51
|
Xu H, Wang Y, Zhang J, Duan X, Zhang T, Cai X, Ha H, Byun Y, Fan Y, Yang Z, Wang Y, Liu Z, Yang X. A self-triggered radioligand therapy agent for fluorescence imaging of the treatment response in prostate cancer. Eur J Nucl Med Mol Imaging 2022; 49:2693-2704. [PMID: 35235005 DOI: 10.1007/s00259-022-05743-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/20/2022] [Indexed: 12/18/2022]
Abstract
PURPOSE Radioligand therapy (RLT) targeting prostate-specific membrane antigen (PSMA) is emerging as an effective treatment option for metastatic castration-resistant prostate cancer (mCRPC). An imaging-based method to quantify early treatment responses can help to understand and optimize RLT. METHODS We developed a self-triggered probe 2 targeting the colocalization of PSMA and caspase-3 for fluorescence imaging of RLT-induced apoptosis. RESULTS The probe binds to PSMA potently with a Ki of 4.12 nM, and its fluorescence can be effectively switched on by caspase-3 with a Km of 67.62 μM. Cellular and in vivo studies demonstrated its specificity for imaging radiation-induced caspase-3 upregulation in prostate cancer. To identify the detection limit of our method, we showed that probe 2 could achieve 1.79 times fluorescence enhancement in response to 177Lu-RLT in a medium PSMA-expressing 22Rv1 xenograft model. CONCLUSION Probe 2 can potently bind to PSMA, and the fluorescence signal can be sensitively switched on by caspase-3 both in vitro and in vivo. This method may provide an effective tool to investigate and optimize PSMA-RLT.
Collapse
Affiliation(s)
- Hongchuang Xu
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Yanpu Wang
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jingming Zhang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Xiaojiang Duan
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Ting Zhang
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xuekang Cai
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Hyunsoo Ha
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 30019, South Korea
| | - Youngjoo Byun
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 30019, South Korea
| | - Yan Fan
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China.,NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Beijing, 100142, China
| | - Yiguang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Zhaofei Liu
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China. .,NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Beijing, 100142, China.
| | - Xing Yang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, China. .,NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Beijing, 100142, China. .,Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
52
|
Qiu Z, Zhang C, Zhang L, Wang S, Hu S, Zhao S. Precise in Vivo Inflammation Imaging in the NIR-II Window Using 1065 nm Photoacoustic Probe for in Situ Visual Monitoring of Pathological Processes Related to Hepatitis. ACS Sens 2022; 7:641-648. [PMID: 35175041 DOI: 10.1021/acssensors.1c02632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interaction between light and biological tissues in the second near-infrared (NIR-II) window is weak, which can effectively reduce the scattering and absorption of incoming light by biological tissues and enhance the resolution and sensing ability of in vivo photoacoustic (PA) imaging. In particular, tissues that carry blood and water produce the lowest PA background in the wavelength range of 1050 to 1150 nm. However, the development of the NIR-II PA probe for the above window faces great challenges. To tackle this challenge, the reduction-reoxidation of an organic dye was used to develop a PA imaging probe (Hydro-1048) as the first NIR-II PA probe of a hydroxy radical (·OH) for molecular imaging in deep tissue. The ·OH oxidized the C-N single bond in Hydro-1048 to double bonds, which formed Et-1065. This conversion extended the conjugate system of the molecule and shifted the absorption peak from 520 to 1065 nm, which resulted in a strong PA signal after irradiation with a 1065 nm laser. At a detection limit of 0.6 nM, a good linear relationship within the range of 5-1000 nM was obtained for the PA signal intensity versus the concentration of ·OH. The developed NIR-II PA probe can be used for the noninvasive high-resolution imaging of ·OH in deep tissue, and the PA imaging of ·OH can also be used to visually monitor in situ pathological processes related to hepatitis.
Collapse
Affiliation(s)
- Zhidong Qiu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Chaobang Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Liangliang Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shulong Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shengqiang Hu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
53
|
Qin Z, Ren TB, Zhou H, Zhang X, He L, Li Z, Zhang XB, Yuan L. NIRII‐HDs: A Versatile Platform for Developing Activatable NIR‐II Fluorogenic Probes for Reliable In Vivo Analyte Sensing. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | | | - Long He
- Hunan University Chemistry CHINA
| | - Zhe Li
- Hunan University Chemistry CHINA
| | | | - Lin Yuan
- Hunan University College of Chemistry and Chemical Engineering NO372, Lushan Rd. Yuelu District. 410082 Changsha CHINA
| |
Collapse
|
54
|
Li Z, Cheng J, Huang P, Song W, Nong L, Huang L, Lin W. Imaging and Detection of Hepatocellular Carcinoma with a Hepatocyte-Specific Fluorescent Probe. Anal Chem 2022; 94:3386-3393. [PMID: 35143161 DOI: 10.1021/acs.analchem.1c05540] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hepatocellular carcinoma is a highly invasive malignant tumor of the liver, which is the main cause of cancer-related death. The cancerization of hepatocytes may lead to the changes of cell microenvironment, active substances, and enzymes. Viscosity is one of the important parameters of cell microenvironment. Therefore, the study of the change in the viscosity of hepatocytes is very important for the detection and treatment of liver cancer. However, the hepatocyte-specific fluorescent probes which can detect viscosity have not been developed yet. Herein, the first hepatocyte-specific fluorescent probe (HT-V) for viscosity detection was designed and synthesized, which exhibited excellent optical properties for biological imaging studies. By using the unique probe HT-V, compared with the normal liver cells, a significant increase of viscosity in the liver cancer cells was observed in the cell imaging experiment. The organ imaging experiments showed that the probe HT-V could be successfully used to diagnose and image hepatocellular carcinoma in vivo. In addition, in situ imaging revealed that the new probe HT-V can specifically target and image hepatocellular carcinoma in mice. We expected that this powerful tool may provide guidance for the detection and imaging of hepatocellular carcinoma in the future.
Collapse
Affiliation(s)
- Zihong Li
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Jie Cheng
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Ping Huang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Wenhui Song
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Li Nong
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Ling Huang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Weiying Lin
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
55
|
Li M, Liu J, Chen X, Dang Y, Shao Y, Xu Z, Zhang W. An activatable and tumor-targeting NIR fluorescent probe for imaging of histone deacetylase 6 in cancer cells and in vivo. Chem Commun (Camb) 2022; 58:1938-1941. [PMID: 35043795 DOI: 10.1039/d1cc04640c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An activatable and tumor-targeting near-infrared (NIR) fluorescent probe CyAc-RGD was synthesized for the imaging of histone deacetylase 6 (HDAC6). The probe exhibited higher sensitivity and specificity for HDAC6 detection in cancer cells. Moreover, CyAc-RGD demonstrated good tumor-targeting ability and realized HDAC6 imaging in vivo.
Collapse
Affiliation(s)
- Min Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China.
| | - Jin Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China.
| | - Xuefei Chen
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China.
| | - Yijing Dang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China.
| | - Yong Shao
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China.
| | - Wen Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
56
|
Conjugated polymer nanoparticles and their nanohybrids as smart photoluminescent and photoresponsive material for biosensing, imaging, and theranostics. Mikrochim Acta 2022; 189:83. [PMID: 35118576 DOI: 10.1007/s00604-021-05153-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023]
Abstract
The emergence of conjugated polymers (CPs) has provided a pathway to attain smart multifunctional conjugated polymer nanoparticles (CPNs) with enhanced properties and diverse applications. CPNs based on π-extended CPs exhibit high fluorescence brightness, low cytotoxicity, excellent photostability, reactive oxygen species (ROS) generation ability, high photothermal conversion efficiency (PCE), etc. which endorse them as an excellent theranostic tool. Furthermore, the unique light-harvesting and energy transfer properties of CPNs enables their transformation into smart functional nanohybrids with augmented performance. Owing to such numerous features, simple preparation method and an easy separation process, the CPNs and their hybrids have been constantly rising as a frontrunner in the domain of medicine and much work has been done in the respective research area. This review summarizes the recent progress that has been made in the field of CPNs for biological and biomedical applications with special emphasis on biosensing, imaging, and theranostics. Following an introduction into the field, a first large section provides overview of the conventional as well as recently established synthetic methods for various types of CPNs. Then, the CPNs-based fluorometric assays for biomolecules based on different detection strategies have been described. Later on, examples of CPNs-based probes for imaging, both in vitro and in vivo using cancer cells and animal models have been explored. The next section highlighted the vital theranostic applications of CPNs and corresponding nanohybrids, mainly via imaging-guided photodynamic therapy (PDT), photothermal therapy (PTT) and drug delivery. The last section summarizes the current challenges and gives an outlook on the potential future trends on CPNs as advanced healthcare material.
