51
|
Szabó P, Lendvay G, Horváth A, Kovács M. The effect of the position of methyl substituents on photophysical and photochemical properties of [Ru(x,x′-dmb)(CN)4]2− complexes: experimental confirmation of the theoretical predictions. Phys Chem Chem Phys 2011; 13:16033-45. [DOI: 10.1039/c1cp21052a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
52
|
Salassa L, Garino C, Salassa G, Nervi C, Gobetto R, Lamberti C, Gianolio D, Bizzarri R, Sadler PJ. Ligand-selective photodissociation from [Ru(bpy)(4AP)4]2+: a spectroscopic and computational study. Inorg Chem 2010; 48:1469-81. [PMID: 19149466 DOI: 10.1021/ic8015436] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The new complex [Ru(bpy)(4AP)(4)](2+) (1), where bpy = 2,2'-bipyridine and 4AP = 4-aminopyridine, undergoes selective photodissociation of two 4APs upon light excitation of the metal-ligand-to-ligand charge-transfer (MLLCT) band at 510 nm. The photoproducts of the reaction are mer-[Ru(bpy)(4AP)(3)(H(2)O)](2+) (2a) and trans-(4AP)[Ru(bpy)(4AP)(2)(H(2)O)(2)](2+) (3a). Photodissociation occurs in two consecutive steps with quantum yields of phi(1) = (6.1 +/- 1.0) x 10(-3) and phi(2) = (1.7 +/- 0.1) x 10(-4), respectively. Complex 1 was characterized by combined spectroscopic and theoretical techniques. EXAFS experiments at the Ru K-edge (22 117 eV) of 1 in an aqueous solution gave a Ru-N distance of 2.09 +/- 0.01 A. Photoproducts were characterized by electronic spectroscopy, 1D and 2D NMR, and mass spectrometry. Singlet and triplet excited states of 1 were studied by density functional theory (DFT) and time-dependent DFT for characterizing the optical properties of the complex. In the singlet state, (1)MC (metal-centered) dissociative states lie 0.65 eV above the main (1)MLLCT transition in the visible region of the UV-vis absorption spectrum. In the triplet state, the energy difference between these states is not reduced. However, potential energy curves of singlet and triplet excited states of 1 along the Ru-N(axial 4AP) and Ru-N(equatorial 4AP) stretching coordinates show that the release of the first 4AP may occur from the triplet state by mixing of (3)MLLCT and (3)MC dissociative states. This mixing is favored when the Ru-N(equatorial 4AP) bond is elongated, explaining the formation of the photoproduct 2a.
Collapse
Affiliation(s)
- Luca Salassa
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Wilson GJ, Will GD. Density-functional analysis of the electronic structure of tris-bipyridyl Ru(II) sensitisers. Inorganica Chim Acta 2010. [DOI: 10.1016/j.ica.2010.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
54
|
Tong G, Law YC, Kui S, Zhu N, Leung KH, Phillips DL, Che CM. Ligand-to-Ligand Charge-Transfer Transitions of Platinum(II) Complexes with Arylacetylide Ligands with Different Chain Lengths: Spectroscopic Characterization, Effect of Molecular Conformations, and Density Functional Theory Calculations. Chemistry 2010; 16:6540-54. [DOI: 10.1002/chem.200903046] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
55
|
Synthesis, spectroscopic and structural characterization of new complex of ruthenium(II) with Hmtpo ligand. Polyhedron 2010. [DOI: 10.1016/j.poly.2009.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
56
|
Niskanen M, Hirva P, Haukka M. The effect of N-ligands on the geometry, bonding, and electronic absorption properties of ruthenium carbonyl chains. Phys Chem Chem Phys 2010; 12:9777-82. [DOI: 10.1039/c0cp00189a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
57
|
Badaeva E, Albert VV, Kilina S, Koposov A, Sykora M, Tretiak S. Effect of deprotonation on absorption and emission spectra of Ru(ii)-bpy complexes functionalized with carboxyl groups. Phys Chem Chem Phys 2010; 12:8902-13. [DOI: 10.1039/b924910a] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
58
|
Małecki J, Kruszynski R, Mazurak Z. Synthesis, spectroscopic and structural characterizations of two new complexes of ruthenium with 2-(hydroxymethyl)benzimidazole and 1,10-phenanthroline ligands. Polyhedron 2009. [DOI: 10.1016/j.poly.2009.08.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
59
|
Angelis FD, Belpassi L, Fantacci S. Spectroscopic properties of cyclometallated iridium complexes by TDDFT. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.theochem.2009.07.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
60
|
Meylemans HA, Damrauer NH. Controlling Electron Transfer through the Manipulation of Structure and Ligand-Based Torsional Motions: A Computational Exploration of Ruthenium Donor−Acceptor Systems using Density Functional Theory. Inorg Chem 2009; 48:11161-75. [DOI: 10.1021/ic901637b] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Heather A. Meylemans
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309
| | - Niels H. Damrauer
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309
| |
Collapse
|
61
|
Cramer CJ, Truhlar DG. Density functional theory for transition metals and transition metal chemistry. Phys Chem Chem Phys 2009; 11:10757-816. [PMID: 19924312 DOI: 10.1039/b907148b] [Citation(s) in RCA: 1079] [Impact Index Per Article: 71.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We introduce density functional theory and review recent progress in its application to transition metal chemistry. Topics covered include local, meta, hybrid, hybrid meta, and range-separated functionals, band theory, software, validation tests, and applications to spin states, magnetic exchange coupling, spectra, structure, reactivity, and catalysis, including molecules, clusters, nanoparticles, surfaces, and solids.
