51
|
Structural Insight into the Interactions between Structurally Similar Inhibitors and SIRT6. Int J Mol Sci 2020; 21:ijms21072601. [PMID: 32283646 PMCID: PMC7178056 DOI: 10.3390/ijms21072601] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/27/2020] [Accepted: 04/07/2020] [Indexed: 12/27/2022] Open
Abstract
Sirtuin 6 (SIRT6) is an NAD+-dependent deacetylase with a significant role in 20% of all cancers, such as colon cancers and rectal adenocarcinoma. However, there is currently no effective drug for cancers related to SIRT6. To explore potential inhibitors of SIRT6, it is essential to reveal details of the interaction mechanisms between inhibitors and SIRT6 at the atomic level. The nature of small molecules from herbs have many advantages as inhibitors. Based on the conformational characteristics of the inhibitor Compound 9 (Asinex ID: BAS13555470), we explored the natural molecule Scutellarin, one compound of Huang Qin, which is an effective herb for curing cancer that has been described in the Traditional Chinese Medicine (TCMS) library. We investigated the interactions between SIRT6 and the inhibitors using molecular dynamics (MD) simulations. We illustrated that the structurally similar inhibitors have a similar binding mode to SIRT6 with residues—Leu9, Phe64, Val115, His133 and Trp188. Hydrophobic and π-stacking interactions play important roles in the interactions between SIRT6 and inhibitors. In summary, our results reveal the interactive mechanism of SIRT6 and the inhibitors and we also provide Scutellarin as a new potential inhibitor of SIRT6. Our study provides a new potential way to explore potential inhibitors from TCMS.
Collapse
|
52
|
Tang Q, Gao Y, Liu Q, Yang X, Wu T, Huang C, Huang Y, Zhang J, Zhang Z, Li R, Pu S, Zhang G, Zhao Y, Zhou J, Huang H, Li Y, Jiang W, Chang Y, He J. Sirt6 in pro-opiomelanocortin neurons controls energy metabolism by modulating leptin signaling. Mol Metab 2020; 37:100994. [PMID: 32278654 PMCID: PMC7215198 DOI: 10.1016/j.molmet.2020.100994] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/28/2020] [Accepted: 04/03/2020] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE Sirt6 is an essential regulator of energy metabolism in multiple peripheral tissues. However, the direct role of Sirt6 in the hypothalamus, specifically pro-opiomelanocortin (POMC) neurons, controlling energy balance has not been established. Here, we aimed to determine the role of Sirt6 in hypothalamic POMC neurons in the regulation of energy balance and the underlying mechanisms. METHODS For overexpression studies, the hypothalamic arcuate nucleus (ARC) of diet-induced obese mice was targeted bilaterally and adenovirus was delivered by using stereotaxic apparatus. For knockout studies, the POMC neuron-specific Sirt6 knockout mice (PKO mice) were generated. Mice were fed with chow diet or high-fat diet, and body weight and food intake were monitored. Whole-body energy expenditure was determined by metabolic cages. Parameters of body composition and glucose/lipid metabolism were evaluated. RESULTS Sirt6 overexpression in the ARC ameliorated diet-induced obesity. Conversely, selective Sirt6 ablation in POMC neurons predisposed mice to obesity and metabolic disturbances. PKO mice showed an increased fat mass and food intake, while the energy expenditure was decreased. Mechanistically, Sirt6 could modulate leptin signaling in hypothalamic POMC neurons, with Sirt6 deficiency impairing leptin-induced phosphorylation of signal transducer and activator of transcription 3. The effects of leptin on reducing food intake and body weight and leptin-stimulated lipolysis were also impaired. Moreover, Sirt6 inhibition diminished the leptin-induced depolarization of POMC neurons. CONCLUSIONS Our results reveal a key role of Sirt6 in POMC neurons against energy imbalance, suggesting that Sirt6 is an important molecular regulator for POMC neurons to promote negative energy balance.
Collapse
Affiliation(s)
- Qin Tang
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yong Gao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Qinhui Liu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Xuping Yang
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Tong Wu
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Cuiyuan Huang
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Ya Huang
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Jinhang Zhang
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Zijing Zhang
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Rui Li
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Shiyun Pu
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Guorong Zhang
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yingnan Zhao
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Jian Zhou
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Hui Huang
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanping Li
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Wei Jiang
- Molecular Medicine Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yongsheng Chang
- Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China.
| | - Jinhan He
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Clinical Pharmacy and Adverse Drug Reaction, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
53
|
Wang T, Wang Y, Liu L, Jiang Z, Li X, Tong R, He J, Shi J. Research progress on sirtuins family members and cell senescence. Eur J Med Chem 2020; 193:112207. [PMID: 32222662 DOI: 10.1016/j.ejmech.2020.112207] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/13/2020] [Accepted: 03/04/2020] [Indexed: 02/05/2023]
Abstract
Human aging is a phenomenon of gradual decline and loss of cell, tissue, organ and other functions under the action of external environment and internal factors. It is mainly related to genomic instability, telomere wear, mitochondrial dysfunction, protein balance disorder, antioxidant damage, microRNA expression disorder and so on. Sirtuins protein is a kind of deacetylase which can regulate cell metabolism and participate in a variety of cell physiological functions. It has been found that sirtuins family can prolong the lifespan of yeast. Sirtuins can inhibit human aging through many signaling pathways, including apoptosis signaling pathway, mTOR signaling pathway, sirtuins signaling pathway, AMPK signaling pathway, phosphatidylinositol 3 kinase (PI3K) signaling pathway and so on. Based on this, this paper reviews the action principle of anti-aging star members of sirtuins family Sirt1, Sirt3 and Sirt6 on anti-aging related signaling pathways and typical compounds, in order to provide ideas for the screening of anti-aging compounds of sirtuins family members.
Collapse
Affiliation(s)
- Ting Wang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yujue Wang
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Li Liu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Zhongliang Jiang
- Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Xingxing Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jun He
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Jianyou Shi
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
54
|
Hong J, Mei C, Abbas Raza SH, Khan R, Cheng G, Zan L. SIRT6 cooperates with SIRT5 to regulate bovine preadipocyte differentiation and lipid metabolism via the AMPKα signaling pathway. Arch Biochem Biophys 2020; 681:108260. [PMID: 31926163 DOI: 10.1016/j.abb.2020.108260] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/10/2019] [Accepted: 01/04/2020] [Indexed: 12/29/2022]
Abstract
Preadipocyte differentiation and lipid synthesis are critical steps for intramuscular fat (IMF) deposition and lipid metabolism homeostasis. IMF content of beef not only determines the ratio of muscle to adipose, but also determines the beef quality, flavor, and sensory characteristics. Maintaining lipid metabolism homeostasis is the key means of preventing and treating diabetes, obesity, and other metabolic diseases. SIRT6, which is an ADP-ribosyltransferase and NAD+-dependent deacetylase of acetyl and long-chain fatty acyl groups, playing central roles in lipid and glucose metabolism, is closely related to the occurrence of diabetes and obesity caused by overnutrition and aging. This study was based on bovine preadipocyte differentiation and an obese mice model, and comprehensively used transcriptome sequencing (RNA-seq) and morphological identification methods to explore the effects of inhibition of SIRT6 on differentiation and lipid synthesis, and related molecular mechanisms. Additionally, the feedback synergistic regulation of SIRT5 and SIRT6 on differentiation and lipid deposition was analyzed. The results showed that in the differentiation process of bovine preadipocytes, inhibition of SIRT5 significantly promoted SIRT6 expression. In addition, SIRT6 inhibited bovine preadipocyte differentiation and lipid synthesis, cooperating with SIRT5 to decrease lipid deposition, and repressed cell cycle arrest of preadipocytes. Moreover, in vivo verification experiments also obtained consistent results. Furthermore, SIRT6 inhibited preadipocyte differentiation and lipid deposition by activating the adenosine monophosphate activated protein kinase alpha (AMPKα) pathway. The above results provided a novel approach for understanding the functions of SIRT6 in regulating bovine adipocyte differentiation and lipid metabolism, as well as a new target for the treatment of diabetes and obesity in a clinical setting.
Collapse
Affiliation(s)
- Jieyun Hong
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chugang Mei
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China; National Beef Cattle Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Gong Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China; National Beef Cattle Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China; National Beef Cattle Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
55
|
Garcia-Peterson LM, Guzmán-Pérez G, Krier CR, Ahmad N. The sirtuin 6: An overture in skin cancer. Exp Dermatol 2019; 29:124-135. [PMID: 31696978 DOI: 10.1111/exd.14057] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/17/2019] [Accepted: 11/01/2019] [Indexed: 12/14/2022]
Abstract
In the recent past, the sirtuins have been under intense investigation for their roles in biology and disease, including cancer. The sirtuin SIRT6 is comparatively a lesser studied member of this family of seven proteins. Like certain other sirtuins, SIRT6 is emerging to have an oncogenic function as well as tumor suppressor roles in cancer. Limited studies have been conducted assessing the role and functional significance of SIRT6 in melanoma and non-melanoma skin cancers. In this review, we have attempted to critically dissect the potential role and significance of SIRT6 in skin carcinogenesis. With limited available information to date, SIRT6 appears to have a pro-proliferative function in non-melanoma skin cancers (NMSCs), including squamous cell carcinoma (SCC) and basal cell carcinoma (BCC). In addition, SIRT6 is also emerging to have an oncogenic function in melanoma. Moreover, we have provided information regarding the available SIRT6 inhibitors. Conclusively, it appears that additional comprehensive studies are needed to establish the role of SIRT6 in skin biology and skin diseases, including cancer. Further, concerted efforts are needed to characterize the stage-specific role of SIRT6 in skin cancers.