Collapse
|
57
|
Yang Y, Zhang F. Molecular fluorophores for in vivo bioimaging in the second near-infrared window. Eur J Nucl Med Mol Imaging 2022; 49:3226-3246. [PMID: 35088125 DOI: 10.1007/s00259-022-05688-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/11/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE This systematic review aims to summarize the current developments of fluorescence and chemi/bioluminescence imaging based on the molecular fluorophores for in vivo imaging in the second near-infrared window. METHODS AND RESULTS By investigating most of the relevant references on the web of science and some journals, this review firstly begins with an overview of the background of fluorescence and chemi/bioluminescence imaging. Secondly, the chemical and optical properties of NIR-II dyes are discussed, such as water solubility, chemostability and photo-stability, and brightness. Thirdly, the bioimaging based on NIR-II fluorescence emission is outlined, including the in vivo imaging of polymethine dyes, donor - acceptor - donor (D - A - D) chromophores, and lanthanide complexes. Fourthly, we demonstrate the chemi/bioluminescence in vivo imaging in the second near-infrared window. Fifthly, the clinical application and translation of near-infrared fluorescence imaging are presented. Finally, the current challenges, feasible strategies and potential prospects of the fluorophores and in vivo bioimaging are discussed. CONCLUSIONS Based on the above literature research on the applications of molecular fluorescent and chemi/bioluminescent probes in the second near-infrared window in recent years, this review weighs the advantages and disadvantages of fluorescence and chemi/bioluminescence imaging, and NIR-II fluorophores based on polymethine dyes, D - A - D chromophores, and lanthanide complexes. Besides, this review also provides a very important guidance for expanding the imaging applications of molecular fluorophores in the second near-infrared window.
Collapse
Affiliation(s)
- Yanling Yang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
58
|
Wang Y, Bian Y, Chen X, Su D. Chemiluminescent Probes Based on 1,2-dioxetane Structures For Bioimaging. Chem Asian J 2022; 17:e202200018. [PMID: 35088544 DOI: 10.1002/asia.202200018] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/26/2022] [Indexed: 11/06/2022]
Abstract
Chemiluminescent probes based on 1,2-dioxetane scaffold are one of the most sensitive imaging modalities for detecting disease-related biomarkers and can obtain more accurate biological information in cells and in vivo . Due to the elimination of external light excitation, the background autofluorescence problem in fluorescence technology can be effectively avoided, providing ultra-high sensitivity and signal-to-noise ratio for various applications. In this minireview, we highlight a comprehensive but concise overview of activatable 1,2-dioetxane-based chemiluminescent probes by reporting significant advances in accurate detection and bioimaging. The design principles and applications for reactive species, enzymes, and other disease-related biomarkers are systematically discussed and summarized. The challenges and potential prospects of chemiluminescent probes are also discussed to further promote the development of new chemiluminescence methods for biological analysis and diagnosis.
Collapse
Affiliation(s)
- Yaling Wang
- Beijing University of Technology, Department of chemistry and biology, CHINA
| | - Yongning Bian
- Beijing University of Technology, Department of chemistry and biology, CHINA
| | - Xueqian Chen
- Beijing University of Technology, Department of chemistry and biology, CHINA
| | - Dongdong Su
- Beijing University of Technology, Department of Chemistry and Chemical Engineering, 100 Pingleyuan, Chaoyang District, 100124, Beijing, CHINA
| |
Collapse
|
59
|
Fan XP, Yang W, Ren TB, Xu S, Gong XY, Zhang XB, Yuan L. Engineering a Ratiometric Photoacoustic Probe with a Hepatocyte-Specific Targeting Ability for Liver Injury Imaging. Anal Chem 2022; 94:1474-1481. [DOI: 10.1021/acs.analchem.1c05026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xiao-Peng Fan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Wen Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Shuai Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiang-Yang Gong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
60
|
Ouyang J, Sun L, Zeng F, Wu S. Rational design of stable heptamethine cyanines and development of a biomarker-activatable probe for detecting acute lung/kidney injuries via NIR-II fluorescence imaging. Analyst 2022; 147:410-416. [DOI: 10.1039/d1an02183d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Heptamethine cyanines exhibiting high photo- and chemostability have been developed. And an activatable probe was developed for H2O2 to visualize acute lung and kidney injuries via NIR-II fluorescence imaging.
Collapse
Affiliation(s)
- Juan Ouyang
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Lihe Sun
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Fang Zeng
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shuizhu Wu
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
61
|
Wang B, Chen Z, Cen X, Liang Y, Tan L, Liang E, Zheng L, Zheng Y, Zhan Z, Cheng K. Highly Selective and Sensitive Chemiluminescent Probe for Leucine Aminopeptidase Detection in Vitro, in Vivo and in human Liver Cancer Tissue. Chem Sci 2022; 13:2324-2330. [PMID: 35310505 PMCID: PMC8864696 DOI: 10.1039/d1sc06528a] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/17/2022] [Indexed: 12/24/2022] Open
Abstract
Leucine aminopeptidase (LAP) is involved in tumor cell proliferation, invasion, and angiogenesis, and is a well-known tumor marker. In recent years, chemiluminescence has been widely used in the field of biological imaging, due to it resulting in a high sensitivity and excellent signal-to-noise ratio. Here, we report the design, synthesis, and evaluation of the first LAP-activated chemiluminescent probe for LAP detection and imaging. The probe initially had no chemiluminescence but produced an extremely strong chemiluminescence after the release of the dioxetane intermediate in the presence of LAP. The probe had high selectivity over other proteases and higher signal-to-noise ratios than commercial fluorophores. Real-time imaging results indicated that the chemiluminescence was remarkably enhanced at the mice tumor site after the probe was injected. Furthermore, the chemiluminescence of this probe in the cancerous tissues of patients was obviously improved compared to that of normal tissues. Taken together, this study has developed the first LAP-activable chemiluminescent probe, which could be potentially used in protein detection, disease diagnosis, and drug development. The first chemiluminescent probe for the detection of LAP is described. It shows a highly selective, sensitive and rapid chemiluminescence response for the detection of LAP in vitro and in vivo, and enables the differentiation of liver cancer.![]()
Collapse
Affiliation(s)
- Baoqu Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University Guangzhou 510515 Guangdong Province People's Republic of China
| | - Zhenzhou Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University Guangzhou 510515 Guangdong Province People's Republic of China
| | - Xiaohong Cen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University Guangzhou 510515 Guangdong Province People's Republic of China
| | - Yuqing Liang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University Guangzhou 510515 Guangdong Province People's Republic of China
| | - Liyi Tan
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University Guangzhou 510515 Guangdong Province People's Republic of China
| | - En Liang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University Guangzhou 510515 Guangdong Province People's Republic of China
| | - Lu Zheng
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University Guangzhou 510515 Guangdong Province People's Republic of China
| | - Yanjun Zheng
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University Guangzhou 510515 Guangdong Province People's Republic of China
| | - Zhikun Zhan
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University Guangzhou 510515 Guangdong Province People's Republic of China
| | - Kui Cheng
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University Guangzhou 510515 Guangdong Province People's Republic of China
- Department of Musculoskeletal Oncology, The Third Affiliated Hospital of Southern Medical University Guangzhou 510642 Guangdong Province People's Republic of China
| |
Collapse
|
62
|
Liu B, Li J, Zhou P, Pan W, Li N, Tang B. Real-Time In Situ Sequential Fluorescence Activation Imaging of Cyt c and Caspase-9 with a Gold-Selenium-Bonded Nanoprobe. Anal Chem 2021; 93:16880-16886. [PMID: 34886667 DOI: 10.1021/acs.analchem.1c03872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Apoptosis, as a very important mode of programmed death, is closely associated with many diseases. Real-time in situ monitoring of the dynamic change of the apoptotic process remains a great challenge. Herein, a nanoprobe based on the gold-selenium (Au-Se) bond was developed for a sequential fluorescence activation imaging of cytochrome c (Cyt c) and caspase-9, two important apoptotic signaling molecules, to monitor the progression of apoptosis. The Cyt c aptamer and caspase-9-cleavable peptide chains labeled with two dyes were modified onto the surface of gold nanoparticles (Au NPs) by the Au-Se bond, which can be activated by upstream Cyt c and downstream caspase-9 to trigger fluorescence recovery. The Au-Se nanoprobe exhibited good specificity and stability. Compared with the traditional nanoprobe based on the gold-sulfur (Au-S) bond, the interference of biological thiols on the Au-Se nanoprobe can be effectively avoided. Importantly, the Au-Se nanoprobe can image the sequential changes of the two markers in situ in real time during cell apoptosis. This work provides an effective tool for the accurate and real-time detection of apoptosis and is conducive to the in-depth study of the relationship between apoptosis and disease.
Collapse
Affiliation(s)
- Bo Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Jingjing Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Ping Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
63
|
Zhang Y, Zhang G, Zeng Z, Pu K. Activatable molecular probes for fluorescence-guided surgery, endoscopy and tissue biopsy. Chem Soc Rev 2021; 51:566-593. [PMID: 34928283 DOI: 10.1039/d1cs00525a] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The real-time, dynamic optical visualization of lesions and margins ensures not only complete resection of the malignant tissues but also better preservation of the vital organs/tissues during surgical procedures. Most imaging probes with an "always-on" signal encounter high background noise due to their non-specific accumulation in normal tissues. By contrast, activatable molecular probes only "turn on" their signals upon reaction with the targeted biomolecules that are overexpressed in malignant cells, offering high target-to-background ratios with high specificity and sensitivity. This review summarizes the recent progress of activatable molecular probes in surgical imaging and diagnosis. The design principle and mechanism of activatable molecular probes are discussed, followed by specific emphasis on applications ranging from fluorescence-guided surgery to endoscopy and tissue biopsy. Finally, potential challenges and perspectives in the field of activatable molecular probe-enabled surgical imaging are discussed.