Collapse
Affiliation(s)
- Christopher J Cramer
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455-0431, USA.
| | | |
Collapse
|
62
|
Labat F, Ciofini I, Hratchian HP, Frisch M, Raghavachari K, Adamo C. First Principles Modeling of Eosin-Loaded ZnO Films: A Step toward the Understanding of Dye-Sensitized Solar Cell Performances. J Am Chem Soc 2009; 131:14290-8. [DOI: 10.1021/ja902833s] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Frédéric Labat
- Laboratoire d’Electrochimie, Chimie des Interfaces et Modélisation pour l’Energie, CNRS UMR-7575, Ecole Nationale Supérieure de Chimie de Paris, 11 rue P. et M. Curie, F-75231 Paris Cedex 05 France, Gaussian, Inc., 340 Quinnipiac Street, Building 40, Wallingford, Connecticut 06492, and Department of Chemistry, Indiana University, Bloomington, Indiana 47405
| | - Ilaria Ciofini
- Laboratoire d’Electrochimie, Chimie des Interfaces et Modélisation pour l’Energie, CNRS UMR-7575, Ecole Nationale Supérieure de Chimie de Paris, 11 rue P. et M. Curie, F-75231 Paris Cedex 05 France, Gaussian, Inc., 340 Quinnipiac Street, Building 40, Wallingford, Connecticut 06492, and Department of Chemistry, Indiana University, Bloomington, Indiana 47405
| | - Hrant P. Hratchian
- Laboratoire d’Electrochimie, Chimie des Interfaces et Modélisation pour l’Energie, CNRS UMR-7575, Ecole Nationale Supérieure de Chimie de Paris, 11 rue P. et M. Curie, F-75231 Paris Cedex 05 France, Gaussian, Inc., 340 Quinnipiac Street, Building 40, Wallingford, Connecticut 06492, and Department of Chemistry, Indiana University, Bloomington, Indiana 47405
| | - Mike Frisch
- Laboratoire d’Electrochimie, Chimie des Interfaces et Modélisation pour l’Energie, CNRS UMR-7575, Ecole Nationale Supérieure de Chimie de Paris, 11 rue P. et M. Curie, F-75231 Paris Cedex 05 France, Gaussian, Inc., 340 Quinnipiac Street, Building 40, Wallingford, Connecticut 06492, and Department of Chemistry, Indiana University, Bloomington, Indiana 47405
| | - Krishnan Raghavachari
- Laboratoire d’Electrochimie, Chimie des Interfaces et Modélisation pour l’Energie, CNRS UMR-7575, Ecole Nationale Supérieure de Chimie de Paris, 11 rue P. et M. Curie, F-75231 Paris Cedex 05 France, Gaussian, Inc., 340 Quinnipiac Street, Building 40, Wallingford, Connecticut 06492, and Department of Chemistry, Indiana University, Bloomington, Indiana 47405
| | - Carlo Adamo
- Laboratoire d’Electrochimie, Chimie des Interfaces et Modélisation pour l’Energie, CNRS UMR-7575, Ecole Nationale Supérieure de Chimie de Paris, 11 rue P. et M. Curie, F-75231 Paris Cedex 05 France, Gaussian, Inc., 340 Quinnipiac Street, Building 40, Wallingford, Connecticut 06492, and Department of Chemistry, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
63
|
Li XN, Wu ZJ, Zhang HJ, Si ZJ, Zhou L, Liu XJ. The Reasons for Ligand-Dependent Quantum Yields and Absorption Spectrum of Four Polypyridylruthenium(II) Complexes with a Tetrazolate-Based Ligand: TDDFT Study. Eur J Inorg Chem 2009. [DOI: 10.1002/ejic.200900344] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
64
|
Balanay MP, Kim DH. Structures and excitation energies of Zn–tetraarylporphyrin analogues: A theoretical study. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.theochem.2009.06.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
65
|
Minaev BF, Minaeva VA, Baryshnikov GV, Girtu MA, Agren H. Theoretical study of vibration spectra of sensitizing dyes for photoelectrical converters based on ruthenium(II) and iridium(III) complexes. RUSS J APPL CHEM+ 2009. [DOI: 10.1134/s1070427209070106] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
66
|
Olsson P, Domain C, Guillemoles JF. Ferromagnetic compounds for high efficiency photovoltaic conversion: the case of AlP:Cr. PHYSICAL REVIEW LETTERS 2009; 102:227204. [PMID: 19658900 DOI: 10.1103/physrevlett.102.227204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Indexed: 05/28/2023]
Abstract
The photovoltaic conversion efficiency in usual semiconductors is limited to 30% while thermodynamics sets an upper limit of above 70%. Here we show how efficiencies in the 50% range could be achieved using carefully chosen magnetic doping in wide gap semiconductors. To meet the requirement to obtain useful compounds we propose rules and a selection method based on ab initio calculations coupled with material efficiency predictions. As a result of an investigation over hundreds of compounds, AlP:Cr was found to be the most promising semiconductor.
