51
|
Synthetic sideromycins (skepticism and optimism): selective generation of either broad or narrow spectrum Gram-negative antibiotics. Biometals 2019; 32:425-451. [PMID: 30919118 DOI: 10.1007/s10534-019-00192-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 03/20/2019] [Indexed: 02/07/2023]
Abstract
New or repurposed antibiotics are desperately needed since bacterial resistance has risen to essentially all of our current antibiotics, and few new antibiotics have been developed over the last several decades. A primary cause of drug resistance is the overuse of antibiotics that can result in alteration of microbial permeability, alteration of drug target binding sites, induction of enzymes that destroy antibiotics (i.e., β-lactamases) and even induction of efflux mechanisms. Research efforts are described that are designed to determine if the known critical dependence of iron assimilation by microbes for growth and virulence can be exploited for the development of new approaches to antibiotic therapy. Iron recognition and active transport relies on the biosyntheses and use of microbe-selective iron chelating compounds called siderophores. Several natural siderophore-antibiotic conjugates (sideromycins) have been discovered and studied. The natural sideromycins consist of an iron binding siderophore linked to a warhead that exerts antibiotic activity once assimilated by targeted bacteria. Inspired these natural conjugates, a combination of chemical syntheses, microbiological and biochemical studies have been used to generate semi-synthetic and totally synthetic sideromycin analogs. The results demonstrate that siderophores and analogs can be used for iron transport-mediated drug delivery ("Trojan Horse" antibiotics or sideromycins) and induction of iron limitation/starvation (development of new agents to block iron assimilation). While several examples illustrate that this approach can generate microbe selective antibiotics that are active in vitro, the scope and limitations of this approach, especially related to development of resistance, siderophore based molecular recognition requirements, appropriate linker and drug choices, will be described.
Collapse
|
52
|
Hu J, Ghosh M, Miller MJ, Bohn PW. Whole-cell biosensing by siderophore-based molecular recognition and localized surface plasmon resonance. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2019; 11:296-302. [PMID: 31666814 PMCID: PMC6820853 DOI: 10.1039/c8ay02180e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A siderophore-based active bacterial pull-down strategy was integrated in a localized surface plasmon resonance (LSPR) sensing platform and subsequently tested by detecting whole-cell Acinetobacter baumannii. The LSPR-based whole-cell sensing approach was previously demonstrated with aptamer-based molecular recognition motifs, and here it is extended to the powerful siderophore system, which exploits the natural bacterial need to sequester Fe(III). Specifically, a biscatecholate-monohydroxamate mixed ligand siderophore linked to a biotin via three polyethylene glycol repeating units was synthesized and immobilized on Au trigonal nanoprisms of an LSPR sensor. The resulting surface-confined biotinylated siderophore subsequently chelated Fe(III), forming a siderophore-Fe(III) complex which was shown to be competent to recognize A. baumannii. Target bacteria were captured and then detected by measuring wavelength shifts in the LSPR extinction spectrum. This siderophore pull-down LSPR biosensor approach is rapid (≤3 h detection) and sensitive - with a limit of detection (LOD) of 80 bacterial cells and a linear wavelength shift over the range 4 × 102 to 4 × 106 cfu mL-1. As intended by design, the siderophore-based biosensor was selective for A. baumannii over Pseudomonas aeruginosa, Escherichia coli, and Bacillus cereus, and was stable in ambient conditions for up to 2 weeks.
Collapse
Affiliation(s)
- Jiayun Hu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA. ; ; Tel: +1-574-631-1849
| | - Manuka Ghosh
- Hsiri Therapeutics, Innovation Park, 1400 East Angela Boulevard, South Bend, Indiana 46617, USA
| | - Marvin J Miller
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA. ; ; Tel: +1-574-631-1849
| | - Paul W Bohn
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA. ; ; Tel: +1-574-631-1849
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
53
|
Moynié L, Serra I, Scorciapino MA, Oueis E, Page MG, Ceccarelli M, Naismith JH. Preacinetobactin not acinetobactin is essential for iron uptake by the BauA transporter of the pathogen Acinetobacter baumannii. eLife 2018; 7:42270. [PMID: 30558715 PMCID: PMC6300358 DOI: 10.7554/elife.42270] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/02/2018] [Indexed: 01/05/2023] Open
Abstract
New strategies are urgently required to develop antibiotics. The siderophore uptake system has attracted considerable attention, but rational design of siderophore antibiotic conjugates requires knowledge of recognition by the cognate outer-membrane transporter. Acinetobacter baumannii is a serious pathogen, which utilizes (pre)acinetobactin to scavenge iron from the host. We report the structure of the (pre)acinetobactin transporter BauA bound to the siderophore, identifying the structural determinants of recognition. Detailed biophysical analysis confirms that BauA recognises preacinetobactin. We show that acinetobactin is not recognised by the protein, thus preacinetobactin is essential for iron uptake. The structure shows and NMR confirms that under physiological conditions, a molecule of acinetobactin will bind to two free coordination sites on the iron preacinetobactin complex. The ability to recognise a heterotrimeric iron-preacinetobactin-acinetobactin complex may rationalize contradictory reports in the literature. These results open new avenues for the design of novel antibiotic conjugates (trojan horse) antibiotics.
Collapse
Affiliation(s)
- Lucile Moynié
- Division of Structural Biology, Wellcome Trust Centre of Human Genomics, Oxford, England.,Research Complex at Harwell, Rutherford Laboratory, Didcot, England
| | - Ilaria Serra
- Department of Physics, University of Cagliari, Cagliari, Italy.,Department of Chemical and Geological Sciences, University of Cagliari, Cagliari, Italy
| | - Mariano A Scorciapino
- Department of Physics, University of Cagliari, Cagliari, Italy.,Department of Chemical and Geological Sciences, University of Cagliari, Cagliari, Italy
| | - Emilia Oueis
- Biomedical Sciences Research Complex, The University of St Andrews, Scotland, United Kingdom
| | - Malcolm Gp Page
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany
| | | | - James H Naismith
- Division of Structural Biology, Wellcome Trust Centre of Human Genomics, Oxford, England.,Research Complex at Harwell, Rutherford Laboratory, Didcot, England.,The Rosalind Franklin Institute, Didcot, England
| |
Collapse
|
54
|
Nandwana N, Singh RP, Patel OPS, Dhiman S, Saini HK, Jha PN, Kumar A. Design and Synthesis of Imidazo/Benzimidazo[1,2- c]quinazoline Derivatives and Evaluation of Their Antimicrobial Activity. ACS OMEGA 2018; 3:16338-16346. [PMID: 31458269 PMCID: PMC6643530 DOI: 10.1021/acsomega.8b01592] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/19/2018] [Indexed: 05/26/2023]
Abstract
A new class of fused quinazolines has been designed and synthesized via copper-catalyzed Ullmann type C-N coupling followed by intramolecular cross-dehydrogenative coupling reaction in moderate to good yields. The synthesized compounds were tested for in vitro antibacterial activity against three Gram negative (Escherichia coli, Pseudomonas putida, and Salmonella typhi) and two Gram positive (Bacillus subtilis, and Staphylococcus aureus) bacteria. Among all tested compounds, 8ga, 8gc, and 8gd exhibited promising minimum inhibitory concentration (MIC) values (4-8 μg/mL) for all bacterial strains tested as compared to the positive control ciprofloxacin. The synthesized compounds were also evaluated for their in vitro antifungal activity against Aspergillus niger and Candida albicans and compounds 8ga, 8gc, and 8gd having potential antibacterial activity also showed pronounced antifungal activity (MIC values 8-16 μg/mL) against both strains. The bactericidal assay by propidium iodide and live-dead bacterial cell screening using a mixture of acridine orange/ethidium bromide (AO/Et·Br) showed considerable changes in the bacterial cell membrane, which might be the cause or consequence of cell death. Moreover, the hemolytic activity for most potent compounds (8ga, 8gc, and 8gd) showed their safety profile toward human blood cells.
Collapse
Affiliation(s)
- Nitesh
Kumar Nandwana
- Department
of Chemistry and Department of Biological Sciences, Birla
Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Rajnish Prakash Singh
- Department
of Chemistry and Department of Biological Sciences, Birla
Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Om P. S. Patel
- Department
of Chemistry and Department of Biological Sciences, Birla
Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Shiv Dhiman
- Department
of Chemistry and Department of Biological Sciences, Birla
Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Hitesh Kumar Saini
- Department
of Chemistry and Department of Biological Sciences, Birla
Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Prabhat N. Jha
- Department
of Chemistry and Department of Biological Sciences, Birla
Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Anil Kumar
- Department
of Chemistry and Department of Biological Sciences, Birla
Institute of Technology and Science, Pilani 333031, Rajasthan, India
| |
Collapse
|
55
|
Ghosh M, Lin YM, Miller PA, Möllmann U, Boggess WC, Miller MJ. Siderophore Conjugates of Daptomycin are Potent Inhibitors of Carbapenem Resistant Strains of Acinetobacter baumannii. ACS Infect Dis 2018; 4:1529-1535. [PMID: 30043609 DOI: 10.1021/acsinfecdis.8b00150] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Development of resistance to antibiotics is a major medical problem. One approach to extending the utility of our limited antibiotic arsenal is to repurpose antibiotics by altering their bacterial selectivity. Many antibiotics that are used to treat infections caused by Gram-positive bacteria might be made effective against Gram-negative bacterial infections, if they could circumvent permeability barriers and antibiotic deactivation processes associated with Gram-negative bacteria. Herein, we report that covalent attachment of the normally Gram-positive-only antibiotic, daptomycin, with iron sequestering siderophore mimetics that are recognized by Gram-negative bacteria, provides conjugates that are active against virulent strains of Acinetobacter baumannii, including carbapenemase and cephalosporinase producers. The result is the generation of a new set of antibiotics designed to target bacterial infections that have been designated as being of dire concern.