Collapse
Affiliation(s)
| | | | - Cassandre R Krier
- Department of Dermatology, University of Wisconsin, Madison, WI, USA
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, WI, USA.,William S. Middleton VA Medical Center, Madison, WI, USA
| |
Collapse
|
56
|
Wang H, Li S, Zhang G, Wu H, Chang X. Potential therapeutic effects of cyanidin-3-O-glucoside on rheumatoid arthritis by relieving inhibition of CD38+ NK cells on Treg cell differentiation. Arthritis Res Ther 2019; 21:220. [PMID: 31661005 PMCID: PMC6819496 DOI: 10.1186/s13075-019-2001-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 09/10/2019] [Indexed: 12/19/2022] Open
Abstract
Background CD38+ NK cells are overabundant in rheumatoid arthritis (RA). Cyanidin-3-O-glucoside (C3G) is an inhibitor of CD38. This study investigated the pathogenic role of CD38+ NK cells and the effect of C3G on RA. Methods Rats with bovine type II collagen-induced arthritis (CIA) were injected with C3G. RA synovial fibroblasts (RASFs) or mononuclear cells (MNCs) were cultured with C3G. MNCs were also cocultured with CD38+ NK cells following C3G pretreatment. Results C3G injection significantly alleviated CIA. C3G also significantly increased the level of interleukin (IL)-10 and the regulatory T (Treg) cell proportion, and it decreased the interleukin (IL)-6 and interferon (IFN)-γ levels and CD38+ NK cell proportion in rat peripheral blood and synovial fluid. Additionally, C3G significantly increased RASF apoptosis and decreased RASF proliferation and IL-6 production in the culture medium. Furthermore, C3G stimulated MNCs to increase IL-2 and IL-10 production and the Treg cell proportion, and it caused MNCs to decrease IL-6 and IFN-γ production and the CD38+ NK cell proportion. Although CD38+ NK cells significantly decreased the Treg cell proportion and IL-10 level in MNCs, CD38+ NK cells that had been pretreated with C3G increased the proportion of Treg cells and IL-10 levels and decreased the IL-6 and IFN-γ levels in the coculture. In CD38+ NK cells, C3G significantly increased Sirtuin 6 (Sirt6) expression and the tumor necrosis factor (TNF)-α level, and it decreased natural killer group 2D (NKG2D) expression and the IFN-γ level. However, when CD38+ NK cells were treated with Sirt6 siRNA, C3G did not change the NKG2D expression, the TNF-α level sharply decreased, and the IFN-γ level increased. When MNCs were cocultured with C3G-pretreated CD38+ NK cells in the presence of TNF-α and an anti-IFN-γ antibody, the IL-10+ Treg cell proportion significantly increased. When MNCs were cocultured with C3G-pretreated CD38+ NK cells in the presence of IFN-γ and an anti-TNF-α antibody, the IL-10+ Treg cell proportion sharply decreased. When CIA rats were injected with both C3G and the Sirt6 inhibitor OSS_128167, the rats exhibited joint inflammation and a low Treg cell proportion, but the CD38+ NK proportion was still low. Conclusion C3G has therapeutic effects on CIA and RA. C3G decreased the proportion of CD38+ cells, RASF proliferation, and proinflammatory cytokine secretion, and it increased the Treg cell proportion. C3G also elevated Sirt6 expression to suppress NKG2D expression, increase TNF-α secretion, and decrease IFN-γ secretion in CD38+ NK cells, which stimulates MNCs to differentiate into Treg cells. This study also demonstrates that the inhibition of Treg cell differentiation in MNCs by CD38+ NK cells is a potential cause of the immune imbalance in RA and CIA.
Collapse
Affiliation(s)
- Hongxing Wang
- Shandong Provincial Qianfoshan Hospital, Shandong University, Jingshi Road 16766, Jinan, 250014, Shandong, People's Republic of China
| | - Shutong Li
- Shandong Provincial Qianfoshan Hospital, Shandong University, Jingshi Road 16766, Jinan, 250014, Shandong, People's Republic of China
| | - Guoqing Zhang
- Medical Research Center of The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, 266000, Shandong, People's Republic of China
| | - Hui Wu
- Shandong Provincial Qianfoshan Hospital, Shandong University, Jingshi Road 16766, Jinan, 250014, Shandong, People's Republic of China
| | - Xiaotian Chang
- Medical Research Center of The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, 266000, Shandong, People's Republic of China. .,Qingdao Engineering Technology Center For Major Disease Marker, Wutaishan Road 1677, Qingdao, 266000, Shandong, People's Republic of China.
| |
Collapse
|
57
|
Sirtuins and SIRT6 in Carcinogenesis and in Diet. Int J Mol Sci 2019; 20:ijms20194945. [PMID: 31591350 PMCID: PMC6801518 DOI: 10.3390/ijms20194945] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023] Open
Abstract
Sirtuins are a highly conserved family of nicotinamide adenine dinucleotide (NAD)-dependent protein lysine modifying enzymes. They are key regulators for a wide variety of cellular and physiological processes such as cell proliferation, differentiation, DNA damage and stress response, genome stability, cell survival, metabolism, energy homeostasis, organ development and aging. Aging is one of the major risk factors of cancer, as many of the physiological mechanisms and pathologies associated with the aging process also contribute to tumor initiation, growth and/or metastasis. This review focuses on one the mammalian sirtuins, SIRT6, which has emerged as an important regulator of longevity and appears to have multiple biochemical functions that interfere with tumor development and may be useful in cancer prevention and for site-specific treatment. The recent evidence of the role of SIRT6 in carcinogenesis is also discussed, focusing on the potential use of SIRT6 modulators in cancer nanomedicine.
Collapse
|
58
|
Cai J, Liu Z, Huang X, Shu S, Hu X, Zheng M, Tang C, Liu Y, Chen G, Sun L, Liu H, Liu F, Cheng J, Dong Z. The deacetylase sirtuin 6 protects against kidney fibrosis by epigenetically blocking β-catenin target gene expression. Kidney Int 2019; 97:106-118. [PMID: 31787254 DOI: 10.1016/j.kint.2019.08.028] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/06/2019] [Accepted: 08/22/2019] [Indexed: 01/20/2023]
Abstract
Fibrosis is a common pathologic pathway of progressive kidney disease involving complex signaling networks. The deacetylase sirtuin 6 (sirt6) was recently implicated in kidney injury. However, it remains elusive whether and how sirt6 contributes to the regulation of kidney fibrosis. Here, we demonstrate that sirt6 protects against kidney interstitial fibrosis through epigenetic regulation of β-catenin signaling. Sirt6 is markedly upregulated during fibrogenesis following obstructed nephropathy and kidney ischemia-reperfusion injury. Pharmacological inhibition of sirt6 deacetylase activity aggravates kidney fibrosis in obstructed nephropathy. Consistently, knockdown of sirt6 in mouse kidney proximal tubular epithelial cells aggravates transforming growth factor-β-induced fibrosis in vitro. Mechanistically, sirt6 deficiency results in augmented expression of the downstream target proteins of β-catenin signaling. We further show that sirt6 interacts with β-catenin during transforming growth factor-β treatment and binds to the promoters of β-catenin target genes, resulting in the deacetylation of histone H3K56 to prevent the transcription of fibrosis-related genes. Thus, our data reveal the anti-fibrotic function of sirt6 by epigenetically attenuating β-catenin target gene expression.
Collapse
Affiliation(s)
- Juan Cai
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, Hunan, China.
| | - Zhiwen Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Xian Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaoqun Shu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Xiaoru Hu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Meiling Zheng
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Chengyuan Tang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Yu Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Guochun Chen
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Hong Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Fuyou Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, Hunan, China
| | - Jinke Cheng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Dong
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, Hunan, China.
| |
Collapse
|
59
|
Sociali G, Liessi N, Grozio A, Caffa I, Parenti MD, Ravera S, Tasso B, Benzi A, Nencioni A, Del Rio A, Robina I, Millo E, Bruzzone S. Differential modulation of SIRT6 deacetylase and deacylase activities by lysine-based small molecules. Mol Divers 2019; 24:655-671. [PMID: 31240519 DOI: 10.1007/s11030-019-09971-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 06/11/2019] [Indexed: 11/28/2022]
Abstract
Sirtuin 6 (SIRT6) is an NAD+-dependent deacetylase regulating important functions: modulators of its enzymatic activity have been considered as possible therapeutic agents. Besides the deacetylase activity, SIRT6 also has NAD+-dependent deacylase activity, whereby it regulates the secretion of cytokines and proteins. We identified novel SIRT6 modulators with a lysine-based structure: compound 1 enhances SIRT6 deacylase while inhibiting the deacetylase activity. As expected based on the biological effects of SIRT6 deacetylase activity, compound 1 increased histone 3 lysine 9 acetylation and the activity of glycolytic enzymes. Moreover, the fact that compound 1 enhanced SIRT6 deacylase activity was accompanied by an increased TNF-α release. In conclusion, new SIRT6 modulators with a lysine-like structure were identified, with differential effects on specific SIRT6 activities. The novel SIRT6 modulator concomitantly inhibits deacetylase and enhances deacylase activity.
Collapse
Affiliation(s)
- Giovanna Sociali
- Department of Experimental Medicine, Section of Biochemistry, and CEBR, University of Genoa, V.le Benedetto XV 1, 16132, Genoa, Italy
| | - Nara Liessi
- Department of Experimental Medicine, Section of Biochemistry, and CEBR, University of Genoa, V.le Benedetto XV 1, 16132, Genoa, Italy
| | - Alessia Grozio
- Department of Experimental Medicine, Section of Biochemistry, and CEBR, University of Genoa, V.le Benedetto XV 1, 16132, Genoa, Italy.,Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO, 63110, USA
| | - Irene Caffa
- Department of Internal Medicine, University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy
| | - Marco Daniele Parenti
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via P. Gobetti 101, 40129, Bologna, Italy
| | - Silvia Ravera
- Department of Experimental Medicine, Section of Anatomy, University of Genova, Via Leon Battista Alberti 2, 16132, Genoa, Italy
| | - Bruno Tasso
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132, Genoa, Italy
| | - Andrea Benzi
- Department of Experimental Medicine, Section of Biochemistry, and CEBR, University of Genoa, V.le Benedetto XV 1, 16132, Genoa, Italy
| | - Alessio Nencioni
- Department of Internal Medicine, University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - Alberto Del Rio
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via P. Gobetti 101, 40129, Bologna, Italy.,Innovamol Srls, Viale A. Corassori 24, 41124, Modena, Italy
| | - Inmaculada Robina
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Prof. García González, 1, 41012, Seville, Spain
| | - Enrico Millo
- Department of Experimental Medicine, Section of Biochemistry, and CEBR, University of Genoa, V.le Benedetto XV 1, 16132, Genoa, Italy.
| | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry, and CEBR, University of Genoa, V.le Benedetto XV 1, 16132, Genoa, Italy.
| |
Collapse
|
60
|
Zhang C, Yu Y, Huang Q, Tang K. SIRT6 regulates the proliferation and apoptosis of hepatocellular carcinoma via the ERK1/2 signaling pathway. Mol Med Rep 2019; 20:1575-1582. [PMID: 31257493 PMCID: PMC6625461 DOI: 10.3892/mmr.2019.10398] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 05/20/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer, and exhibits a high mortality rate. Sirtuin (SIRT)6 is a member of the sirtuin family, which may be useful targets in the treatment of tumors. The present study aimed to explore the expression of SIRT6 in numerous HCC cell lines and investigate the role of SIRT6 in the proliferation and apoptosis of the HCC cells, and the underlying mechanisms. Overexpression and silencing of SIRT6 were performed by transfection of Huh‑7 cells with synthetic overexpression and small interfering RNA (siRNA) plasmids. Cell proliferation was evaluated using a Cell Counting Kit‑8 assay. The apoptosis rate was measured via flow cytometry. Cloning efficiency was assessed using plate clone formation assays. The expression of mRNAs and proteins were determined via reverse transcription‑quantitative PCR and western blot analyses, respectively. SIRT6 was overexpressed in Hep3B, Huh‑7, MHCC‑97H, MHCC‑97L, MHCC‑LM6, MHCC‑LM3, YY‑8103 and SK‑hep‑1 cell lines, compared with MIHA and HL‑7702 normal liver cell lines. Overexpression of SIRT6 increased the proliferation of Huh‑7 cells, upregulated the expression of Bcl‑2 and phosphorylation of extracellular‑signal regulated protein kinase (ERK), and decreased the expression of cleaved‑caspase‑3 and Bcl‑2‑associated X protein (Bax) in Huh‑7 cells. siRNA‑mediated silencing of SIRT6 decreased the proliferation and increased the apoptosis of Huh‑7 cells, downregulated the expression of Bcl‑2 and phosphorylated‑ERK, and promoted the expression of cleaved‑caspase‑3 and Bax. The proliferation of Huh‑7 cells was decreased using the ERK1/2 inhibitor U0126. The results suggested that SIRT6 affected the proliferation and apoptosis of HCC cells via the regulation of the ERK1/2 pathway, altering the activation of the intrinsic apoptosis pathway. SIRT6 may be a potential target for the treatment of HCC; however, its role requires further investigation.
