51
|
Pithadia AS, Bhunia A, Sribalan R, Padmini V, Fierke CA, Ramamoorthy A. Influence of a curcumin derivative on hIAPP aggregation in the absence and presence of lipid membranes. Chem Commun (Camb) 2016; 52:942-5. [PMID: 26587568 DOI: 10.1039/c5cc07792c] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The deposition of aggregates of human islet amyloid polypeptide (hIAPP) has been correlated with the death of β-cells in type II diabetes mellitus. The actual molecular mechanism of cell death remains largely unknown; however, it has been postulated that the process of aggregation from monomeric hIAPP is closely involved. A possible cause of cellular toxicity may be through the disruption of structural integrity of the cell membrane by IAPP. Herein, a water-soluble curcumin derivative, CurDAc, is used to investigate the mitigation of hIAPP aggregation in the absence and presence of lipid membrane.
Collapse
Affiliation(s)
- Amit S Pithadia
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Anirban Bhunia
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA. and Department of Biophysics, Bose Institute, Kolkata 700 054, India
| | - Rajendran Sribalan
- Department of Organic Chemistry, School of Chemistry, Madurai Kamraj University, Madurai 21, India
| | - Vediappen Padmini
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA. and Biophysics Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carol A Fierke
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA. and Biophysics Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA. and Biophysics Program, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
52
|
SALS-linked WT-SOD1 adopts a highly similar helical conformation as FALS-causing L126Z-SOD1 in a membrane environment. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2223-2230. [PMID: 27378311 DOI: 10.1016/j.bbamem.2016.06.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/18/2016] [Accepted: 06/30/2016] [Indexed: 12/30/2022]
Abstract
So far >180 mutations have been identified within the 153-residue human SOD1 to cause familial amyotrophic lateral sclerosis (FALS), while wild-type (WT) SOD1 was intriguingly implicated in sporadic ALS (SALS). SOD1 mutations lead to ALS by a dominant gain of cytotoxicity but its mechanism still remains elusive. Previously functional studies have revealed that SOD1 mutants became unexpectedly associated with organelle membranes. Indeed we decoded that the ALS-causing truncation mutant L126Z-SOD1 with an elevated toxicity completely loses the ability to fold into the native β-barrel structure but acquire a novel capacity to interact with membranes by forming helices over hydrophobic/amphiphilic segments. Very recently, the abnormal insertion of SOD1 mutants into ER membrane has been functionally characterized to trigger ER stress, an initial event of a cascade of cell-specific damages in ALS pathogenesis. Here we attempted to understand the mechanism for gain of cytotoxicity of the WT SOD1. We obtained atomic-resolution evidence that the nascent WT SOD1 without metalation and disulfide bridge is also highly disordered as L126Z. Most importantly, it owns the same capacity in interacting with membranes by forming very similar helices over the first 125 residues identical to L126Z-SOD1, plus an additional hydrophobic helix over Leu144-Ala152. Our study thus implies that the WT and mutant SOD1 indeed converge on a common mechanism for gain of cytotoxicity by abnormally interacting with membranes. Moreover, any genetic/environmental factors which can delay or impair its maturation might act to transform SOD1 into cytotoxic forms with the acquired capacity to abnormally interact with membranes.
Collapse
|
53
|
Lei J, Qi R, Wei G, Nussinov R, Ma B. Self-aggregation and coaggregation of the p53 core fragment with its aggregation gatekeeper variant. Phys Chem Chem Phys 2016; 18:8098-107. [PMID: 26923710 PMCID: PMC6456058 DOI: 10.1039/c5cp06538k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Recent studies suggested that p53 aggregation can lead to loss-of-function (LoF), dominant-negative (DN) and gain-of-function (GoF) effects, with adverse cancer consequences. The p53 aggregation-nucleating (251)ILTIITL(257) fragment is a key segment in wild-type p53 aggregation; however, an I254R mutation can prevent it. It was suggested that self-assembly of wild-type p53 and its cross-interaction with mutants differ from the classical amyloid nucleation-growth mechanism. Here, using replica exchange molecular dynamics (REMD) simulations, we studied the cross-interactions of this p53 core fragment and its aggregation rescue I254R mutant. We found that the core fragment displays strong aggregation propensity, whereas the gatekeeper I254R mutant tends to be disordered, consistent with experiments. Our cross-interaction results reveal that the wild-type p53 fragment promotes β-sheet formation of the I254R mutant by shifting the disordered mutant peptides into aggregating states. As a result, the system has similar oligomeric structures, inter-peptide interactions and free energy landscape as the wild type fragment does, revealing a prion-like process. We also found that in the cross-interaction system, the wild-type species has higher tendency to interact with the mutant than with itself. This phenomenon illustrates synergistic effects between the p53 (251)ILTIITL(257) fragment and the mutant resembling prion cross-species propagation, cautioning against exploiting it in drug discovery.