Collapse
Affiliation(s)
- Yan Zhang
- National Engineering Research Centre for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.,Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guopeng Zhang
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Ziling Zeng
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| |
Collapse
|
64
|
Li A, Luo X, Li L, Chen D, Liu X, Yang Z, Yang L, Gao J, Lin H. Activatable Multiplexed 19F Magnetic Resonance Imaging Visualizes Reactive Oxygen and Nitrogen Species in Drug-Induced Acute Kidney Injury. Anal Chem 2021; 93:16552-16561. [PMID: 34859996 DOI: 10.1021/acs.analchem.1c03744] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In vivo levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) are critical to many physiological and pathological processes. Because of the distinct differences in their biological generation and effects, simultaneously visualizing both of them could help deepen our insights into the mechanistic details of these processes. However, real-time and deep-tissue imaging and differentiation of ROS- and RNS-related molecular events in living subjects still remain a challenge. Here, we report the development of two activatable 19F magnetic resonance imaging (MRI) molecular probes with different 19F chemical shifts and specific responsive behaviors for simultaneous in vivo detection and deep-tissue imaging of O2•- and ONOO-. These probes are capable of real-time visualization and differentiation of O2•- and ONOO- in living mice with drug-induced acute kidney injury by interference-free multiplexed hot-spot 19F MRI, illustrating the potential of this technique for background-free real-time imaging of diverse biological processes, accurate diagnosis of various diseases in deep tissues, and rapid toxicity evaluation of assorted drugs.
Collapse
Affiliation(s)
- Ao Li
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiangjie Luo
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lingxuan Li
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Dongxia Chen
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xing Liu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhaoxuan Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lijiao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| | - Jinhao Gao
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hongyu Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
65
|
Zheng X, Jin Y, Liu X, Liu T, Wang W, Yu H. Photoactivatable nanogenerators of reactive species for cancer therapy. Bioact Mater 2021; 6:4301-4318. [PMID: 33997507 PMCID: PMC8105601 DOI: 10.1016/j.bioactmat.2021.04.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/30/2021] [Accepted: 04/17/2021] [Indexed: 12/15/2022] Open
Abstract
In recent years, reactive species-based cancer therapies have attracted tremendous attention due to their simplicity, controllability, and effectiveness. Herein, we overviewed the state-of-art advance for photo-controlled generation of highly reactive radical species with nanomaterials for cancer therapy. First, we summarized the most widely explored reactive species, such as singlet oxygen, superoxide radical anion (O2 ●-), nitric oxide (●NO), carbon monoxide, alkyl radicals, and their corresponding secondary reactive species generated by interaction with other biological molecules. Then, we discussed the generating mechanisms of these highly reactive species stimulated by light irradiation, followed by their anticancer effect, and the synergetic principles with other therapeutic modalities. This review might unveil the advantages of reactive species-based therapeutic methodology and encourage the pre-clinical exploration of reactive species-mediated cancer treatments.
Collapse
Affiliation(s)
- Xiaohua Zheng
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Yilan Jin
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, 226001, China
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiao Liu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead, Australia
| | - Weiqi Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, 226001, China
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Haijun Yu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| |
Collapse
|
66
|
Wang Y, Jia S, Yu Z, Wen H, Cui H. Insights Into the Detection Selectivity of Redox and Non-redox Based Probes for the Superoxide Anion Using Coumarin and Chromone as the Fluorophores. Front Chem 2021; 9:753621. [PMID: 34912779 PMCID: PMC8667960 DOI: 10.3389/fchem.2021.753621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, we evaluated the applicability of various superoxide anion sensors which were designed based on either redox or non-redox mechanisms. Firstly, both redox- and non-redox-based superoxide anion probes were designed and synthesized using either coumarin or chromone as the fluorophores, and the photophysical properties of these probes were measured. Subsequently, the sensing preference of both types of probes toward various reactive oxygen species (ROS) was evaluated. We found that non-redox-based O2 •- probes exhibited broad sensing ability toward various ROS. By contrast, redox based O2 •- probes showed a clear reactivity hierarchy which was well correlated to the oxidizing strength of the ROS. Lastly, the detection selectivity of redox-based O2 •- recognizing probes was also observed when balancing various factors, such as reactant ROS concentrations, temperature, and changing reaction transformation rates. Herein, we concluded the selectivity advantage of redox-based O2 •- probes.
Collapse
Affiliation(s)
| | | | | | | | - Huaqing Cui
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
67
|
Zhang Y, Chen X, Yuan Q, Bian Y, Li M, Wang Y, Gao X, Su D. Enzyme-activated near-infrared fluorogenic probe with high-efficiency intrahepatic targeting ability for visualization of drug-induced liver injury. Chem Sci 2021; 12:14855-14862. [PMID: 34820101 PMCID: PMC8597858 DOI: 10.1039/d1sc04825b] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/17/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatotoxicity is a serious problem faced by thousands of clinical drugs, and drug-induced liver injury (DILI) caused by chronic administration or overdose has become a major biosafety issue. However, the near-infrared (NIR) fluorescent probes currently used for liver injury detection still suffer from poor liver targeting ability and low sensitivity. Enzyme-activated fluorogenic probes with powerful in situ targeting ability are the key to improving the imaging effect of liver injury. Herein, we rationally designed a leucine aminopeptidase (LAP) activated fluorogenic probe hCy-CA-LAP, which greatly improved the hepatocyte-targeting capability by introducing a cholic acid group. The probe hCy-CA-LAP is converted into a high-emission hCy-CA fluorophore in the presence of LAP, showing high selectivity, high sensitivity and low detection limit (0.0067 U mL-1) for LAP, and successfully realizes the sensitive detection of small fluctuations of LAP in living cells. Moreover, the probe can achieve effective in situ accumulation in the liver, thereby achieving precise imaging and evaluation of two different types of drug-induced hepatotoxicity in vivo. Therefore, the probe hCy-CA-LAP may be a potential tool for exploring the roles of LAP and evaluating the degree of DILI.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology Beijing 100124 P. R. China
- Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology Beijing 100124 P. R. China
| | - Xueqian Chen
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology Beijing 100124 P. R. China
- Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology Beijing 100124 P. R. China
| | - Qing Yuan
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology Beijing 100124 P. R. China
- Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology Beijing 100124 P. R. China
| | - Yongning Bian
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology Beijing 100124 P. R. China
- Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology Beijing 100124 P. R. China
| | - Mingrui Li
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology Beijing 100124 P. R. China
- Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology Beijing 100124 P. R. China
| | - Yaling Wang
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology Beijing 100124 P. R. China
- Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology Beijing 100124 P. R. China
| | - Xueyun Gao
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology Beijing 100124 P. R. China
- Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology Beijing 100124 P. R. China
| | - Dongdong Su
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology Beijing 100124 P. R. China
- Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology Beijing 100124 P. R. China
| |
Collapse
|
68
|
Abstract
Optical imaging is an indispensable tool in clinical diagnostics and fundamental biomedical research. Autofluorescence-free optical imaging, which eliminates real-time optical excitation to minimize background noise, enables clear visualization of biological architecture and physiopathological events deep within living subjects. Molecular probes especially developed for autofluorescence-free optical imaging have been proven to remarkably improve the imaging sensitivity, penetration depth, target specificity, and multiplexing capability. In this Review, we focus on the advancements of autofluorescence-free molecular probes through the lens of particular molecular or photophysical mechanisms that produce long-lasting luminescence after the cessation of light excitation. The versatile design strategies of these molecular probes are discussed along with a broad range of biological applications. Finally, challenges and perspectives are discussed to further advance the next-generation autofluorescence-free molecular probes for in vivo imaging and in vitro biosensors.
Collapse
Affiliation(s)
- Yuyan Jiang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.,School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
69
|
Gong X, Cheng D, Li W, Shen Y, Peng R, Shi L, He L, Yuan L. A highly selective ratiometric molecular probe for imaging peroxynitrite during drug-induced acute liver injury. J Mater Chem B 2021; 9:8246-8252. [PMID: 34499075 DOI: 10.1039/d1tb01534f] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Drug-induced acute liver injury (DIALI) is a common liver disease, affecting a number of people worldwide with increasing morbidity each year. Thus, it is vital to develop new tools for intervention and diagnosis. Peroxynitrite (ONOO-), a highly reactive species, plays an important role in the DIALI process. Thus, in situ molecular imaging of endogenous ONOO- levels is considerably significant for detecting ONOO-. In this work, we present two destroyed-type ratiometric fluorescent probes, AHC and AHMC, for ONOO- detection by using a molecular hybridization strategy. The probe AHMC was developed by introducing the ester structure to AHC directly to enhance its membrane penetrability for living cell imaging. Probe AHC exhibited good analytical performance toward ONOO- compared to other reactive species, with a low detection limit (≈1.8 nM) and a strong ratiometric fluorescence response (134-fold). In cell imaging experiments, AHMC showed outstanding selectivity, favourable biocompatibility and mitochondria-targeting ability, which not only was used to detect endogenous and exogenous ONOO- changes, but also enabled noninvasive visualization of ONOO- generation in a different drug-induced DIALI model. We hope that these ratiometric probes can be useful chemical tools for the in-depth research of drug-induced acute hepatotoxicity.
Collapse
Affiliation(s)
- Xiangyang Gong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
| | - Dan Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China. .,Clinical Research Institute, Affiliated Nanhua Hospital, University of South China, Hengyang 421002, China.
| | - Wei Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
| | - Yang Shen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
| | - Rong Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
| | - Ling Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
| | - Longwei He
- Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China.