Collapse
Affiliation(s)
- P Olsson
- IRDEP, UMR-7174 CNRS ENSCP EDF R&D, 6 quai Watier, F-78401 Chatou, France and EDF R&D, Département MMC, Les Renardières, F-77250 Moret sur Loing, France
| | | | | |
Collapse
|
67
|
Gu X, Fei T, Zhang H, Xu H, Yang B, Ma Y, Liu X. Tuning the Emission Color of Iridium(III) Complexes with Ancillary Ligands: A Combined Experimental and Theoretical Study. Eur J Inorg Chem 2009. [DOI: 10.1002/ejic.200801185] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
68
|
Zhu BH, Shibata Y, Muratsugu S, Yamanoi Y, Nishihara H. A Cyclic Hexanuclear Heterometalladithiolene Cluster [{(Cp*Rh) 2Mo(μ-CO) 2(CO)} 2(S 2C 6H 2S 2) 2] with Two π-Conjugated S 2C 6S 2Bridges: Synthesis, Crystal Structure, and Properties. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200900509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
69
|
A Cyclic Hexanuclear Heterometalladithiolene Cluster [{(Cp*Rh)2Mo(μ-CO)2(CO)}2(S2C6H2S2)2] with Two π-Conjugated S2C6S2Bridges: Synthesis, Crystal Structure, and Properties. Angew Chem Int Ed Engl 2009; 48:3858-61. [DOI: 10.1002/anie.200900509] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
70
|
Jacquemin D, Perpète EA, Ciofini I, Adamo C. Accurate simulation of optical properties in dyes. Acc Chem Res 2009; 42:326-34. [PMID: 19113946 DOI: 10.1021/ar800163d] [Citation(s) in RCA: 327] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Since Antiquity, humans have produced and commercialized dyes. To this day, extraction of natural dyes often requires lengthy and costly procedures. In the 19th century, global markets and new industrial products drove a significant effort to synthesize artificial dyes, characterized by low production costs, huge quantities, and new optical properties (colors). Dyes that encompass classes of molecules absorbing in the UV-visible part of the electromagnetic spectrum now have a wider range of applications, including coloring (textiles, food, paintings), energy production (photovoltaic cells, OLEDs), or pharmaceuticals (diagnostics, drugs). Parallel to the growth in dye applications, researchers have increased their efforts to design and synthesize new dyes to customize absorption and emission properties. In particular, dyes containing one or more metallic centers allow for the construction of fairly sophisticated systems capable of selectively reacting to light of a given wavelength and behaving as molecular devices (photochemical molecular devices, PMDs).Theoretical tools able to predict and interpret the excited-state properties of organic and inorganic dyes allow for an efficient screening of photochemical centers. In this Account, we report recent developments defining a quantitative ab initio protocol (based on time-dependent density functional theory) for modeling dye spectral properties. In particular, we discuss the importance of several parameters, such as the methods used for electronic structure calculations, solvent effects, and statistical treatments. In addition, we illustrate the performance of such simulation tools through case studies. We also comment on current weak points of these methods and ways to improve them.
Collapse
Affiliation(s)
- Denis Jacquemin
- Laboratoire de Chimie Théorique Appliquée, Facultés Universitaires Notre-Dame de la Paix, rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Eric A. Perpète
- Laboratoire de Chimie Théorique Appliquée, Facultés Universitaires Notre-Dame de la Paix, rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Ilaria Ciofini
- Laboratoire d’Électrochimie et Chimie Analytique, CNRS UMR-7575, Ecole Nationale Supérieure de Chimie de Paris, 11 rue P. et M. Curie, F-75231 Paris Cedex 05, France
| | - Carlo Adamo
- Laboratoire d’Électrochimie et Chimie Analytique, CNRS UMR-7575, Ecole Nationale Supérieure de Chimie de Paris, 11 rue P. et M. Curie, F-75231 Paris Cedex 05, France
| |
Collapse
|
71
|
Chiba M, Fedorov DG, Kitaura K. Polarizable continuum model with the fragment molecular orbital-based time-dependent density functional theory. J Comput Chem 2008; 29:2667-76. [DOI: 10.1002/jcc.21000] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
72
|
Szabó-Bárdos E, Zsilák Z, Lendvay G, Horváth O, Markovics O, Hoffer A, Törő N. Photocatalytic Degradation of 1,5-Naphthalenedisulfonate on Colloidal Titanium Dioxide. J Phys Chem B 2008; 112:14500-8. [DOI: 10.1021/jp803656f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Erzsébet Szabó-Bárdos
- Department of General and Inorganic Chemistry, Institute of Chemistry, Department of Earth and Environmental Sciences, Institute of Analytics, Environmental Sciences, and Limnology, University of Pannonia, H-8200 Veszprém, P.O. Box 158, Hungary, and Institute of Structural Chemistry, Chemical Research Center, Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 17, Hungary
| | - Zoltán Zsilák
- Department of General and Inorganic Chemistry, Institute of Chemistry, Department of Earth and Environmental Sciences, Institute of Analytics, Environmental Sciences, and Limnology, University of Pannonia, H-8200 Veszprém, P.O. Box 158, Hungary, and Institute of Structural Chemistry, Chemical Research Center, Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 17, Hungary
| | - György Lendvay
- Department of General and Inorganic Chemistry, Institute of Chemistry, Department of Earth and Environmental Sciences, Institute of Analytics, Environmental Sciences, and Limnology, University of Pannonia, H-8200 Veszprém, P.O. Box 158, Hungary, and Institute of Structural Chemistry, Chemical Research Center, Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 17, Hungary
| | - Ottó Horváth
- Department of General and Inorganic Chemistry, Institute of Chemistry, Department of Earth and Environmental Sciences, Institute of Analytics, Environmental Sciences, and Limnology, University of Pannonia, H-8200 Veszprém, P.O. Box 158, Hungary, and Institute of Structural Chemistry, Chemical Research Center, Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 17, Hungary
| | - Otília Markovics
- Department of General and Inorganic Chemistry, Institute of Chemistry, Department of Earth and Environmental Sciences, Institute of Analytics, Environmental Sciences, and Limnology, University of Pannonia, H-8200 Veszprém, P.O. Box 158, Hungary, and Institute of Structural Chemistry, Chemical Research Center, Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 17, Hungary
| | - András Hoffer
- Department of General and Inorganic Chemistry, Institute of Chemistry, Department of Earth and Environmental Sciences, Institute of Analytics, Environmental Sciences, and Limnology, University of Pannonia, H-8200 Veszprém, P.O. Box 158, Hungary, and Institute of Structural Chemistry, Chemical Research Center, Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 17, Hungary
| | - Norbert Törő