Collapse
Affiliation(s)
- Cuisheng Zhang
- Department of Hepatobiliary Surgery, Yuhuangding Hospital of Yantai, Yantai, Shandong 264000, P.R. China
| | - Ying Yu
- Department of Vascular Surgery, Yuhuangding Hospital of Yantai, Yantai, Shandong 264000, P.R. China
| | - Qingxian Huang
- Department of Hepatobiliary Surgery, Yuhuangding Hospital of Yantai, Yantai, Shandong 264000, P.R. China
| | - Kun Tang
- Department of Hepatobiliary Surgery, Yuhuangding Hospital of Yantai, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
61
|
Yang H, Zhu R, Zhao X, Liu L, Zhou Z, Zhao L, Liang B, Ma W, Zhao J, Liu J, Huang G. Sirtuin-mediated deacetylation of hnRNP A1 suppresses glycolysis and growth in hepatocellular carcinoma. Oncogene 2019; 38:4915-4931. [PMID: 30858544 DOI: 10.1038/s41388-019-0764-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/25/2019] [Accepted: 02/16/2019] [Indexed: 01/06/2023]
Abstract
Tumor cells undergo a metabolic shift in order to adapt to the altered microenvironment, although the underlying mechanisms have not been fully explored. HnRNP A1 is involved in the alternative splicing of the pyruvate kinase (PK) mRNA, allowing tumor cells to specifically produce the PKM2 isoform. We found that the acetylation status of hnRNP A1 in hepatocellular carcinoma (HCC) cells was dependent on glucose availability, which affected the PKM2-dependent glycolytic pathway. In the glucose-starved HCC cells, SIRT1 and SIRT6, members of deacetylase sirtuin family, were highly expressed and deacetylated hnRNP A1 after direct binding. We identified four lysine residues in hnRNP A1 that were deacetylated by SIRT1 and SIRT6, resulting in significant inhibition of glycolysis in HCC cells. Deacetylated hnRNP A1 reduced PKM2 and increased PKM1 alternative splicing in HCC cells under normal glucose conditions, thereby reducing the metabolic activity of PK and the non-metabolic PKM2-β-catenin signaling pathway. However, under glucose starvation, the low levels of acetylated hnRNP A1 reduced HCC cell metabolism to adapt to the nutrient deficiency. Taken together, sirtuin-mediated hnRNP A1 deacetylation inhibits HCC cell proliferation and tumorigenesis in a PKM2-dependent manner. These findings point to the metabolic reprogramming induced by hnRNP A1 acetylation in order to adapt to the nutritional status of the tumor microenvironment.
Collapse
Affiliation(s)
- Hao Yang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Rongxuan Zhu
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xiaoping Zhao
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Liu Liu
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Zhaoli Zhou
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Li Zhao
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Beibei Liang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Wenjing Ma
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Jian Zhao
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, 200433, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
62
|
Yuen LH, Dana S, Liu Y, Bloom SI, Thorsell AG, Neri D, Donato AJ, Kireev D, Schüler H, Franzini RM. A Focused DNA-Encoded Chemical Library for the Discovery of Inhibitors of NAD+-Dependent Enzymes. J Am Chem Soc 2019; 141:5169-5181. [DOI: 10.1021/jacs.8b08039] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Lik Hang Yuen
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Srikanta Dana
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Yu Liu
- Department of Internal Medicine, University of Utah, 500 Foothill Drive, Salt Lake City, Utah 84148, United States
| | - Samuel I. Bloom
- Department of Internal Medicine, University of Utah, 500 Foothill Drive, Salt Lake City, Utah 84148, United States
| | - Ann-Gerd Thorsell
- Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 7c, 14157 Huddinge, Sweden
| | - Dario Neri
- Department of Pharmaceutical Sciences, ETH Zürich, Vladimir Prelog Weg 3, 8093 Zürich, Switzerland
| | - Anthony J. Donato
- Department of Internal Medicine, University of Utah, 500 Foothill Drive, Salt Lake City, Utah 84148, United States
| | - Dmitri Kireev
- Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Herwig Schüler
- Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 7c, 14157 Huddinge, Sweden
| | - Raphael M. Franzini
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| |
Collapse
|
63
|
Dantoft W, Robertson KA, Watkins WJ, Strobl B, Ghazal P. Metabolic Regulators Nampt and Sirt6 Serially Participate in the Macrophage Interferon Antiviral Cascade. Front Microbiol 2019; 10:355. [PMID: 30886604 PMCID: PMC6409323 DOI: 10.3389/fmicb.2019.00355] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/11/2019] [Indexed: 11/13/2022] Open
Abstract
Molecular determinants underlying interferon (IFN)-macrophage biology can help delineate enzyme systems, pathways and mechanisms for enabling host-directed therapeutic approaches against infection. Notably, while the IFN antiviral response is known to be directly coupled to mevalonate-sterol biosynthesis, mechanistic insight for providing host pathway-therapeutic targets remain incomplete. Here, we show that Nampt and Sirt6 are coordinately regulated upon immune activation of macrophages and contribute to the IFN-sterol antiviral response. In silico analysis of the Nampt and Sirt6 promoter regions identified multiple core immune gene-regulatory transcription factor sites, including Stat1, implicating a molecular link to IFN control. Experimentally, we show using a range of genetically IFN-defective macrophages that the expression of Nampt is stringently regulated by the Jak/Stat-pathway while Sirt6 activation is temporally displaced in a partial IFN-dependent manner. We further show that pharmacological inhibition of Nampt and small interfering RNA (siRNA)-mediated inhibition of Nampt and Sirt6 promotes viral growth of cytomegalovirus in both fibroblasts and macrophages. Our results support the notion of pharmacologically exploiting immune regulated enzyme systems of macrophages for use as an adjuvant-based therapy for augmenting host protective pathway responses to infection.
Collapse
Affiliation(s)
- Widad Dantoft
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Kevin A Robertson
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - W John Watkins
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, Department for Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Peter Ghazal
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom.,Division of Infection and Pathway Medicine, School of Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
64
|
You W, Steegborn C. Structural Basis of Sirtuin 6 Inhibition by the Hydroxamate Trichostatin A: Implications for Protein Deacylase Drug Development. J Med Chem 2018; 61:10922-10928. [PMID: 30395713 DOI: 10.1021/acs.jmedchem.8b01455] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Protein lysine deacylases comprise three zinc-dependent families and the NAD+-dependent sirtuins Sirt1-7, which contribute to aging-related diseases. Few Sirt6-specific inhibitors are available. Trichostatin A, which belongs to the potent, zinc-chelating hydroxamate inhibitors of zinc-dependent deacylases, was recently found to potently and isoform-specifically inhibit Sirt6. We solved a crystal structure of a Sirt6/ADP-ribose/trichostatin A complex, which reveals nicotinamide pocket and acyl channel as binding site and provides interaction details supporting the development of improved deacylase inhibitors.
Collapse
Affiliation(s)
- Weijie You
- Department of Biochemistry , University of Bayreuth , Universitätsstraße 30 , 95445 Bayreuth , Germany
| | - Clemens Steegborn
- Department of Biochemistry , University of Bayreuth , Universitätsstraße 30 , 95445 Bayreuth , Germany
| |
Collapse
|
65
|
Nicotine promotes neuron survival and partially protects from Parkinson's disease by suppressing SIRT6. Acta Neuropathol Commun 2018; 6:120. [PMID: 30409187 PMCID: PMC6223043 DOI: 10.1186/s40478-018-0625-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 10/28/2018] [Indexed: 12/27/2022] Open
Abstract
Parkinson’s disease is characterized by progressive death of dopaminergic neurons, leading to motor and cognitive dysfunction. Epidemiological studies consistently show that the use of tobacco reduces the risk of Parkinson’s. We report that nicotine reduces the abundance of SIRT6 in neuronal culture and brain tissue. We find that reduction of SIRT6 is partly responsible for neuroprotection afforded by nicotine. Additionally, SIRT6 abundance is greater in Parkinson’s patient brains, and decreased in the brains of tobacco users. We also identify SNPs that promote SIRT6 expression and simultaneously associate with an increased risk of Parkinson’s. Furthermore, brain-specific SIRT6 knockout mice are protected from MPTP-induced Parkinson’s, while SIRT6 overexpressing mice develop more severe pathology. Our data suggest that SIRT6 plays a pathogenic and pro-inflammatory role in Parkinson’s and that nicotine can provide neuroprotection by accelerating its degradation. Inhibition of SIRT6 may be a promising strategy to ameliorate Parkinson’s and neurodegeneration.
Collapse
|
66
|
Huang Z, Zhao J, Deng W, Chen Y, Shang J, Song K, Zhang L, Wang C, Lu S, Yang X, He B, Min J, Hu H, Tan M, Xu J, Zhang Q, Zhong J, Sun X, Mao Z, Lin H, Xiao M, Chin YE, Jiang H, Xu Y, Chen G, Zhang J. Identification of a cellularly active SIRT6 allosteric activator. Nat Chem Biol 2018; 14:1118-1126. [PMID: 30374165 DOI: 10.1038/s41589-018-0150-0] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 09/05/2018] [Indexed: 12/21/2022]
Abstract
SIRT6, a member of the SIRT deacetylase family, is responsible for deacetylation of histone H3 Nε-acetyl-lysines 9 (H3K9ac) and 56 (H3K56ac). As a tumor suppressor, SIRT6 has frequently been found to have low expression in various cancers. Here, we report the identification of MDL-800, a selective SIRT6 activator. MDL-800 increased the deacetylase activity of SIRT6 by up to 22-fold via binding to an allosteric site; this interaction led to a global decrease in H3K9ac and H3K56ac levels in human hepatocellular carcinoma (HCC) cells. Consequently, MDL-800 inhibited the proliferation of HCC cells via SIRT6-driven cell-cycle arrest and was effective in a tumor xenograft model. Together, these data demonstrate that pharmacological activation of SIRT6 is a potential therapeutic approach for the treatment of HCC. MDL-800 is a first-in-class small-molecule cellular SIRT6 activator that can be used to physiologically and pathologically investigate the roles of SIRT6 deacetylation.