Collapse
Affiliation(s)
- Jiangtao Lei
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), and Department of Physics, Fudan University, Shanghai, P. R. China.
| | - Ruxi Qi
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), and Department of Physics, Fudan University, Shanghai, P. R. China.
| | - Guanghong Wei
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), and Department of Physics, Fudan University, Shanghai, P. R. China.
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, USA. and Sackler Inst. of Molecular Medicine Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, USA.
| |
Collapse
|
54
|
Fuentes AL, Hennessy K, Pascual J, Pepe N, Wang I, Santiago A, Chaggan C, Martinez J, Rivera E, Cota P, Cunha C, Nogaj LA, Moffet DA. Identification of Plant Extracts that Inhibit the Formation of Diabetes-Linked IAPP Amyloid. J Herb Med 2016; 6:37-41. [PMID: 27042401 DOI: 10.1016/j.hermed.2015.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The extracts of 27 vegetables, spices and herbs were screened for their functional ability to inhibit the aggregation of islet amyloid polypeptide (IAPP, amylin) into toxic amyloid aggregates. The aggregation of IAPP has been directly linked to the death of pancreatic β-islet cells in type 2 diabetes. Inhibiting the aggregation of IAPP is believed to have the potential to slow, if not prevent entirely, the progression of this disease. As vegetables, spices and herbs are known to possess many different positive health effects, the extracts of 27 plants (abundant within the United States and spanning several plant families) were screened for their ability to inhibit the formation of toxic IAPP aggregates. Their anti-amyloid activities were assessed through (1) thioflavin T binding assays, (2) visualization of amyloid fibers using atomic force microscopy and (3) cell rescue studies. From this research, mint, peppermint, red bell pepper and thyme emerged as possessing the greatest anti-amyloid activity.
Collapse
Affiliation(s)
- Ana Lucia Fuentes
- Department of Chemistry and Biochemistry, Loyola Marymount University, 1 LMU Drive, Los Angeles, CA 90045
| | - Kathleen Hennessy
- Department of Chemistry and Biochemistry, Loyola Marymount University, 1 LMU Drive, Los Angeles, CA 90045
| | - Jacob Pascual
- Department of Chemistry and Biochemistry, Loyola Marymount University, 1 LMU Drive, Los Angeles, CA 90045
| | - Nicole Pepe
- Department of Chemistry and Biochemistry, Loyola Marymount University, 1 LMU Drive, Los Angeles, CA 90045
| | - In Wang
- Department of Chemistry and Biochemistry, Loyola Marymount University, 1 LMU Drive, Los Angeles, CA 90045
| | - Alexander Santiago
- Department of Chemistry and Biochemistry, Loyola Marymount University, 1 LMU Drive, Los Angeles, CA 90045
| | - Cynthia Chaggan
- Department of Biology, Mount Saint Mary's College, 12001 Chalon Drive, Los Angeles, CA 90049
| | - Jessica Martinez
- Department of Biology, Mount Saint Mary's College, 12001 Chalon Drive, Los Angeles, CA 90049
| | - Evelyn Rivera
- Department of Biology, Mount Saint Mary's College, 12001 Chalon Drive, Los Angeles, CA 90049
| | - Paola Cota
- Department of Chemistry and Biochemistry, Loyola Marymount University, 1 LMU Drive, Los Angeles, CA 90045
| | - Christina Cunha
- Department of Chemistry and Biochemistry, Loyola Marymount University, 1 LMU Drive, Los Angeles, CA 90045
| | - Luiza A Nogaj
- Department of Biology, Mount Saint Mary's College, 12001 Chalon Drive, Los Angeles, CA 90049
| | - David A Moffet
- Department of Chemistry and Biochemistry, Loyola Marymount University, 1 LMU Drive, Los Angeles, CA 90045
| |
Collapse
|
55
|
Conformational changes of Aβ (1-42) monomers in different solvents. J Mol Graph Model 2016; 65:8-14. [PMID: 26896721 DOI: 10.1016/j.jmgm.2016.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 01/16/2016] [Accepted: 02/06/2016] [Indexed: 11/21/2022]
Abstract
Amyloid proteins are known to be the main cause of numerous degenerative and neurodegenerative diseases. In general, amyloids are misfolded from monomers and they tend to have β-strand formations. These misfolded monomers are then transformed into oligomers, fibrils, and plaques. It is important to understand the forming mechanism of amyloids in order to prevent degenerative diseases to occur. Aβ protein is a highly noticeable protein which causes Alzheimer's disease. It is reported that solvents affect the forming mechanism of Aβ amyloids. In this research, Aβ1-42 was analyzed using an all-atom MD simulation with the consideration of effects induced by two disparate solvents: water and DMSO. As a result, two different conformation changes of Aβ1-42 were exhibited in each solvent. It was found that salt-bridge of Asp23 and Lys28 in Aβ1-42 was the key for amyloid folding based on the various analysis including hydrogen bond, electrostatic interaction energy and salt-bridge distance. Since this salt-bridge region plays a crucial role in initiating the misfolding of Aβ1-42, this research may shed a light for studies related in amyloid folding and misfolding.
