51
|
Wu Y, Chau H, Thor W, Chan KHY, Ma X, Chan W, Long NJ, Wong K. Solid‐Phase Peptide Macrocyclization and Multifunctionalization via Dipyrrin Construction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108885] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yue Wu
- Department of Chemistry Hong Kong Baptist University Kowloon Tong Kowloon Hong Kong SAR China
| | - Ho‐Fai Chau
- Department of Chemistry Hong Kong Baptist University Kowloon Tong Kowloon Hong Kong SAR China
| | - Waygen Thor
- Department of Chemistry Hong Kong Baptist University Kowloon Tong Kowloon Hong Kong SAR China
| | - Kaitlin Hao Yi Chan
- Department of Chemistry Hong Kong Baptist University Kowloon Tong Kowloon Hong Kong SAR China
- Department of Applied Biology and Chemical Technology Hong Kong Polytechnic University Hung Hom Hong Kong SAR China
| | - Xia Ma
- Department of Chemistry Hong Kong Baptist University Kowloon Tong Kowloon Hong Kong SAR China
| | - Wai‐Lun Chan
- Department of Applied Biology and Chemical Technology Hong Kong Polytechnic University Hung Hom Hong Kong SAR China
| | - Nicholas J. Long
- Department of Chemistry Imperial College London, Molecular Sciences Research Hub London UK
| | - Ka‐Leung Wong
- Department of Chemistry Hong Kong Baptist University Kowloon Tong Kowloon Hong Kong SAR China
| |
Collapse
|
52
|
Bechtler C, Lamers C. Macrocyclization strategies for cyclic peptides and peptidomimetics. RSC Med Chem 2021; 12:1325-1351. [PMID: 34447937 PMCID: PMC8372203 DOI: 10.1039/d1md00083g] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
Peptides are a growing therapeutic class due to their unique spatial characteristics that can target traditionally "undruggable" protein-protein interactions and surfaces. Despite their advantages, peptides must overcome several key shortcomings to be considered as drug leads, including their high conformational flexibility and susceptibility to proteolytic cleavage. As a general approach for overcoming these challenges, macrocyclization of a linear peptide can usually improve these characteristics. Their synthetic accessibility makes peptide macrocycles very attractive, though traditional synthetic methods for macrocyclization can be challenging for peptides, especially for head-to-tail cyclization. This review provides an updated summary of the available macrocyclization chemistries, such as traditional lactam formation, azide-alkyne cycloadditions, ring-closing metathesis as well as unconventional cyclization reactions, and it is structured according to the obtained functional groups. Keeping peptide chemistry and screening in mind, the focus is given to reactions applicable in solution, on solid supports, and compatible with contemporary screening methods.
Collapse
Affiliation(s)
- Clément Bechtler
- Department Pharmaceutical Sciences, University of Basel Klingelbergstr. 50 4056 Basel Switzerland
| | - Christina Lamers
- Department Pharmaceutical Sciences, University of Basel Klingelbergstr. 50 4056 Basel Switzerland
| |
Collapse
|
53
|
Zhang F, Angelova A, Garamus VM, Angelov B, Tu S, Kong L, Zhang X, Li N, Zou A. Mitochondrial Voltage-Dependent Anion Channel 1-Hexokinase-II Complex-Targeted Strategy for Melanoma Inhibition Using Designed Multiblock Peptide Amphiphiles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35281-35293. [PMID: 34309373 DOI: 10.1021/acsami.1c04385] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Targeted therapies of melanoma are of urgent need considering the resistance of this aggressive type of cancer to chemotherapeutics. The voltage-dependent anion channel 1 (VDAC1)-hexokinase-II (HK-II) complex is an emerging target for novel anticancer therapies based on induced mitochondria-mediated apoptosis. The low cell membrane permeability of the anticancer 12-mer peptide N-Ter (RDVFTKGYGFGL) derived from the N-terminal fragment of the VDAC1 protein impedes the intracellular targeting. Here, novel multiblock VDAC1-derived cationic amphiphilic peptides (referred to as Pal-N-Ter-TAT, pFL-N-Ter-TAT, and Pal-pFL-N-Ter-TAT) are designed with a self-assembly propensity and cell-penetrating properties. The created multiblock amphiphilic peptides of partial α-helical conformations form nanoparticles of ellipsoid-like shapes and are characterized by enhanced cellular uptake. The amphiphilic peptides can target mitochondria and dissociate the VDAC1-HK-II complex at the outer mitochondrial membrane, which result in mitochondria-mediated apoptosis. The latter is associated with decrease of the mitochondrial membrane potential, cytochrome c release, and changes of the expression levels of the apoptotic proteins in A375 melanoma cells. Importantly, the mitochondrial VDAC1-derived amphiphilic peptides have a comparable IC50 value for melanoma cells to a small-molecule drug, sorafenib, which has been previously used in clinical trials for melanoma. These results demonstrate the potential of the designed peptide constructs for efficient melanoma inhibition.