- Department of General and Inorganic Chemistry, Institute of Chemistry, Department of Earth and Environmental Sciences, Institute of Analytics, Environmental Sciences, and Limnology, University of Pannonia, H-8200 Veszprém, P.O. Box 158, Hungary, and Institute of Structural Chemistry, Chemical Research Center, Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 17, Hungary
| |
Collapse
|
73
|
Maurel F, Perrier A, Perpète EA, Jacquemin D. A theoretical study of the perfluoro-diarylethenes electronic spectra. J Photochem Photobiol A Chem 2008. [DOI: 10.1016/j.jphotochem.2008.05.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
74
|
Hazebroucq S, Labat F, Lincot D, Adamo C. Theoretical Insights on the Electronic Properties of Eosin Y, an Organic Dye for Photovoltaic Applications. J Phys Chem A 2008; 112:7264-70. [DOI: 10.1021/jp8011624] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sandrine Hazebroucq
- Laboratoire d’Electrochimie et de Chimie Analytique, CNRS-UMR 7575, Ecole Nationale Supérieure de Chimie de Paris, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05, France
| | - Frédéric Labat
- Laboratoire d’Electrochimie et de Chimie Analytique, CNRS-UMR 7575, Ecole Nationale Supérieure de Chimie de Paris, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05, France
| | - Daniel Lincot
- Laboratoire d’Electrochimie et de Chimie Analytique, CNRS-UMR 7575, Ecole Nationale Supérieure de Chimie de Paris, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05, France
| | - Carlo Adamo
- Laboratoire d’Electrochimie et de Chimie Analytique, CNRS-UMR 7575, Ecole Nationale Supérieure de Chimie de Paris, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05, France
| |
Collapse
|
75
|
Le Y, Chen JF, Pu M. Electronic structure and UV spectrum of fenofibrate in solutions. Int J Pharm 2008; 358:214-8. [DOI: 10.1016/j.ijpharm.2008.03.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2007] [Revised: 01/24/2008] [Accepted: 03/10/2008] [Indexed: 11/30/2022]
|
76
|
Alary F, Boggio-Pasqua M, Heully JL, Marsden CJ, Vicendo P. Theoretical Characterization of the Lowest Triplet Excited States of the Tris-(1,4,5,8-tetraazaphenanthrene) Ruthenium Dication Complex. Inorg Chem 2008; 47:5259-66. [DOI: 10.1021/ic800246t] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fabienne Alary
- Laboratoire de Chimie et Physique Quantiques, UMR 5626, IRSAMC, CNRS et Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France, and Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique, UMR 5623, CNRS et Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
| | - Martial Boggio-Pasqua
- Laboratoire de Chimie et Physique Quantiques, UMR 5626, IRSAMC, CNRS et Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France, and Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique, UMR 5623, CNRS et Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
| | - Jean-Louis Heully
- Laboratoire de Chimie et Physique Quantiques, UMR 5626, IRSAMC, CNRS et Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France, and Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique, UMR 5623, CNRS et Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
| | - Colin J. Marsden
- Laboratoire de Chimie et Physique Quantiques, UMR 5626, IRSAMC, CNRS et Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France, and Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique, UMR 5623, CNRS et Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
| | - Patricia Vicendo
- Laboratoire de Chimie et Physique Quantiques, UMR 5626, IRSAMC, CNRS et Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France, and Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique, UMR 5623, CNRS et Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
| |
Collapse
|
77
|
Borg OA, Godinho SSMC, Lundqvist MJ, Lunell S, Persson P. Computational Study of the Lowest Triplet State of Ruthenium Polypyridyl Complexes Used in Artificial Photosynthesis. J Phys Chem A 2008; 112:4470-6. [DOI: 10.1021/jp8000702] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- O. Anders Borg
- Department of Quantum Chemistry, Uppsala University, Box 518, SE-751 20 Uppsala, Sweden, and Chemical Physics, P.O. Box 124, SE-22100, Lund, Sweden
| | - Sofia S. M. C. Godinho
- Department of Quantum Chemistry, Uppsala University, Box 518, SE-751 20 Uppsala, Sweden, and Chemical Physics, P.O. Box 124, SE-22100, Lund, Sweden
| | - Maria J. Lundqvist
- Department of Quantum Chemistry, Uppsala University, Box 518, SE-751 20 Uppsala, Sweden, and Chemical Physics, P.O. Box 124, SE-22100, Lund, Sweden
| | - Sten Lunell
- Department of Quantum Chemistry, Uppsala University, Box 518, SE-751 20 Uppsala, Sweden, and Chemical Physics, P.O. Box 124, SE-22100, Lund, Sweden
| | - Petter Persson
- Department of Quantum Chemistry, Uppsala University, Box 518, SE-751 20 Uppsala, Sweden, and Chemical Physics, P.O. Box 124, SE-22100, Lund, Sweden
| |
Collapse
|
78
|
Brancato G, Rega N, Barone V. A hybrid explicit/implicit solvation method for first-principle molecular dynamics simulations. J Chem Phys 2008; 128:144501. [DOI: 10.1063/1.2897759] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
79
|
Abrahamsson M, Lundqvist MJ, Wolpher H, Johansson O, Eriksson L, Bergquist J, Rasmussen T, Becker HC, Hammarström L, Norrby PO, Åkermark B, Persson P. Steric Influence on the Excited-State Lifetimes of Ruthenium Complexes with Bipyridyl−Alkanylene−Pyridyl Ligands. Inorg Chem 2008; 47:3540-8. [DOI: 10.1021/ic7019457] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maria Abrahamsson
- Department of Photochemistry and Molecular Science, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden, Department of Quantum Chemistry, Uppsala University, Box 518, SE-751 20 Uppsala, Sweden, Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden, Division of Structural Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden, Department of Analytical Chemistry, Uppsala University, Box 599, SE-751 24 Uppsala, Sweden, Department of Biochemistry
| | - Maria J. Lundqvist
- Department of Photochemistry and Molecular Science, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden, Department of Quantum Chemistry, Uppsala University, Box 518, SE-751 20 Uppsala, Sweden, Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden, Division of Structural Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden, Department of Analytical Chemistry, Uppsala University, Box 599, SE-751 24 Uppsala, Sweden, Department of Biochemistry
| | - Henriette Wolpher
- Department of Photochemistry and Molecular Science, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden, Department of Quantum Chemistry, Uppsala University, Box 518, SE-751 20 Uppsala, Sweden, Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden, Division of Structural Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden, Department of Analytical Chemistry, Uppsala University, Box 599, SE-751 24 Uppsala, Sweden, Department of Biochemistry
| | - Olof Johansson