Collapse
Affiliation(s)
- Manuka Ghosh
- Hsiri Therapeutics, Rosetree Corporate Center, 1400 N. Providence Road, Building 1, Suite 115S, Media, Pennsylvania 19063, United States
| | - Yun-Ming Lin
- Hsiri Therapeutics, Rosetree Corporate Center, 1400 N. Providence Road, Building 1, Suite 115S, Media, Pennsylvania 19063, United States
| | - Patricia A. Miller
- Hsiri Therapeutics, Rosetree Corporate Center, 1400 N. Providence Road, Building 1, Suite 115S, Media, Pennsylvania 19063, United States
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Ute Möllmann
- Hsiri Therapeutics, Rosetree Corporate Center, 1400 N. Providence Road, Building 1, Suite 115S, Media, Pennsylvania 19063, United States
| | - William C. Boggess
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Marvin J. Miller
- Hsiri Therapeutics, Rosetree Corporate Center, 1400 N. Providence Road, Building 1, Suite 115S, Media, Pennsylvania 19063, United States
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
56
|
Lee H, Song WY, Kim M, Lee MW, Kim S, Park YS, Kwak K, Oh MH, Kim HJ. Synthesis and Characterization of Anguibactin To Reveal Its Competence To Function as a Thermally Stable Surrogate Siderophore for a Gram-Negative Pathogen, Acinetobacter baumannii. Org Lett 2018; 20:6476-6479. [DOI: 10.1021/acs.orglett.8b02789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Haeun Lee
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Woon Young Song
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Minju Kim
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Korea University, Seoul 02841, Republic of Korea
| | - Min Wook Lee
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Soojeung Kim
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ye Song Park
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Kyungwon Kwak
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Korea University, Seoul 02841, Republic of Korea
| | - Man Hwan Oh
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Hak Joong Kim
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
57
|
Gao F, Wang P, Yang H, Miao Q, Ma L, Lu G. Recent developments of quinolone-based derivatives and their activities against Escherichia coli. Eur J Med Chem 2018; 157:1223-1248. [DOI: 10.1016/j.ejmech.2018.08.095] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 12/14/2022]
|
58
|
Proschak E, Stark H, Merk D. Polypharmacology by Design: A Medicinal Chemist's Perspective on Multitargeting Compounds. J Med Chem 2018; 62:420-444. [PMID: 30035545 DOI: 10.1021/acs.jmedchem.8b00760] [Citation(s) in RCA: 304] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multitargeting compounds comprising activity on more than a single biological target have gained remarkable relevance in drug discovery owing to the complexity of multifactorial diseases such as cancer, inflammation, or the metabolic syndrome. Polypharmacological drug profiles can produce additive or synergistic effects while reducing side effects and significantly contribute to the high therapeutic success of indispensable drugs such as aspirin. While their identification has long been the result of serendipity, medicinal chemistry now tends to design polypharmacology. Modern in vitro pharmacological methods and chemical probes allow a systematic search for rational target combinations and recent innovations in computational technologies, crystallography, or fragment-based design equip multitarget compound development with valuable tools. In this Perspective, we analyze the relevance of multiple ligands in drug discovery and the versatile toolbox to design polypharmacology. We conclude that despite some characteristic challenges remaining unresolved, designed polypharmacology holds enormous potential to secure future therapeutic innovation.
Collapse
Affiliation(s)
- Ewgenij Proschak
- Institute of Pharmaceutical Chemistry , Goethe University Frankfurt , Max-von-Laue-Strasse 9 , D-60438 Frankfurt , Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry , Heinrich Heine University Düsseldorf , Universitaetsstrasse 1 , D-40225 , Duesseldorf , Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry , Goethe University Frankfurt , Max-von-Laue-Strasse 9 , D-60438 Frankfurt , Germany.,Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences , Swiss Federal Institute of Technology (ETH) Zürich , Vladimir-Prelog-Weg 4 , CH-8093 Zürich , Switzerland
| |
Collapse
|
59
|
Jiang D. 4-Quinolone Derivatives and Their Activities Against Gram-negative Pathogens. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3244] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Dan Jiang
- School of Nuclear Technology and Chemistry & Biology; Hubei University of Science and Technology; Xianning Hubei China
| |
Collapse
|
60
|
Evaluation of a reducible disulfide linker for siderophore-mediated delivery of antibiotics. J Biol Inorg Chem 2018; 23:1025-1036. [PMID: 29968176 DOI: 10.1007/s00775-018-1588-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/22/2018] [Indexed: 12/12/2022]
Abstract
Bacterial iron uptake machinery can be hijacked for the targeted delivery of antibiotics into pathogens by attaching antibiotics to siderophores, iron chelators that are employed by bacteria to obtain this essential nutrient. We synthesized and evaluated Ent-SS-Cipro, a siderophore-antibiotic conjugate comprised of the triscatecholate siderophore enterobactin and the fluoroquinolone antibiotic ciprofloxacin that contains a self-immolative disulfide linker. This linker is designed to be cleaved after uptake into the reducing environment of the bacterial cytoplasm. We show that the disulfide bond of Ent-SS-Cipro is cleaved by reducing agents, including the cellular reductant glutathione, which results in release of the unmodified fluoroquinolone antibiotic. Antibacterial activity assays against a panel of Escherichia coli show that Ent-SS-Cipro exhibits activity against some, but not all, E. coli. This work informs the design of siderophore-antibiotic conjugates, particularly those carrying antibiotics with cytoplasmic targets that require release after uptake into bacterial cells, and indicates that disulfide linkers may not be generally applicable for conjugation strategies of antibiotics.
Collapse
|
61
|
Wei J, Kong D, Wang L, Zhang Y, Hu W, Yang Y. Improved Synthesis of Yt-14, A Potent Antibiotic to Multidrug-Resistant Strains. JOURNAL OF CHEMICAL RESEARCH 2018. [DOI: 10.3184/174751918x15314830456124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A new practical synthetic approach produced clinical drug candidate YT-14, improving the overall yield from 1.3% to 13.8%. Compared with the previous route, the new route is two steps shorter and all of the steps involve purifications without column chromatography. The advantages of this procedure include simple operating conditions and higher yields.
Collapse
Affiliation(s)
- Jianhai Wei
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P.R. China
| | - Deyu Kong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P.R. China
| | - Lei Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Yinyong Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Wenhao Hu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P.R. China
| | - Yushe Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai 201203, P.R. China
| |
Collapse
|
62
|
Farrell LJ, Lo R, Wanford JJ, Jenkins A, Maxwell A, Piddock LJV. Revitalizing the drug pipeline: AntibioticDB, an open access database to aid antibacterial research and development. J Antimicrob Chemother 2018; 73:2284-2297. [DOI: 10.1093/jac/dky208] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- L J Farrell
- Institute of Microbiology & Infection, College of Medical & Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - R Lo
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - J J Wanford
- Institute of Microbiology & Infection, College of Medical & Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - A Jenkins
- British Society for Antimicrobial Chemotherapy, Griffin House, 53 Regent Place, Birmingham B1 3NJ, UK
| | - A Maxwell
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - L J V Piddock
- Institute of Microbiology & Infection, College of Medical & Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
63
|
Fedorowicz J, Sączewski J. Modifications of quinolones and fluoroquinolones: hybrid compounds and dual-action molecules. MONATSHEFTE FUR CHEMIE 2018; 149:1199-1245. [PMID: 29983452 PMCID: PMC6006264 DOI: 10.1007/s00706-018-2215-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/01/2018] [Indexed: 01/27/2023]
Abstract
ABSTRACT This review is aimed to provide extensive survey of quinolones and fluoroquinolones for a variety of applications ranging from metal complexes and nanoparticle development to hybrid conjugates with therapeutic uses. The review covers the literature from the past 10 years with emphasis placed on new applications and mechanisms of pharmacological action of quinolone derivatives. The following are considered: metal complexes, nanoparticles and nanodrugs, polymers, proteins and peptides, NO donors and analogs, anionic compounds, siderophores, phosphonates, and prodrugs with enhanced lipophilicity, phototherapeutics, fluorescent compounds, triazoles, hybrid drugs, bis-quinolones, and other modifications. This review provides a comprehensive resource, summarizing a broad range of important quinolone applications with great utility as a resource concerning both chemical modifications and also novel hybrid bifunctional therapeutic agents. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Joanna Fedorowicz
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland
| | - Jarosław Sączewski
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland
| |
Collapse
|
64
|
Luscher A, Moynié L, Auguste PS, Bumann D, Mazza L, Pletzer D, Naismith JH, Köhler T. TonB-Dependent Receptor Repertoire of Pseudomonas aeruginosa for Uptake of Siderophore-Drug Conjugates. Antimicrob Agents Chemother 2018; 62:e00097-18. [PMID: 29555629 PMCID: PMC5971595 DOI: 10.1128/aac.00097-18] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/12/2018] [Indexed: 12/22/2022] Open
Abstract
The conjugation of siderophores to antimicrobial molecules is an attractive strategy to overcome the low outer membrane permeability of Gram-negative bacteria. In this Trojan horse approach, the transport of drug conjugates is redirected via TonB-dependent receptors (TBDR), which are involved in the uptake of essential nutrients, including iron. Previous reports have demonstrated the involvement of the TBDRs PiuA and PirA from Pseudomonas aeruginosa and their orthologues in Acinetobacter baumannii in the uptake of siderophore-beta-lactam drug conjugates. By in silico screening, we further identified a PiuA orthologue, termed PiuD, present in clinical isolates, including strain LESB58. The piuD gene in LESB58 is located at the same genetic locus as piuA in strain PAO1. PiuD has a similar crystal structure as PiuA and is involved in the transport of the siderophore-drug conjugates BAL30072, MC-1, and cefiderocol in strain LESB58. To screen for additional siderophore-drug uptake systems, we overexpressed 28 of the 34 TBDRs of strain PAO1 and identified PfuA, OptE, OptJ, and the pyochelin receptor FptA as novel TBDRs conferring increased susceptibility to siderophore-drug conjugates. The existence of a TBDR repertoire in P. aeruginosa able to transport siderophore-drug molecules potentially decreases the likelihood of resistance emergence during therapy.