Collapse
Affiliation(s)
- Fan Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institute Galien Paris-Saclay UMR8612, Châtenay-Malabry F-92290, France
| | | | - Borislav Angelov
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Na Slovance 2, Prague CZ-18221, Czech Republic
| | - Shuyang Tu
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute (Zhangjiang Laboratory), Chinese Academy of Sciences, Shanghai 201210, China
| | - Liangliang Kong
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute (Zhangjiang Laboratory), Chinese Academy of Sciences, Shanghai 201210, China
| | - Xinlei Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Na Li
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute (Zhangjiang Laboratory), Chinese Academy of Sciences, Shanghai 201210, China
| | - Aihua Zou
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, P. R. China
| |
Collapse
|
54
|
Cao Q, Wang H, Wang X, Wu D. A Versatile Crosslinking Strategy on Facile Fabrication of Fluorescent Hydrogels via
o
‐Phthalaldehyde
Ternary Condensation. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Qingchen Cao
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Hufei Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Decheng Wu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
55
|
Modification of N-terminal α-amine of proteins via biomimetic ortho-quinone-mediated oxidation. Nat Commun 2021; 12:2257. [PMID: 33859198 PMCID: PMC8050078 DOI: 10.1038/s41467-021-22654-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/09/2021] [Indexed: 11/22/2022] Open
Abstract
Naturally abundant quinones are important molecules, which play essential roles in various biological processes due to their reduction potential. In contrast to their universality, the investigation of reactions between quinones and proteins remains sparse. Herein, we report the development of a convenient strategy to protein modification via a biomimetic quinone-mediated oxidation at the N-terminus. By exploiting unique reactivity of an ortho-quinone reagent, the α-amine of protein N-terminus is oxidized to generate aldo or keto handle for orthogonal conjugation. The applications have been demonstrated using a range of proteins, including myoglobin, ubiquitin and small ubiquitin-related modifier 2 (SUMO2). The effect of this method is further highlighted via the preparation of a series of 17 macrophage inflammatory protein 1β (MIP-1β) analogs, followed by preliminary anti-HIV activity and cell viability assays, respectively. This method offers an efficient and complementary approach to existing strategies for N-terminal modification of proteins. Methods for selective modification of the N-terminus of proteins are of high interest, but mostly require specific amino acid residues. Here, the authors report a selective and fast method for N-terminal modification of proteins based on quinone-mediated oxidation of the alpha-amine to aldehyde or ketone, and apply it to diverse proteins.
Collapse
|
56
|
Ceballos J, Grinhagena E, Sangouard G, Heinis C, Waser J. Cys-Cys and Cys-Lys Stapling of Unprotected Peptides Enabled by Hypervalent Iodine Reagents. Angew Chem Int Ed Engl 2021; 60:9022-9031. [PMID: 33450121 PMCID: PMC8048981 DOI: 10.1002/anie.202014511] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/22/2020] [Indexed: 12/31/2022]
Abstract
Easy access to a wide range of structurally diverse stapled peptides is crucial for the development of inhibitors of protein-protein interactions. Herein, we report bis-functional hypervalent iodine reagents for two-component cysteine-cysteine and cysteine-lysine stapling yielding structurally diverse thioalkyne linkers. This stapling method works with unprotected natural amino acid residues and does not require pre-functionalization or metal catalysis. The products are stable to purification and isolation. Post-stapling modification can be accessed via amidation of an activated ester, or via cycloaddition onto the formed thioalkyne group. Increased helicity and binding affinity to MDM2 was obtained for a i,i+7 stapled peptide.