- Department of Photochemistry and Molecular Science, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden, Department of Quantum Chemistry, Uppsala University, Box 518, SE-751 20 Uppsala, Sweden, Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden, Division of Structural Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden, Department of Analytical Chemistry, Uppsala University, Box 599, SE-751 24 Uppsala, Sweden, Department of Biochemistry
| | - Lars Eriksson
- Department of Photochemistry and Molecular Science, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden, Department of Quantum Chemistry, Uppsala University, Box 518, SE-751 20 Uppsala, Sweden, Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden, Division of Structural Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden, Department of Analytical Chemistry, Uppsala University, Box 599, SE-751 24 Uppsala, Sweden, Department of Biochemistry
| | - Jonas Bergquist
- Department of Photochemistry and Molecular Science, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden, Department of Quantum Chemistry, Uppsala University, Box 518, SE-751 20 Uppsala, Sweden, Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden, Division of Structural Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden, Department of Analytical Chemistry, Uppsala University, Box 599, SE-751 24 Uppsala, Sweden, Department of Biochemistry
| | - Torben Rasmussen
- Department of Photochemistry and Molecular Science, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden, Department of Quantum Chemistry, Uppsala University, Box 518, SE-751 20 Uppsala, Sweden, Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden, Division of Structural Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden, Department of Analytical Chemistry, Uppsala University, Box 599, SE-751 24 Uppsala, Sweden, Department of Biochemistry
| | - Hans-Christian Becker
- Department of Photochemistry and Molecular Science, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden, Department of Quantum Chemistry, Uppsala University, Box 518, SE-751 20 Uppsala, Sweden, Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden, Division of Structural Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden, Department of Analytical Chemistry, Uppsala University, Box 599, SE-751 24 Uppsala, Sweden, Department of Biochemistry
| | - Leif Hammarström
- Department of Photochemistry and Molecular Science, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden, Department of Quantum Chemistry, Uppsala University, Box 518, SE-751 20 Uppsala, Sweden, Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden, Division of Structural Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden, Department of Analytical Chemistry, Uppsala University, Box 599, SE-751 24 Uppsala, Sweden, Department of Biochemistry
| | - Per-Ola Norrby
- Department of Photochemistry and Molecular Science, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden, Department of Quantum Chemistry, Uppsala University, Box 518, SE-751 20 Uppsala, Sweden, Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden, Division of Structural Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden, Department of Analytical Chemistry, Uppsala University, Box 599, SE-751 24 Uppsala, Sweden, Department of Biochemistry
| | - Björn Åkermark
- Department of Photochemistry and Molecular Science, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden, Department of Quantum Chemistry, Uppsala University, Box 518, SE-751 20 Uppsala, Sweden, Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden, Division of Structural Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden, Department of Analytical Chemistry, Uppsala University, Box 599, SE-751 24 Uppsala, Sweden, Department of Biochemistry
| | - Petter Persson
- Department of Photochemistry and Molecular Science, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden, Department of Quantum Chemistry, Uppsala University, Box 518, SE-751 20 Uppsala, Sweden, Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden, Division of Structural Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden, Department of Analytical Chemistry, Uppsala University, Box 599, SE-751 24 Uppsala, Sweden, Department of Biochemistry
| |
Collapse
|
80
|
Zhang X, Zhang JJ, Xia YY. Molecular design of coumarin dyes with high efficiency in dye-sensitized solar cells. J Photochem Photobiol A Chem 2008. [DOI: 10.1016/j.jphotochem.2007.08.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
81
|
Improta R, Barone V. The excited states of adenine and thymine nucleoside and nucleotide in aqueous solution: a comparative study by time-dependent DFT calculations. Theor Chem Acc 2008. [DOI: 10.1007/s00214-007-0404-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
82
|
Myllyperkiö P, Benkő G, Korppi-Tommola J, Yartsev AP, Sundström V. A study of electron transfer in Ru(dcbpy)2(NCS)2sensitized nanocrystalline TiO2and SnO2films induced by red-wing excitation. Phys Chem Chem Phys 2008; 10:996-1002. [DOI: 10.1039/b713515g] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
83
|
|
84
|
|
85
|
Quaranta A, Lachaud F, Herrero C, Guillot R, Charlot MF, Leibl W, Aukauloo A. Influence of the protonic state of an imidazole-containing ligand on the electrochemical and photophysical properties of a ruthenium(II)-polypyridine-type complex. Chemistry 2007; 13:8201-11. [PMID: 17639540 DOI: 10.1002/chem.200700185] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The synthesis and characterisation of [Ru(bpy)2(PhenImHPh)]2+ where PhenImHPh represents the 2-(3,5-di-tert-butylphenyl)imidazo[4,5-f][1,10]phenanthroline ligand are described. The compounds issued from the three different protonic states of the imidazole ring [Ru(bpy)2(PhenImPh)]+ (I), [Ru(bpy)2(PhenImHPh)]2+ (II) and [Ru(bpy)2(PhenImH2Ph)]3+ (III) were isolated and spectroscopically characterised. The X-ray structures of [Ru(bpy)2(PhenImPh)](PF6)H2O.6 MeOH, [Ru(bpy)2(PhenImHPh)](NO3)2H2O.3 MeOH and [Ru(bpy)2(PhenImH2Ph)](PF6)3 5 H2O are reported. Electrochemical data obtained on these complexes indicate almost no potential shift for the Ru(III/II) redox couple. Therefore a Coulombic effect between the imidazole ring and the metal centre can be ruled out. The monooxidised forms of I and II have been characterised by EPR spectroscopy and are reminiscent of the presence of a radical species. The emission properties of the parent compound [Ru(bpy)2(PhenImHPh)]2+ were studied as a function of pH and both the lifetimes and intensities decreased upon deprotonation. Photophysical properties, investigated in the absence and presence of an electron acceptor (methylviologen), were distinctly different for the three compounds. Transient absorption features indicate that unique excited states are involved. Theoretical data obtained from DFT calculations in water on the three protonic forms are presented and discussed in the light of the experimental results.