Collapse
|
56
|
Lim L, Wei Y, Lu Y, Song J. ALS-Causing Mutations Significantly Perturb the Self-Assembly and Interaction with Nucleic Acid of the Intrinsically Disordered Prion-Like Domain of TDP-43. PLoS Biol 2016; 14:e1002338. [PMID: 26735904 PMCID: PMC4703307 DOI: 10.1371/journal.pbio.1002338] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 11/25/2015] [Indexed: 12/13/2022] Open
Abstract
TAR-DNA-binding protein-43 (TDP-43) C-terminus encodes a prion-like domain widely presented in RNA-binding proteins, which functions to form dynamic oligomers and also, amazingly, hosts most amyotrophic lateral sclerosis (ALS)-causing mutations. Here, as facilitated by our previous discovery, by circular dichroism (CD), fluorescence and nuclear magnetic resonance (NMR) spectroscopy, we have successfully determined conformations, dynamics, and self-associations of the full-length prion-like domains of the wild type and three ALS-causing mutants (A315E, Q331K, and M337V) in both aqueous solutions and membrane environments. The study decodes the following: (1) The TDP-43 prion-like domain is intrinsically disordered only with some nascent secondary structures in aqueous solutions, but owns the capacity to assemble into dynamic oligomers rich in β-sheet structures. By contrast, despite having highly similar conformations, three mutants gained the ability to form amyloid oligomers. The wild type and three mutants all formed amyloid fibrils after incubation as imaged by electron microscopy. (2) The interaction with nucleic acid enhances the self-assembly for the wild type but triggers quick aggregation for three mutants. (3) A membrane-interacting subdomain has been identified over residues Met311-Gln343 indispensable for TDP-43 neurotoxicity, which transforms into a well-folded Ω-loop-helix structure in membrane environments. Furthermore, despite having very similar membrane-embedded conformations, three mutants will undergo further self-association in the membrane environment. Our study implies that the TDP-43 prion-like domain appears to have an energy landscape, which allows the assembly of the wild-type sequence into dynamic oligomers only under very limited condition sets, and ALS-causing point mutations are sufficient to remodel it to more favor the amyloid formation or irreversible aggregation, thus supporting the emerging view that the pathologic aggregation may occur via the exaggeration of functionally important assemblies. Furthermore, the coupled capacity of TDP-43 in aggregation and membrane interaction may critically account for its high neurotoxicity, and therefore its decoupling may represent a promising therapeutic strategy to treat TDP-43 causing neurodegenerative diseases. The prion-like domain of TDP-43 appears to have an energy landscape that allows oligomerisation only under very limited conditions; however, TDP-43 mutations that cause amyotrophic lateral sclerosis are sufficient to remodel the protein in favor of amyloid formation. Amyotrophic lateral sclerosis (ALS) is the most prevalent fatal motor neuron disease. It was identified ~140 years ago, but the exact mechanism underlying the disease has still not been well defined. TAR-DNA-binding protein-43 (TDP-43) was identified as the major component of the proteinaceous inclusions present in ~97% ALS and ~45% frontotemporal dementia (FTD) patients, and has also been observed in an increasing spectrum of other neurodegenerative disorders, including Alzheimer disease. The TDP-43 C-terminus is a key domain—it encodes a prion-like domain and, crucially, hosts almost all ALS-causing mutations. Here we have successfully determined the conformations, dynamics, and self-associations of the prion-like domains of both wild type and three ALS-causing mutants in both aqueous solutions and membrane environments. The study suggests that the TDP-43 prion-like domain appears to have a unique energy landscape, which allows the assembly of the wild-type sequence into specific oligomers only under very limited conditions. Intriguingly, ALS-causing point mutations remodel the energy landscape to favor amyloid formation or irreversible aggregation, thus supporting the emerging view that pathologic aggregation may occur via the exaggeration of functionally important assemblies. Furthermore, the coupled capacity of TDP-43 in aggregation and membrane interaction may partly account for its high neurotoxicity; decoupling these may therefore represent a promising therapeutic strategy to treat TDP-43-mediated neurodegenerative diseases.