Collapse
Affiliation(s)
- Javier Ceballos
- Laboratory of Catalysis and Organic SynthesisEcole Polytechnique Fédérale de LausanneEPFL SB ISIC LCSO, BCH 14021015LausanneSwitzerland
| | - Elija Grinhagena
- Laboratory of Catalysis and Organic SynthesisEcole Polytechnique Fédérale de LausanneEPFL SB ISIC LCSO, BCH 14021015LausanneSwitzerland
| | - Gontran Sangouard
- Laboratory of Therapeutic Proteins and PeptidesEcole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LPPT, BCH 53051015LausanneSwitzerland
| | - Christian Heinis
- Laboratory of Therapeutic Proteins and PeptidesEcole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LPPT, BCH 53051015LausanneSwitzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic SynthesisEcole Polytechnique Fédérale de LausanneEPFL SB ISIC LCSO, BCH 14021015LausanneSwitzerland
| |
Collapse
|
57
|
Silva MJSA, Faustino H, Coelho JAS, Pinto MV, Fernandes A, Compañón I, Corzana F, Gasser G, Gois PMP. Efficient Amino‐Sulfhydryl Stapling on Peptides and Proteins Using Bifunctional NHS‐Activated Acrylamides. Angew Chem Int Ed Engl 2021; 60:10850-10857. [DOI: 10.1002/anie.202016936] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Maria J. S. A. Silva
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy Universidade de Lisboa Lisbon Portugal
- Chimie ParisTech PSL University CNRS Institute of Chemistry for Life and Health Sciences Laboratory for Inorganic Chemical Biology 75005 Paris France
| | - Hélio Faustino
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy Universidade de Lisboa Lisbon Portugal
| | - Jaime A. S. Coelho
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy Universidade de Lisboa Lisbon Portugal
| | - Maria V. Pinto
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy Universidade de Lisboa Lisbon Portugal
| | - Adelaide Fernandes
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy Universidade de Lisboa Lisbon Portugal
| | - Ismael Compañón
- Departamento de Química Centro de Investigación en Síntesis Química Universidad de La Rioja 26006 Logroño La Rioja Spain
| | - Francisco Corzana
- Departamento de Química Centro de Investigación en Síntesis Química Universidad de La Rioja 26006 Logroño La Rioja Spain
| | - Gilles Gasser
- Chimie ParisTech PSL University CNRS Institute of Chemistry for Life and Health Sciences Laboratory for Inorganic Chemical Biology 75005 Paris France
| | - Pedro M. P. Gois
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy Universidade de Lisboa Lisbon Portugal
| |
Collapse
|
58
|
Silva MJSA, Faustino H, Coelho JAS, Pinto MV, Fernandes A, Compañón I, Corzana F, Gasser G, Gois PMP. Efficient Amino‐Sulfhydryl Stapling on Peptides and Proteins Using Bifunctional NHS‐Activated Acrylamides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Maria J. S. A. Silva
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy Universidade de Lisboa Lisbon Portugal
- Chimie ParisTech PSL University CNRS Institute of Chemistry for Life and Health Sciences Laboratory for Inorganic Chemical Biology 75005 Paris France
| | - Hélio Faustino
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy Universidade de Lisboa Lisbon Portugal
| | - Jaime A. S. Coelho
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy Universidade de Lisboa Lisbon Portugal
| | - Maria V. Pinto
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy Universidade de Lisboa Lisbon Portugal
| | - Adelaide Fernandes
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy Universidade de Lisboa Lisbon Portugal
| | - Ismael Compañón
- Departamento de Química Centro de Investigación en Síntesis Química Universidad de La Rioja 26006 Logroño La Rioja Spain
| | - Francisco Corzana
- Departamento de Química Centro de Investigación en Síntesis Química Universidad de La Rioja 26006 Logroño La Rioja Spain
| | - Gilles Gasser
- Chimie ParisTech PSL University CNRS Institute of Chemistry for Life and Health Sciences Laboratory for Inorganic Chemical Biology 75005 Paris France
| | - Pedro M. P. Gois
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy Universidade de Lisboa Lisbon Portugal
| |
Collapse
|
59
|
Ceballos J, Grinhagena E, Sangouard G, Heinis C, Waser J. Cys–Cys and Cys–Lys Stapling of Unprotected Peptides Enabled by Hypervalent Iodine Reagents. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014511] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Javier Ceballos
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 1402 1015 Lausanne Switzerland
| | - Elija Grinhagena
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 1402 1015 Lausanne Switzerland
| | - Gontran Sangouard
- Laboratory of Therapeutic Proteins and Peptides Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LPPT, BCH 5305 1015 Lausanne Switzerland