Collapse
Affiliation(s)
- Zhimin Huang
- Key Laboratory of Cell Differentiation and Apoptosis, Ministry of Education, Department of Pathophysiology, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Junxing Zhao
- Key Laboratory of Cell Differentiation and Apoptosis, Ministry of Education, Department of Pathophysiology, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Wei Deng
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yingyi Chen
- Key Laboratory of Cell Differentiation and Apoptosis, Ministry of Education, Department of Pathophysiology, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Jialin Shang
- Key Laboratory of Cell Differentiation and Apoptosis, Ministry of Education, Department of Pathophysiology, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Kun Song
- Key Laboratory of Cell Differentiation and Apoptosis, Ministry of Education, Department of Pathophysiology, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Lu Zhang
- Key Laboratory of Cell Differentiation and Apoptosis, Ministry of Education, Department of Pathophysiology, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Chengxiang Wang
- Key Laboratory of Cell Differentiation and Apoptosis, Ministry of Education, Department of Pathophysiology, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Shaoyong Lu
- Key Laboratory of Cell Differentiation and Apoptosis, Ministry of Education, Department of Pathophysiology, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Xiuyan Yang
- Key Laboratory of Cell Differentiation and Apoptosis, Ministry of Education, Department of Pathophysiology, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Bin He
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Jinrong Min
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Hao Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jianrong Xu
- Key Laboratory of Cell Differentiation and Apoptosis, Ministry of Education, Department of Pathophysiology, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Qiufen Zhang
- Key Laboratory of Cell Differentiation and Apoptosis, Ministry of Education, Department of Pathophysiology, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Jie Zhong
- Key Laboratory of Cell Differentiation and Apoptosis, Ministry of Education, Department of Pathophysiology, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Xiaoxiang Sun
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhiyong Mao
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Houwen Lin
- Basic Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingzhe Xiao
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Y Eugene Chin
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hualiang Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ying Xu
- Key Laboratory of Cell Differentiation and Apoptosis, Ministry of Education, Department of Pathophysiology, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.
| | - Guoqiang Chen
- Key Laboratory of Cell Differentiation and Apoptosis, Ministry of Education, Department of Pathophysiology, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.
| | - Jian Zhang
- Key Laboratory of Cell Differentiation and Apoptosis, Ministry of Education, Department of Pathophysiology, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China. .,Basic Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Medicinal Bioinformatics Center, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| |
Collapse
|
67
|
He Y, Zheng Z, Liu Q, Song G, Sun N, Chai X. Tunable Synthesis of 2-Ene-1,4-diones, 4-Hydroxycyclopent-2-en-1-ones, and 2-(Furan-3-yl)acetamides via Palladium-Catalyzed Cascade Reactions of Allenols. J Org Chem 2018; 83:12514-12526. [PMID: 30239199 DOI: 10.1021/acs.joc.8b01753] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient and regioselective synthesis of 2-ene-1,4-diones, 4-hydroxycyclopent-2-en-1-ones, or 2-(furan-3-yl)acetamides is successfully realized through palladium-catalyzed one-pot multicomponent reactions of allenols with aryl iodides and carbon monoxide in the presence of tertiary amines. Interestingly, the selectivity depends on the substitution patterns of the allenol substrates. To be specific, from the reaction of allenols with no substituent attached on the internal position of the allenic moiety, 2-ene-1,4-diones or 4-hydroxycyclopent-2-en-1-ones were formed selectively through carbonylation of aryl iodide followed by acylation of allenol with the in situ formed acyl palladium species, β-hydride elimination of the in situ formed allyl palladium complex, and further tautomerization or intramolecular aldol reaction. From the reaction of allenols bearing a substituent at the internal position of the allenic unit, on the other hand, diversely substituted 2-(furan-3-yl)acetamides were formed through a cascade process combining carbonylation of aryl iodide, acylation, and carbonylation of allenol followed by intramolecular condensation and amination by tertiary amine featuring an oxidant-free C-N bond cleavage.
Collapse
Affiliation(s)
- Yan He
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation , Henan Normal University , Xinxiang , Henan 453007 , P. R. China
| | - Zhi Zheng
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation , Henan Normal University , Xinxiang , Henan 453007 , P. R. China
| | - Qimeng Liu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation , Henan Normal University , Xinxiang , Henan 453007 , P. R. China
| | - Guixian Song
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation , Henan Normal University , Xinxiang , Henan 453007 , P. R. China
| | - Nan Sun
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation , Henan Normal University , Xinxiang , Henan 453007 , P. R. China
| | - Xinyuan Chai
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation , Henan Normal University , Xinxiang , Henan 453007 , P. R. China
| |
Collapse
|
68
|
Khan RI, Nirzhor SSR, Akter R. A Review of the Recent Advances Made with SIRT6 and its Implications on Aging Related Processes, Major Human Diseases, and Possible Therapeutic Targets. Biomolecules 2018; 8:biom8030044. [PMID: 29966233 PMCID: PMC6164879 DOI: 10.3390/biom8030044] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 06/24/2018] [Accepted: 06/26/2018] [Indexed: 12/20/2022] Open
Abstract
Sirtuin 6 (SIRT6) is a nicotinamide adenine dinucleotide+ (NAD+) dependent enzyme and stress response protein that has sparked the curiosity of many researchers in different branches of the biomedical sciences. A unique member of the known Sirtuin family, SIRT6 has several different functions in multiple different molecular pathways related to DNA repair, glycolysis, gluconeogenesis, tumorigenesis, neurodegeneration, cardiac hypertrophic responses, and more. Only in recent times, however, did the potential usefulness of SIRT6 come to light as we learned more about its biochemical activity, regulation, biological roles, and structure Frye (2000). Even until very recently, SIRT6 was known more for chromatin signaling but, being a nascent topic of study, more information has been ascertained and its potential involvement in major human diseases including diabetes, cancer, neurodegenerative diseases, and heart disease. It is pivotal to explore the mechanistic workings of SIRT6 since future research may hold the key to engendering strategies involving SIRT6 that may have significant implications for human health and expand upon possible treatment options. In this review, we are primarily concerned with exploring the latest advances in understanding SIRT6 and how it can alter the course of several life-threatening diseases such as processes related to aging, cancer, neurodegenerative diseases, heart disease, and diabetes (SIRT6 has also shown to be involved in liver disease, inflammation, and bone-related issues) and any recent promising pharmacological investigations or potential therapeutics that are of interest.
Collapse
Affiliation(s)
| | | | - Raushanara Akter
- Department of Pharmacy, BRAC University, 1212 Dhaka, Bangladesh.
| |
Collapse
|
69
|
Rahnasto-Rilla M, Tyni J, Huovinen M, Jarho E, Kulikowicz T, Ravichandran S, A Bohr V, Ferrucci L, Lahtela-Kakkonen M, Moaddel R. Natural polyphenols as sirtuin 6 modulators. Sci Rep 2018; 8:4163. [PMID: 29515203 PMCID: PMC5841289 DOI: 10.1038/s41598-018-22388-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 02/19/2018] [Indexed: 12/12/2022] Open
Abstract
Flavonoids are polyphenolic secondary metabolites synthesized by plants and fungus with various pharmacological effects. Due to their plethora of biological activities, they have been studied extensively in drug development. They have been shown to modulate the activity of a NAD+-dependent histone deacetylase, SIRT6. Because SIRT6 has been implicated in longevity, metabolism, DNA-repair, and inflammatory response reduction, it is an interesting target in inflammatory and metabolic diseases as well as in cancer. Here we show, that flavonoids can alter SIRT6 activity in a structure dependent manner. Catechin derivatives with galloyl moiety displayed significant inhibition potency against SIRT6 at 10 µM concentration. The most potent SIRT6 activator, cyanidin, belonged to anthocyanidins, and produced a 55-fold increase in SIRT6 activity compared to the 3-10 fold increase for the others. Cyanidin also significantly increased SIRT6 expression in Caco-2 cells. Results from the docking studies indicated possible binding sites for the inhibitors and activators. Inhibitors likely bind in a manner that could disturb NAD+ binding. The putative activator binding site was found next to a loop near the acetylated peptide substrate binding site. In some cases, the activators changed the conformation of this loop suggesting that it may play a role in SIRT6 activation.
Collapse
Affiliation(s)
- Minna Rahnasto-Rilla
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224, USA
- School of Pharmacy, University of Eastern Finland, P.O.Box 1627, 70210, Kuopio, Finland
| | - Jonna Tyni
- School of Pharmacy, University of Eastern Finland, P.O.Box 1627, 70210, Kuopio, Finland
| | - Marjo Huovinen
- School of Pharmacy, University of Eastern Finland, P.O.Box 1627, 70210, Kuopio, Finland
| | - Elina Jarho
- School of Pharmacy, University of Eastern Finland, P.O.Box 1627, 70210, Kuopio, Finland
| | - Tomasz Kulikowicz
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224, USA
| | - Sarangan Ravichandran
- Advanced Biomedical Computing Center, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Fredrick, Maryland, 21701, USA
| | - Vilhelm A Bohr
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224, USA
| | - Luigi Ferrucci
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224, USA
| | - Maija Lahtela-Kakkonen
- School of Pharmacy, University of Eastern Finland, P.O.Box 1627, 70210, Kuopio, Finland.
| | - Ruin Moaddel
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224, USA.
| |
Collapse
|
70
|
Ye X, Li M, Hou T, Gao T, Zhu WG, Yang Y. Sirtuins in glucose and lipid metabolism. Oncotarget 2018; 8:1845-1859. [PMID: 27659520 PMCID: PMC5352102 DOI: 10.18632/oncotarget.12157] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 09/13/2016] [Indexed: 01/02/2023] Open
Abstract
Sirtuins are evolutionarily conserved protein, serving as nicotinamide adenine dinucleotide-dependent deacetylases or adenosine diphosphate-ribosyltransferases. The mammalian sirtuins family, including SIRT1~7, is involved in many biological processes such as cell survival, proliferation, senescence, stress response, genome stability and metabolism. Evidence accumulated over the past two decades has indicated that sirtuins not only serve as important energy status sensors but also protect cells against metabolic stresses. In this review, we summarize the background of glucose and lipid metabolism concerning sirtuins and discuss the functions of sirtuins in glucose and lipid metabolism. We also seek to highlight the biological roles of certain sirtuins members in cancer metabolism.
Collapse
Affiliation(s)
- Xin Ye
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Meiting Li
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Tianyun Hou
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Tian Gao
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Yang Yang
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| |
Collapse
|
71
|
Luise C, Robaa D. Application of Virtual Screening Approaches for the Identification of Small Molecule Inhibitors of the Methyllysine Reader Protein Spindlin1. Methods Mol Biol 2018; 1824:347-370. [PMID: 30039418 DOI: 10.1007/978-1-4939-8630-9_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Computer-based approaches represent a powerful tool which helps to identify and optimize lead structures in the process of drug discovery. Computer-aided drug design techniques (CADD) encompass a large variety of methods which are subdivided into structure-based (SBDD) and ligand-based drug design (LBDD) methods. Several approaches have been successfully used over the last three decades in different fields. Indeed also in the field of epigenetics, virtual screening (VS) studies and structure-based approaches have been applied to identify novel chemical modulators of epigenetic targets as well as to predict the binding mode of active ligands and to study the protein dynamics.In this chapter, an iterative VS approach using both SBDD and LBDD methods, which was successful in identifying Spindlin1 inhibitors, will be described. All protocol steps, starting from structure-based pharmacophore modeling, protein and database preparation along with docking and similarity search, will be explained in details.