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
| |
Collapse
|
70
|
Tao Y, Chen L, Pan M, Zhu F, Zhu D. Tailored Biosensors for Drug Screening, Efficacy Assessment, and Toxicity Evaluation. ACS Sens 2021; 6:3146-3162. [PMID: 34516080 DOI: 10.1021/acssensors.1c01600] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biosensors have been flourishing in the field of drug discovery with pronounced developments in the past few years. They facilitate the screening and discovery of innovative drugs. However, there is still a lack of critical reviews that compare the merits and shortcomings of these biosensors from a pharmaceutical point of view. This contribution presents a critical and up-to-date overview on the recent progress of tailored biosensors, including surface plasmon resonance, fluorescent, photoelectrochemical, and electrochemical systems with emphasis on their mechanisms and applications in drug screening, efficacy assessment, and toxicity evaluation. Multiple functional nanomaterials have also been incorporated into the biosensors. Representative examples of each type of biosensors are discussed in terms of design strategy, response mechanism, and potential applications. In the end, we also compare the results and summarize the major insights gained from the works, demonstrating the challenges and prospects of biosensors-assisted drug discovery.
Collapse
Affiliation(s)
- Yi Tao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lin Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Meiling Pan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fei Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dong Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| |
Collapse
|
71
|
Li A, Li L, Liu X, Chen D, Fan Y, Lin H, Gao J. Deep-tissue real-time imaging of drug-induced liver injury with peroxynitrite-responsive 19F MRI nanoprobes. Chem Commun (Camb) 2021; 57:9622-9625. [PMID: 34546273 DOI: 10.1039/d1cc03913j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Peroxynitrite is an important biomarker for assessing drug-induced liver injury (DILI), which is critical for the development and use of drugs. Herein, we report the development of peroxynitrite-responsive self-assembled 19F MRI nanoprobes, which enable the sensitive imaging of peroxynitrite in L02 cells subjected to oxidative stress and living mice with DILI.
Collapse
Affiliation(s)
- Ao Li
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Lingxuan Li
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xing Liu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Dongxia Chen
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Yifan Fan
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Hongyu Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Jinhao Gao
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
72
|
Chen H, Yu J, Zhang J, Sun K, Ding Z, Jiang Y, Hu Q, Wu C, Chiu DT. Monitoring Metabolites Using an NAD(P)H‐sensitive Polymer Dot and a Metabolite‐Specific Enzyme. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Haobin Chen
- Department of Chemistry and Bioengineering University of Washington Seattle WA 98195 USA
| | - Jiangbo Yu
- Department of Chemistry and Bioengineering University of Washington Seattle WA 98195 USA
| | - Jicheng Zhang
- Department of Chemistry and Bioengineering University of Washington Seattle WA 98195 USA
| | - Kai Sun
- Department of Chemistry and Bioengineering University of Washington Seattle WA 98195 USA
| | - Zhaoyang Ding
- Department of Chemistry and Bioengineering University of Washington Seattle WA 98195 USA
| | - Yifei Jiang
- Department of Chemistry and Bioengineering University of Washington Seattle WA 98195 USA
| | - Qiongzheng Hu
- Department of Chemistry and Bioengineering University of Washington Seattle WA 98195 USA
| | - Changfeng Wu
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 510855 China
| | - Daniel T. Chiu
- Department of Chemistry and Bioengineering University of Washington Seattle WA 98195 USA
| |
Collapse
|
73
|
Chen H, Yu J, Zhang J, Sun K, Ding Z, Jiang Y, Hu Q, Wu C, Chiu DT. Monitoring Metabolites Using an NAD(P)H-sensitive Polymer Dot and a Metabolite-Specific Enzyme. Angew Chem Int Ed Engl 2021; 60:19331-19336. [PMID: 34146440 DOI: 10.1002/anie.202106156] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/06/2021] [Indexed: 12/24/2022]
Abstract
We introduce an NAD(P)H-sensitive polymer dot (Pdot) biosensor for point-of-care monitoring of metabolites. The Pdot is combined with a metabolite-specific NAD(P)H-dependent enzyme that catalyzes the oxidation of the metabolite, generating NAD(P)H. Upon UV illumination, the NAD(P)H quenches the fluorescence emission of Pdot at 627 nm via electron transfer, and also fluoresces at 458 nm, resulting in a shift from red to blue emission at higher NAD(P)H concentrations. Metabolite concentration is quantified ratiometrically-based on the ratio of blue-to-red channel emission intensities, with a digital camera-with high sensitivity and specificity. We demonstrate phenylalanine biosensing in human plasma for a phenylketonuria screening test, quantifying several other disease-related metabolites (lactate, glucose, glutamate, and β-hydroxybutyrate), and a paper-based assay with smartphore imaging for point-of-care use.
Collapse
Affiliation(s)
- Haobin Chen
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Jiangbo Yu
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Jicheng Zhang
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Kai Sun
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Zhaoyang Ding
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Yifei Jiang
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Qiongzheng Hu
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Changfeng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 510855, China
| | - Daniel T Chiu
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
74
|
Scott J, Deng Q, Vendrell M. Near-Infrared Fluorescent Probes for the Detection of Cancer-Associated Proteases. ACS Chem Biol 2021; 16:1304-1317. [PMID: 34315210 PMCID: PMC8383269 DOI: 10.1021/acschembio.1c00223] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022]
Abstract
Proteases are enzymes capable of catalyzing protein breakdown, which is critical across many biological processes. There are several families of proteases, each of which perform key functions through the degradation of specific proteins. As our understanding of cancer improves, it has been demonstrated that several proteases can be overactivated during the progression of cancer and contribute to malignancy. Optical imaging systems that employ near-infrared (NIR) fluorescent probes to detect protease activity offer clinical promise, both for early detection of cancer as well as for the assessment of personalized therapy. In this Review, we review the design of NIR probes and their successful application for the detection of different cancer-associated proteases.
Collapse
Affiliation(s)
- Jamie
I. Scott
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4TJ Edinburgh, United Kingdom
| | - Qinyi Deng
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4TJ Edinburgh, United Kingdom
| | - Marc Vendrell
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4TJ Edinburgh, United Kingdom
| |
Collapse
|
75
|
Zeng Z, Liew SS, Wei X, Pu K. Hemicyanine‐Based Near‐Infrared Activatable Probes for Imaging and Diagnosis of Diseases. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107877] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ziling Zeng
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Si Si Liew
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Xin Wei
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive Singapore 637457 Singapore
- School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| |
Collapse
|
76
|
Zhang X, Ji A, Wang Z, Lou H, Li J, Zheng L, Zhou Y, Qu C, Liu X, Chen H, Cheng Z. Azide-Dye Unexpected Bone Targeting for Near-Infrared Window II Osteoporosis Imaging. J Med Chem 2021; 64:11543-11553. [PMID: 34342432 DOI: 10.1021/acs.jmedchem.1c00839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Azide is an important chemical functional group and has been widely used in chemical biology. However, the impact of azide on the in vivo behaviors of compounds has been rarely studied. Herein, azide was introduced into a fluorescent dye for the near-infrared window two (NIR-II) bone imaging. Specifically, we designed and synthesized the small-molecule NIR-II dyes, N3-FEP-4T capped with azide and FEP-4T without azide capping. In vitro assays revealed that N3-FEP-4T showed 5- and 5.6- times higher hydroxyapatite accumulation and macrophage uptake than those of FEP-4T, respectively. Moreover, N3-FEP-4T displayed higher bone uptakes and much better bone NIR-II imaging quality, demonstrating the specific bone-targeting ability of the azide-containing probe. N3-FEP-4T was then further successfully used for osteoporosis NIR-II imaging. Overall, our study provides insights into the impact of azide on the in vivo behavior of azide-containing compounds and opens a new window for biological application of azide.