| | - Christian Heinis
- Laboratory of Therapeutic Proteins and Peptides Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LPPT, BCH 5305 1015 Lausanne Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne EPFL SB ISIC LCSO, BCH 1402 1015 Lausanne Switzerland
| |
Collapse
|
60
|
A versatile resin for the generation of thioether-bonded head-to-tail cyclized peptides. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
61
|
Zhu HY, Wu M, Yu FQ, Zhang YN, Xi TK, Chen K, Fang GM. Chemical synthesis of thioether-bonded bicyclic peptides using tert-butylthio and Trt-protected cysteines. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
62
|
Li B, Tang H, Turlik A, Wan Z, Xue X, Li L, Yang X, Li J, He G, Houk KN, Chen G. Cooperative Stapling of Native Peptides at Lysine and Tyrosine or Arginine with Formaldehyde. Angew Chem Int Ed Engl 2021; 60:6646-6652. [DOI: 10.1002/anie.202016267] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Bo Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Hong Tang
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Aneta Turlik
- Department of Chemistry and Biochemistry University of California Los Angeles CA 90095 USA
| | - Zhao Wan
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Xiao‐Song Xue
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
- Department of Chemistry and Biochemistry University of California Los Angeles CA 90095 USA
| | - Li Li
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation Institute of Materia Medica Chinese Academy of Medical Sciences Peking Union Medical College Beijing 100050 China
| | - Xiaoxiao Yang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation Institute of Materia Medica Chinese Academy of Medical Sciences Peking Union Medical College Beijing 100050 China
| | - Jiuyuan Li
- Asymchem Life Science Co., Ltd. TEDA Tianjin 300457 China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry University of California Los Angeles CA 90095 USA
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
63
|
Li B, Tang H, Turlik A, Wan Z, Xue X, Li L, Yang X, Li J, He G, Houk KN, Chen G. Cooperative Stapling of Native Peptides at Lysine and Tyrosine or Arginine with Formaldehyde. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bo Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Hong Tang
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Aneta Turlik
- Department of Chemistry and Biochemistry University of California Los Angeles CA 90095 USA
| | - Zhao Wan
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Xiao‐Song Xue
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
- Department of Chemistry and Biochemistry University of California Los Angeles CA 90095 USA
| | - Li Li
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation Institute of Materia Medica Chinese Academy of Medical Sciences Peking Union Medical College Beijing 100050 China
| | - Xiaoxiao Yang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation Institute of Materia Medica Chinese Academy of Medical Sciences Peking Union Medical College Beijing 100050 China
| | - Jiuyuan Li
- Asymchem Life Science Co., Ltd. TEDA Tianjin 300457 China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry University of California Los Angeles CA 90095 USA
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
64
|
Small and Simple, yet Sturdy: Conformationally Constrained Peptides with Remarkable Properties. Int J Mol Sci 2021; 22:ijms22041611. [PMID: 33562633 PMCID: PMC7915549 DOI: 10.3390/ijms22041611] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/20/2022] Open
Abstract
The sheer size and vast chemical space (i.e., diverse repertoire and spatial distribution of functional groups) underlie peptides’ ability to engage in specific interactions with targets of various structures. However, the inherent flexibility of the peptide chain negatively affects binding affinity and metabolic stability, thereby severely limiting the use of peptides as medicines. Imposing conformational constraints to the peptide chain offers to solve these problems but typically requires laborious structure optimization. Alternatively, libraries of constrained peptides with randomized modules can be screened for specific functions. Here, we present the properties of conformationally constrained peptides and review rigidification chemistries/strategies, as well as synthetic and enzymatic methods of producing macrocyclic peptides. Furthermore, we discuss the in vitro molecular evolution methods for the development of constrained peptides with pre-defined functions. Finally, we briefly present applications of selected constrained peptides to illustrate their exceptional properties as drug candidates, molecular recognition probes, and minimalist catalysts.