Collapse
Affiliation(s)
- Liangzhong Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Yuanyuan Wei
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Yimei Lu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
- * E-mail:
| |
Collapse
|
57
|
Qian Z, Jia Y, Wei G. Binding Orientations and Lipid Interactions of Human Amylin at Zwitterionic and Anionic Lipid Bilayers. J Diabetes Res 2016; 2016:1749196. [PMID: 26649316 PMCID: PMC4663351 DOI: 10.1155/2016/1749196] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 03/22/2015] [Accepted: 04/15/2015] [Indexed: 11/17/2022] Open
Abstract
Increasing evidence suggests that the interaction of human islet amyloid polypeptide (hIAPP) with lipids may facilitate hIAPP aggregation and cause the death of pancreatic islet β-cells. However, the detailed hIAPP-membrane interactions and the influences of lipid compositions are unclear. In this study, as a first step to understand the mechanism of membrane-mediated hIAPP aggregation, we investigate the binding behaviors of hIAPP monomer at zwitterionic palmitoyloleoyl-phosphatidylcholine (POPC) bilayer by performing atomistic molecular dynamics simulations. The results are compared with those of hIAPP at anionic palmitoyloleoyl-phosphatidylglycerol (POPG) bilayers. We find that the adsorption of hIAPP to POPC bilayer is mainly initiated from the C-terminal region and the peptide adopts a helical structure with multiple binding orientations, while the adsorption to POPG bilayer is mostly initiated from the N-terminal region and hIAPP displays one preferential binding orientation, with its hydrophobic residues exposed to water. hIAPP monomer inserts into POPC lipid bilayers more readily than into POPG bilayers. Peptide-lipid interaction analyses show that the different binding features of hIAPP at POPC and POPG bilayers are attributed to different magnitudes of electrostatic and hydrogen-bonding interactions with lipids. This study provides mechanistic insights into the different interaction behaviors of hIAPP with zwitterionic and anionic lipid bilayers.
Collapse
Affiliation(s)
- Zhenyu Qian
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), and Department of Physics, Fudan University, Shanghai 200433, China
| | - Yan Jia
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), and Department of Physics, Fudan University, Shanghai 200433, China
| | - Guanghong Wei
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), and Department of Physics, Fudan University, Shanghai 200433, China
- *Guanghong Wei:
| |
Collapse
|
58
|
Xu ZX, Zhang Q, Ma GL, Chen CH, He YM, Xu LH, Zhang Y, Zhou GR, Li ZH, Yang HJ, Zhou P. Influence of Aluminium and EGCG on Fibrillation and Aggregation of Human Islet Amyloid Polypeptide. J Diabetes Res 2016; 2016:1867059. [PMID: 28074190 PMCID: PMC5198260 DOI: 10.1155/2016/1867059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/26/2016] [Indexed: 11/18/2022] Open
Abstract
The abnormal fibrillation of human islet amyloid polypeptide (hIAPP) has been implicated in the development of type II diabetes. Aluminum is known to trigger the structural transformation of many amyloid proteins and induce the formation of toxic aggregate species. The (-)-epigallocatechin gallate (EGCG) is considered capable of binding both metal ions and amyloid proteins with inhibitory effect on the fibrillation of amyloid proteins. However, the effect of Al(III)/EGCG complex on hIAPP fibrillation is unclear. In the present work, we sought to view insight into the structures and properties of Al(III) and EGCG complex by using spectroscopic experiments and quantum chemical calculations and also investigated the influence of Al(III) and EGCG on hIAPP fibrillation and aggregation as well as their combined interference on this process. Our studies demonstrated that Al(III) could promote fibrillation and aggregation of hIAPP, while EGCG could inhibit the fibrillation of hIAPP and lead to the formation of hIAPP amorphous aggregates instead of the ordered fibrils. Furthermore, we proved that the Al(III)/EGCG complex in molar ratio of 1 : 1 as Al(EGCG)(H2O)2 could inhibit the hIAPP fibrillation more effectively than EGCG alone. The results provide the invaluable reference for the new drug development to treat type II diabetes.
Collapse
Affiliation(s)
- Zhi-Xue Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Qiang Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Gong-Li Ma
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis & Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Cong-Heng Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yan-Ming He
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Li-Hui Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yuan Zhang
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Guang-Rong Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Zhen-Hua Li
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis & Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Hong-Jie Yang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- *Hong-Jie Yang: and
| | - Ping Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- *Ping Zhou:
| |
Collapse
|
59
|
Lee M, Na S. End Capping Alters the Structural Characteristics and Mechanical Properties of Transthyretin (105-115) Amyloid Protofibrils. Chemphyschem 2015; 17:425-32. [DOI: 10.1002/cphc.201500945] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/16/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Myeongsang Lee
- Department of Mechanical Engineering; Korea University; Seoul 02841 Republic of Korea
| | - Sungsoo Na
- Department of Mechanical Engineering; Korea University; Seoul 02841 Republic of Korea
| |
Collapse
|
60
|
Hu R, Zhang M, Chen H, Jiang B, Zheng J. Cross-Seeding Interaction between β-Amyloid and Human Islet Amyloid Polypeptide. ACS Chem Neurosci 2015; 6:1759-68. [PMID: 26255739 DOI: 10.1021/acschemneuro.5b00192] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Alzheimer's disease (AD) and type 2 diabetes (T2D) are two common protein misfolding diseases. Increasing evidence suggests that these two diseases may be correlated with each other via cross-sequence interactions between β-amyloid peptide (Aβ) associated with AD and human islet amyloid polypeptide (hIAPP) associated with T2D. However, little is known about how these two peptides work and how they interact with each other to induce amyloidogenesis. In this work, we study the effect of cross-sequence interactions between Aβ and hIAPP peptides on hybrid amyloid structures, conformational changes, and aggregation kinetics using combined experimental and simulation approaches. Experimental results confirm that Aβ and hIAPP can interact with each other to aggregate into hybrid amyloid fibrils containing β-sheet-rich structures morphologically similar to pure Aβ and hIAPP. The cross-seeding of Aβ and hIAPP leads to the coexistence of both a retarded process at the initial nucleation stage and an accelerated process at the fibrillization stage, in conjunction with a conformational transition from random structures to α-helix to β-sheet. Further molecular dynamics simulations reveal that Aβ and hIAPP oligomers can efficiently cross-seed each other via the association of two highly similar U-shaped β-sheet structures; thus, conformational compatibility between Aβ and hIAPP aggregates appears to play a key role in determining barriers to cross-seeding. The cross-seeding effects in this work may provide new insights into the molecular mechanisms of interactions between AD and T2D.