Collapse
|
86
|
Fodor L, Lendvay G, Horváth A. Solvent Dependence of Absorption and Emission Spectra of Ru(bpy)2(CN)2: Experiment and Explanation Based on Electronic Structure Theory. J Phys Chem A 2007; 111:12891-900. [DOI: 10.1021/jp075615y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lajos Fodor
- Department of General and Inorganic Chemistry, Institute of Chemistry, University of Pannonia, H-8201 Veszprém, P.O. Box 158, Hungary, Institute of Structural Chemistry, Chemical Research Center, Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 17, Hungary
| | - György Lendvay
- Department of General and Inorganic Chemistry, Institute of Chemistry, University of Pannonia, H-8201 Veszprém, P.O. Box 158, Hungary, Institute of Structural Chemistry, Chemical Research Center, Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 17, Hungary
| | - Attila Horváth
- Department of General and Inorganic Chemistry, Institute of Chemistry, University of Pannonia, H-8201 Veszprém, P.O. Box 158, Hungary, Institute of Structural Chemistry, Chemical Research Center, Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 17, Hungary
| |
Collapse
|
87
|
Rekhis M, Labat F, Ouamerali O, Ciofini I, Adamo C. Theoretical Analysis of the Electronic Properties of N3 Derivatives. J Phys Chem A 2007; 111:13106-11. [DOI: 10.1021/jp075597k] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Maamar Rekhis
- Laboratoire de Physico-chimie Quantique, Institut de Chimie, Université des Sciences et de la Technologie Houari Boumediene, BP 32, El-Alia, 16111 Bab-Ezzouar, Alger, Algeria, and Laboratoire d'Electrochimie et de Chimie Analytique, CNRS UMR-7575, Ecole Nationale Supérieure de Chimie de Paris, 11 rue Pierre et Marie Curie, F-75231 Paris Cedex 05, France
| | - Frédéric Labat
- Laboratoire de Physico-chimie Quantique, Institut de Chimie, Université des Sciences et de la Technologie Houari Boumediene, BP 32, El-Alia, 16111 Bab-Ezzouar, Alger, Algeria, and Laboratoire d'Electrochimie et de Chimie Analytique, CNRS UMR-7575, Ecole Nationale Supérieure de Chimie de Paris, 11 rue Pierre et Marie Curie, F-75231 Paris Cedex 05, France
| | - Ourida Ouamerali
- Laboratoire de Physico-chimie Quantique, Institut de Chimie, Université des Sciences et de la Technologie Houari Boumediene, BP 32, El-Alia, 16111 Bab-Ezzouar, Alger, Algeria, and Laboratoire d'Electrochimie et de Chimie Analytique, CNRS UMR-7575, Ecole Nationale Supérieure de Chimie de Paris, 11 rue Pierre et Marie Curie, F-75231 Paris Cedex 05, France
| | - Ilaria Ciofini
- Laboratoire de Physico-chimie Quantique, Institut de Chimie, Université des Sciences et de la Technologie Houari Boumediene, BP 32, El-Alia, 16111 Bab-Ezzouar, Alger, Algeria, and Laboratoire d'Electrochimie et de Chimie Analytique, CNRS UMR-7575, Ecole Nationale Supérieure de Chimie de Paris, 11 rue Pierre et Marie Curie, F-75231 Paris Cedex 05, France
| | - Carlo Adamo
- Laboratoire de Physico-chimie Quantique, Institut de Chimie, Université des Sciences et de la Technologie Houari Boumediene, BP 32, El-Alia, 16111 Bab-Ezzouar, Alger, Algeria, and Laboratoire d'Electrochimie et de Chimie Analytique, CNRS UMR-7575, Ecole Nationale Supérieure de Chimie de Paris, 11 rue Pierre et Marie Curie, F-75231 Paris Cedex 05, France
| |
Collapse
|
88
|
Charlot MF, Aukauloo A. Highlighting the Role of the Medium in DFT Analysis of the Photophysical Properties of Ruthenium(II) Polypyridine-Type Complexes. J Phys Chem A 2007; 111:11661-72. [DOI: 10.1021/jp074605u] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Marie-France Charlot
- Laboratoire de Chimie Inorganique, Institut de Chimie Moléculaire et des Matériaux d'Orsay UMR CNRS 8182, Université Paris-Sud, 91405 Orsay Cedex, France, and iBiTec-S, CEA Saclay, Bât. 532, 91191 Gif-sur-Yvette Cedex, France
| | - Ally Aukauloo
- Laboratoire de Chimie Inorganique, Institut de Chimie Moléculaire et des Matériaux d'Orsay UMR CNRS 8182, Université Paris-Sud, 91405 Orsay Cedex, France, and iBiTec-S, CEA Saclay, Bât. 532, 91191 Gif-sur-Yvette Cedex, France
| |
Collapse
|
89
|
Hu XY, Liu XJ, Feng JK. Theoretical Investigation on the Absorption and Emission Properties of the Three Isomers of Bis(thiocyanato)(2,2′-bipyridyl)platinum(II). CHINESE J CHEM 2007. [DOI: 10.1002/cjoc.200790254] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
90
|
Małecki J, Kruszynski R, Mazurak Z. The reactions of 8-hydroxyquinoline with [RuHCl(CO)(PPh3)3]: A new ruthenium(II) carbonyl complex with a N-donor ligand. Polyhedron 2007. [DOI: 10.1016/j.poly.2007.05.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
91
|
Persson P, Lundqvist MJ. Calculated structural and electronic interactions of the ruthenium dye N3 with a titanium dioxide nanocrystal. J Phys Chem B 2007; 109:11918-24. [PMID: 16852468 DOI: 10.1021/jp050513y] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Structural and electronic properties of a small anatase TiO2 nanocrystal sensitized by the ruthenium dye N3 (Ru(4,4'-dicarboxy-2,2'-bipyridine)2(NCS)2) have been investigated using density functional theory (DFT) with support from Hartree-Fock (HF) and time dependent DFT (TD-DFT) calculations. Significant structural adjustments of both the dye and the nanocrystal are predicted to be induced by the strain imposed by the simultaneous formation of multiple dye-surface bonds. Electronic properties of the combined dye-nanocrystal system have also been calculated, including information about interfacial orbital mixing and the lowest excited singlet states. Ultrafast photoinduced electron transfer processes across the dye-nanoparticle interface in dye-sensitized solar cells are finally discussed in view of estimated electronic coupling strengths. The calculations predict injection times on the order of 10 fs for MLCT excitations to the ligand pi* levels that interact most strongly with the TiO2 conduction band, and an order of magnitude increase in the injection times for excitations to dye levels with poor spatial or energetic overlaps with the substrate conduction band.