Collapse
|
65
|
Li J, Ma Y, Zhang X, Cao X, Gong H, Li A. Expeditious and scalable preparation of a Li−Thiele reagent for amine-based bioconjugation. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
66
|
González-Muñiz R, Bonache MÁ, Pérez de Vega MJ. Modulating Protein-Protein Interactions by Cyclic and Macrocyclic Peptides. Prominent Strategies and Examples. Molecules 2021; 26:445. [PMID: 33467010 PMCID: PMC7830901 DOI: 10.3390/molecules26020445] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Cyclic and macrocyclic peptides constitute advanced molecules for modulating protein-protein interactions (PPIs). Although still peptide derivatives, they are metabolically more stable than linear counterparts, and should have a lower degree of flexibility, with more defined secondary structure conformations that can be adapted to imitate protein interfaces. In this review, we analyze recent progress on the main methods to access cyclic/macrocyclic peptide derivatives, with emphasis in a few selected examples designed to interfere within PPIs. These types of peptides can be from natural origin, or prepared by biochemical or synthetic methodologies, and their design could be aided by computational approaches. Some advances to facilitate the permeability of these quite big molecules by conjugation with cell penetrating peptides, and the incorporation of β-amino acid and peptoid structures to improve metabolic stability, are also commented. It is predicted that this field of research could have an important future mission, running in parallel to the discovery of new, relevant PPIs involved in pathological processes.
Collapse
Affiliation(s)
- Rosario González-Muñiz
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (M.Á.B.); (M.J.P.d.V.)
| | | | | |
Collapse
|
67
|
Guo AD, Wu KH, Chen XH. Light-induced efficient and residue-selective bioconjugation of native proteins via indazolone formation. RSC Adv 2021; 11:2235-2241. [PMID: 35424183 PMCID: PMC8693682 DOI: 10.1039/d0ra10154k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/15/2020] [Indexed: 12/03/2022] Open
Abstract
Chemical modification of proteins has emerged as a powerful tool to realize enormous applications, such as development of novel biologics and functional studies of individual protein. We report a light-induced lysine-selective native protein conjugation approach via indazolone formation, conferring reliable chemoselectivity, excellent efficiency, temporal control and biocompatibility under operationally simple and mild conditions, in vitro and in living systems. This straightforward protocol demonstrates the generality and accessibility for direct and rapid functionalization of diverse native proteins, which suggests a new avenue of great importance to bioconjugation, medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- An-Di Guo
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ke-Huan Wu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Xiao-Hua Chen
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine Nanjing 210023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
68
|
Bartlett ME, Shuler SA, Rose DJ, Gilbert LM, Hegab RA, Lawton TJ, Messersmith RE. Paintable proteins: biofunctional coatings via covalent incorporation of proteins into a polymer network. NEW J CHEM 2021. [DOI: 10.1039/d1nj04687j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Attaching proteins to surfaces while maintaining bioactivity is a promising avenue for developing new functional materials.