Collapse
Affiliation(s)
- Alexandre Luscher
- Service of Infectious Diseases, University Hospital Geneva, Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Lucile Moynié
- School of Chemistry and Biomedical Sciences Research Complex, University of St Andrews, Fife, Scotland, United Kingdom
| | | | - Dirk Bumann
- Biozentrum, University of Basel, Basel, Switzerland
| | - Lena Mazza
- Service of Infectious Diseases, University Hospital Geneva, Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | | | - James H Naismith
- School of Chemistry and Biomedical Sciences Research Complex, University of St Andrews, Fife, Scotland, United Kingdom
| | - Thilo Köhler
- Service of Infectious Diseases, University Hospital Geneva, Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
65
|
Neumann W, Sassone-Corsi M, Raffatellu M, Nolan EM. Esterase-Catalyzed Siderophore Hydrolysis Activates an Enterobactin-Ciprofloxacin Conjugate and Confers Targeted Antibacterial Activity. J Am Chem Soc 2018; 140:5193-5201. [PMID: 29578687 DOI: 10.1021/jacs.8b01042] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enteric Gram-negative bacteria, including Escherichia coli, biosynthesize and deploy the triscatecholate siderophore enterobactin (Ent) in the vertebrate host to acquire iron, an essential nutrient. We report that Ent-Cipro, a synthetic siderophore-antibiotic conjugate based on the native Ent platform that harbors an alkyl linker at one of the catechols with a ciprofloxacin cargo attached, affords targeted antibacterial activity against E. coli strains that express the pathogen-associated iroA gene cluster. Attachment of the siderophore to ciprofloxacin, a DNA gyrase inhibitor and broad-spectrum antibiotic that is used to treat infections caused by E. coli, generates an inactive prodrug and guides the antibiotic into the cytoplasm of bacteria that express the Ent uptake machinery (FepABCDG). Intracellular hydrolysis of the siderophore restores the activity of the antibiotic. Remarkably, Fes, the cytoplasmic Ent hydrolase expressed by all E. coli, does not contribute to Ent-Cipro activation. Instead, this processing step requires IroD, a cytoplasmic hydrolase that is expressed only by E. coli that harbor the iroA gene cluster and are predominantly pathogenic. In the uropathogenic E. coli UTI89 and CFT073, Ent-Cipro provides antibacterial activity comparable to unmodified ciprofloxacin. This work highlights the potential of leveraging and targeting pathogen-associated microbial enzymes in narrow-spectrum antibacterial approaches. Moreover, because E. coli include harmless gut commensals as well as resident microbes that can contribute to disease, Ent-Cipro may provide a valuable chemical tool for strain-selective modulation of the microbiota.
Collapse
Affiliation(s)
- Wilma Neumann
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Martina Sassone-Corsi
- Department of Microbiology and Molecular Genetics , University of California , Irvine , California 92697 , United States
| | - Manuela Raffatellu
- Department of Microbiology and Molecular Genetics , University of California , Irvine , California 92697 , United States
| | - Elizabeth M Nolan
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
66
|
Liu R, Miller PA, Vakulenko SB, Stewart NK, Boggess WC, Miller MJ. A Synthetic Dual Drug Sideromycin Induces Gram-Negative Bacteria To Commit Suicide with a Gram-Positive Antibiotic. J Med Chem 2018; 61:3845-3854. [PMID: 29554424 DOI: 10.1021/acs.jmedchem.8b00218] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Many antibiotics lack activity against Gram-negative bacteria because they cannot permeate the outer membrane or suffer from efflux and, in the case of β-lactams, are degraded by β-lactamases. Herein, we describe the synthesis and studies of a dual drug conjugate (1) of a siderophore linked to a cephalosporin with an attached oxazolidinone. The cephalosporin component of 1 is rapidly hydrolyzed by purified ADC-1 β-lactamase to release the oxazolidinone. Conjugate 1 is active against clinical isolates of Acinetobacter baumannii as well as strains producing large amounts of ADC-1 β-lactamase. Overall, the results are consistent with siderophore-mediated active uptake, inherent activity of the delivered dual drug, and in the presence of β-lactamases, intracellular release of the oxazolidinone upon cleavage of the cephalosporin to allow the freed oxazolidinone to inactivate its target. The ultimate result demonstrates that Gram-positive oxazolidinone antibiotics can be made to be effective against Gram-negative bacteria by β-lactamase triggered release.
Collapse
Affiliation(s)
- Rui Liu
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Patricia A Miller
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Sergei B Vakulenko
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Nichole K Stewart
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - William C Boggess
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Marvin J Miller
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| |
Collapse
|
67
|
Keohane CE, Steele AD, Fetzer C, Khowsathit J, Tyne DV, Moynié L, Gilmore MS, Karanicolas J, Sieber SA, Wuest WM. Promysalin Elicits Species-Selective Inhibition of Pseudomonas aeruginosa by Targeting Succinate Dehydrogenase. J Am Chem Soc 2018; 140:1774-1782. [PMID: 29300464 PMCID: PMC5869686 DOI: 10.1021/jacs.7b11212] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Natural products have served as an inspiration to scientists both for their complex three-dimensional architecture and exquisite biological activity. Promysalin is one such Pseudomonad secondary metabolite that exhibits narrow-spectrum antibacterial activity, originally isolated from the rhizosphere. We herein utilize affinity-based protein profiling (AfBPP) to identify succinate dehydrogenase (Sdh) as the biological target of the natural product. The target was further validated in silico, in vitro, in vivo, and through the selection, and sequencing, of a resistant mutant. Succinate dehydrogenase plays an essential role in primary metabolism of Pseudomonas aeruginosa as the only enzyme that is involved both in the tricarboxylic acid cycle (TCA) and in respiration via the electron transport chain. These findings add credence to other studies that suggest that the TCA cycle is an understudied target in the development of novel therapeutics to combat P. aeruginosa, a significant pathogen in clinical settings.
Collapse
Affiliation(s)
- Colleen E. Keohane
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Andrew D. Steele
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Christian Fetzer
- Department of Chemistry, Center for Integrated Protein Science Munich (CIPSM), Technische Universität München, Lichtenbergstraße 4, 85747 Garching, Germany
| | - Jittasak Khowsathit
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, United States
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - Daria Van Tyne
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02115, United States
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Lucile Moynié
- Division of Structural Biology, The University of Oxford, Headington Oxford, OX3 7BN, United Kingdom
- Biomedical Sciences Research Complex, University of St. Andrews, Fife Scotland, KY16 9ST, United Kingdom
| | - Michael S. Gilmore
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02115, United States
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - John Karanicolas
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, United States
| | - Stephan A. Sieber
- Department of Chemistry, Center for Integrated Protein Science Munich (CIPSM), Technische Universität München, Lichtenbergstraße 4, 85747 Garching, Germany
| | - William M. Wuest
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
68
|
Zhang GF, Liu X, Zhang S, Pan B, Liu ML. Ciprofloxacin derivatives and their antibacterial activities. Eur J Med Chem 2018; 146:599-612. [PMID: 29407984 DOI: 10.1016/j.ejmech.2018.01.078] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/13/2018] [Accepted: 01/24/2018] [Indexed: 02/06/2023]
Abstract
Bacterial infections represent a significant health threat globally, and are responsible for the majority of hospital-acquired infections, leading to extensive mortality and burden on global healthcare systems. The second generation fluoroquinolone ciprofloxacin which exhibits excellent antimicrobial activity and pharmacokinetic properties as well as few side effects is introduced into clinical practice for the treatment of various bacterial infections for around 3 decades. The emergency and widely spread of drug-resistant pathogens making ciprofloxacin more and more ineffective, so it's imperative to develop novel antibacterials. Numerous of ciprofloxacin derivatives have been synthesized for seeking for new antibacterials, and some of them exhibited promising potency. This review aims to summarize the recent advances made towards the discovery of ciprofloxacin derivatives as antibacterial agents and the structure-activity relationship of these derivatives was also discussed.
Collapse
Affiliation(s)
- Gui-Fu Zhang
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Hubei, PR China
| | - Xiaofeng Liu
- Zhejiang Xianju Junye Pharmaceutical Co., Ltd, Xianju, Zhejiang, 317300, PR China; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, PR China.
| | - Shu Zhang
- Pony Testing International Group (Wuhan), Hubei, PR China.
| | - Baofeng Pan
- Zhejiang Xianju Junye Pharmaceutical Co., Ltd, Xianju, Zhejiang, 317300, PR China
| | - Ming-Liang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
69
|
Richardson-Sanchez T, Codd R. Engineering a cleavable disulfide bond into a natural product siderophore using precursor-directed biosynthesis. Chem Commun (Camb) 2018; 54:9813-9816. [DOI: 10.1039/c8cc04981e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
An analogue of the bacterial siderophore desferrioxamine B (DFOB) containing a disulfide motif in the backbone was produced from Streptomyces pilosus cultures supplemented with cystamine.