Collapse
Affiliation(s)
- Rundong Hu
- Department
of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Mingzhen Zhang
- Department
of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Hong Chen
- Department
of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Binbo Jiang
- Department
of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
- College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Jie Zheng
- Department
of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
61
|
He J, Dai J, Li J, Peng X, Niemi AJ. Aspects of structural landscape of human islet amyloid polypeptide. J Chem Phys 2015; 142:045102. [PMID: 25638009 DOI: 10.1063/1.4905586] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The human islet amyloid polypeptide (hIAPP) co-operates with insulin to maintain glycemic balance. It also constitutes the amyloid plaques that aggregate in the pancreas of type-II diabetic patients. We have performed extensive in silico investigations to analyse the structural landscape of monomeric hIAPP, which is presumed to be intrinsically disordered. For this, we construct from first principles a highly predictive energy function that describes a monomeric hIAPP observed in a nuclear magnetic resonance experiment, as a local energy minimum. We subject our theoretical model of hIAPP to repeated heating and cooling simulations, back and forth between a high temperature regime where the conformation resembles a random walker and a low temperature limit where no thermal motions prevail. We find that the final low temperature conformations display a high level of degeneracy, in a manner which is fully in line with the presumed intrinsically disordered character of hIAPP. In particular, we identify an isolated family of α-helical conformations that might cause the transition to amyloidosis, by nucleation.
Collapse
Affiliation(s)
- Jianfeng He
- School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Jin Dai
- School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Jing Li
- Institute of Biopharmaceutical Research, Yangtze River Pharmaceutical Group Beijing Haiyan Pharmaceutical Co., Ltd, Beijing 102206, China
| | - Xubiao Peng
- Department of Physics and Astronomy, Uppsala University, P.O. Box 803, S-75108 Uppsala, Sweden
| | - Antti J Niemi
- School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| |
Collapse
|
62
|
Insulin-degrading enzyme is activated by the C-terminus of α-synuclein. Biochem Biophys Res Commun 2015; 466:192-5. [PMID: 26343304 DOI: 10.1016/j.bbrc.2015.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 09/01/2015] [Indexed: 11/22/2022]
Abstract
The insulin-degrading enzyme (IDE) plays a key role in type-2 diabetes and typically degrades small peptides such as insulin, amyloid β and islet amyloid polypeptide. We recently reported a novel non-proteolytical interaction in vitro between IDE and the Parkinson's disease 140-residue protein α-synuclein that resulted in dual effects: arrested α-synuclein oligomers and, simultaneously, increased IDE proteolysis activity. Here we demonstrate that these outcomes arise due to IDE interactions with the C-terminus of α-synuclein. Whereas a peptide containing the first 97 residues of α-synuclein did not improve IDE activity and its aggregation was not blocked by IDE, a peptide with the C-terminal 44 residues of α-synuclein increased IDE proteolysis to the same degree as full-length α-synuclein. Because the α-synuclein C-terminus is acidic, the interaction appears to involve electrostatic attraction with IDE's basic exosite, known to be involved in activation.
Collapse
|
63
|
Inhibitory effects of magnolol and honokiol on human calcitonin aggregation. Sci Rep 2015; 5:13556. [PMID: 26324190 PMCID: PMC4555095 DOI: 10.1038/srep13556] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 07/30/2015] [Indexed: 02/07/2023] Open
Abstract
Amyloid formation is associated with multiple amyloidosis diseases. Human calcitonin (hCT) is a typical amyloidogenic peptide, its aggregation is associated with medullary carcinoma of the thyroid (MTC), and also limits its clinical application. Magnolia officinalis is a traditional Chinese herbal medicine; its two major polyphenol components, magnolol (Mag) and honokiol (Hon), have displayed multiple functions. Polyphenols like flavonoids and their derivatives have been extensively studied as amyloid inhibitors. However, the anti-amyloidogenic property of a biphenyl backbone containing polyphenols such as Mag and Hon has not been reported. In this study, these two compounds were tested for their effects on hCT aggregation. We found that Mag and Hon both inhibited the amyloid formation of hCT, whereas Mag showed a stronger inhibitory effect; moreover, they both dose-dependently disassembled preformed hCT aggregates. Further immuno-dot blot and dynamic light scattering studies suggested Mag and Hon suppressed the aggregation of hCT both at the oligomerization and the fibrillation stages, while MTT-based and dye-leakage assays demonstrated that Mag and Hon effectively reduced cytotoxicity caused by hCT aggregates. Furthermore, isothermal titration calorimetry indicated Mag and Hon both interact with hCT. Together, our study suggested a potential anti-amyloidogenic property of these two compounds and their structure related derivatives.