Collapse
Affiliation(s)
- Mairead E. Bartlett
- Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, USA
| | - Scott A. Shuler
- Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, USA
| | - Daniel J. Rose
- Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, USA
| | - Lindsey M. Gilbert
- Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, USA
| | - Rachel A. Hegab
- Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, USA
| | - Thomas J. Lawton
- Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, USA
| | - Reid E. Messersmith
- Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, USA
| |
Collapse
|
69
|
Thanzeel FY, Wolf C. Chemoselective bioconjugation based on modular click chemistry with 4-halocoumarins and aryl sulfonates. RSC Adv 2021; 11:18960-18965. [PMID: 35478620 PMCID: PMC9033492 DOI: 10.1039/d1ra03271b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/21/2021] [Indexed: 12/25/2022] Open
Abstract
We report chemoselective and modular peptide bioconjugation using stoichiometric amounts of 4-halocoumarin and arylsulfonate agents that undergo metal-free C(sp2)-heteroatom bond formation at micromolar concentrations. The underlying ipso-substitution click chemistry is irreversible and generates stable and inherently fluorescent bioconjugates, and the broad selection of coumarin tags offers high labeling flexibility and versatility. Different coumarins and arylsulfonates can be selectively attached to amino and thiol groups in the small peptides glutathione and ornipressin, and both free as well as latent thiols captured in disulfide bridges can be targeted if desired. The broad utility, ease of use, storage, and preparation of 4-halocoumarins and arylsulfonates are very attractive features that extend currently available dual bioconjugation capabilities. We report chemoselective and modular peptide bioconjugation using stoichiometric amounts of 4-halocoumarin and arylsulfonate agents that undergo metal-free C(sp2)-heteroatom bond formation at micromolar concentrations.![]()
Collapse
Affiliation(s)
| | - Christian Wolf
- Department of Chemistry
- Georgetown University
- Washington
- USA
| |
Collapse
|
70
|
Li B, Zhang J, Li L, Chen G. A rapid and sensitive method for chiroptical sensing of α-amino acids via click-like labeling with o-phthalaldehyde and p-toluenethiol. Chem Sci 2020; 12:2504-2508. [PMID: 34164017 PMCID: PMC8179345 DOI: 10.1039/d0sc05749e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A highly practical method for comprehensive chiroptical sensing of free α amino acids with streamlined operation and high sensitivity via dual CD/UV measurements is developed. The assay takes advantage of an efficient and selective three-component labeling reaction of primary amines with o-phthalaldehyde and p-toluenethiol reagents to derivatize the NH2 group of analytes into an isoindole. The covalent labeling generates sensitive UV and CD readouts, both of which show an excellent linear relationship with the concentration of analytes. The high reactivity and the novel optical reporting mechanism allow fast and accurate measurement without background interference. The sensing assay works well for a remarkably broad range of analyte concentrations, with an unprecedented lower limit of 10 micromolar concentration. A highly practical method for comprehensive chiroptical sensing of free α amino acids with streamlined operation and high sensitivity via dual CD/UV measurements is developed.![]()
Collapse
Affiliation(s)
- Bo Li
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China .,State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Jie Zhang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Li Li
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
71
|
Nolan MD, Scanlan EM. Applications of Thiol-Ene Chemistry for Peptide Science. Front Chem 2020; 8:583272. [PMID: 33282831 PMCID: PMC7689097 DOI: 10.3389/fchem.2020.583272] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/13/2020] [Indexed: 12/21/2022] Open
Abstract
Radical thiol-ene chemistry has been demonstrated for a range of applications in peptide science, including macrocyclization, glycosylation and lipidation amongst a myriad of others. The thiol-ene reaction offers a number of advantages in this area, primarily those characteristic of "click" reactions. This provides a chemical approach to peptide modification that is compatible with aqueous conditions with high orthogonality and functional group tolerance. Additionally, the use of a chemical approach for peptide modification affords homogeneous peptides, compared to heterogeneous mixtures often obtained through biological methods. In addition to peptide modification, thiol-ene chemistry has been applied in novel approaches to biological studies through synthesis of mimetics and use in development of probes. This review will cover the range of applications of the radical-mediated thiol-ene reaction in peptide and protein science.