Collapse
Affiliation(s)
- Chiara Luise
- Department of Pharmaceutical Chemistry, Martin-Luther University of Halle-Wittenberg, Halle/Saale, Germany
| | - Dina Robaa
- Department of Pharmaceutical Chemistry, Martin-Luther University of Halle-Wittenberg, Halle/Saale, Germany.
| |
Collapse
|
72
|
Zhang L, Han B, Xiang J, Liu K, Dong H, Gao X. Silica nanoparticle releases SIRT6-induced epigenetic silencing of follistatin. Int J Biochem Cell Biol 2017; 95:27-34. [PMID: 29246685 DOI: 10.1016/j.biocel.2017.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/29/2017] [Accepted: 12/11/2017] [Indexed: 11/27/2022]
Abstract
Follistatin (FST) plays a protective role during silica nanoparticle (SiO2 NP) exposure. SiO2 NP treatment induces FST transcription with an unknown mechanism. We herein reported that SIRT6, one of the sirtuin family members, induced epigenetic silencing of FST. The expression of FST was elevated after SIRT6 knockdown while reduced after SIRT6 overexpression. Chromatin immunoprecipitation revealed a direct interaction between SIRT6 with FST promoter. Knockdown of SIRT6 increased both Ac-H3K9 level and Ac-H3K56 level at FST promoter region. SiO2 NP treatment de-stabilized SIRT6 mRNA and reduced SIRT6 expression, leading to the activation of FST transcription. Finally, over-expression of SIRT6 increased SiO2 NP-induced apoptosis. Collectively, this study provided evidence that SIRT6 is a negative regulator of FST transcription and participates in the regulation of cell survival during silica nanoparticle exposure.
Collapse
Affiliation(s)
- Lingda Zhang
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Bing Han
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Xiang
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Kangli Liu
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Haojie Dong
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangwei Gao
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
73
|
Wood M, Rymarchyk S, Zheng S, Cen Y. Trichostatin A inhibits deacetylation of histone H3 and p53 by SIRT6. Arch Biochem Biophys 2017; 638:8-17. [PMID: 29233643 DOI: 10.1016/j.abb.2017.12.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 11/15/2017] [Accepted: 12/08/2017] [Indexed: 02/07/2023]
Abstract
SIRT6 is an epigenetic modification enzyme that regulates gene transcription through its deacetylase activity. In addition to histone protein, SIRT6 also modify other proteins and enzymes, some of which are central players in metabolic reprogramming and aging process. Therefore, SIRT6 has emerged as a therapeutic target for the treatment of metabolic disorder and age-related diseases. Here, we report that SIRT6 deacetylates lysine 382 of p53 in short synthetic peptide sequence and in full length p53. Further studies showed that the deacetylation of H3K9Ac and p53K382Ac are insensitive to nicotinamide inhibition, but are sensitive to trichostatin A (TSA) inhibition. Detailed kinetic analysis revealed that TSA competes with the peptide substrate for inhibition, and this inhibition is unique to SIRT6 in the sirtuin family. Taken together, this study not only suggests potential roles of SIRT6 in regulating apoptosis and stress resistance via direct deacetylation of p53, but also provides lead compound for the development of potent and selective SIRT6 inhibitors.
Collapse
Affiliation(s)
- Marci Wood
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, VT 05446, USA
| | - Stacia Rymarchyk
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, VT 05446, USA
| | - Song Zheng
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, VT 05446, USA
| | - Yana Cen
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, VT 05446, USA.
| |
Collapse
|
74
|
Bae EJ. Sirtuin 6, a possible therapeutic target for type 2 diabetes. Arch Pharm Res 2017; 40:1380-1389. [DOI: 10.1007/s12272-017-0989-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/16/2017] [Indexed: 12/27/2022]
|
75
|
Chen Q, Hao W, Xiao C, Wang R, Xu X, Lu H, Chen W, Deng CX. SIRT6 Is Essential for Adipocyte Differentiation by Regulating Mitotic Clonal Expansion. Cell Rep 2017; 18:3155-3166. [PMID: 28355567 PMCID: PMC9396928 DOI: 10.1016/j.celrep.2017.03.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 02/01/2017] [Accepted: 03/01/2017] [Indexed: 02/02/2023] Open
Abstract
Preadipocytes initiate differentiation into adipocytes through a cascade of events. Mitotic clonal expansion, as one of the earliest events, is essential for adipogenesis. However, the underlying mechanisms that regulate mitotic clonal expansion remain elusive. SIRT6 is a member of the evolutionarily conserved sirtuin family of nicotinamide adenine dinucleotide (NAD)+-dependent protein deacetylases. Here, we show that SIRT6 deficiency in preadipocytes blocks their adipogenesis. Analysis of gene expression during adipogenesis reveals that KIF5C, which belongs to the kinesin family, is negatively regulated by SIRT6. Furthermore, we show that KIF5C is a negative factor for adipogenesis through interacting with CK2α', a catalytic subunit of CK2. This interaction blocks CK2α' nuclear translocation and CK2 kinase activity and inhibits mitotic clonal expansion during adipogenesis. These findings reveal a crucial role of SIRT6 in adipogenesis and provide potential therapeutic targets for obesity.
Collapse
Affiliation(s)
- Qiang Chen
- Faculty of Health Sciences, University of Macau, Macau SAR, China, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Wenhui Hao
- Faculty of Health Sciences, University of Macau, Macau SAR, China, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Cuiying Xiao
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Ruihong Wang
- Faculty of Health Sciences, University of Macau, Macau SAR, China, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Xiaoling Xu
- Faculty of Health Sciences, University of Macau, Macau SAR, China, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Huiyan Lu
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Weiping Chen
- Genomic Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Chu-Xia Deng
- Faculty of Health Sciences, University of Macau, Macau SAR, China, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA; Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
76
|
Damonte P, Sociali G, Parenti MD, Soncini D, Bauer I, Boero S, Grozio A, Holtey MV, Piacente F, Becherini P, Sanguineti R, Salis A, Damonte G, Cea M, Murone M, Poggi A, Nencioni A, Del Rio A, Bruzzone S. SIRT6 inhibitors with salicylate-like structure show immunosuppressive and chemosensitizing effects. Bioorg Med Chem 2017; 25:5849-5858. [PMID: 28958848 DOI: 10.1016/j.bmc.2017.09.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/15/2017] [Accepted: 09/17/2017] [Indexed: 12/19/2022]
Abstract
The NAD+-dependent deacetylase SIRT6 is an emerging cancer drug target, whose inhibition sensitizes cancer cells to chemo-radiotherapy and has pro-differentiating effects. Here we report on the identification of novel SIRT6 inhibitors with a salicylate-based structure. The new SIRT6 inhibitors show improved potency and specificity compared to the hit inhibitor identified in an in silico compound screen. As predicted based on SIRT6 biological roles, the new leads increase histone 3 lysine 9 acetylation and glucose uptake in cultured cells, while blocking TNF-α production and T lymphocyte proliferation. Notably, the new SIRT6 inhibitors effectively sensitize pancreatic cancer cells to gemcitabine. Finally, studies of compound fingerprinting and pharmacokinetics defined the drug-like properties of one of the new SIRT6 inhibitors, potentially allowing for subsequent in vivo proof-of-concept studies. In conclusion, new SIRT6 inhibitors with a salicylate-like structure were identified, which are active in cells and could potentially find applications in disease conditions, including cancer and immune-mediated disorders.
Collapse
Affiliation(s)
- Patrizia Damonte
- Department of Internal Medicine, University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy
| | - Giovanna Sociali
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, V.le Benedetto XV 1, 16132 Genoa, Italy
| | - Marco Daniele Parenti
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via P. Gobetti 101, 40129 Bologna, Italy
| | - Debora Soncini
- Department of Internal Medicine, University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy
| | - Inga Bauer
- Department of Internal Medicine, University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy
| | - Silvia Boero
- Department of Internal Medicine, University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy; IRCCS Azienda Ospedaliera Universitaria San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
| | - Alessia Grozio
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, V.le Benedetto XV 1, 16132 Genoa, Italy
| | - Maria von Holtey
- Debiopharm International S.A., Chemin Messidor 5-7, 1002 Lausanne, Switzerland; Roche Diagnostics International AG, Forrenstrasse 2, 6343 Rotkreuz, Switzerland
| | - Francesco Piacente
- Department of Internal Medicine, University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy
| | - Pamela Becherini
- Department of Internal Medicine, University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy
| | - Roberta Sanguineti
- Department of Internal Medicine, University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy
| | - Annalisa Salis
- CEBR, University of Genova, V.le Benedetto XV, 7, 16132 Genoa, Italy
| | - Gianluca Damonte
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, V.le Benedetto XV 1, 16132 Genoa, Italy; CEBR, University of Genova, V.le Benedetto XV, 7, 16132 Genoa, Italy
| | - Michele Cea
- Department of Internal Medicine, University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy
| | - Maximilien Murone
- Debiopharm International S.A., Chemin Messidor 5-7, 1002 Lausanne, Switzerland; Cellestia Biotech AG, Hochbergerstrasse 60C, 4057 Basel, Switzerland
| | - Alessandro Poggi
- IRCCS Azienda Ospedaliera Universitaria San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
| | - Alessio Nencioni
- Department of Internal Medicine, University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy; IRCCS Azienda Ospedaliera Universitaria San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy.
| | - Alberto Del Rio
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via P. Gobetti 101, 40129 Bologna, Italy; Innovamol Srls, Viale A. Corassori 24, 41124 Modena, Italy.
| | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, V.le Benedetto XV 1, 16132 Genoa, Italy; CEBR, University of Genova, V.le Benedetto XV, 7, 16132 Genoa, Italy.
| |
Collapse
|
77
|
Vitiello M, Zullo A, Servillo L, Mancini FP, Borriello A, Giovane A, Della Ragione F, D'Onofrio N, Balestrieri ML. Multiple pathways of SIRT6 at the crossroads in the control of longevity, cancer, and cardiovascular diseases. Ageing Res Rev 2017; 35:301-311. [PMID: 27829173 DOI: 10.1016/j.arr.2016.10.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/24/2016] [Accepted: 10/24/2016] [Indexed: 12/27/2022]
Abstract
Sirtuin 6 (SIRT6) is a member of the sirtuin family NAD+-dependent deacetylases with multiple roles in controlling organism homeostasis, lifespan, and diseases. Due to its complex and opposite functional roles, this sirtuin is considered a two-edged sword in health and disease. Indeed, SIRT6 improves longevity, similarly to the founding yeast member, silent information regulator-2 (Sir2), and modulates genome stability, telomere integrity, transcription, and DNA repair. Its deficiency is associated with chronic inflammation, diabetes, cardiac hypertrophy, obesity, liver dysfunction, muscle/adipocyte disorders, and cancer. Besides, pieces of evidence showed that SIRT6 is a promoter of specific oncogenic pathways, thus disclosing its dual role regarding cancer development. Collectively, these findings suggest that multiple mechanisms, to date not entirely known, underlie the intriguing roles of SIRT6. Here we provide an overview of the current molecular mechanisms through which SIRT6 controls cancer and heart diseases, and describe its recent implications in the atherosclerotic plaque development.