Collapse
Affiliation(s)
- Xiaoqing Zhang
- Department of Nuclear Medicine, Huashan Hospital, Fudan University, No. 12 Urumchi Middle Road, Jing'an District, Shanghai 200040, China.,Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,Department of Nuclear Medicine, Pudong Hospital, Fudan University, 2800 Gongwei Road, Huinan Town, Pudong New District, Shanghai 200120, China
| | - Aiyan Ji
- Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhiming Wang
- Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hongyue Lou
- Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jiafeng Li
- Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lingling Zheng
- Department of Nuclear Medicine, Huashan Hospital, Fudan University, No. 12 Urumchi Middle Road, Jing'an District, Shanghai 200040, China.,Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,Department of Nuclear Medicine, Pudong Hospital, Fudan University, 2800 Gongwei Road, Huinan Town, Pudong New District, Shanghai 200120, China
| | - Yujing Zhou
- Department of Nuclear Medicine, Huashan Hospital, Fudan University, No. 12 Urumchi Middle Road, Jing'an District, Shanghai 200040, China.,Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,Department of Nuclear Medicine, Pudong Hospital, Fudan University, 2800 Gongwei Road, Huinan Town, Pudong New District, Shanghai 200120, China
| | - Chunrong Qu
- Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xingdang Liu
- Department of Nuclear Medicine, Huashan Hospital, Fudan University, No. 12 Urumchi Middle Road, Jing'an District, Shanghai 200040, China.,Department of Nuclear Medicine, Pudong Hospital, Fudan University, 2800 Gongwei Road, Huinan Town, Pudong New District, Shanghai 200120, China
| | - Hao Chen
- Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhen Cheng
- Department of Nuclear Medicine, Huashan Hospital, Fudan University, No. 12 Urumchi Middle Road, Jing'an District, Shanghai 200040, China.,Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,Molecular Imaging Program at Stanford (MIPS), Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, California 94305-5344, United States
| |
Collapse
|
77
|
Shin J, Kang DM, Yoo J, Heo J, Jeong K, Chung JH, Han YS, Kim S. Superoxide-responsive fluorogenic molecular probes for optical bioimaging of neurodegenerative events in Alzheimer's disease. Analyst 2021; 146:4748-4755. [PMID: 34231563 DOI: 10.1039/d1an00692d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since oxidative stress has been recognized as a major factor contributing to the progression of several neurodegenerative disorders, reactive oxygen species (ROS) including superoxide have received great attention as a representative molecular marker for the diagnosis of Alzheimer's disease (AD). Here, superoxide-sensitive fluorogenic molecular probes, benzenesulfonylated resorufin derivatives (BSRs), were newly devised for optical bioimaging of oxidative events in neurodegenerative processes. BSRs, fluorescence-quenched benzenesulfonylated derivatives of resorufin, were designed to recover their fluorescence upon exposure to superoxide through a selective nucleophilic uncaging reaction of the benzenesulfonyl cage. Among BSRs, BSR6 presented the best sensitivity and selectivity to superoxide likely due to the optimal reactivity matching between the nucleophilicity of superoxide and its electrophilicity ascribed to the highly electron-withdrawing pentafluoro-substitution on the benzenesulfonyl cage. Fluorescence imaging of inflammatory cells and animal models presented the potential of BSR6 for optical sensing of superoxide in vitro and in vivo. Furthermore, microglial cell (Bv2) imaging with BSR6 enabled the optical monitoring of intracellular oxidative events upon treatment with an oxidative stimulus (amyloid beta, Aβ) or the byproduct of oxidative stress (4-hydroxynonenal, HNE).
Collapse
Affiliation(s)
- Jawon Shin
- Center for Theragnosis, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Mukherjee K, Chio TI, Gu H, Sackett DL, Bane SL, Sever S. A Novel Fluorogenic Assay for the Detection of Nephrotoxin-Induced Oxidative Stress in Live Cells and Renal Tissue. ACS Sens 2021; 6:2523-2528. [PMID: 34214393 PMCID: PMC8314269 DOI: 10.1021/acssensors.1c00422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Drug-induced kidney
injury frequently leads to aborted clinical
trials and drug withdrawals. Sufficiently sensitive sensors capable
of detecting mild signs of chemical insult in cell-based screening
assays are critical to identifying and eliminating potential toxins
in the preclinical stage. Oxidative stress is a common early manifestation
of chemical toxicity, and biomolecule carbonylation is an irreversible
repercussion of oxidative stress. Here, we present a novel fluorogenic
assay using a sensor, TFCH, that responds to biomolecule carbonylation
and efficiently detects modest forms of renal injury with much greater
sensitivity than standard assays for nephrotoxins. We demonstrate
that this sensor can be deployed in live kidney cells and in renal
tissue. Our robust assay may help inform preclinical decisions to
recall unsafe drug candidates. The application of this sensor in identifying
and analyzing diverse pathologies is envisioned.
Collapse
Affiliation(s)
- Kamalika Mukherjee
- Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Tak Ian Chio
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902, United States
| | - Han Gu
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902, United States
| | - Dan L. Sackett
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Susan L. Bane
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902, United States
| | - Sanja Sever
- Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| |
Collapse
|
79
|
Park YD, Kinger M, Min C, Lee SY, Byun Y, Park JW, Jeon J. Synthesis and evaluation of curcumin-based near-infrared fluorescent probes for the in vivo optical imaging of amyloid-β plaques. Bioorg Chem 2021; 115:105167. [PMID: 34358800 DOI: 10.1016/j.bioorg.2021.105167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/28/2021] [Accepted: 07/08/2021] [Indexed: 01/14/2023]
Abstract
The abnormal self-assembly of amyloid-beta (Aβ) peptides into oligomers, as well as insoluble fibrils, has been identified as a key factor for monitoring the progression of Alzheimer's disease (AD). The noninvasive imaging of Aβ aggregates utilizing chemical probes can be a powerful and practical technique for accurately diagnosing and monitoring the progress of AD, as well as evaluating the effectiveness of therapeutic drug candidates in treating or managing it. Particularly, the near-infrared (NIR) fluorescence imaging of Aβ plaques is a potentially promising approach toward the efficient detection of the biomarker. In this study, we describe a new NIR fluorophore, which was based on curcumin derivatives. The fluorophore is equipped with desirable optical properties for in vivo brain imaging. The emission wavelength of the probe, 8b, is 667 nm, and its fluorescent intensity is significantly increased through binding with the Aβ aggregates. The probe allows the clear visualization of the Aβ plaques 10 min post administration, and the intensity of the fluorescent signal in the brain of a 5XFAD transgenic mouse model is more than three times higher than that of the normal control group. These results demonstrate that the designed probe can be an effective tool for visualizing Aβ plaques, as well as investigating the pathological progress of AD.
Collapse
Affiliation(s)
- Yong Dae Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea
| | - Mayank Kinger
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea; Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana 127021, India
| | - Changho Min
- Department of Applied Chemistry, College of Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sang Yeob Lee
- Department of Applied Chemistry, College of Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Youngjoo Byun
- Department of Pharmacy, College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong 30019, Republic of Korea
| | - Jin Woo Park
- BioActs Co., Ltd., Cheongneung-daero, Incheon 21666, Republic of Korea
| | - Jongho Jeon
- Department of Applied Chemistry, College of Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
80
|
Zeng Z, Liew SS, Wei X, Pu K. Hemicyanine-Based Near-Infrared Activatable Probes for Imaging and Diagnosis of Diseases. Angew Chem Int Ed Engl 2021; 60:26454-26475. [PMID: 34263981 DOI: 10.1002/anie.202107877] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Indexed: 12/18/2022]
Abstract
Molecular activatable probes with near-infrared (NIR) fluorescence play a critical role in in vivo imaging of biomarkers for drug screening and disease diagnosis. With structural diversity and high fluorescence quantum yields, hemicyanine dyes have emerged as a versatile scaffold for the construction of activatable optical probes. This Review presents a survey of hemicyanine-based NIR activatable probes (HNAPs) for in vivo imaging and early diagnosis of diseases. The molecular design principles of HNAPs towards activatable optical signaling against various biomarkers are discussed with a focus on their broad applications in the detection of diseases including inflammation, acute organ failure, skin diseases, intestinal diseases, and cancer. This progress not only proves the unique value of HNAPs in preclinical research but also highlights their high translational potential in clinical diagnosis.
Collapse
Affiliation(s)
- Ziling Zeng
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Si Si Liew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Xin Wei
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore.,School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
81
|
Han HH, Tian H, Zang Y, Sedgwick AC, Li J, Sessler JL, He XP, James TD. Small-molecule fluorescence-based probes for interrogating major organ diseases. Chem Soc Rev 2021; 50:9391-9429. [PMID: 34232230 DOI: 10.1039/d0cs01183e] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chemical tools that allow the real-time monitoring of organ function and the visualisation of organ-related processes at the cellular level are of great importance in biological research. The upregulation/downregulation of specific biomarkers is often associated with the development of organ related diseases. Small-molecule fluorescent probes have the potential to create advances in our understanding of these disorders. Viable probes should be endowed with a number of key features that include high biomarker sensitivity, low limit of detection, fast response times and appropriate in vitro and in vivo biocompatibility. In this tutorial review, we discuss the development of probes that allow the targeting of organ related processes in vitro and in vivo. We highlight the design strategy that underlies the preparation of various promising probes, their optical response to key biomarkers, and proof-of-concept biological studies. The inherent drawbacks and limitations are discussed as are the current challenges and opportunities in the field. The hope is that this tutorial review will inspire the further development of small-molecule fluorescent probes that could aid the study of pathogenic conditions that contribute to organ-related diseases.
Collapse
Affiliation(s)
- Hai-Hao Han
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Wang K, Zhang F, Wei Y, Wei W, Jiang L, Liu Z, Liu S. In Situ Imaging of Cellular Reactive Oxygen Species and Caspase-3 Activity Using a Multifunctional Theranostic Probe for Cancer Diagnosis and Therapy. Anal Chem 2021; 93:7870-7878. [PMID: 34038094 DOI: 10.1021/acs.analchem.1c00385] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this work, a multifunctional theranostic nanoprobe (Au-Ag-HM) was skillfully designed for simultaneous imaging of intracellular reactive oxygen species (ROS) and caspase-3 activity. The Au-Ag-HM was fabricated by coloading of silver nanoparticles (AgNPs) and hematoporphyrin monomethyl ether (HMME) to Au nanoflowers (AuNFs). When Au-Ag-HM was devoured by cancer cells, HepG2 cells were used as the model, and under laser irradiation, the photogenerated intracellular ROS by the photosensitizer HMME would induce the apoptosis of cancer cells. Meanwhile, the intracellular ROS triggered the oxidative etching of AgNPs on Au-Ag-HM, which led to a tremendous localized surface plasmon resonance response and scattering color changes in Au-Ag-HM, allowing in situ dark-field imaging of the ROS level in cancer cells. On the other hand, the ROS-induced activation of cellular caspase-3, which cleaved the C-peptide-containing caspase-3-specific recognition sequence (DEVD) and allowed HMME to release from the nanoprobe, resulted in a significant fluorescence recovery related to caspase-3 activity. Both photogenerated ROS and enhanced caspase-3 activity contributed to the synergistic effect of laser-mediated chemotherapy and photodynamic therapy. Therefore, the as-prepared theranostic probe could be used for simultaneous detection of cellular ROS and caspase-3 activity, distinguishing between tumor cells and normal cells, inducing the apoptosis of cancer cells, and providing a new method for diagnosis and therapy of cancer.