Collapse
Affiliation(s)
- Mark D Nolan
- School of Chemistry, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Eoin M Scanlan
- School of Chemistry, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Ireland
| |
Collapse
|
72
|
Bluntzer MTJ, O'Connell J, Baker TS, Michel J, Hulme AN. Designing stapled peptides to inhibit
protein‐protein
interactions: An analysis of successes in a rapidly changing field. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | | | - Julien Michel
- EaStChem School of Chemistry The University of Edinburgh Edinburgh UK
| | - Alison N. Hulme
- EaStChem School of Chemistry The University of Edinburgh Edinburgh UK
| |
Collapse
|
73
|
Zheng X, Liu W, Liu Z, Zhao Y, Wu C. Biocompatible and Rapid Cyclization of Peptides with 2,4-Difluoro-6-hydroxy-1,3,5-benzenetricarbonitrile for the Development of Cyclic Peptide Libraries. Bioconjug Chem 2020; 31:2085-2091. [DOI: 10.1021/acs.bioconjchem.0c00363] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xuejun Zheng
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P.R. China
| | - Weidong Liu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P.R. China
| | - Ziyan Liu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P.R. China
| | - Yibing Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P.R. China
| | - Chuanliu Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P.R. China
| |
Collapse
|
74
|
Yin H, Zheng M, Chen H, Wang S, Zhou Q, Zhang Q, Wang P. Stereoselective and Divergent Construction of β-Thiolated/Selenolated Amino Acids via Photoredox-Catalyzed Asymmetric Giese Reaction. J Am Chem Soc 2020; 142:14201-14209. [DOI: 10.1021/jacs.0c04994] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hongli Yin
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Mengjie Zheng
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Huan Chen
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Siyao Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Qingqing Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Qiang Zhang
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Ping Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| |
Collapse
|
75
|
Samarasimhareddy M, Shamir M, Shalev DE, Hurevich M, Friedler A. A Rapid and Efficient Building Block Approach for Click Cyclization of Peptoids. Front Chem 2020; 8:405. [PMID: 32509731 PMCID: PMC7248394 DOI: 10.3389/fchem.2020.00405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/17/2020] [Indexed: 12/18/2022] Open
Abstract
Cyclic peptide-peptoid hybrids possess improved stability and selectivity over linear peptides and are thus better drug candidates. However, their synthesis is far from trivial and is usually difficult to automate. Here we describe a new rapid and efficient approach for the synthesis of click-based cyclic peptide-peptoid hybrids. Our methodology is based on a combination between easily synthesized building blocks, automated microwave assisted solid phase synthesis and bioorthogonal click cyclization. We proved the concept of this method using the INS peptide, which we have previously shown to activate the HIV-1 integrase enzyme. This strategy enabled the rapid synthesis and biophysical evaluation of a library of cyclic peptide-peptoid hybrids derived from HIV-1 integrase in high yield and purity. The new cyclic hybrids showed improved biological activity and were significantly more stable than the original linear INS peptide.
Collapse
Affiliation(s)
| | - Mai Shamir
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Deborah E. Shalev
- Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Pharmaceutical Engineering, Azrieli College of Engineering Jerusalem, Jerusalem, Israel
| | - Mattan Hurevich
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Assaf Friedler
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
76
|
Ortho-Phthalaldehyde (OPA)-based chemoselective protein bioconjugation and peptide cyclization. Methods Enzymol 2020; 639:237-261. [PMID: 32475404 DOI: 10.1016/bs.mie.2020.04.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Ortho-Phthalaldehyde (OPA)-amine reaction and OPA-amine-thiol reaction have been developed to effectively modify native peptides and proteins under the physiological conditions. First, OPA and its derivatives can rapidly and smoothly react with primary amine moieties in peptides and proteins to achieve native protein biconjugations. Furthermore, OPA-alkyne bifunctional linkers can be used for proteome profiling. Second, OPA-amine-thiol three-component reaction has been developed for chemoselective peptide cyclization, directly on unprotected peptides in the aqueous buffer. Moreover, this OPA-guided cyclic peptide can be further modified with the N-maleimide moiety in one pot to introduce additional functionalities. The development of this OPA based chemoselective bioconjugation and peptide cyclization extends the toolbox for protein chemical modification and construction of cyclic peptides.