Collapse
Affiliation(s)
- Tomas Richardson-Sanchez
- The University of Sydney
- School of Medical Sciences (Pharmacology) and Bosch Institute
- Camperdown
- Australia
| | - Rachel Codd
- The University of Sydney
- School of Medical Sciences (Pharmacology) and Bosch Institute
- Camperdown
- Australia
| |
Collapse
|
70
|
4-Quinolone hybrids and their antibacterial activities. Eur J Med Chem 2017; 141:335-345. [DOI: 10.1016/j.ejmech.2017.09.050] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 09/11/2017] [Accepted: 09/24/2017] [Indexed: 01/28/2023]
|
71
|
Zhang GF, Zhang S, Pan B, Liu X, Feng LS. 4-Quinolone derivatives and their activities against Gram positive pathogens. Eur J Med Chem 2017; 143:710-723. [PMID: 29220792 DOI: 10.1016/j.ejmech.2017.11.082] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 11/17/2022]
Abstract
Gram-positive bacteria are responsible for a broad range of infectious diseases, and the emergency and wide spread of drug-resistant Gram-positive pathogens including MRSA and MRSE has caused great concern throughout the world. 4-Quinolones which are exemplified by fluoroquinolones are mainstays of chemotherapy against various bacterial infections including Gram-positive pathogen infections, and their value and role in the treatment of bacterial infections continues to expand. However, the resistance of Gram-positive organisms to 4-quinolones develops rapidly and spreads widely, making them more and more ineffective. To overcome the resistance and reduce the toxicity, numerous of 4-quinolone derivatives were synthesized and screened for their in vitro and in vivo activities against Gram-positive pathogens, and some of them exhibited excellent potency. This review aims to outlines the recent advances made towards the discovery of 4-quinolone-based derivatives as anti-Gram-positive pathogens agents and the critical aspects of design as well as the structure-activity relationship of these derivatives. The enriched SAR paves the way to the further rational development of 4-quinolones with a unique mechanism of action different from that of the currently used drugs to overcome the resistance, well-tolerated and low toxic profiles.
Collapse
Affiliation(s)
- Gui-Fu Zhang
- School of Nuclear Technology and Chemistry & Life Science, Hubei University of Science and Technology, Hubei, PR China
| | - Shu Zhang
- Pony Testing International Group (Wuhan), Hubei, PR China
| | - Baofeng Pan
- Zhejiang Xianju Junye Pharmaceutical Co., Ltd, Xianju, Zhejiang, 317300, PR China
| | - Xiaofeng Liu
- Zhejiang Xianju Junye Pharmaceutical Co., Ltd, Xianju, Zhejiang, 317300, PR China; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, PR China.
| | - Lian-Shun Feng
- Synthetic and Functional Biomolecules Center, Peking University, Beijing, PR China.
| |
Collapse
|
72
|
Chen PHC, Ho SY, Chen PL, Hung TC, Liang AJ, Kuo TF, Huang HC, Wang TSA. Selective Targeting of Vibrios by Fluorescent Siderophore-Based Probes. ACS Chem Biol 2017; 12:2720-2724. [PMID: 28991433 DOI: 10.1021/acschembio.7b00667] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Siderophores are small molecules used to specifically transport iron into bacteria via related receptors. By adapting siderophores and hijacking their pathways, we may discover an efficient and selective way to target microbes. Herein, we report the synthesis of a siderophore-fluorophore conjugate VF-FL derived from vibrioferrin (VF). Using flow cytometry and fluorescence microscopy, the probe selectively labeled vibrios, including V. parahaemolyticus, V. cholerae, and V. vulnificus, even in the presence of other species such as S. aureus and E. coli. The labeling is siderophore-related and both iron-limited conditions and the siderophore moiety are required. The competitive relationship between VF-FL and VF in vibrios implies an unreported VF-related transport mechanism in V. cholerae and V. vulnificus. These studies demonstrate that the siderophore scaffold provides a method to selectively target microbes expressing cognate receptors under iron-limited conditions.
Collapse
Affiliation(s)
- Peng-Hsun Chase Chen
- Department
of Chemistry, National Taiwan University, Taipei, 10617, Taiwan (Republic of China)
| | - Sheng-Yang Ho
- Department
of Chemistry, National Taiwan University, Taipei, 10617, Taiwan (Republic of China)
| | - Pin-Lung Chen
- Department
of Chemistry, National Taiwan University, Taipei, 10617, Taiwan (Republic of China)
| | - Tzu-Chiao Hung
- Institute
of Molecular and Cellular Biology, National Taiwan University, Taipei, 10617, Taiwan (Republic of China)
| | - An-Jou Liang
- Institute
of Molecular and Cellular Biology, National Taiwan University, Taipei, 10617, Taiwan (Republic of China)
| | - Tang-Feng Kuo
- Department
of Chemistry, National Taiwan University, Taipei, 10617, Taiwan (Republic of China)
| | - Hsiao-Chun Huang
- Institute
of Molecular and Cellular Biology, National Taiwan University, Taipei, 10617, Taiwan (Republic of China)
| | - Tsung-Shing Andrew Wang
- Department
of Chemistry, National Taiwan University, Taipei, 10617, Taiwan (Republic of China)
| |
Collapse
|
73
|
Dhusia K, Bajpai A, Ramteke PW. Overcoming antibiotic resistance: Is siderophore Trojan horse conjugation an answer to evolving resistance in microbial pathogens? J Control Release 2017; 269:63-87. [PMID: 29129658 DOI: 10.1016/j.jconrel.2017.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 01/11/2023]
Abstract
Comparative study of siderophore biosynthesis pathway in pathogens provides potential targets for antibiotics and host drug delivery as a part of computationally feasible microbial therapy. Iron acquisition using siderophore models is an essential and well established model in all microorganisms and microbial infections a known to cause great havoc to both plant and animal. Rapid development of antibiotic resistance in bacterial as well as fungal pathogens has drawn us at a verge where one has to get rid of the traditional way of obstructing pathogen using single or multiple antibiotic/chemical inhibitors or drugs. 'Trojan horse' strategy is an answer to this imperative call where antibiotic are by far sneaked into the pathogenic cell via the siderophore receptors at cell and outer membrane. This antibiotic once gets inside, generates a 'black hole' scenario within the opportunistic pathogens via iron scarcity. For pathogens whose siderophore are not compatible to smuggle drug due to their complex conformation and stiff valence bonds, there is another approach. By means of the siderophore biosynthesis pathways, potential targets for inhibition of these siderophores in pathogenic bacteria could be achieved and thus control pathogenic virulence. Method to design artificial exogenous siderophores for pathogens that would compete and succeed the battle of intake is also covered with this review. These manipulated siderophore would enter pathogenic cell like any other siderophore but will not disperse iron due to which iron inadequacy and hence pathogens control be accomplished. The aim of this review is to offer strategies to overcome the microbial infections/pathogens using siderophore.
Collapse
Affiliation(s)
- Kalyani Dhusia
- Deptartment of Computational Biology and Bioinformatics, Jacob Institute of Biotechnology and Bio-Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Allahabad-211007 (U.P.), India
| | - Archana Bajpai
- Laboratory for Disease Systems Modeling, Center for Integrative Medical Sciences, RIKEN, Yokohama City, Kanagawa, 230-0045, Japan
| | - P W Ramteke
- Deptartment of Computational Biology and Bioinformatics, Jacob Institute of Biotechnology and Bio-Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Allahabad-211007 (U.P.), India
| |
Collapse
|
74
|
Bohac TJ, Shapiro JA, Wencewicz TA. Rigid Oxazole Acinetobactin Analog Blocks Siderophore Cycling in Acinetobacter baumannii. ACS Infect Dis 2017; 3:802-806. [PMID: 28991447 DOI: 10.1021/acsinfecdis.7b00146] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The emergence of multidrug resistant (MDR) Gram-negative bacterial pathogens has raised global concern. Nontraditional therapeutic strategies, including antivirulence approaches, are gaining traction as a means of applying less selective pressure for resistance in vivo. Here, we show that rigidifying the structure of the siderophore preacinetobactin from MDR Acinetobacter baumannii via oxidation of the phenolate-oxazoline moiety to a phenolate-oxazole results in a potent inhibitor of siderophore transport and imparts a bacteriostatic effect at low micromolar concentrations under infection-like conditions.
Collapse
Affiliation(s)
- Tabbetha J. Bohac
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Justin A. Shapiro
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Timothy A. Wencewicz
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| |
Collapse
|
75
|
Carosso S, Liu R, Miller PA, Hecker SJ, Glinka T, Miller MJ. Methodology for Monobactam Diversification: Syntheses and Studies of 4-Thiomethyl Substituted β-Lactams with Activity against Gram-Negative Bacteria, Including Carbapenemase Producing Acinetobacter baumannii. J Med Chem 2017; 60:8933-8944. [PMID: 28994597 DOI: 10.1021/acs.jmedchem.7b01164] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bromine induced lactamization of vinyl acetohydroxamates facilitated syntheses of monocyclic β-lactams suitable for incorporation of a thiomethyl and extended functionality at the C(4) position. Elaboration of the resulting substituted N-hydroxy-2-azetidinones allowed incorporation of functionalized α-amino substituents appropriate for enhancement of antibiotic activity. Evaluation of antibacterial activity against a panel of Gram-positive and Gram-negative bacteria revealed structure-activity relationships (SAR) and identification of potent new monobactam antibiotics. The corresponding bis-catechol conjugate, 42, has excellent activity against Gram-negative bacteria including carbapenemase and carbacephalosporinase producing strains of Acinetobacter baumannii, which have been listed by the WHO as being of critical concern worldwide.