Collapse
|
64
|
Pandey MK, Nishiyama Y. Determination of relative orientation between (1)H CSA tensors from a 3D solid-state NMR experiment mediated through (1)H/(1)H RFDR mixing under ultrafast MAS. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2015; 70:15-20. [PMID: 26065628 DOI: 10.1016/j.ssnmr.2015.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/14/2015] [Accepted: 05/07/2015] [Indexed: 06/04/2023]
Abstract
To obtain piercing insights into inter and intramolecular H-bonding, and π-electron interactions measurement of (1)H chemical shift anisotropy (CSA) tensors is gradually becoming an obvious choice. While the magnitude of CSA tensors provides unique information about the local electronic environment surrounding the nucleus, the relative orientation between these tensors can offer further insights into the spatial arrangement of interacting nuclei in their respective three-dimensional (3D) space. In this regard, we present a 3D anisotropic/anisotropic/isotropic proton chemical shift (CSA/CSA/CS) correlation experiment mediated through (1)H/(1)H radio frequency-driven recoupling (RFDR) which enhances spin diffusion through recoupled (1)H-(1)H dipolar couplings under ultrafast magic angle spinning (MAS) frequency (70kHz). Relative orientation between two interacting 1H CSA tensors is obtained by fitting two-interacting (1)H CSA tensors by fitting two-dimensional (2D) (1)H/(1)H CSA/CSA spectral slices through extensive numerical simulations. To recouple (1)H CSAs in the indirect frequency dimensions of a 3D experiment we have employed γ-encoded radio frequency (RF) pulse sequence based on R-symmetry (R188(7)) with a series of phase-alternated 2700(°)-90180(°) composite-180° pulses on citric acid sample. Due to robustness of applied (1)H CSA recoupling sequence towards the presence of RF field inhomogeneity, we have successfully achieved an excellent (1)H/(1)H CSA/CSA cross-correlation efficiency between H-bonded sites of citric acid.
Collapse
Affiliation(s)
- Manoj Kumar Pandey
- RIKEN CLST-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - Yusuke Nishiyama
- RIKEN CLST-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan; JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan.
| |
Collapse
|
65
|
Zhou X, Cao C, Chen Q, Yu Q, Liu Y, Yin T, Liu J. PEG modified graphene oxide loaded with EALYLV peptides for inhibiting the aggregation of hIAPP associated with type-2 diabetes. J Mater Chem B 2015; 3:7055-7067. [PMID: 32262708 DOI: 10.1039/c5tb00487j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human islet amyloid polypeptide (hIAPP) was found as amyloid aggregate deposits in the pancreatic islets of patients with type-2 diabetes and studies showed that insulin and its derivatives were the potent inhibitors of hIAPP aggregation. However, several emerging therapies with this goal showed limited success due to the instability and inefficiency of insulin derivatives. Nanosized graphene oxide (nGO) possesses high stability and affinity toward aromatic rings. In this study, an insulin-derived peptide, EALYLV, was stabilized by loading on nGO@PEG to inhibit aggregation and hIAPP-induced cytotoxicity. The results showed that nGO@PEG@EALYLV (abbreviated as nGO@PEG@E) can effectively inhibit the aggregation of hIAPP via electrostatic adsorption and specific binding to the active sites of hIAPP. We further evaluated the protective effect of nGO@PEG@E on INS-1 cells in the presence of hIAPP. Treatment with nGO@PEG@E could significantly elevate the viability of INS-1 cells, decrease the level of intracellular reactive oxygen species, and stabilize mitochondrial membrane potential. All the results indicated that nGO@PEG@E could inhibit the aggregation of hIAPP, which reduces its cytotoxicity.