Collapse
Affiliation(s)
- Milena Vitiello
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Alberto Zullo
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy; CEINGE-Advanced Biotechnologies, Naples, Italy
| | - Luigi Servillo
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | | | - Adriana Borriello
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Alfonso Giovane
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Fulvio Della Ragione
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Nunzia D'Onofrio
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Maria Luisa Balestrieri
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy.
| |
Collapse
|
78
|
Sociali G, Magnone M, Ravera S, Damonte P, Vigliarolo T, Von Holtey M, Vellone VG, Millo E, Caffa I, Cea M, Parenti MD, Del Rio A, Murone M, Mostoslavsky R, Grozio A, Nencioni A, Bruzzone S. Pharmacological Sirt6 inhibition improves glucose tolerance in a type 2 diabetes mouse model. FASEB J 2017; 31:3138-3149. [PMID: 28386046 DOI: 10.1096/fj.201601294r] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/20/2017] [Indexed: 01/08/2023]
Abstract
Sirtuin 6 (SIRT6) is a sirtuin family member involved in a wide range of physiologic and disease processes, including cancer and glucose homeostasis. Based on the roles played by SIRT6 in different organs, including its ability to repress the expression of glucose transporters and glycolytic enzymes, inhibiting SIRT6 has been proposed as an approach for treating type 2 diabetes mellitus (T2DM). However, so far, the lack of small-molecule Sirt6 inhibitors has hampered the conduct of in vivo studies to assess the viability of this strategy. We took advantage of a recently identified SIRT6 inhibitor, compound 1, to study the effect of pharmacological Sirt6 inhibition in a mouse model of T2DM (i.e., in high-fat-diet-fed animals). The administration of the Sirt6 inhibitor for 10 d was well tolerated and improved oral glucose tolerance, it increased the expression of the glucose transporters GLUT1 and -4 in the muscle and enhanced the activity of the glycolytic pathway. Sirt6 inhibition also resulted in reduced insulin, triglycerides, and cholesterol levels in plasma. This study represents the first in vivo study of a SIRT6 inhibitor and provides the proof-of-concept that targeting SIRT6 may be a viable strategy for improving glycemic control in T2DM.-Sociali, G., Magnone, M., Ravera, S., Damonte, P., Vigliarolo, T., Von Holtey, M., Vellone, V. G., Millo, E., Caffa, I., Cea, M., Parenti, M. D., Del Rio, A., Murone, M., Mostoslavsky, R., Grozio, A., Nencioni, A., Bruzzone S. Pharmacological Sirt6 inhibition improves glucose tolerance in a type 2 diabetes mouse model.
Collapse
Affiliation(s)
- Giovanna Sociali
- Section of Biochemistry, Department of Experimental Medicine, Center of Excellence for Biomedical Research (CEBR), University of Genova, Genoa, Italy
| | - Mirko Magnone
- Section of Biochemistry, Department of Experimental Medicine, Center of Excellence for Biomedical Research (CEBR), University of Genova, Genoa, Italy
| | - Silvia Ravera
- Biochemistry Laboratory, Department of Pharmacy, University of Genova, Genoa, Italy
| | - Patrizia Damonte
- Department of Internal Medicine, University of Genova, Genoa, Italy
| | - Tiziana Vigliarolo
- Section of Biochemistry, Department of Experimental Medicine, Center of Excellence for Biomedical Research (CEBR), University of Genova, Genoa, Italy
| | | | - Valerio G Vellone
- Department of Surgical Sciences and Integrated Diagnostics, University of Genova, Genoa, Italy
| | - Enrico Millo
- Section of Biochemistry, Department of Experimental Medicine, Center of Excellence for Biomedical Research (CEBR), University of Genova, Genoa, Italy
| | - Irene Caffa
- Department of Internal Medicine, University of Genova, Genoa, Italy
| | - Michele Cea
- Department of Internal Medicine, University of Genova, Genoa, Italy
| | - Marco Daniele Parenti
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Bologna, Italy
| | - Alberto Del Rio
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Bologna, Italy.,Innovamol Srls, Modena, Italy
| | - Maximilien Murone
- Debiopharm International S.A., Lausanne, Switzerland.,Cellestia Biotech AG, Basel, Switzerland
| | - Raul Mostoslavsky
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Alessia Grozio
- Section of Biochemistry, Department of Experimental Medicine, Center of Excellence for Biomedical Research (CEBR), University of Genova, Genoa, Italy
| | - Alessio Nencioni
- Department of Internal Medicine, University of Genova, Genoa, Italy; .,Istituto di Ricovero e Cura a Carattere Scientifico, Azienda Ospedaliera Universitaria San Martino Istituto Nazionale per la Ricerca sul Cancro (IST), Genoa, Italy; and
| | - Santina Bruzzone
- Section of Biochemistry, Department of Experimental Medicine, Center of Excellence for Biomedical Research (CEBR), University of Genova, Genoa, Italy; .,Institute of Protein Biochemistry, National Research Council, Naples, Italy
| |
Collapse
|
79
|
Rasal KB, Yadav GD. Carbon Dioxide Mediated Novel Synthesis of Quinazoline-2,4(1H,3H)-dione in Water. Org Process Res Dev 2016. [DOI: 10.1021/acs.oprd.6b00244] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kalidas B. Rasal
- Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400 019, India
| | - Ganapati D. Yadav
- Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400 019, India
| |
Collapse
|
80
|
Sirtuin functions and modulation: from chemistry to the clinic. Clin Epigenetics 2016; 8:61. [PMID: 27226812 PMCID: PMC4879741 DOI: 10.1186/s13148-016-0224-3] [Citation(s) in RCA: 280] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/04/2016] [Indexed: 12/21/2022] Open
Abstract
Sirtuins are NAD(+)-dependent histone deacetylases regulating important metabolic pathways in prokaryotes and eukaryotes and are involved in many biological processes such as cell survival, senescence, proliferation, apoptosis, DNA repair, cell metabolism, and caloric restriction. The seven members of this family of enzymes are considered potential targets for the treatment of human pathologies including neurodegenerative diseases, cardiovascular diseases, and cancer. Furthermore, recent interest focusing on sirtuin modulators as epigenetic players in the regulation of fundamental biological pathways has prompted increased efforts to discover new small molecules able to modify sirtuin activity. Here, we review the role, mechanism of action, and biological function of the seven sirtuins, as well as their inhibitors and activators.
Collapse
|
81
|
Yu J, Wu Y, Yang P. High glucose-induced oxidative stress represses sirtuin deacetylase expression and increases histone acetylation leading to neural tube defects. J Neurochem 2016; 137:371-83. [PMID: 26896748 DOI: 10.1111/jnc.13587] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 02/07/2023]
Abstract
Aberrant epigenetic modifications are implicated in maternal diabetes-induced neural tube defects (NTDs). Because cellular stress plays a causal role in diabetic embryopathy, we investigated the possible role of the stress-resistant sirtuin (SIRT) family histone deacetylases. Among the seven sirtuins (SIRT1-7), pre-gestational maternal diabetes in vivo or high glucose in vitro significantly reduced the expression of SIRT 2 and SIRT6 in the embryo or neural stem cells, respectively. The down-regulation of SIRT2 and SIRT6 was reversed by superoxide dismutase 1 (SOD1) over-expression in the in vivo mouse model of diabetic embryopathy and the SOD mimetic, tempol and cell permeable SOD, PEGSOD in neural stem cell cultures. 2,3-dimethoxy-1,4-naphthoquinone (DMNQ), a superoxide generating agent, mimicked high glucose-suppressed SIRT2 and SIRT6 expression. The acetylation of histone 3 at lysine residues 56 (H3K56), H3K14, H3K9, and H3K27, putative substrates of SIRT2 and SIRT6, was increased by maternal diabetes in vivo or high glucose in vitro, and these increases were blocked by SOD1 over-expression or tempol treatment. SIRT2 or SIRT6 over-expression abrogated high glucose-suppressed SIRT2 or SIRT6 expression, and prevented the increase in acetylation of their histone substrates. The potent sirtuin activator (SRT1720) blocked high glucose-increased histone acetylation and NTD formation, whereas the combination of a pharmacological SIRT2 inhibitor and a pan SIRT inhibitor mimicked the effect of high glucose on increased histone acetylation and NTD induction. Thus, diabetes in vivo or high glucose in vitro suppresses SIRT2 and SIRT6 expression through oxidative stress, and sirtuin down-regulation-induced histone acetylation may be involved in diabetes-induced NTDs. The mechanism underlying pre-gestational diabetes-induced neural tube defects (NTDs) is still elusive. Our study unravels a new epigenetic mechanism in which maternal diabetes-induced oxidative stress represses sirtuin deacetylase 2 (SIRT2) and 6 (SIRT6) expression leading to histone acetylation and gene expression. SIRT down-regulation mediates the teratogenicity of diabetes leading to (NTD) formation. The study provides a mechanistic basis for the development of natural antioxidants and SIRT activators as therapeutics for diabetic embryopathy.
Collapse
Affiliation(s)
- Jingwen Yu
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yanqing Wu
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Peixin Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
82
|
Cea M, Cagnetta A, Adamia S, Acharya C, Tai YT, Fulciniti M, Ohguchi H, Munshi A, Acharya P, Bhasin MK, Zhong L, Carrasco R, Monacelli F, Ballestrero A, Richardson P, Gobbi M, Lemoli RM, Munshi N, Hideshima T, Nencioni A, Chauhan D, Anderson KC. Evidence for a role of the histone deacetylase SIRT6 in DNA damage response of multiple myeloma cells. Blood 2016; 127:1138-50. [PMID: 26675349 PMCID: PMC4778164 DOI: 10.1182/blood-2015-06-649970] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 12/02/2015] [Indexed: 12/18/2022] Open
Abstract
Multiple myeloma (MM) is characterized by a highly unstable genome, with aneuploidy observed in nearly all patients. The mechanism causing this karyotypic instability is largely unknown, but recent observations have correlated these abnormalities with dysfunctional DNA damage response. Here, we show that the NAD(+)-dependent deacetylase SIRT6 is highly expressed in MM cells, as an adaptive response to genomic stability, and that high SIRT6 levels are associated with adverse prognosis. Mechanistically, SIRT6 interacts with the transcription factor ELK1 and with the ERK signaling-related gene. By binding to their promoters and deacetylating H3K9 at these sites, SIRT6 downregulates the expression of mitogen-activated protein kinase (MAPK) pathway genes, MAPK signaling, and proliferation. In addition, inactivation of ERK2/p90RSK signaling triggered by high SIRT6 levels increases DNA repair via Chk1 and confers resistance to DNA damage. Using genetic and biochemical studies in vitro and in human MM xenograft models, we show that SIRT6 depletion both enhances proliferation and confers sensitization to DNA-damaging agents. Our findings therefore provide insights into the functional interplay between SIRT6 and DNA repair mechanisms, with implications for both tumorigenesis and the treatment of MM.