Collapse
Affiliation(s)
- Serena Carosso
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Rui Liu
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Patricia A Miller
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Scott J Hecker
- Rempex Pharmaceuticals, The Medicines Company , 3013 Science Park Road, First Floor, San Diego, California 92121, United States
| | - Tomasz Glinka
- Rempex Pharmaceuticals, The Medicines Company , 3013 Science Park Road, First Floor, San Diego, California 92121, United States
| | - Marvin J Miller
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| |
Collapse
|
76
|
Klahn P, Brönstrup M. Bifunctional antimicrobial conjugates and hybrid antimicrobials. Nat Prod Rep 2017; 34:832-885. [PMID: 28530279 DOI: 10.1039/c7np00006e] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: up to the end of 2016Novel antimicrobial drugs are continuously needed to counteract bacterial resistance development. An innovative molecular design strategy for novel antibiotic drugs is based on the hybridization of an antibiotic with a second functional entity. Such conjugates can be grouped into two major categories. In the first category (antimicrobial hybrids), both functional elements of the hybrid exert antimicrobial activity. Due to the dual targeting, resistance development can be significantly impaired, the pharmacokinetic properties can be superior compared to combination therapies with the single antibiotics, and the antibacterial potency is often enhanced in a synergistic manner. In the second category (antimicrobial conjugates), one functional moiety controls the accumulation of the other part of the conjugate, e.g. by mediating an active transport into the bacterial cell or blocking the efflux. This approach is mostly applied to translocate compounds across the cell envelope of Gram-negative bacteria through membrane-embedded transporters (e.g. siderophore transporters) that provide nutrition and signalling compounds to the cell. Such 'Trojan Horse' approaches can expand the antibacterial activity of compounds against Gram-negative pathogens, or offer new options for natural products that could not be developed as standalone antibiotics, e.g. due to their toxicity.
Collapse
Affiliation(s)
- P Klahn
- Department for Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany. and Institute for Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany.
| | - M Brönstrup
- Department for Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany.
| |
Collapse
|
77
|
Ghosh M, Miller PA, Möllmann U, Claypool WD, Schroeder VA, Wolter WR, Suckow M, Yu H, Li S, Huang W, Zajicek J, Miller MJ. Targeted Antibiotic Delivery: Selective Siderophore Conjugation with Daptomycin Confers Potent Activity against Multidrug Resistant Acinetobacter baumannii Both in Vitro and in Vivo. J Med Chem 2017; 60:4577-4583. [DOI: 10.1021/acs.jmedchem.7b00102] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Manuka Ghosh
- Hsiri Therapeutics, Innovation Park, 1400 East Angela
Boulevard, South Bend, Indiana 46617, United States
| | - Patricia A. Miller
- Hsiri Therapeutics, Innovation Park, 1400 East Angela
Boulevard, South Bend, Indiana 46617, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Ute Möllmann
- Hsiri Therapeutics, Innovation Park, 1400 East Angela
Boulevard, South Bend, Indiana 46617, United States
| | - William D. Claypool
- Hsiri Therapeutics, LLC, Rosetree Corporate Center, 1400 N. Providence Road,
Building 1, Suite 115S, Media, Pennsylvania 19063, United States
| | - Valerie A. Schroeder
- Frieman Life Sciences Center, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - William R. Wolter
- Frieman Life Sciences Center, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Mark Suckow
- Frieman Life Sciences Center, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Honglin Yu
- PracticaChem, 5 Lanyuan Road, Room D-603, Huayuan
Industrial Park, Tianjin, 300384, China
| | - Shuang Li
- PracticaChem, 5 Lanyuan Road, Room D-603, Huayuan
Industrial Park, Tianjin, 300384, China
| | - Weiqiang Huang
- PracticaChem, 5 Lanyuan Road, Room D-603, Huayuan
Industrial Park, Tianjin, 300384, China
| | - Jaroslav Zajicek
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Marvin J. Miller
- Hsiri Therapeutics, Innovation Park, 1400 East Angela
Boulevard, South Bend, Indiana 46617, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre
Dame, Indiana 46556, United States
| |
Collapse
|
78
|
Structure and Function of the PiuA and PirA Siderophore-Drug Receptors from Pseudomonas aeruginosa and Acinetobacter baumannii. Antimicrob Agents Chemother 2017; 61:AAC.02531-16. [PMID: 28137795 DOI: 10.1128/aac.02531-16] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/27/2017] [Indexed: 01/06/2023] Open
Abstract
The outer membrane of Gram-negative bacteria presents an efficient barrier to the permeation of antimicrobial molecules. One strategy pursued to circumvent this obstacle is to hijack transport systems for essential nutrients, such as iron. BAL30072 and MC-1 are two monobactams conjugated to a dihydroxypyridone siderophore that are active against Pseudomonas aeruginosa and Acinetobacter baumannii Here, we investigated the mechanism of action of these molecules in A. baumannii We identified two novel TonB-dependent receptors, termed Ab-PiuA and Ab-PirA, that are required for the antimicrobial activity of both agents. Deletion of either piuA or pirA in A. baumannii resulted in 4- to 8-fold-decreased susceptibility, while their overexpression in the heterologous host P. aeruginosa increased susceptibility to the two siderophore-drug conjugates by 4- to 32-fold. The crystal structures of PiuA and PirA from A. baumannii and their orthologues from P. aeruginosa were determined. The structures revealed similar architectures; however, structural differences between PirA and PiuA point to potential differences between their cognate siderophore ligands. Spontaneous mutants, selected upon exposure to BAL30072, harbored frameshift mutations in either the ExbD3 or the TonB3 protein of A. baumannii, forming the cytoplasmic-membrane complex providing the energy for the siderophore translocation process. The results of this study provide insight for the rational design of novel siderophore-drug conjugates against problematic Gram-negative pathogens.
Collapse
|
79
|
Shapiro JA, Wencewicz TA. Structure–function studies of acinetobactin analogs. Metallomics 2017; 9:463-470. [DOI: 10.1039/c7mt00064b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
80
|
|
81
|
Synthesis and antimicrobial studies of novel derivatives of 4-(4-formyl-3-phenyl-1H-pyrazol-1-yl)benzoic acid as potent anti-Acinetobacter baumannii agents. Bioorg Med Chem Lett 2016; 27:387-392. [PMID: 28065568 DOI: 10.1016/j.bmcl.2016.12.068] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/26/2016] [Accepted: 12/27/2016] [Indexed: 12/18/2022]
Abstract
Microbial resistance to antibiotics is a global concern. The World Health Organization (WHO) has identified antimicrobial resistance as one the three greatest threats for human beings in the 21st century. Without urgent and coordinated action, the world is moving toward a post-antibiotic era, in which normal infections or minor injuries may become fatal. In an effort to find new agents, we report the synthesis and antimicrobial activities of 40 novel 1,3-diphenyl pyrazole derivatives. These compounds have shown zones of growth inhibition up to 85mm against Acinetobacter baumannii. We tested the active compounds against this Gram-negative bacterium in minimum inhibitory concentration (MIC) tests and found activity with concentration as low as 4μg/mL.
Collapse
|
82
|
New antibiotics from Nature’s chemical inventory. Bioorg Med Chem 2016; 24:6227-6252. [DOI: 10.1016/j.bmc.2016.09.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/07/2016] [Indexed: 01/07/2023]
|
83
|
Skwarecki AS, Milewski S, Schielmann M, Milewska MJ. Antimicrobial molecular nanocarrier–drug conjugates. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:2215-2240. [DOI: 10.1016/j.nano.2016.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/17/2016] [Accepted: 06/06/2016] [Indexed: 01/07/2023]
|
84
|
Abstract
INTRODUCTION There is a growing need for new antibacterial agents, but success in development of antibiotics in recent years has been limited. This has led researchers to investigate novel approaches to finding compounds that are effective against multi-drug resistant bacteria, and that delay onset of resistance. One such strategy has been to link antibiotics to produce hybrids designed to overcome resistance mechanisms. AREAS COVERED The concept of dual-acting hybrid antibiotics was introduced and reviewed in this journal in 2010. In the present review the authors sought to discover how clinical candidates described had progressed, and to examine how the field has developed. In three sections the authors cover the clinical progress of hybrid antibiotics, novel agents produced from hybridisation of two or more small-molecule antibiotics, and novel agents produced from hybridisation of antibiotics with small-molecules that have complementary activity. EXPERT OPINION Many key questions regarding dual-acting hybrid antibiotics remain to be answered, and the proposed benefits of this approach are yet to be demonstrated. While Cadazolid in particular continues to progress in the clinic, suggesting that there is promise in hybridisation through covalent linkage, it may be that properties other than antibacterial activity are key when choosing a partner molecule.