Collapse
Affiliation(s)
- Xianbo Zhou
- Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | | | | | | | | | | | | |
Collapse
|
66
|
Pan K, Yi CW, Chen J, Liang Y. Zinc significantly changes the aggregation pathway and the conformation of aggregates of human prion protein. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:907-18. [DOI: 10.1016/j.bbapap.2015.04.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 04/09/2015] [Accepted: 04/21/2015] [Indexed: 12/27/2022]
|
67
|
Sharma SK, Chorell E, Steneberg P, Vernersson-Lindahl E, Edlund H, Wittung-Stafshede P. Insulin-degrading enzyme prevents α-synuclein fibril formation in a nonproteolytical manner. Sci Rep 2015; 5:12531. [PMID: 26228656 PMCID: PMC4521159 DOI: 10.1038/srep12531] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/29/2015] [Indexed: 11/25/2022] Open
Abstract
The insulin-degrading enzyme (IDE) degrades amyloidogenic proteins such as Amyloid β (Αβ) and Islet Amyloid Polypeptide (IAPP), i.e. peptides associated with Alzheimer’s disease and type 2 diabetes, respectively. In addition to the protease activity normally associated with IDE function an additional activity involving the formation of stable, irreversible complexes with both Αβ and α-synuclein, an amyloidogenic protein involved in Parkinson’s disease, was recently proposed. Here, we have investigated the functional consequences of IDE-α-synuclein interactions in vitro. We demonstrate that IDE in a nonproteolytic manner and at sub-stoichiometric ratios efficiently inhibits α-synuclein fibril formation by binding to α-synuclein oligomers making them inert to amyloid formation. Moreover, we show that, within a defined range of α-synuclein concentrations, interaction with α-synuclein oligomers increases IDE’s proteolytic activity on a fluorogenic substrate. We propose that the outcomes of IDE-α-synuclein interactions, i.e. protection against α-synuclein amyloid formation and stimulated IDE protease activity, may be protective in vivo.
Collapse
Affiliation(s)
| | - Erik Chorell
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Pär Steneberg
- Umeå Center for Molecular Medicine, Umeå University, 90187 Umeå, Sweden
| | | | - Helena Edlund
- Umeå Center for Molecular Medicine, Umeå University, 90187 Umeå, Sweden
| | | |
Collapse
|
68
|
Zhang R, Pandey MK, Nishiyama Y, Ramamoorthy A. A Novel High-Resolution and Sensitivity-Enhanced Three-Dimensional Solid-State NMR Experiment Under Ultrafast Magic Angle Spinning Conditions. Sci Rep 2015; 5:11810. [PMID: 26138791 PMCID: PMC4490345 DOI: 10.1038/srep11810] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 05/19/2015] [Indexed: 12/22/2022] Open
Abstract
Although magic angle spinning (MAS) solid-state NMR is a powerful technique to obtain atomic-resolution insights into the structure and dynamics of a variety of chemical and biological solids, poor sensitivity has severely limited its applications. In this study, we demonstrate an approach that suitably combines proton-detection, ultrafast-MAS and multiple frequency dimensions to overcome this limitation. With the utilization of proton-proton dipolar recoupling and double quantum (DQ) coherence excitation/reconversion radio-frequency pulses, very high-resolution proton-based 3D NMR spectra that correlate single-quantum (SQ), DQ and SQ coherences of biological solids have been obtained successfully for the first time. The proposed technique requires a very small amount of sample and does not need multiple radio-frequency (RF) channels. It also reveals information about the proximity between a spin and a certain other dipolar-coupled pair of spins in addition to regular SQ/DQ and SQ/SQ correlations. Although 1H spectral resolution is still limited for densely proton-coupled systems, the 3D technique is valuable to study dilute proton systems, such as zeolites, small molecules, or deuterated samples. We also believe that this new methodology will aid in the design of a plethora of multidimensional NMR techniques and enable high-throughput investigation of an exciting class of solids at atomic-level resolution.
Collapse
Affiliation(s)
- Rongchun Zhang
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Manoj Kumar Pandey
- RIKEN CLST-JEOL collaboration center, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - Yusuke Nishiyama
- 1] RIKEN CLST-JEOL collaboration center, RIKEN, Yokohama, Kanagawa 230-0045, Japan [2] JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
69
|
Chang HJ, Baek I, Lee M, Na S. Influence of Aromatic Residues on the Material Characteristics of Aβ Amyloid Protofibrils at the Atomic Scale. Chemphyschem 2015; 16:2403-14. [DOI: 10.1002/cphc.201500244] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/27/2015] [Indexed: 11/06/2022]
|
70
|
Louros NN, Tsiolaki PL, Zompra AA, Pappa EV, Magafa V, Pairas G, Cordopatis P, Cheimonidou C, Trougakos IP, Iconomidou VA, Hamodrakas SJ. Structural studies and cytotoxicity assays of “aggregation-prone” IAPP8-16and its non-amyloidogenic variants suggest its important role in fibrillogenesis and cytotoxicity of human amylin. Biopolymers 2015; 104:196-205. [DOI: 10.1002/bip.22650] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 03/10/2015] [Accepted: 03/30/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Nikolaos N. Louros
- Department of Cell Biology and Biophysics; Faculty of Biology, University of Athens; Panepistimiopolis Athens 157 01 Greece
| | - Paraskevi L. Tsiolaki
- Department of Cell Biology and Biophysics; Faculty of Biology, University of Athens; Panepistimiopolis Athens 157 01 Greece
| | | | - Eleni V. Pappa
- Department of Pharmacy; University of Patras; Patras 26504 Greece
| | - Vassiliki Magafa