Collapse
Affiliation(s)
- Michele Cea
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; Clinic of Hematology, Department of Internal Medicine, University of Genoa, Istituto di Ricovero e Cura a Carattere Scientifico Scientifico Azienda Ospedaliera Universitaria San Martino-Istituto Scientifico Tumori, Genoa, Italy
| | - Antonia Cagnetta
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; Clinic of Hematology, Department of Internal Medicine, University of Genoa, Istituto di Ricovero e Cura a Carattere Scientifico Scientifico Azienda Ospedaliera Universitaria San Martino-Istituto Scientifico Tumori, Genoa, Italy
| | - Sophia Adamia
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Chirag Acharya
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Yu-Tzu Tai
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Mariateresa Fulciniti
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Hiroto Ohguchi
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Aditya Munshi
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Prakrati Acharya
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Manoj K Bhasin
- Beth Israel Deaconess Medical Center Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, MA; and
| | - Lei Zhong
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
| | - Ruben Carrasco
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Fiammetta Monacelli
- Clinic of Hematology, Department of Internal Medicine, University of Genoa, Istituto di Ricovero e Cura a Carattere Scientifico Scientifico Azienda Ospedaliera Universitaria San Martino-Istituto Scientifico Tumori, Genoa, Italy
| | - Alberto Ballestrero
- Clinic of Hematology, Department of Internal Medicine, University of Genoa, Istituto di Ricovero e Cura a Carattere Scientifico Scientifico Azienda Ospedaliera Universitaria San Martino-Istituto Scientifico Tumori, Genoa, Italy
| | - Paul Richardson
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Marco Gobbi
- Clinic of Hematology, Department of Internal Medicine, University of Genoa, Istituto di Ricovero e Cura a Carattere Scientifico Scientifico Azienda Ospedaliera Universitaria San Martino-Istituto Scientifico Tumori, Genoa, Italy
| | - Roberto M Lemoli
- Clinic of Hematology, Department of Internal Medicine, University of Genoa, Istituto di Ricovero e Cura a Carattere Scientifico Scientifico Azienda Ospedaliera Universitaria San Martino-Istituto Scientifico Tumori, Genoa, Italy
| | - Nikhil Munshi
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Teru Hideshima
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Alessio Nencioni
- Clinic of Hematology, Department of Internal Medicine, University of Genoa, Istituto di Ricovero e Cura a Carattere Scientifico Scientifico Azienda Ospedaliera Universitaria San Martino-Istituto Scientifico Tumori, Genoa, Italy
| | - Dharminder Chauhan
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Kenneth C Anderson
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| |
Collapse
|
83
|
Abstract
Six side chain-to-side chain cyclic pentapeptides (4–9) harboring a central Nε-dodecyl (or tetradecyl)-thiocarbamoyl-lysine residue all behaved as highly potent (IC50 ∼ 256–495 nM) inhibitors against human SIRT6-catalyzed deacylation reaction.
Collapse
Affiliation(s)
- Jiajia Liu
- School of Pharmacy
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Weiping Zheng
- School of Pharmacy
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| |
Collapse
|
84
|
Abstract
SIRT6 has been shown to possess weak deacetylation, mono-ADP-ribosyltransferase activity, and deacylation activity in vitro. SIRT6 selectively deacetylates H3K9Ac and H3K56Ac. Several SIRT6 assays have been developed including HPLC assays, fluorogenic assays, FRET, magnetic beads, in silico, and bioaffinity chromatography assays. Herein, we describe detailed protocols for the HPLC based activity/inhibition assays, magnetic beads deacetylation assays, bioaffinity chromatographic assays as well as fluorogenic and in silico assays.
Collapse
Affiliation(s)
- Minna Rahnasto-Rilla
- Bioanalytical and Drug Development Unit, National institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD, 21224-6825, USA
- School of Pharmacy, University of Eastern Finland, Kuopio, 70210, Finland
| | | | - Ruin Moaddel
- Bioanalytical and Drug Development Unit, National institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD, 21224-6825, USA.
| |
Collapse
|
85
|
Lasigliè D, Boero S, Bauer I, Morando S, Damonte P, Cea M, Monacelli F, Odetti P, Ballestrero A, Uccelli A, Mostoslavsky R, Poggi A, Nencioni A. Sirt6 regulates dendritic cell differentiation, maturation, and function. Aging (Albany NY) 2016; 8:34-49. [PMID: 26761436 PMCID: PMC4761712 DOI: 10.18632/aging.100870] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/29/2015] [Indexed: 12/29/2022]
Abstract
Dendritic cells (DCs) are antigen-presenting cells that critically influence decisions about immune activation or tolerance. Impaired DC function is at the core of common chronic disorders and contributes to reduce immunocompetence during aging. Knowledge on the mechanisms regulating DC generation and function is necessary to understand the immune system and to prevent disease and immunosenescence. Here we show that the sirtuin Sirt6, which was previously linked to healthspan promotion, stimulates the development of myeloid, conventional DCs (cDCs). Sirt6-knockout (Sirt6KO) mice exhibit low frequencies of bone marrow cDC precursors and low yields of bone marrow-derived cDCs compared to wild-type (WT) animals. Sirt6KO cDCs express lower levels of class II MHC, of costimulatory molecules, and of the chemokine receptor CCR7, and are less immunostimulatory compared to WT cDCs. Similar effects in terms of differentiation and immunostimulatory capacity were observed in human monocyte-derived DCs in response to SIRT6 inhibition. Finally, while Sirt6KO cDCs show an overall reduction in their ability to produce IL-12, TNF-α and IL-6 secretion varies dependent on the stimulus, being reduced in response to CpG, but increased in response to other Toll-like receptor ligands. In conclusion, Sirt6 plays a crucial role in cDC differentiation and function and reduced Sirt6 activity may contribute to immunosenescence.
Collapse
Affiliation(s)
- Denise Lasigliè
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
| | - Silvia Boero
- The Istituto di Ricovero e Cura a Carattere Scientifico Azienda Ospedaliera Universitaria San Martino-Istituto Scientifico Tumori, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
| | - Inga Bauer
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
| | - Sara Morando
- Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16100 Genoa, Italy
| | - Patrizia Damonte
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
| | - Michele Cea
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
| | - Fiammetta Monacelli
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
- The Istituto di Ricovero e Cura a Carattere Scientifico Azienda Ospedaliera Universitaria San Martino-Istituto Scientifico Tumori, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
| | - Paizio Odetti
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
- The Istituto di Ricovero e Cura a Carattere Scientifico Azienda Ospedaliera Universitaria San Martino-Istituto Scientifico Tumori, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
| | - Alberto Ballestrero
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
- The Istituto di Ricovero e Cura a Carattere Scientifico Azienda Ospedaliera Universitaria San Martino-Istituto Scientifico Tumori, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
| | - Antonio Uccelli
- The Istituto di Ricovero e Cura a Carattere Scientifico Azienda Ospedaliera Universitaria San Martino-Istituto Scientifico Tumori, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
- Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16100 Genoa, Italy
| | - Raul Mostoslavsky
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114 USA
| | - Alessandro Poggi
- The Istituto di Ricovero e Cura a Carattere Scientifico Azienda Ospedaliera Universitaria San Martino-Istituto Scientifico Tumori, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
| | - Alessio Nencioni
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
- The Istituto di Ricovero e Cura a Carattere Scientifico Azienda Ospedaliera Universitaria San Martino-Istituto Scientifico Tumori, Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
| |
Collapse
|
86
|
Lerrer B, Gertler AA, Cohen HY. The complex role of SIRT6 in carcinogenesis. Carcinogenesis 2015; 37:108-18. [PMID: 26717993 DOI: 10.1093/carcin/bgv167] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 11/25/2015] [Indexed: 12/28/2022] Open
Abstract
SIRT6, a member of the mammalian sirtuins family, functions as a mono-ADP-ribosyl transferase and NAD(+)-dependent deacylase of both acetyl groups and long-chain fatty acyl groups. SIRT6 regulates diverse cellular functions such as transcription, genome stability, telomere integrity, DNA repair, inflammation and metabolic related diseases such as diabetes, obesity and cancer. In this review, we will discuss the implication of SIRT6 in the biology of cancer and the relevance to organism homeostasis and lifespan.
Collapse
Affiliation(s)
- Batia Lerrer
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Asaf A Gertler
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Haim Y Cohen
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
87
|
Guetschow ED, Kumar S, Lombard DB, Kennedy RT. Identification of sirtuin 5 inhibitors by ultrafast microchip electrophoresis using nanoliter volume samples. Anal Bioanal Chem 2015; 408:721-31. [PMID: 26635020 DOI: 10.1007/s00216-015-9206-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/13/2015] [Accepted: 11/19/2015] [Indexed: 01/26/2023]
Abstract
Sirtuin 5 (SIRT5) is a member of the sirtuin family of protein deacylases that catalyzes removal of post-translational modifications, such as succinyl and malonyl moieties, on lysine residues. In light of SIRT5's roles in regulating metabolism, and its reported oncogenic functions, SIRT5 modulators would be valuable tools for basic biological research and perhaps clinically. Several fluorescence assays for sirtuin modulators have been developed; however, the use of fluorogenic substrates has the potential to cause false positive results due to interactions of engineered substrates with enzyme or test compounds. Therefore, development of high-throughput screening (HTS) assays based on other methods is valuable. In this study, we report the development of a SIRT5 assay using microchip electrophoresis (MCE) for identification of SIRT5 modulators. A novel SIRT5 substrate based on succinate dehydrogenase (SDH) was developed to allow rapid and efficient separation of substrate and product peptide. To achieve high throughput, samples were injected onto the microchip using a droplet-based scheme. By coupling this approach to existing HTS sample preparation workflows, 1408 samples were analyzed at 0.5 Hz in 46 min. Using a 250 ms separation time, eight MCE injections could be made from each sample generating >11,000 electropherograms during analysis. Of the 1280 chemicals tested, eight were identified as inhibiting SIRT5 activity by at least 70% and verified by dose-response analysis.
