uranium. Consequently, [NH4]+[COF-SO3 -] affords highly selective adsorption of uranium over a broad range of metal ions such as SU/Cs = 821, SU/Na = 277, and SU/Sr = 124, making it as effective uranium adsorbent from seawater, resulting in amazing uranium adsorption capacity of 17.8 mg g-1. Moreover, its excellent chemostability also make it an effective uranium adsorbent even under rigorous conditions (pH = 1, 8, and 3 m acidity).
Collapse
Affiliation(s)
- Xiao Hong Xiong
- State Key Laboratory of Nuclear Resources and EnvironmentSchool of Chemistry, Biology and Materials ScienceEast China University of TechnologyNanchang330013P. R. China
| | - Zhi Wu Yu
- High Magnetic Field LaboratoryChinese Academy of SciencesHefei230031AnhuiP. R. China
| | - Le Le Gong
- State Key Laboratory of Nuclear Resources and EnvironmentSchool of Chemistry, Biology and Materials ScienceEast China University of TechnologyNanchang330013P. R. China
| | - Yuan Tao
- State Key Laboratory of Nuclear Resources and EnvironmentSchool of Chemistry, Biology and Materials ScienceEast China University of TechnologyNanchang330013P. R. China
| | - Zhi Gao
- State Key Laboratory of Nuclear Resources and EnvironmentSchool of Chemistry, Biology and Materials ScienceEast China University of TechnologyNanchang330013P. R. China
| | - Li Wang
- State Key Laboratory of Nuclear Resources and EnvironmentSchool of Chemistry, Biology and Materials ScienceEast China University of TechnologyNanchang330013P. R. China
| | - Wen Hui Yin
- State Key Laboratory of Nuclear Resources and EnvironmentSchool of Chemistry, Biology and Materials ScienceEast China University of TechnologyNanchang330013P. R. China
| | - Li Xiao Yang
- State Key Laboratory of Nuclear Resources and EnvironmentSchool of Chemistry, Biology and Materials ScienceEast China University of TechnologyNanchang330013P. R. China
| | - Feng Luo
- State Key Laboratory of Nuclear Resources and EnvironmentSchool of Chemistry, Biology and Materials ScienceEast China University of TechnologyNanchang330013P. R. China
| |
Collapse
|
88
|
Liang C, Jia M, Wang X, Du Z, Men J, Ding H. Preparation of potassium niobium sulfide and its selective adsorption properties for Sr2+ and Co2+. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06685-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
89
|
Wang KY, Ding D, Sun M, Cheng L, Wang C. Effective and Rapid Adsorption of Sr2+ Ions by a Hydrated Pentasodium Cluster Templated Zinc Thiostannate. Inorg Chem 2019; 58:10184-10193. [DOI: 10.1021/acs.inorgchem.9b01302] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Kai-Yao Wang
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Dong Ding
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Meng Sun
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Lin Cheng
- College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Cheng Wang
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| |
Collapse
|
90
|
Wang H, Sun Y, Chu J, Wang X, Zhang M. Intensive study on structure transformation of muscovite single crystal under high-dose γ-ray irradiation and mechanism speculation. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190594. [PMID: 31417756 PMCID: PMC6689601 DOI: 10.1098/rsos.190594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/12/2019] [Indexed: 05/10/2023]
Abstract
Intensive study on structure transformation of muscovite single crystal under high-dose γ-ray irradiation is essential for its use in irradiation detection and also beneficial for mechanism cognition on defect formation within a matrix of clay used in the disposal of high-level radioactive waste (HLRW). In this work, muscovite single crystal was irradiated with Co-60 γ ray in air at a dose rate of 54 Gy min-1 with doses of 0-1000 kGy. Then, structure transformation and mechanism were explored by Raman spectrum, Fourier-transform infrared spectrum, X-ray diffraction, thermogravimetric analysis, CA, scanning electron microscope and atomic force microscopy. The main results show that variations in the chemical/crystalline structure are dose-dependent. Low-dose irradiation sufficiently destroyed the structure, removing Si-OH, thus declining hydrophilicity. With dose increase up to 100 kGy, CA increased from 20° to 40°. Except for hydrophilicity variation, shrink occurred in the (004) lattice plane which later recovered; the variation range at 500 kGy irradiation was 0.5% close to 0.02 Å. The main mechanisms involved were framework break and H2O radiolysis. Framework break results in Si-OH removal and H2O radiolysis results in extra OH introduction. The extra introduced OH probably results in Si-OH bond regeneration, lattice plane shrink and recovered surface hydrophilicity. The importance of framework break and H2O radiolysis on structure transformation is dose-dependence. At low doses, framework break seems more important while at high doses H2O radiolysis is important. Generally, variations in the chemical structure and surface property are nonlinear and less at high doses. This indicates using the chemical structure or surface property variation to describe irradiation is correct at low doses but not at high doses. This finding is meaningful for realizing whether muscovite is suitable for detecting high-dose irradiation or not, and mechanism exploration is efficient for identifying the procedure for defect formation within the matrix of clay used in disposal HLRW in practice.
Collapse
Affiliation(s)
| | | | | | | | - Ming Zhang
- Authors for correspondence: Ming Zhang e-mail:
| |
Collapse
|
91
|
Liu HW, Wang KY, Ding D, Sun M, Cheng L, Wang C. Deep eutectic solvothermal synthesis of an open framework copper selenidogermanate with pH-resistant Cs+ ion exchange properties. Chem Commun (Camb) 2019; 55:13884-13887. [DOI: 10.1039/c9cc06906b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Reported here is the deep eutectic solvothermal synthesis of an open framework copper selenidogermanate [NH3CH3]0.75Cu1.25GeSe3 (CuGeSe-1), which shows a pH-resistant Cs+ ion exchange performance (qm = 225.3 mg g−1).
Collapse
Affiliation(s)
- Hua-Wei Liu
- Tianjin Key Laboratory of Advanced Functional Porous Materials
- Institute for New Energy Materials and Low-Carbon Technologies
- School of Materials Science and Engineering
- Tianjin University of Technology
- Tianjin 300384
| | - Kai-Yao Wang
- Tianjin Key Laboratory of Advanced Functional Porous Materials
- Institute for New Energy Materials and Low-Carbon Technologies
- School of Materials Science and Engineering
- Tianjin University of Technology
- Tianjin 300384
| | - Dong Ding
- Tianjin Key Laboratory of Advanced Functional Porous Materials
- Institute for New Energy Materials and Low-Carbon Technologies
- School of Materials Science and Engineering
- Tianjin University of Technology
- Tianjin 300384
| | - Meng Sun
- Tianjin Key Laboratory of Advanced Functional Porous Materials
- Institute for New Energy Materials and Low-Carbon Technologies
- School of Materials Science and Engineering
- Tianjin University of Technology
- Tianjin 300384
| | - Lin Cheng
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| | - Cheng Wang
- Tianjin Key Laboratory of Advanced Functional Porous Materials
- Institute for New Energy Materials and Low-Carbon Technologies
- School of Materials Science and Engineering
- Tianjin University of Technology
- Tianjin 300384
| |
Collapse
|