Collapse
Affiliation(s)
- Kan Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.,State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Fen Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yuanqing Wei
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Wei Wei
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Ling Jiang
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Songqin Liu
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
83
|
Hong S, Pawel GT, Pei R, Lu Y. Recent progress in developing fluorescent probes for imaging cell metabolites. Biomed Mater 2021; 16. [PMID: 33915523 DOI: 10.1088/1748-605x/abfd11] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/29/2021] [Indexed: 01/12/2023]
Abstract
Cellular metabolites play a crucial role in promoting and regulating cellular activities, but it has been difficult to monitor these cellular metabolites in living cells and in real time. Over the past decades, iterative development and improvements of fluorescent probes have been made, resulting in the effective monitoring of metabolites. In this review, we highlight recent progress in the use of fluorescent probes for tracking some key metabolites, such as adenosine triphosphate, cyclic adenosine monophosphate, cyclic guanosine 5'-monophosphate, Nicotinamide adenine dinucleotide (NADH), reactive oxygen species, sugar, carbon monoxide, and nitric oxide for both whole cell and subcellular imaging.
Collapse
Affiliation(s)
- Shanni Hong
- Department of Medical Imaging Technology, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, People's Republic of China.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America.,CAS Key Laboratory of Nano-Bio Interfaces, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, People's Republic of China
| | - Gregory T Pawel
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interfaces, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, People's Republic of China
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| |
Collapse
|
84
|
Abstract
Optical imaging probes allow us to detect and uncover the physiological and pathological functions of an analyte of interest at the molecular level in a non-invasive, longitudinal manner. By virtue of simplicity, low cost, high sensitivity, adaptation to automated analysis, capacity for spatially resolved imaging and diverse signal output modes, optical imaging probes have been widely applied in biology, physiology, pharmacology and medicine. To build a reliable and practically/clinically relevant probe, the design process often encompasses multidisciplinary themes, including chemistry, biology and medicine. Within the repertoire of probes, dual-locked systems are particularly interesting as a result of their ability to offer enhanced specificity and multiplex detection. In addition, chemiluminescence is a low-background, excitation-free optical modality and, thus, can be integrated into dual-locked systems, permitting crosstalk-free fluorescent and chemiluminescent detection of two distinct biomarkers. For many researchers, these dual-locked systems remain a 'black box'. Therefore, this Review aims to offer a 'beginner's guide' to such dual-locked systems, providing simple explanations on how they work, what they can do and where they have been applied, in order to help readers develop a deeper understanding of this rich area of research.
Collapse
|
85
|
Suárez-García S, Solórzano R, Novio F, Alibés R, Busqué F, Ruiz-Molina D. Coordination polymers nanoparticles for bioimaging. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213716] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
86
|
Song X, Bai S, He N, Wang R, Xing Y, Lv C, Yu F. Real-Time Evaluation of Hydrogen Peroxide Injuries in Pulmonary Fibrosis Mice Models with a Mitochondria-Targeted Near-Infrared Fluorescent Probe. ACS Sens 2021; 6:1228-1239. [PMID: 33507753 DOI: 10.1021/acssensors.0c02519] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pulmonary fibrosis is a fatal chronic lung disease, leading to poor prognosis and high mortality. Accumulating evidence suggests that oxidative stress characterized by excessive production of hydrogen peroxide (H2O2) is an important molecular mechanism causing pulmonary fibrosis. We conceive a new type of mitochondria-targeted near-infrared fluorescent probe Mito-Bor to investigate changes in the level of endogenous H2O2 in living cells and mice models with pulmonary fibrosis. In the design strategy of the Mito-Bor probe, we selected azo-BODIPY as the fluorophore owing to its near-infrared fluorescence, strong photochemical stability, and low biological toxicity. Under physiological conditions, the response moiety 4-bromomethylphenylboronic acid pinacol ester could easily detect H2O2, and turn the fluorescence switch on. The modification of the lipophilic triphenylphosphine cation on the fluorophore would allow the probe to easily pass through the phospholipid bilayer of cells, and the internal positive charge could contribute to the selectivity of the mitochondria accumulation. The Mito-Bor probe provides high selectivity, low limit of detection, high biocompatibility, and excellent photostability. It can be used to detect changes in the level of H2O2 in living cells and in vivo. Therefore, the probe is applied to investigate the fluctuation of the H2O2 level during the process of inducing pulmonary fibrosis in cells, with changes in its fluorescence intensity correlating with the concentration of H2O2 and indicating the level of oxidative stress in fibroblasts. Conversely, pulmonary fibrosis can be modulated by adjusting the level of H2O2 in cells. A further study in mice models of bleomycin-induced pulmonary fibrosis confirms that NADPH oxidase 4 (NOX4) acts as a "button" to regulate H2O2 levels. The direct inhibition of NOX4 can significantly reduce the level of H2O2, which can delay the progression of lung fibrosis. These results provide an innovative way for the clinical treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Xinyu Song
- Department of Respiratory Medicine, Binzhou Medical University Hospital, Binzhou 256603, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Institute of Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medicine University, Guangzhou 510120, China
| | - Song Bai
- Department of Respiratory Medicine, Binzhou Medical University Hospital, Binzhou 256603, China
| | - Na He
- Department of Respiratory Medicine, Binzhou Medical University Hospital, Binzhou 256603, China
| | - Rui Wang
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Institute of Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Yanlong Xing
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Institute of Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Changjun Lv
- Department of Respiratory Medicine, Binzhou Medical University Hospital, Binzhou 256603, China
| | - Fabiao Yu
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Institute of Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
87
|
Zhang X, Wang W, Su L, Ge X, Ye J, Zhao C, He Y, Yang H, Song J, Duan H. Plasmonic-Fluorescent Janus Ag/Ag 2S Nanoparticles for In Situ H 2O 2-Activated NIR-II Fluorescence Imaging. NANO LETTERS 2021; 21:2625-2633. [PMID: 33683889 DOI: 10.1021/acs.nanolett.1c00197] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Silver sulfide (Ag2S) has gained widespread attention in second near-infrared (950-1700 nm, NIR-II) window imaging because of its high fluorescence quantum yield and low toxicity. However, its "always on" fluorescence shows inapplicability for targeted molecule-activated biomedical applications. Herein, we first developed a novel silver/silver sulfide Janus nanoparticle (Ag/Ag2S JNP) for specific activatable fluorescence imaging in the NIR-II window. Inner-particle electron compensation from Ag to Ag2S upon laser irradiation endowed JNPs an "off" state of fluorescence, whereas the oxidization of Ag incubated with H2O2, decreasing the electron-transfer effect and illuminating the NIR-II fluorescence of the Ag2S part. In contrast, the absorption of Ag/Ag2S JNPs slightly decreased in an H2O2-dependent manner, showing an activated photoacoustic imaging mechanism. The Ag/Ag2S JNPs were used for noninvasive location and diagnosis of diseases in vivo, such as for liver injury and cancer, with high sensitivity and accuracy.
Collapse
Affiliation(s)
- Xuan Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Wenli Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xiaoguang Ge
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jiamin Ye
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Caiyan Zhao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yu He
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| |
Collapse
|
88
|
Shao Y, Zhao J, Yuan J, Zhao Y, Li L. Organelle‐Specific Photoactivation of DNA Nanosensors for Precise Profiling of Subcellular Enzymatic Activity. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016738] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yulei Shao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100149 China
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Jian Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100149 China
| | - Jinying Yuan
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100149 China
| |
Collapse
|
89
|
Shao Y, Zhao J, Yuan J, Zhao Y, Li L. Organelle‐Specific Photoactivation of DNA Nanosensors for Precise Profiling of Subcellular Enzymatic Activity. Angew Chem Int Ed Engl 2021; 60:8923-8931. [DOI: 10.1002/anie.202016738] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Yulei Shao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100149 China
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Jian Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100149 China
| | - Jinying Yuan
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100149 China
| |
Collapse
|
90
|
Deng Z, Bi S, Jiang M, Zeng S. Endogenous H 2S-Activated Orthogonal Second Near-Infrared Emissive Nanoprobe for In Situ Ratiometric Fluorescence Imaging of Metformin-Induced Liver Injury. ACS NANO 2021; 15:3201-3211. [PMID: 33481569 DOI: 10.1021/acsnano.0c09799] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Metformin as a hypoglycemic drug for antidiabetic treatment has emerged as a multipotential drug for many disease treatments such as cognitive disorders, cancers, promoting weight loss. However, overdose uptake may upregulate the hepatic H2S level, subsequently leading to serious liver injury and toxicity. Therefore, developing intelligent second near-infrared (NIR-II) emitting nanoprobes by using endogenous H2S as a smart trigger for noninvasive highly specific in situ monitoring of the metformin-induced hepatotoxicity is highly desirable, which is rarely explored. Herein, an endogenous H2S activated orthogonal NIR-II emitting myrica rubra-like nanoprobe based on NaYF4:Gd/Yb/Er@NaYF4:Yb@SiO2 coated with Ag nanodots was explored for highly specific in vivo ratiometrically monitoring of hepatotoxicity. The designed nanoprobes were mainly uptaken by the liver and subsequently converted to NaYF4:Gd/Yb/Er@NaYF4:Yb@SiO2@Ag2S via in situ sulfuration reaction triggered by the overexpressed endogenous H2S in the injured liver tissues, finally leading to a turn-on orthogonal emission centered at 1053 nm (irradiation by 808 nm laser) and 1525 nm (irradiation by 980 nm laser). The designed nanoprobe presents a high detection limit down to 0.7 nM of H2S. More importantly, the in situ highly specific ratiometric imaging of the metformin-induced hepatotoxicity was successfully achieved by using the activatable orthogonal NIR-II emitting probe. Our results provide an NIR-II ratiometric fluorescence imaging strategy for highly sensitive/specific diagnosis of hepatotoxicity levels induced by metformin.