Collapse
Affiliation(s)
| | - Ian A Yule
- a Medicinal Chemistry , Evotec (UK) Ltd , Abingdon , UK
| |
Collapse
|
85
|
Microbial siderophore-based iron assimilation and therapeutic applications. Biometals 2016; 29:377-88. [PMID: 27146331 DOI: 10.1007/s10534-016-9935-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 04/23/2016] [Indexed: 10/21/2022]
Abstract
Siderophores are structurally diverse, complex natural products that bind metals with extraordinary specificity and affinity. The acquisition of iron is critical for the survival and virulence of many pathogenic microbes and diverse strategies have evolved to synthesize, import and utilize iron. There has been a substantial increase of known siderophore scaffolds isolated and characterized in the past decade and the corresponding biosynthetic gene clusters have provided insight into the varied pathways involved in siderophore biosynthesis, delivery and utilization. Additionally, therapeutic applications of siderophores and related compounds are actively being developed. The study of biosynthetic pathways to natural siderophores augments the understanding of the complex mechanisms of bacterial iron acquisition, and enables a complimentary approach to address virulence through the interruption of siderophore biosynthesis or utilization by targeting the key enzymes to the siderophore pathways.
Collapse
|
86
|
Ferreira D, Seca AML, C G A D, Silva AMS. Targeting human pathogenic bacteria by siderophores: A proteomics review. J Proteomics 2016; 145:153-166. [PMID: 27109355 DOI: 10.1016/j.jprot.2016.04.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/03/2016] [Accepted: 04/12/2016] [Indexed: 12/12/2022]
Abstract
UNLABELLED Human bacterial infections are still a major public health problem throughout the world. Therefore it is fundamental to understand how pathogenic bacteria interact with their human host and to develop more advanced drugs or vaccines in response to the increasing bacterial resistance. Since iron is essential to bacterial survival and growth inside the host tissues, these microorganisms have developed highly efficient iron-acquisition systems; the most common one involves the secretion of iron chelators into the extracellular environment, known as siderophores, and the corresponding siderophore-membrane receptors or transporters responsible for the iron uptake. In the past few decades, several biochemical methods and genetic screens have been employed to track down and identify these iron-scavenging molecules. However, compared with the previous "static" approaches, proteomic identification is revealing far more molecules through full protein mapping and becoming more rapid and selective, leading the scientific and medical community to consider standardizing proteomic tools for clinical biomarker detection of bacterial infectious diseases. In this review, we focus on human pathogenic Gram-negative bacteria and discuss the importance of siderophores in their virulence and the available proteomic strategies to identify siderophore-related proteins and their expression level under different growth conditions. The promising use of siderophore antibiotics to overcome bacterial resistance and the future of proteomics in the routine clinical care are also mentioned. SIGNIFICANCE Proteomic strategies to identify siderophore-related proteins and their expression level can be helpful to control and/or find a cure of infectious deseases especially if related with multidrug resistance. Siderophores are low-molecular-weight compounds produced by bacteria which can become clinical biomarkers and/or antibiotics used mainly in "Trojan horse" type strategies. Due to the above mention we think that the promising use of siderophore to overcome bacterial resistance and the future of proteomics in the routine clinical care is a hot topic that should be discussed.
Collapse
Affiliation(s)
- Daniela Ferreira
- Department of Chemistry & Organic Chemistry, Natural Products and Food Stuffs (QOPNA), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Ana M L Seca
- Department of Chemistry & Organic Chemistry, Natural Products and Food Stuffs (QOPNA), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Department of Technologic Sciences and Development, University of Azores, Rua Mãe de Deus, 9501-801 Ponta Delgada, Azores, Portugal
| | - Diana C G A
- Department of Chemistry & Organic Chemistry, Natural Products and Food Stuffs (QOPNA), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Artur M S Silva
- Department of Chemistry & Organic Chemistry, Natural Products and Food Stuffs (QOPNA), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
87
|
Gasser V, Baco E, Cunrath O, August PS, Perraud Q, Zill N, Schleberger C, Schmidt A, Paulen A, Bumann D, Mislin GLA, Schalk IJ. Catechol siderophores repress the pyochelin pathway and activate the enterobactin pathway in Pseudomonas aeruginosa: an opportunity for siderophore-antibiotic conjugates development. Environ Microbiol 2016; 18:819-32. [PMID: 26718479 DOI: 10.1111/1462-2920.13199] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/20/2015] [Accepted: 12/23/2015] [Indexed: 01/08/2023]
Abstract
Previous studies have suggested that antibiotic vectorization by siderophores (iron chelators produced by bacteria) considerably increases the efficacy of such drugs. The siderophore serves as a vector: when the pathogen tries to take up iron via the siderophore, it also takes up the antibiotic. Catecholates are among the most common iron-chelating compounds used in synthetic siderophore-antibiotic conjugates. Using reverse transcription polymerase chain reaction and proteomic approaches, we showed that the presence of catecholate compounds in the medium of Pseudomonas aeruginosa led to strong activation of the transcription and expression of the outer membrane transporter PfeA, the ferri-enterobactin importer. Iron-55 uptake assays on bacteria with and without PfeA expression confirmed that catechol compounds imported iron into P. aeruginosa cells via PfeA. Uptake rates were between 0.3 × 10(3) and 2 × 10(3) Fe atoms/bacterium/min according to the used catechol siderophore in iron-restricted medium, and remained as high as 0.8 × 10(3) Fe atoms/bacterium/min for enterobactin, even in iron-rich medium. Reverse transcription polymerase chain reaction and proteomic approaches showed that in parallel to this switching on of PfeA expression, a repression of the expression of pyochelin (PCH) pathway genes (PCH being one of the two siderophores produced by P. aeruginosa for iron acquisition) was observed.
Collapse
Affiliation(s)
- Véronique Gasser
- Université de Strasbourg, ESBS, F-67413, Illkirch, France.,UMR 7242, CNRS, F-67413, Illkirch, France
| | - Etienne Baco
- Université de Strasbourg, ESBS, F-67413, Illkirch, France.,UMR 7242, CNRS, F-67413, Illkirch, France
| | - Olivier Cunrath
- Université de Strasbourg, ESBS, F-67413, Illkirch, France.,UMR 7242, CNRS, F-67413, Illkirch, France
| | - Pamela Saint August
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Quentin Perraud
- Université de Strasbourg, ESBS, F-67413, Illkirch, France.,UMR 7242, CNRS, F-67413, Illkirch, France
| | - Nicolas Zill
- Université de Strasbourg, ESBS, F-67413, Illkirch, France.,UMR 7242, CNRS, F-67413, Illkirch, France
| | | | - Alexander Schmidt
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Aurélie Paulen
- Université de Strasbourg, ESBS, F-67413, Illkirch, France.,UMR 7242, CNRS, F-67413, Illkirch, France
| | - Dirk Bumann
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Gaëtan L A Mislin
- Université de Strasbourg, ESBS, F-67413, Illkirch, France.,UMR 7242, CNRS, F-67413, Illkirch, France
| | - Isabelle J Schalk
- Université de Strasbourg, ESBS, F-67413, Illkirch, France.,UMR 7242, CNRS, F-67413, Illkirch, France
| |
Collapse
|
88
|
Pluháček T, Lemr K, Ghosh D, Milde D, Novák J, Havlíček V. Characterization of microbial siderophores by mass spectrometry. MASS SPECTROMETRY REVIEWS 2016; 35:35-47. [PMID: 25980644 DOI: 10.1002/mas.21461] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 12/19/2014] [Indexed: 05/28/2023]
Abstract
Siderophores play important roles in microbial iron piracy, and are applied as infectious disease biomarkers and novel pharmaceutical drugs. Inductively coupled plasma and molecular mass spectrometry (ICP-MS) combined with high resolution separations allow characterization of siderophores in complex samples taking advantages of mass defect data filtering, tandem mass spectrometry, and iron-containing compound quantitation. The enrichment approaches used in siderophore analysis and current ICP-MS technologies are reviewed. The recent tools for fast dereplication of secondary metabolites and their databases are reported. This review on siderophores is concluded with their recent medical, biochemical, geochemical, and agricultural applications in mass spectrometry context.
Collapse
Affiliation(s)
- Tomáš Pluháček
- Department of Analytical Chemistry, Faculty of Science, Regional Centre of Advanced Technologies and Materials, Palacky University, 17. listopadu 12, 771 46, Olomouc, Czech Republic
- Institute of Microbiology, AS CR v.v.i., Videnska 1083, CZ 142 20, Prague 4, Czech Republic
| | - Karel Lemr
- Department of Analytical Chemistry, Faculty of Science, Regional Centre of Advanced Technologies and Materials, Palacky University, 17. listopadu 12, 771 46, Olomouc, Czech Republic
- Institute of Microbiology, AS CR v.v.i., Videnska 1083, CZ 142 20, Prague 4, Czech Republic
| | - Dipankar Ghosh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - David Milde
- Department of Analytical Chemistry, Faculty of Science, Regional Centre of Advanced Technologies and Materials, Palacky University, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - Jiří Novák
- Institute of Microbiology, AS CR v.v.i., Videnska 1083, CZ 142 20, Prague 4, Czech Republic
| | - Vladimír Havlíček
- Department of Analytical Chemistry, Faculty of Science, Regional Centre of Advanced Technologies and Materials, Palacky University, 17. listopadu 12, 771 46, Olomouc, Czech Republic
- Institute of Microbiology, AS CR v.v.i., Videnska 1083, CZ 142 20, Prague 4, Czech Republic
| |
Collapse
|
89
|
Gibson S, Fernando R, Jacobs HK, Gopalan AS. Preparation of 3-benzyloxy-2-pyridinone functional linkers: Tools for the synthesis of 3,2-hydroxypyridinone (HOPO) and HOPO/hydroxamic acid chelators. Tetrahedron 2015; 71:9271-9281. [PMID: 26640304 PMCID: PMC4665106 DOI: 10.1016/j.tet.2015.10.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In contrast to 2,3-dihydroxypyridine, the 3-benzyloxy protected derivative, 2, undergoes facile alkylation at ambient temperatures with a variety of functionalized alkyl halides in good yields. This alkylation has been used to prepare a number of linkers that permit the attachment of 3,2-HOPO moieties onto various scaffolds using a wide range of coupling methods. The Mitsunobu reaction of 2 with representative alcohols was found to be of limited value due to competing O-alkylation that led to product mixtures. The phthalimide 3j can be converted in two steps to HOPO isocyanate 6 in excellent yields. Isocyanate 6 can be coupled to amines at room temperature or to alcohols in refluxing dichloroethane to obtain the corresponding urea or carbamate linked ligand systems. The coupling of isocyanate 6 with TREN followed by deprotection gave the tris-HOPO 10, an interesting target as it has both cationic and anionic binding sites. The HOPO hydroxylamine linker 11 was shown to be especially valuable as its coupling with carboxylic acids proceeds with the concomitant generation of an additional hydroxamate ligand moiety in the framework. The utility of this linker was shown by the preparation of two mixed HOPO-hydroxamate chelators, 16 and 19, based on the structure of desferrioxamine, a well-known trihydroxamate siderophore.