Collapse
Affiliation(s)
- Erik D Guetschow
- Department of Chemistry, University of Michigan, 930 N University Ave, Ann Arbor, MI, 48109, USA
| | - Surinder Kumar
- Department of Pathology, University of Michigan, 1301 Catherine St, Ann Arbor, MI, 48109, USA
| | - David B Lombard
- Department of Pathology, University of Michigan, 1301 Catherine St, Ann Arbor, MI, 48109, USA.,Institute of Gerontology, University of Michigan, 300 N Ingalls St, Ann Arbor, MI, 48109, USA
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan, 930 N University Ave, Ann Arbor, MI, 48109, USA. .,Department of Pharmacology, University of Michigan, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109, USA.
| |
Collapse
|
88
|
Ghosh S, Liu B, Wang Y, Hao Q, Zhou Z. Lamin A Is an Endogenous SIRT6 Activator and Promotes SIRT6-Mediated DNA Repair. Cell Rep 2015; 13:1396-1406. [PMID: 26549451 DOI: 10.1016/j.celrep.2015.10.006] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 07/13/2015] [Accepted: 10/02/2015] [Indexed: 01/08/2023] Open
Abstract
The nuclear lamins are essential for various molecular events in the nucleus, such as chromatin organization, DNA replication, and provision of mechanical support. A specific point mutation in the LMNA gene creates a truncated prelamin A termed progerin, causing Hutchinson-Gilford progeria syndrome (HGPS). SIRT6 deficiency leads to defective genomic maintenance and accelerated aging similar to HGPS, suggesting a potential link between lamin A and SIRT6. Here, we report that lamin A is an endogenous activator of SIRT6 and facilitates chromatin localization of SIRT6 upon DNA damage. Lamin A promotes SIRT6-dependent DNA-PKcs (DNA-PK catalytic subunit) recruitment to chromatin, CtIP deacetylation, and PARP1 mono-ADP ribosylation in response to DNA damage. The presence of progerin jeopardizes SIRT6 activation and compromises SIRT6-mediated molecular events in response to DNA damage. These data reveal a critical role for lamin A in regulating SIRT6 activities, suggesting that defects in SIRT6 functions contribute to impaired DNA repair and accelerated aging in HGPS.
Collapse
Affiliation(s)
- Shrestha Ghosh
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pok Fu Lam, Hong Kong; Shenzhen Institute of Innovation and Research, The University of Hong Kong, Nanshan, Shenzhen 518000, China
| | - Baohua Liu
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pok Fu Lam, Hong Kong; School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Yi Wang
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pok Fu Lam, Hong Kong
| | - Quan Hao
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pok Fu Lam, Hong Kong
| | - Zhongjun Zhou
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pok Fu Lam, Hong Kong; Shenzhen Institute of Innovation and Research, The University of Hong Kong, Nanshan, Shenzhen 518000, China.
| |
Collapse
|
89
|
Meng F, Cheng S, Ding H, Liu S, Liu Y, Zhu K, Chen S, Lu J, Xie Y, Li L, Liu R, Shi Z, Zhou Y, Liu YC, Zheng M, Jiang H, Lu W, Liu H, Luo C. Discovery and Optimization of Novel, Selective Histone Methyltransferase SET7 Inhibitors by Pharmacophore- and Docking-Based Virtual Screening. J Med Chem 2015; 58:8166-81. [DOI: 10.1021/acs.jmedchem.5b01154] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Fanwang Meng
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
- Drug Discovery
and Design Center, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Sufang Cheng
- Chinese Academy of Sciences Key Laboratory of Receptor Research,
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hong Ding
- Drug Discovery
and Design Center, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shien Liu
- Drug Discovery
and Design Center, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yan Liu
- Drug Discovery
and Design Center, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kongkai Zhu
- Drug Discovery
and Design Center, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shijie Chen
- Drug Discovery
and Design Center, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Junyan Lu
- Drug Discovery
and Design Center, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yiqian Xie
- Drug Discovery
and Design Center, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Linjuan Li
- Drug Discovery
and Design Center, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Rongfeng Liu
- Shanghai ChemPartner
Co., Ltd., Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Zhe Shi
- Shanghai ChemPartner
Co., Ltd., Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Yu Zhou
- Chinese Academy of Sciences Key Laboratory of Receptor Research,
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yu-Chih Liu
- Shanghai ChemPartner
Co., Ltd., Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Mingyue Zheng
- Drug Discovery
and Design Center, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hualiang Jiang
- Drug Discovery
and Design Center, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Wencong Lu
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Hong Liu
- Chinese Academy of Sciences Key Laboratory of Receptor Research,
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cheng Luo
- Drug Discovery
and Design Center, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
90
|
Sociali G, Galeno L, Parenti MD, Grozio A, Bauer I, Passalacqua M, Boero S, Donadini A, Millo E, Bellotti M, Sturla L, Damonte P, Puddu A, Ferroni C, Varchi G, Franceschi C, Ballestrero A, Poggi A, Bruzzone S, Nencioni A, Del Rio A. Quinazolinedione SIRT6 inhibitors sensitize cancer cells to chemotherapeutics. Eur J Med Chem 2015; 102:530-539. [PMID: 26310895 DOI: 10.1016/j.ejmech.2015.08.024] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 08/04/2015] [Accepted: 08/10/2015] [Indexed: 01/09/2023]
Abstract
The NAD(+)-dependent sirtuin SIRT6 is highly expressed in human breast, prostate, and skin cancer where it mediates resistance to cytotoxic agents and prevents differentiation. Thus, SIRT6 is an attractive target for the development of new anticancer agents to be used alone or in combination with chemo- or radiotherapy. Here we report on the identification of novel quinazolinedione compounds with inhibitory activity on SIRT6. As predicted based on SIRT6's biological functions, the identified new SIRT6 inhibitors increase histone H3 lysine 9 acetylation, reduce TNF-α production and increase glucose uptake in cultured cells. In addition, these compounds exacerbate DNA damage and cell death in response to the PARP inhibitor olaparib in BRCA2-deficient Capan-1 cells and cooperate with gemcitabine to the killing of pancreatic cancer cells. In conclusion, new SIRT6 inhibitors with a quinazolinedione-based structure have been identified which are active in cells and could potentially find applications in cancer treatment.
Collapse
Affiliation(s)
- Giovanna Sociali
- Department of Experimental Medicine, Section of Biochemistry and CEBR, University of Genoa, V.le Benedetto XV 1, 16132 Genoa, Italy
| | - Lauretta Galeno
- Department of Internal Medicine, University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy
| | - Marco Daniele Parenti
- Department of Internal Medicine, University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy; Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Via S. Giacomo 14, 40126 Bologna, Italy
| | - Alessia Grozio
- Department of Experimental Medicine, Section of Biochemistry and CEBR, University of Genoa, V.le Benedetto XV 1, 16132 Genoa, Italy
| | - Inga Bauer
- Department of Internal Medicine, University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy
| | - Mario Passalacqua
- Department of Experimental Medicine, Section of Biochemistry and CEBR, University of Genoa, V.le Benedetto XV 1, 16132 Genoa, Italy
| | - Silvia Boero
- Department of Internal Medicine, University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy; IRCCS Azienda Ospedaliera Universitaria San Martino-IST, Istituto Nazionale per la Ricerca Sul Cancro, 16132 Genoa, Italy
| | - Alessandra Donadini
- Department of Internal Medicine, University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy
| | - Enrico Millo
- Department of Experimental Medicine, Section of Biochemistry and CEBR, University of Genoa, V.le Benedetto XV 1, 16132 Genoa, Italy
| | - Marta Bellotti
- Department of Experimental Medicine, Section of Biochemistry and CEBR, University of Genoa, V.le Benedetto XV 1, 16132 Genoa, Italy
| | - Laura Sturla
- Department of Experimental Medicine, Section of Biochemistry and CEBR, University of Genoa, V.le Benedetto XV 1, 16132 Genoa, Italy
| | - Patrizia Damonte
- Department of Internal Medicine, University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy
| | - Alessandra Puddu
- Department of Internal Medicine, University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy
| | - Claudia Ferroni
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via P. Gobetti 101, 40129 Bologna, Italy
| | - Greta Varchi
- Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via P. Gobetti 101, 40129 Bologna, Italy
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Via S. Giacomo 14, 40126 Bologna, Italy; Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via P. Gobetti 101, 40129 Bologna, Italy
| | - Alberto Ballestrero
- Department of Internal Medicine, University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy; IRCCS Azienda Ospedaliera Universitaria San Martino-IST, Istituto Nazionale per la Ricerca Sul Cancro, 16132 Genoa, Italy
| | - Alessandro Poggi
- IRCCS Azienda Ospedaliera Universitaria San Martino-IST, Istituto Nazionale per la Ricerca Sul Cancro, 16132 Genoa, Italy
| | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry and CEBR, University of Genoa, V.le Benedetto XV 1, 16132 Genoa, Italy.
| | - Alessio Nencioni
- Department of Internal Medicine, University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy; IRCCS Azienda Ospedaliera Universitaria San Martino-IST, Istituto Nazionale per la Ricerca Sul Cancro, 16132 Genoa, Italy.
| | - Alberto Del Rio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Via S. Giacomo 14, 40126 Bologna, Italy; Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via P. Gobetti 101, 40129 Bologna, Italy.
| |
Collapse
|
91
|
Andreoli F, Del Rio A. Computer-aided Molecular Design of Compounds Targeting Histone Modifying Enzymes. Comput Struct Biotechnol J 2015; 13:358-65. [PMID: 26082827 PMCID: PMC4459771 DOI: 10.1016/j.csbj.2015.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 04/24/2015] [Accepted: 04/30/2015] [Indexed: 02/06/2023] Open
Abstract
Growing evidences show that epigenetic mechanisms play crucial roles in the genesis and progression of many physiopathological processes. As a result, research in epigenetic grew at a fast pace in the last decade. In particular, the study of histone post-translational modifications encountered an extraordinary progression and many modifications have been characterized and associated to fundamental biological processes and pathological conditions. Histone modifications are the catalytic result of a large set of enzyme families that operate covalent modifications on specific residues at the histone tails. Taken together, these modifications elicit a complex and concerted processing that greatly contribute to the chromatin remodeling and may drive different pathological conditions, especially cancer. For this reason, several epigenetic targets are currently under validation for drug discovery purposes and different academic and industrial programs have been already launched to produce the first pre-clinical and clinical outcomes. In this scenario, computer-aided molecular design techniques are offering important tools, mainly as a consequence of the increasing structural information available for these targets. In this mini-review we will briefly discuss the most common types of known histone modifications and the corresponding operating enzymes by emphasizing the computer-aided molecular design approaches that can be of use to speed-up the efforts to generate new pharmaceutically relevant compounds.
Collapse
Affiliation(s)
- Federico Andreoli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Via S. Giacomo 14, 40126 Bologna, Italy
| | - Alberto Del Rio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Via S. Giacomo 14, 40126 Bologna, Italy
- Institute of Organic Synthesis and Photoreactivity, National Research Council, Via P. Gobetti, 101 40129 Bologna, Italy
| |
Collapse
|
92
|
Parenti MD, Bruzzone S, Nencioni A, Del Rio A. Selectivity hot-spots of sirtuin catalytic cores. MOLECULAR BIOSYSTEMS 2015; 11:2263-72. [DOI: 10.1039/c5mb00205b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We report a comprehensive study aimed to classify and identify the selectivity hot-spots for targeting the catalytic cores of human sirtuins using small molecule modulators.
Collapse
Affiliation(s)
- Marco Daniele Parenti
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)
- University of Bologna
- 40126 Bologna
- Italy
| | - Santina Bruzzone
- Department of Experimental Medicine
- Section of Biochemistry
- and CEBR
- University of Genoa
- 16132 Genoa
| | - Alessio Nencioni
- Department of Internal Medicine
- University of Genoa
- 16132 Genoa
- Italy
| | - Alberto Del Rio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES)
- University of Bologna
- 40126 Bologna
- Italy
- Institute of Organic Synthesis and Photoreactivity (ISOF)
| |
Collapse
|