Collapse
Affiliation(s)
- Petter Persson
- Department of Quantum Chemistry, Uppsala University, Box 518, SE-751 20 Uppsala, Sweden.
| | | |
Collapse
|
92
|
De Angelis F, Fantacci S, Evans N, Klein C, Zakeeruddin SM, Moser JE, Kalyanasundaram K, Bolink HJ, Grätzel M, Nazeeruddin MK. Controlling Phosphorescence Color and Quantum Yields in Cationic Iridium Complexes: A Combined Experimental and Theoretical Study. Inorg Chem 2007; 46:5989-6001. [PMID: 17583337 DOI: 10.1021/ic700435c] [Citation(s) in RCA: 179] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a combined experimental and theoretical study on cationic Ir(III) complexes for OLED applications and describe a strategy to tune the phosphorescence wavelength and to enhance the emission quantum yields for this class of compounds. This is achieved by modulating the electronic structure and the excited states of the complexes by selective ligand functionalization. In particular, we report the synthesis, electrochemical characterization, and photophysical properties of a new cationic Ir(III) complex, [Ir(2,4-difluorophenylpyridine)2(4,4'-dimethylamino-2,2'-bipyridine)](PF(6)) (N969), and compare the results with those reported for the analogous [Ir(2-phenylpyridine)2(4,4'-dimethylamino-2,2'-bipyridine)](PF(6)) (N926) and for the prototype [Ir(2-phenylpyridine)2(4,4'-tert-butyl-2,2'-bipyridine)](PF(6)) complex, hereafter labeled N925. The three complexes allow us to explore the (C/\N) and (N/\N) ligand functionalization: considering N925 as a reference, we investigate in N926 the effect of electron-releasing substituents on the bipyridine ligand, while in N969, we investigate the combined effect of electron-releasing substituents on the bipyridine ligand and the effect of electron-withdrawing substituents on the phenylpyridine ligands. For N969 we obtain blue-green emission at 463 nm with unprecedented high quantum yield of 85% in acetonitrile solution at room temperature. To gain insight into the factors responsible for the emission color change and the different quantum yields, we perform DFT and TDDFT calculations on the ground and excited states of the three complexes, characterizing the excited-state geometries and including solvation effects on the calculation of the excited states. This computational procedure allows us to provide a detailed assignment of the excited states involved in the absorption and emission processes and to rationalize the factors determining the efficiency of radiative and nonradiative deactivation pathways in the investigated complexes. This work represents an example of electronic structure-driven tuning of the excited-state properties, thus opening the way to a combined theoretical and experimental strategy for the design of new iridium(III) phosphors with specific target characteristics.
Collapse
Affiliation(s)
- Filippo De Angelis
- Istituto CNR di Scienze e Tecnologie Molecolari (ISTM-CNR), c/o Dipartimento di Chimica, Università di Perugia, Via elce di Sotto 8, I-06213, Perugia, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Jacquemin D, Perpète EA, Scalmani G, Frisch MJ, Kobayashi R, Adamo C. Assessment of the efficiency of long-range corrected functionals for some properties of large compounds. J Chem Phys 2007; 126:144105. [PMID: 17444699 DOI: 10.1063/1.2715573] [Citation(s) in RCA: 261] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Using the long-range correction (LC) density functional theory (DFT) scheme introduced by Iikura et al. [J. Chem. Phys. 115, 3540 (2001)] and the Coulomb-attenuating model (CAM-B3LYP) of Yanai et al. [Chem. Phys. Lett. 393, 51 (2004)], we have calculated a series of properties that are known to be poorly reproduced by standard functionals: Bond length alternation of pi-conjugated polymers, polarizabilities of delocalized chains, and electronic spectra of extended dyes. For each of these properties, we present cases in which traditional hybrid functionals do provide accurate results and cases in which they fail to reproduce the correct trends. The quality of the results is assessed with regard to experimental values and/or data arising from electron-correlated wave function approaches. It turns out that (i) both LC-DFT and CAM-B3LYP provide an accurate bond length alternation for polyacetylene and polymethineimine, although for the latter they decrease slightly too rapidly with chain length. (ii) The LC generalized gradient approximation and MP2 polarizabilities of long polyphosphazene and polymethineimine oligomers agree almost perfectly. In the same way, CAM-B3LYP corrects the major part of the B3LYP faults. (iii) LC and CAM techniques do not help in correcting the nonrealistic evolution with chain length of the absorption wavelengths of cyanine derivatives. In addition, though both schemes significantly overestimate the ground to excited state transition energy of substituted anthraquinone dyes, they provide a more consistent picture once a statistical treatment is performed than do traditional hybrid functionals.