Collapse
Affiliation(s)
- Sarah Gibson
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003-8001
| | - Rasika Fernando
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003-8001
| | - Hollie K. Jacobs
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003-8001
| | - Aravamudan S. Gopalan
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003-8001
| |
Collapse
|
90
|
Kim A, Kutschke A, Ehmann DE, Patey SA, Crandon JL, Gorseth E, Miller AA, McLaughlin RE, Blinn CM, Chen A, Nayar AS, Dangel B, Tsai AS, Rooney MT, Murphy-Benenato KE, Eakin AE, Nicolau DP. Pharmacodynamic Profiling of a Siderophore-Conjugated Monocarbam in Pseudomonas aeruginosa: Assessing the Risk for Resistance and Attenuated Efficacy. Antimicrob Agents Chemother 2015; 59:7743-52. [PMID: 26438502 PMCID: PMC4649189 DOI: 10.1128/aac.00831-15] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 09/29/2015] [Indexed: 01/05/2023] Open
Abstract
The objective of this study was to investigate the risk of attenuated efficacy due to adaptive resistance for the siderophore-conjugated monocarbam SMC-3176 in Pseudomonas aeruginosa by using a pharmacokinetic/pharmacodynamic (PK/PD) approach. MICs were determined in cation-adjusted Mueller-Hinton broth (MHB) and in Chelex-treated, dialyzed MHB (CDMHB). Spontaneous resistance was assessed at 2× to 16× the MIC and the resulting mutants sequenced. Efficacy was evaluated in a neutropenic mouse thigh model at 3.13 to 400 mg/kg of body weight every 3 h for 24 h and analyzed for association with free time above the MIC (fT>MIC). To closer emulate the conditions of the in vivo model, we developed a novel assay testing activity mouse whole blood (WB). All mutations were found in genes related to iron uptake: piuA, piuC, pirR, fecI, and pvdS. Against four P. aeruginosa isolates, SMC-3176 displayed predictable efficacy corresponding to the fT>MIC using the MIC in CDMHB (R(2) = 0.968 to 0.985), with stasis to 2-log kill achieved at 59.4 to 81.1%. Efficacy did not translate for P. aeruginosa isolate JJ 4-36, as the in vivo responses were inconsistent with fT>MIC exposures and implied a threshold concentration that was greater than the MIC. The results of the mouse WB assay indicated that efficacy was not predictable using the MIC for JJ 4-36 and four additional isolates, against which in vivo failures of another siderophore-conjugated β-lactam were previously reported. SMC-3176 carries a risk of attenuated efficacy in P. aeruginosa due to rapid adaptive resistance preventing entry via the siderophore-mediated iron uptake systems. Substantial in vivo testing is warranted for compounds using the siderophore approach to thoroughly screen for this in vitro-in vivo disconnect in P. aeruginosa.
Collapse
Affiliation(s)
- Aryun Kim
- Infection Innovative Medicines, AstraZeneca Pharmaceuticals LP, Waltham, Massachusetts, USA
| | - Amy Kutschke
- Infection Innovative Medicines, AstraZeneca Pharmaceuticals LP, Waltham, Massachusetts, USA
| | - David E Ehmann
- Infection Innovative Medicines, AstraZeneca Pharmaceuticals LP, Waltham, Massachusetts, USA
| | - Sara A Patey
- Infection Innovative Medicines, AstraZeneca Pharmaceuticals LP, Waltham, Massachusetts, USA
| | - Jared L Crandon
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
| | - Elise Gorseth
- Infection Innovative Medicines, AstraZeneca Pharmaceuticals LP, Waltham, Massachusetts, USA
| | - Alita A Miller
- Infection Innovative Medicines, AstraZeneca Pharmaceuticals LP, Waltham, Massachusetts, USA
| | - Robert E McLaughlin
- Infection Innovative Medicines, AstraZeneca Pharmaceuticals LP, Waltham, Massachusetts, USA
| | - Christina M Blinn
- Infection Innovative Medicines, AstraZeneca Pharmaceuticals LP, Waltham, Massachusetts, USA
| | - April Chen
- Infection Innovative Medicines, AstraZeneca Pharmaceuticals LP, Waltham, Massachusetts, USA
| | - Asha S Nayar
- Infection Innovative Medicines, AstraZeneca Pharmaceuticals LP, Waltham, Massachusetts, USA
| | - Brian Dangel
- Infection Innovative Medicines, AstraZeneca Pharmaceuticals LP, Waltham, Massachusetts, USA
| | - Andy S Tsai
- Infection Innovative Medicines, AstraZeneca Pharmaceuticals LP, Waltham, Massachusetts, USA
| | - Michael T Rooney
- Infection Innovative Medicines, AstraZeneca Pharmaceuticals LP, Waltham, Massachusetts, USA
| | | | - Ann E Eakin
- Infection Innovative Medicines, AstraZeneca Pharmaceuticals LP, Waltham, Massachusetts, USA
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
| |
Collapse
|
91
|
Zheng T, Nolan EM. Evaluation of (acyloxy)alkyl ester linkers for antibiotic release from siderophore–antibiotic conjugates. Bioorg Med Chem Lett 2015; 25:4987-4991. [DOI: 10.1016/j.bmcl.2015.02.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 02/11/2015] [Accepted: 02/16/2015] [Indexed: 02/02/2023]
|
92
|
Evaluation of Gallium Citrate Formulations against a Multidrug-Resistant Strain of Klebsiella pneumoniae in a Murine Wound Model of Infection. Antimicrob Agents Chemother 2015; 59:6484-93. [PMID: 26239978 PMCID: PMC4576086 DOI: 10.1128/aac.00882-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/30/2015] [Indexed: 01/16/2023] Open
Abstract
Skin and soft tissue infections (SSTIs) are a common occurrence in health care facilities with a heightened risk for immunocompromised patients. Klebsiella pneumoniae has been increasingly implicated as the bacterial agent responsible for SSTIs, and treatment can be challenging as more strains become multidrug resistant (MDR). Therefore, new treatments are needed to counter this bacterial pathogen. Gallium complexes exhibit antimicrobial activity and are currently being evaluated as potential treatment for bacterial infections. In this study, we tested a topical formulation containing gallium citrate (GaCi) for the treatment of wounds infected with K. pneumoniae. First, the MIC against K. pneumoniae ranged from 0.125 to 2.0 μg/ml GaCi. After this in vitro efficacy was established, two topical formulations with GaCi (0.1% [wt/vol] and 0.3% [wt/vol]) were tested in a murine wound model of MDR K. pneumoniae infection. Gross pathology and histopathology revealed K. pneumoniae-infected wounds appeared to close faster with GaCi treatment and were accompanied by reduced inflammation compared to those of untreated controls. Similarly, quantitative indications of infection remediation, such as reduced weight loss and wound area, suggested that treatment improved outcomes compared to those of untreated controls. Bacterial burdens were measured 1 and 3 days following inoculation, and a 0.5 to 1.5 log reduction of CFU was observed. Lastly, upon scanning electron microscopy analysis, GaCi treatment appeared to prevent biofilm formation on dressings compared to those of untreated controls. These results suggest that with more preclinical testing, a topical application of GaCi may be a promising alternative treatment strategy for K. pneumoniae SSTI.