Collapse
|
77
|
Zhang Q, Zhang Y, Liu H, Chow HY, Tian R, Eva Fung YM, Li X. OPA-Based Bifunctional Linker for Protein Labeling and Profiling. Biochemistry 2020; 59:175-178. [PMID: 31657212 DOI: 10.1021/acs.biochem.9b00787] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lysine residues have been considered as a routine conjugating site for protein chemical labeling and modification. The commercially available lysine-labeling agents have several limitations in labeling efficiency, stability, and cost. To pursue alternative protein lysine-labeling strategies, herein, we report the development of an ortho-phthalaldehyde (OPA)-based bifunctional linker suitable for protein chemical labeling and profiling. Among three designed OPA-based bifunctional linkers, OPA-NH-alkyne 5 was proved to be optimal for protein labeling with minimal protein turbidity. We further demonstrated OPA-NH-alkyne 5 was applicable for immediate capture of protein or proteome chemical labeling.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry , The University of Hong Kong , Hong Kong , People's Republic of China, SAR
| | - Yue Zhang
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry , The University of Hong Kong , Hong Kong , People's Republic of China, SAR
| | - Heng Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry , The University of Hong Kong , Hong Kong , People's Republic of China, SAR
| | - Hoi Yee Chow
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry , The University of Hong Kong , Hong Kong , People's Republic of China, SAR
| | - Ruijun Tian
- Department of Chemistry , Southern University of Science and Technology , Shenzhen , People's Republic of China
| | - Yi Man Eva Fung
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry , The University of Hong Kong , Hong Kong , People's Republic of China, SAR
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry , The University of Hong Kong , Hong Kong , People's Republic of China, SAR
| |
Collapse
|
78
|
Todorovic M, Perrin DM. FlICk (fluorescent isoindole crosslinking) for peptide stapling. Methods Enzymol 2020; 639:313-332. [DOI: 10.1016/bs.mie.2020.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
79
|
Bao Y, Jiang S, Zhao L, Jin Y, Yan R, Wang Z. Photoinduced synthesis and antitumor activity of a phakellistatin 18 analog with an isoindolinone fragment. NEW J CHEM 2020. [DOI: 10.1039/d0nj03005h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Photoinduced synthesis and antitumor activity of a phakellistatin 18 analog with an isoindolinone fragment.
Collapse
Affiliation(s)
- Yujun Bao
- Key Laboratory of Photochemistry biomaterials and Energy storage materials of Heilongjiang Province
- College of Chemistry & Chemical Engineering
- Harbin Normal University
- Harbin
- China
| | - Shitian Jiang
- Key Laboratory of Photochemistry biomaterials and Energy storage materials of Heilongjiang Province
- College of Chemistry & Chemical Engineering
- Harbin Normal University
- Harbin
- China
| | - Lishuang Zhao
- Key Laboratory of Photochemistry biomaterials and Energy storage materials of Heilongjiang Province
- College of Chemistry & Chemical Engineering
- Harbin Normal University
- Harbin
- China
| | - Yingxue Jin
- Key Laboratory of Photochemistry biomaterials and Energy storage materials of Heilongjiang Province
- College of Chemistry & Chemical Engineering
- Harbin Normal University
- Harbin
- China
| | - Rui Yan
- Key Laboratory of Photochemistry biomaterials and Energy storage materials of Heilongjiang Province
- College of Chemistry & Chemical Engineering
- Harbin Normal University
- Harbin
- China
| | - Zhiqiang Wang
- Key Laboratory of Photochemistry biomaterials and Energy storage materials of Heilongjiang Province
- College of Chemistry & Chemical Engineering
- Harbin Normal University
- Harbin
- China
| |
Collapse
|