Collapse
Affiliation(s)
- Denis Jacquemin
- Laboratoire de Chimie Théorique Appliquée, Facultés Universitaires Notre-Dame de la Paix, rue de Bruxelles, 61, B-5000 Namur, Belgium.
| | | | | | | | | | | |
Collapse
|
94
|
Małecki JG, Kruszynski R, Jaworska M, Lodowski P. Synthesis, molecular, crystal and electronic structure of [(C6H6)Ru(1,2,4-triazole)3](CF3SO3)2. J COORD CHEM 2007. [DOI: 10.1080/00958970600914796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- J. G. Małecki
- a Department of Inorganic and Radiation Chemistry , Institute of Chemistry, University of Silesia , 9th Szkolna Street, Katowice 40-006, Poland
| | - R. Kruszynski
- b Department of X-ray Crystallography and Crystal Chemistry , Institute of General and Ecological Chemistry, Łódź University of Technology , 116 Żeromski Street, Łódź 90-924, Poland
| | - M. Jaworska
- c Department of Theoretical Chemistry , Institute of Chemistry, University of Silesia , 9th Szkolna Street, Katowice 40-006, Poland
| | - P. Lodowski
- c Department of Theoretical Chemistry , Institute of Chemistry, University of Silesia , 9th Szkolna Street, Katowice 40-006, Poland
| |
Collapse
|
95
|
Jacquemin D, Perpète EA, Assfeld X, Scalmani G, Frisch MJ, Adamo C. The geometries, absorption and fluorescence wavelengths of solvated fluorescent coumarins: A CIS and TD-DFT comparative study. Chem Phys Lett 2007. [DOI: 10.1016/j.cplett.2007.03.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
96
|
Perpète EA, Jacquemin D. An ab initio scheme for quantitative predictions of the visible spectra of diarylethenes. J Photochem Photobiol A Chem 2007. [DOI: 10.1016/j.jphotochem.2006.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
97
|
Lundqvist MJ, Galoppini E, Meyer GJ, Persson P. Calculated Optoelectronic Properties of Ruthenium Tris-bipyridine Dyes Containing Oligophenyleneethynylene Rigid Rod Linkers in Different Chemical Environments. J Phys Chem A 2007; 111:1487-97. [PMID: 17279731 DOI: 10.1021/jp064219x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ruthenium tris-bipyridine dyes containing oligophenyleneethynylene (OPE) rigid rod linker groups ([Ru(bpy)3]2+, [Ru(bpy)2bpy-E-Ipa]2+, [Ru(bpy)2bpy-E-Ph-E-Ipa]2+, and [Ru(bpy)2bpy-E-Bco-E-Ipa]2+, where bpy = 2,2'-bipyridine, E = ethynylene, Ph = p-phenylene, Bco = bicyclo[2.2.2]octylene, and Ipa = isophthalic acid) have been investigated using DFT and TD-DFT calculations to elucidate the influence of the rigid rod on their optoelectronic properties. Experimentally observed differences in the optical absorption for the different complexes are discussed on the basis of TD-DFT simulated absorption spectra. A comparison of the calculated optoelectronic properties of [Ru(bpy)2bpy-E-Ph-E-Ipa]2+ in different chemical environments, that is, in different solvents and with or without counter ions, suggests that both the absorption spectra and the redox properties of the dyes with OPE rods are sensitive to the environment. The calculations show that spurious low-energy charge-transfer excitations present in the TD-DFT calculations of the extended systems in vacuum are removed when the environment is included in the calculations.
Collapse
Affiliation(s)
- M J Lundqvist
- Department of Quantum Chemistry, Uppsala University, Box 518, SE-75120 Uppsala, Sweden
| | | | | | | |
Collapse
|
98
|
|
99
|
Vlček A, Záliš S. Modeling of charge-transfer transitions and excited states in d6 transition metal complexes by DFT techniques. Coord Chem Rev 2007. [DOI: 10.1016/j.ccr.2006.05.021] [Citation(s) in RCA: 384] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
100
|
Wolpher H, Sinha S, Pan J, Johansson A, Lundqvist MJ, Persson P, Lomoth R, Bergquist J, Sun L, Sundström V, Akermark B, Polívka T. Synthesis and Electron Transfer Studies of Ruthenium−Terpyridine-Based Dyads Attached to Nanostructured TiO2. Inorg Chem 2007; 46:638-51. [PMID: 17257006 DOI: 10.1021/ic060858a] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of bis(terpyridine)RuII complexes have been prepared, where one of the terpyridines is functionalized in the 4'-position by a phosphonic or carboxylic acid group for attachment to TiO2. The other is functionalized, also in the 4'-position, by a potential electron donor. In complexes 1a, 3a, and 4a,b, this donor is tyrosine or hydrogen-bonded tyrosine, while in 2a it is carotenoic amide. The synthesis and photophysical properties of the complexes are discussed. On irradiation with visible light, the formation of a long-lived charge-separated state was anticipated, via primary electron ejection into the TiO2, followed by secondary electron transfer from the donor to the photogenerated RuIII. However, such a charge-separated state could be observed with certainty only with complex 2a. To explain the result, quantum chemical calculations were performed on the different types of complexes.
Collapse
Affiliation(s)
- Henriette Wolpher
- Department of Organic Chemistry, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|