Collapse
|
93
|
Chairatana P, Zheng T, Nolan EM. Targeting virulence: salmochelin modification tunes the antibacterial activity spectrum of β-lactams for pathogen-selective killing of Escherichia coli. Chem Sci 2015; 6:4458-4471. [PMID: 28717471 PMCID: PMC5499518 DOI: 10.1039/c5sc00962f] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/21/2015] [Indexed: 12/11/2022] Open
Abstract
New antibiotics are required to treat bacterial infections and counteract the emergence of antibiotic resistance. Pathogen-specific antibiotics have several advantages over broad-spectrum drugs, which include minimal perturbation to the commensal microbiota. We present a strategy for targeting antibiotics to bacterial pathogens that utilises the salmochelin-mediated iron uptake machinery of Gram-negative Escherichia coli. Salmochelins are C-glucosylated derivatives of the siderophore enterobactin. The biosynthesis and utilisation of salmochelins are important for virulence because these siderophores allow pathogens to acquire iron and evade the enterobactin-scavenging host-defense protein lipocalin-2. Inspired by the salmochelins, we report the design and chemoenzymatic preparation of glucosylated enterobactin-β-lactam conjugates that harbour the antibiotics ampicillin (Amp) and amoxicillin (Amx), hereafter GlcEnt-Amp/Amx. The GlcEnt scaffolds are based on mono- and diglucosylated Ent where one catechol moiety is functionalized at the C5 position for antibiotic attachment. We demonstrate that GlcEnt-Amp/Amx provide up to 1000-fold enhanced antimicrobial activity against uropathogenic E. coli relative to the parent β-lactams. Moreover, GlcEnt-Amp/Amx based on a diglucosylated Ent (DGE) platform selectively kill uropathogenic E. coli that express the salmochelin receptor IroN in the presence of non-pathogenic E. coli and other bacterial strains that include the commensal microbe Lactobacillus rhamnosus GG. Moreover, GlcEnt-Amp/Amx evade the host-defense protein lipocalin-2, and exhibit low toxicity to mammalian cells. Our work establishes that siderophore-antibiotic conjugates provide a strategy for targeting virulence, narrowing the activity spectrum of antibiotics in clinical use, and achieving selective delivery of antibacterial cargos to pathogenic bacteria on the basis of siderophore receptor expression.
Collapse
Affiliation(s)
- Phoom Chairatana
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , MA 02139 , USA . ; ; Tel: +1-617-452-2495
| | - Tengfei Zheng
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , MA 02139 , USA . ; ; Tel: +1-617-452-2495
| | - Elizabeth M Nolan
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , MA 02139 , USA . ; ; Tel: +1-617-452-2495
| |
Collapse
|
94
|
Ji C, Miller MJ. Siderophore-fluoroquinolone conjugates containing potential reduction-triggered linkers for drug release: synthesis and antibacterial activity. Biometals 2015; 28:541-51. [PMID: 25663417 PMCID: PMC5808879 DOI: 10.1007/s10534-015-9830-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 02/01/2015] [Indexed: 11/25/2022]
Abstract
Syntheses of two Siderophore-fluoroquinolone conjugates with a potential reduction triggered linker for drug release are described. The "trimethyl lock" based linker incorporated in the conjugates was designed to be activated by taking advantage of the reductive pathway of bacterial iron metabolism. Electrochemical and LC-MS studies indicated that the linker is thermodynamically reducible by common biological reductants and the expected lactonization proceeds rapidly with concomitant release of the drug. Antibacterial activity assays revealed that conjugates with the reduction-triggered linker were more potent than their counterparts with a stable linker, which suggests that drug release occurs inside bacterial cells.
Collapse
Affiliation(s)
- Cheng Ji
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana, 46556, United States
| | - Marvin J. Miller
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana, 46556, United States
| |
Collapse
|
95
|
Ree H, Kim J, Song WY, Lee JE, Kim HJ. Total Syntheses and Evaluation of the Siderophore Functions of Fimsbactin B and Its Analogs. B KOREAN CHEM SOC 2015. [DOI: 10.1002/bkcs.10265] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hwisoo Ree
- Department of Chemistry, College of Science; Korea University; Seoul 136-701 Republic of Korea
| | - Jimin Kim
- Department of Chemistry, College of Science; Korea University; Seoul 136-701 Republic of Korea
| | - Woon Young Song
- Department of Chemistry, College of Science; Korea University; Seoul 136-701 Republic of Korea
| | - Jae Eun Lee
- Department of Chemistry, College of Science; Korea University; Seoul 136-701 Republic of Korea
| | - Hak Joong Kim
- Department of Chemistry, College of Science; Korea University; Seoul 136-701 Republic of Korea
| |
Collapse
|
96
|
Kim HS, Song WY, Kim HJ. Development of a novel fluorescence probe capable of assessing the cytoplasmic entry of siderophore-based conjugates. Org Biomol Chem 2015; 13:73-6. [DOI: 10.1039/c4ob01810a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel fluorescence probe capable of assessing the cytoplasmic entry of siderophore-based conjugates was synthesized and evaluated by photochemical characterization and cell-based assays.
Collapse
Affiliation(s)
- Hyeon Seok Kim
- Department of Chemistry
- College of Science
- Korea University
- Seoul 136-701
- Republic of Korea
| | - Woon Young Song
- Department of Chemistry
- College of Science
- Korea University
- Seoul 136-701
- Republic of Korea
| | - Hak Joong Kim
- Department of Chemistry
- College of Science
- Korea University
- Seoul 136-701
- Republic of Korea
| |
Collapse
|
97
|
Górska A, Sloderbach A, Marszałł MP. Siderophore–drug complexes: potential medicinal applications of the ‘Trojan horse’ strategy. Trends Pharmacol Sci 2014; 35:442-9. [DOI: 10.1016/j.tips.2014.06.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 06/17/2014] [Accepted: 06/23/2014] [Indexed: 12/11/2022]
|
98
|
Zheng T, Nolan EM. Enterobactin-mediated delivery of β-lactam antibiotics enhances antibacterial activity against pathogenic Escherichia coli. J Am Chem Soc 2014; 136:9677-91. [PMID: 24927110 PMCID: PMC4353011 DOI: 10.1021/ja503911p] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Indexed: 02/08/2023]
Abstract
The design, synthesis, and characterization of enterobactin-antibiotic conjugates, hereafter Ent-Amp/Amx, where the β-lactam antibiotics ampicillin (Amp) and amoxicillin (Amx) are linked to a monofunctionalized enterobactin scaffold via a stable poly(ethylene glycol) linker are reported. Under conditions of iron limitation, these siderophore-modified antibiotics provide enhanced antibacterial activity against Escherichia coli strains, including uropathogenic E. coli CFT073 and UTI89, enterohemorrhagic E. coli O157:H7, and enterotoxigenic E. coli O78:H11, compared to the parent β-lactams. Studies with E. coli K-12 derivatives defective in ferric enterobactin transport reveal that the enhanced antibacterial activity observed for this strain requires the outer membrane ferric enterobactin transporter FepA. A remarkable 1000-fold decrease in minimum inhibitory concentration (MIC) value is observed for uropathogenic E. coli CFT073 relative to Amp/Amx, and time-kill kinetic studies demonstrate that Ent-Amp/Amx kill this strain more rapidly at 10-fold lower concentrations than the parent antibiotics. Moreover, Ent-Amp and Ent-Amx selectively kill E. coli CFT073 co-cultured with other bacterial species such as Staphylococcus aureus, and Ent-Amp exhibits low cytotoxicity against human T84 intestinal cells in both the apo and iron-bound forms. These studies demonstrate that the native enterobactin platform provides a means to effectively deliver antibacterial cargo across the outer membrane permeability barrier of Gram-negative pathogens utilizing enterobactin for iron acquisition.
Collapse
Affiliation(s)
- Tengfei Zheng
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Elizabeth M. Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
99
|
de Carvalho CCCR, Fernandes P. Siderophores as "Trojan Horses": tackling multidrug resistance? Front Microbiol 2014; 5:290. [PMID: 24971080 PMCID: PMC4053685 DOI: 10.3389/fmicb.2014.00290] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 05/26/2014] [Indexed: 12/02/2022] Open
Affiliation(s)
- Carla C C R de Carvalho
- Department of Bioengineering, Centre for Biological and Chemical Engineering, Institute of Biotechnology and Bioengineering, Instituto Superior Técnico, Universidade de Lisboa Lisboa, Portugal
| | - Pedro Fernandes
- Department of Bioengineering, Centre for Biological and Chemical Engineering, Institute of Biotechnology and Bioengineering, Instituto Superior Técnico, Universidade de Lisboa Lisboa, Portugal ; Faculdade de Engenharia, Universidade Lusófona de Humanidades e Tecnologias Lisboa, Portugal
| |
Collapse
|
100
|
Mislin GLA, Schalk IJ. Siderophore-dependent iron uptake systems as gates for antibiotic Trojan horse strategies against Pseudomonas aeruginosa. Metallomics 2014; 6:408-20. [PMID: 24481292 DOI: 10.1039/c3mt00359k] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen responsible for nosocomial infections. The prevalence of antibiotic-resistant P. aeruginosa strains is increasing, necessitating the urgent development of new strategies to improve the control of this pathogen. Its bacterial envelope constitutes of an outer and an inner membrane enclosing the periplasm. This structure plays a key role in the resistance of the pathogen, by decreasing the penetration and the biological impact of many antibiotics. However, this barrier may also be seen as the "Achilles heel" of the bacterium as some of its functions provide opportunities for breaching bacterial defenses. Siderophore-dependent iron uptake systems act as gates in the bacterial envelope and could be used in a "Trojan horse" strategy, in which the conjugation of an antibiotic to a siderophore could significantly increase the biological activity of the antibiotic, by enhancing its transport into the bacterium. In this review, we provide an overview of the various siderophore-antibiotic conjugates that have been developed for use against P. aeruginosa and show that an accurate knowledge of the structural and functional features of the proteins involved in this transmembrane transport is required for the design and synthesis of effective siderophore-antibiotic Trojan horse conjugates.
Collapse
Affiliation(s)
- Gaëtan L A Mislin
- UMR 7242, Université de Strasbourg-CNRS, ESBS, 300 Boulevard, Sébastien Brant, F-67413 Illkirch, Strasbourg, France.
| | | |
Collapse
|