Collapse
Affiliation(s)
- Zhiming Deng
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, School of Physics and Electronics, Hunan Normal University, Changsha 410081, P.R. China
| | - Shenghui Bi
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, School of Physics and Electronics, Hunan Normal University, Changsha 410081, P.R. China
| | - Mingyang Jiang
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, School of Physics and Electronics, Hunan Normal University, Changsha 410081, P.R. China
| | - Songjun Zeng
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, School of Physics and Electronics, Hunan Normal University, Changsha 410081, P.R. China
| |
Collapse
|
91
|
Chromo-fluorogenic probes for β-galactosidase detection. Anal Bioanal Chem 2021; 413:2361-2388. [PMID: 33606064 DOI: 10.1007/s00216-020-03111-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
β-Galactosidase (β-Gal) is a widely used enzyme as a reporter gene in the field of molecular biology which hydrolyzes the β-galactosides into monosaccharides. β-Gal is an essential enzyme in humans and its deficiency or its overexpression results in several rare diseases. Cellular senescence is probably one of the most relevant physiological disorders that involve β-Gal enzyme. In this review, we assess the progress made to date in the design of molecular-based probes for the detection of β-Gal both in vitro and in vivo. Most of the reported molecular probes for the detection of β-Gal consist of a galactopyranoside residue attached to a signalling unit through glycosidic bonds. The β-Gal-induced hydrolysis of the glycosidic bonds released the signalling unit with remarkable changes in color and/or emission. Additional examples based on other approaches are also described. The wide applicability of these probes for the rapid and in situ detection of de-regulation β-Gal-related diseases has boosted the research in this fertile field.
Collapse
|
92
|
Li M, Huang X, Ren J. Multicolor Chemiluminescent Resonance Energy-Transfer System for In Vivo High-Contrast and Targeted Imaging. Anal Chem 2021; 93:3042-3051. [PMID: 33502862 DOI: 10.1021/acs.analchem.0c05200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chemiluminescence (CL) resonance energy transfer (CRET) has received great attention due to its fascinating applications in in vivo imaging and photodynamic therapy. Here, we report a highly efficient CRET polymer dot (CRET-Pdots)-based system using catalytic CL reagents as energy donors and fluorescent polymers and dyes as energy acceptors. CRET-Pdots consist of Fe(III) deuteroporphyrin IX (CL catalyst), fluorescent polymers, and dyes. The CL intensity and duration are markedly enhanced by using ultrasensitive catalytic CL reaction of luminol analogue-H2O2, and the CL emission wavelength can be adjusted by one-step/two-step energy-transfer strategies. CRET-Pdots show intensive multicolor CL (about 3000× enhanced), an adjustable emission wavelength (470-720 nm), long CL duration (over 8 h), and a high CRET efficiency (50%). CRET-Pdots possess excellent biocompatibility, sensitive response to reactive oxygen species (ROS), and ultrahigh catalytic activity. They are successfully used for high-contrast real-time ROS imaging and in vivo tumor-targeted imaging with an excellent signal-to-noise ratio (over 90).
Collapse
Affiliation(s)
- Mengdi Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Xiangyi Huang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jicun Ren
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
93
|
Xu Y, Yang W, Zhang B. ROS-responsive probes for low-background optical imaging: a review. Biomed Mater 2021; 16:022002. [PMID: 33142272 DOI: 10.1088/1748-605x/abc745] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Optical imaging is a facile tool for visualizing biological processes and disease progression, but its image quality is largely limited by light-induced autofluorescence or background signals. To overcome this issue, low-background optical-imaging techniques including chemiluminescence imaging, afterglow imaging and photoacoustic imaging have been developed, based on their unique working mechanisms, which are: the detection of light emissions from chemical reactions, the cessation of light excitation before signal collection, and the detection of ultrasonic signals instead of light signals, respectively. Stimuli-responsive probes are highly desirable for improved imaging results since they can significantly reduce surrounding interference signals. Reactive oxygen species (ROS), which are closely implicated in a series of diseases such as cancer and inflammation, are frequently employed as initiators for responsive agents to selectively change the imaging signal. Thus, ROS-responsive agents incorporated into low-background imaging techniques can achieve a more promising imaging quality. In this review, recent advances in ROS-responsive probes for low-background optical-imaging techniques are summarized. Moreover, the approaches to improving the sensitivity of probes and tissue penetration depth are discussed in detail. In particular, we highlight the reaction mechanisms between the probes and ROS, revealing the potential for low-background optical imaging.
Collapse
Affiliation(s)
- Yan Xu
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | | | | |
Collapse
|
94
|
Li CC, Dong YH, Zou X, Luo X, Shen D, Hu J, Zhang CY. Label-Free and Template-Free Chemiluminescent Biosensor for Sensitive Detection of 5-Hydroxymethylcytosine in Genomic DNA. Anal Chem 2021; 93:1939-1943. [PMID: 33427439 DOI: 10.1021/acs.analchem.0c05419] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
5-Hydroxymethylcytosine (5hmC) is a modified base present at low levels in various mammalian cells, and it plays essential roles in gene expression, DNA demethylation, and genomic reprogramming. Herein, we develop a label-free and template-free chemiluminescent biosensor for sensitive detection of 5hmC in genomic DNAs based on 5hmC-specific glucosylation, periodate (IO4+) oxidation, biotinylation, and terminal deoxynucleotidyl transferase (TdT)-assisted isothermal amplification strategy, which we term hmC-GLIB-IAS. This hmC-GLIB-IAS exhibits distinct advantages of bisulfite-free, improved sensitivity, and genome-wide analysis of 5hmC at constant reaction temperature without the involvement of either specially labeled nucleic acid probes or specific templates for signal amplification. This method can sensitively detect 5hmC with a detection limit of 2.07 × 10-13 M, and it can detect 5hmC in the whole genome DNA with a detection limit of 3.92 × 10-5 ng/μL. Moreover, this method can distinguish 5hmC from 5-methylcytosine (5mC) and cytosine (C) and even discriminate 0.1% 5hmC in the mixture of 5hmC-DNA and 5mC-DNA. Importantly, this hmC-GLIB-IAS strategy enables genome-wide analysis without the involvement of either isotope-labeled substrates or specific antibodies, providing a powerful platform to detect 5hmC in real genomic DNA with high reproducibility and accuracy.
Collapse
Affiliation(s)
- Chen-Chen Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, Shandong 250014, China.,Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, P. R. China
| | - Yue-Hong Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, Shandong 250014, China
| | - Xiaoran Zou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, Shandong 250014, China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, P. R. China
| | - Dazhong Shen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, Shandong 250014, China
| | - Juan Hu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, Shandong 250014, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, Shandong 250014, China
| |
Collapse
|
95
|
Jiang X, Zhou Q, Du B, Li S, Huang Y, Chi Z, Lee WM, Yu M, Zheng J. Noninvasive monitoring of hepatic glutathione depletion through fluorescence imaging and blood testing. SCIENCE ADVANCES 2021; 7:7/8/eabd9847. [PMID: 33608272 PMCID: PMC7895432 DOI: 10.1126/sciadv.abd9847] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/06/2021] [Indexed: 05/29/2023]
Abstract
Hepatic glutathione plays a key role in regulating redox potential of the entire body, and its depletion is known to increase susceptibility to oxidative stress involved in many diseases. However, this crucial pathophysiological event can only be detected noninvasively with high-end instrumentation or invasively with surgical biopsy, limiting both preclinical research and clinical prevention of oxidative stress-related diseases. Here, we report that both in vivo fluorescence imaging and blood testing (the first-line detection in the clinics) can be used for noninvasive and consecutive monitoring of hepatic glutathione depletion at high specificity and accuracy with assistance of a body-clearable nanoprobe, of which emission and surface chemistries are selectively activated and transformed by hepatic glutathione in the liver sinusoids. These findings open a new avenue to designing exogenous blood markers that can carry information of local disease through specific nanobiochemical interactions back to the bloodstream for facile and rapid disease detection.