- Department of Pharmacy; University of Patras; Patras 26504 Greece
| | - George Pairas
- Department of Pharmacy; University of Patras; Patras 26504 Greece
| | - Paul Cordopatis
- Department of Pharmacy; University of Patras; Patras 26504 Greece
| | - Christina Cheimonidou
- Department of Cell Biology and Biophysics; Faculty of Biology, University of Athens; Panepistimiopolis Athens 157 01 Greece
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics; Faculty of Biology, University of Athens; Panepistimiopolis Athens 157 01 Greece
| | - Vassiliki A. Iconomidou
- Department of Cell Biology and Biophysics; Faculty of Biology, University of Athens; Panepistimiopolis Athens 157 01 Greece
| | - Stavros J. Hamodrakas
- Department of Cell Biology and Biophysics; Faculty of Biology, University of Athens; Panepistimiopolis Athens 157 01 Greece
| |
Collapse
|
71
|
Kim JI, Lee M, Baek I, Yoon G, Na S. The mechanical response of hIAPP nanowires based on different bending direction simulations. Phys Chem Chem Phys 2015; 16:18493-500. [PMID: 25073067 DOI: 10.1039/c4cp02494j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Amyloid proteins, implicated in numerous aging-related diseases, possess remarkable mechanical properties. Polymorphism leads to different arrangements of β sheets in amyloid fibrils, which changes the characteristics of the hydrogen bond network that determines their mechanical properties and structural characteristics. We performed bending simulations using molecular dynamics methods under constant-velocity conditions in different bending directions. Two different fibril structures, parallel/homo and parallel/hetero, of hIAPP amyloids were considered. Though the bending configuration influences the toughness of the material, our results indicate that the basic material behavior is affected by the β-sheet arrangement that is determined by the type of polymorphism in amyloid fibrils.
Collapse
Affiliation(s)
- J I Kim
- Department of Mechanical Engineering, Korea University, Seoul 136-701, Republic of Korea.
| | | | | | | | | |
Collapse
|
72
|
Ghosh A, Pithadia AS, Bhat J, Bera S, Midya A, Fierke CA, Ramamoorthy A, Bhunia A. Self-assembly of a nine-residue amyloid-forming peptide fragment of SARS corona virus E-protein: mechanism of self aggregation and amyloid-inhibition of hIAPP. Biochemistry 2015; 54:2249-2261. [PMID: 25785896 DOI: 10.1021/acs.biochem.5b00061] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular self-assembly, a phenomenon widely observed in nature, has been exploited through organic molecules, proteins, DNA, and peptides to study complex biological systems. These self-assembly systems may also be used in understanding the molecular and structural biology which can inspire the design and synthesis of increasingly complex biomaterials. Specifically, use of these building blocks to investigate protein folding and misfolding has been of particular value since it can provide tremendous insights into peptide aggregation related to a variety of protein misfolding diseases, or amyloid diseases (e.g., Alzheimer's disease, Parkinson's disease, type-II diabetes). Herein, the self-assembly of TK9, a nine-residue peptide of the extra membrane C-terminal tail of the SARS corona virus envelope, and its variants were characterized through biophysical, spectroscopic, and simulated studies, and it was confirmed that the structure of these peptides influences their aggregation propensity, hence, mimicking amyloid proteins. TK9, which forms a beta-sheet rich fibril, contains a key sequence motif that may be critical for beta-sheet formation, thus making it an interesting system to study amyloid fibrillation. TK9 aggregates were further examined through simulations to evaluate the possible intra- and interpeptide interactions at the molecular level. These self-assembly peptides can also serve as amyloid inhibitors through hydrophobic and electrophilic recognition interactions. Our results show that TK9 inhibits the fibrillation of hIAPP, a 37 amino acid peptide implicated in the pathology of type-II diabetes. Thus, biophysical and NMR experimental results have revealed a molecular level understanding of peptide folding events, as well as the inhibition of amyloid-protein aggregation are reported.
Collapse
Affiliation(s)
- Anirban Ghosh
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700 054, India
| | - Amit S Pithadia
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA
| | - Jyotsna Bhat
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700 054, India
| | - Supriyo Bera
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700 054, India
| | - Anupam Midya
- School of Nanoscience and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Carol A Fierke
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA.,Biophysics, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA.,Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA.,Biophysics, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700 054, India.,Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA.,Biophysics, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
73
|
Multifunctional coumarin derivatives: Monoamine oxidase B (MAO-B) inhibition, anti-β-amyloid (Aβ) aggregation and metal chelation properties against Alzheimer’s disease. Bioorg Med Chem Lett 2015; 25:508-13. [DOI: 10.1016/j.bmcl.2014.12.034] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 01/11/2023]
|
74
|
Hansen JE, Leslie L, Swamy-Mruthinti S. The kinetics of thermal stress induced denaturation of Aquaporin 0. Biochem Biophys Res Commun 2014; 450:1668-72. [DOI: 10.1016/j.bbrc.2014.07.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 07/12/2014] [Indexed: 11/28/2022]
|