Collapse
Affiliation(s)
- Xingya Jiang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
| | - Qinhan Zhou
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
| | - Bujie Du
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
| | - Siqing Li
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
| | - Yingyu Huang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
| | - Zhikai Chi
- Department of Pathology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-8887, USA
| | - William M Lee
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-8887, USA
| | - Mengxiao Yu
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
| | - Jie Zheng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA.
- Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-8887, USA
| |
Collapse
|
96
|
Chen S, Zheng S, Jiang S, Guo H, Yang F. A simple "turn-on" fluorescence sensor for salicylaldehyde skeleton based on switch of PET-AIE effect. Anal Bioanal Chem 2021; 413:1955-1966. [PMID: 33481048 DOI: 10.1007/s00216-021-03165-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/01/2020] [Accepted: 01/07/2021] [Indexed: 11/26/2022]
Abstract
The selective detection of salicylaldehyde skeleton is of great significance in phytochemistry and biological research but rarely reported. In this research, a simple and highly selective "turn-on" fluorescence sensor (CDB-Am) for salicylaldehyde skeleton was developed based on switch of photoinduced electron transfer (PET) and aggregation-induced emission (AIE). CDB-Am bearing amino-cyanodistyrene structure responded to salicylaldehyde in the range of 3.1 to 40 μM with a detection limit of 0.94 μM. The sensing process of formation of Schiff-base adduct CDB-SA was confirmed by 1H NMR, MS, and FT-IR spectra, revealing that a recovered AIE property accounted for the turn-on fluorescence response of CDB-Am and the intramolecular hydrogen bonding played a crucial role in the disruption of PET process. This sensing ability was successfully applied for both fluorescence qualitative test of salicylaldehyde skeleton on TLC analysis and quantitative detection of salicylaldehyde skeleton with good accuracy in the root bark of Periploca sepium, suggesting the extensive applications in phytochemistry and traditional Chinese herbal medicine. Furthermore, CDB-Am exhibited the first excellent fluorescence imaging ability in detecting salicylaldehyde skeleton in a living system. This work supplied a new strategy of preparing a novel "turn-on" fluorescence probe for detecting salicylaldehyde skeleton in complex environments and living bodies.
Collapse
Affiliation(s)
- Shibing Chen
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Sining Zheng
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Shengjie Jiang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Hongyu Guo
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, 350007, Fujian, China
- Fujian Key Laboratory of Polymer Materials, Fuzhou, 350007, Fujian, China
| | - Fafu Yang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, 350007, Fujian, China.
- Fujian provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fuzhou, 350007, Fujian, China.
| |
Collapse
|
97
|
Cheng D, Xu W, Gong X, Yuan L, Zhang XB. Design Strategy of Fluorescent Probes for Live Drug-Induced Acute Liver Injury Imaging. Acc Chem Res 2021; 54:403-415. [PMID: 33382249 DOI: 10.1021/acs.accounts.0c00646] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Drug-induced acute liver injury (DIALI) is increasingly recognized as a significant cause of acute liver injury (ALI), which is characterized by a rapid loss of hepatocyte function in patients without pre-existing liver diseases. Evaluation of corresponding biomarkers, including alanine transaminase and aspartate amino transferase, is available as a diagnostic tool for hepatotoxicity. However, these blood tests have certain limitations: (1) they are generally not available for early estimation; (2) it is difficult to visualize and identify hepatotoxicity unambiguously in real-time; and (3) the biomarkers are not unique and are usually influenced by a variety of diseases, leading to potential false results. It is of grave importance and burgeoning demand to develop an early diagnostic approach for such diseases, but the ideal toolkit remains an unresolved challenge.As an alternative, molecular optical probes (fluorescence, chemiluminescence, bioluminescence, etc.) display a lot of advantages, such as high sensitivity, noninvasive fast analysis, and real-time in situ detection. They have emerged as potent and promising tools for the biomedical study of DIALI in living system. Until now, a number of optical probes for DIALI have been reported with some great potential for clinical trials. However, most of the probes still suffer from false signals because of the limitations in clinical application, including poor selectivity, low sensitivity, and biocompatibility. One key challenge that probes face in the ALI environment is the excessive exposure to reactive oxygen/nitrogen species and diffusivity, which may lead to false-positive or negative signals.Our group has employed multiple rational approaches to engineer high-performance optical probes for DIALI. With such development, we have successfully achieved the accurate detection of DIALI with minimal false signals both ex vivo and in vivo. While marching firmly toward understanding the biogenesis and progression of DIALI, we ultimately aim at the early stage clinical diagnosis of the disease, as well as mechanism understanding for clinical trials. In this Account, we summarize and present our three new approaches for the development of high-fidelity optical probes: (1) a combined screening and rational design strategy, (2) a double-locked probe design strategy, and (3) in situ imaging based on the release of a precipitating fluorochrome strategy. Using these strategies, we have formulated probes for a range of biological species that are biomarkers of DIALI, including reactive nitrogen species (ONOO-), reactive sulfur species (H2S and H2Sn), and enzymes (LAP, MAO, and ALP). We have highlighted the rationale for our design and screening strategy and methods to achieve high-fidelity optical probes. Some recent examples of optical probes developed by our laboratory and collaborations are mainly illustrated herein. We anticipate the strategies summarized here to inspire future molecular optical probe design, to contribute to studies of the detailed molecular mechanisms underlying liver diseases, and to improve the efficiency of the diagnosis and treatment of these diseases in clinical settings.
Collapse
Affiliation(s)
- Dan Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
- Clinical Research Institute, Affiliated Nanhua Hospital, University of South China, Hengyang 421002, China
| | - Wang Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Xiangyang Gong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
98
|
Wu L, Liu J, Tian X, Groleau RR, Bull SD, Li P, Tang B, James TD. Fluorescent probe for the imaging of superoxide and peroxynitrite during drug-induced liver injury. Chem Sci 2021; 12:3921-3928. [PMID: 34163661 PMCID: PMC8179478 DOI: 10.1039/d0sc05937d] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Drug-induced liver injury (DILI) is an important cause of potentially fatal liver disease. Herein, we report the development of a molecular probe (LW-OTf) for the detection and imaging of two biomarkers involved in DILI. Initially, primary reactive oxygen species (ROS) superoxide (O2˙-) selectively activates a near-infrared fluorescence (NIRF) output by generating fluorophore LW-OH. The C[double bond, length as m-dash]C linker of this hemicyanine fluorophore is subsequently oxidized by reactive nitrogen species (RNS) peroxynitrite (ONOO-), resulting in cleavage to release xanthene derivative LW-XTD, detected using two-photon excitation fluorescence (TPEF). An alternative fluorescence pathway can occur through cleavage of LW-OTf by ONOO- to non-fluorescent LW-XTD-OTf, which can react further with the second analyte O2˙- to produce the same LW-XTD fluorescent species. By combining NIRF and TPEF, LW-OTf is capable of differential and simultaneous detection of ROS and RNS in DILI using two optically orthogonal channels. Probe LW-OTf could be used to detect O2˙- or O2˙- and ONOO- in lysosomes stimulated by 2-methoxyestradiol (2-ME) or 2-ME and SIN-1 respectively. In addition, we were able to monitor the chemoprotective effects of tert-butylhydroxyanisole (BHA) against acetaminophen (APAP) toxicity in living HL-7702 cells. More importantly, TPEF and NIRF imaging confirmed an increase in levels of both O2˙- and ONOO- in mouse livers during APAP-induced DILI (confirmed by hematoxylin and eosin (H&E) staining).
Collapse
Affiliation(s)
- Luling Wu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University Jinan 250014 People's Republic of China .,Department of Chemistry, University of Bath Bath BA2 7AY UK
| | - Jihong Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University Jinan 250014 People's Republic of China .,Department of Chemistry, University of Bath Bath BA2 7AY UK
| | - Xue Tian
- Department of Chemistry, University of Bath Bath BA2 7AY UK
| | | | - Steven D Bull
- Department of Chemistry, University of Bath Bath BA2 7AY UK
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University Jinan 250014 People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University Jinan 250014 People's Republic of China
| | - Tony D James
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University Jinan 250014 People's Republic of China .,Department of Chemistry, University of Bath Bath BA2 7AY UK .,School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang 453007 P. R. China
| |
Collapse
|
99
|
Zhan Z, Dai Y, Li Q, Lv Y. Small molecule-based bioluminescence and chemiluminescence probes for sensing and imaging of reactive species. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116129] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
100
|
Yuan Y, Hou W, Qin W, Wu C. Recent advances in semiconducting polymer dots as optical probes for biosensing. Biomater Sci 2021; 9:328-346. [DOI: 10.1039/d0bm01038c] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review mainly summarized the recent results that used bright polymer dots (Pdots) for the detection of different analytes such as reactive oxygen species (ROS), metal ions, pH values, and a variety of biomolecules.
Collapse
Affiliation(s)
- Ye Yuan
- State Key Laboratory on Integrated Optoelectronics
- College of Electronic Science and Engineering
- Jilin University
- Changchun
- China
| | - Weiying Hou
- Department of Biomedical Engineering
- Southern University of Science and Technology
- Shenzhen
- China
| | - Weiping Qin
- State Key Laboratory on Integrated Optoelectronics
- College of Electronic Science and Engineering
- Jilin University
- Changchun
- China
| | - Changfeng Wu
- Department of Biomedical Engineering
- Southern University of Science and Technology
- Shenzhen
- China
| |
Collapse
|