51
|
Li J, Baker BA, Mou X, Ren N, Qiu J, Boughton RI, Liu H. Biopolymer/Calcium phosphate scaffolds for bone tissue engineering. Adv Healthc Mater 2014; 3:469-84. [PMID: 24339420 DOI: 10.1002/adhm.201300562] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 11/15/2013] [Indexed: 11/08/2022]
Abstract
With nearly 30 years of progress, tissue engineering has shown promise in developing solutions for tissue repair and regeneration. Scaffolds, together with cells and growth factors, are key components of this development. Recently, an increasing number of studies have reported on the design and fabrication of scaffolding materials. In particular, inspired by the nature of bone, polymer/ceramic composite scaffolds have been studied extensively. The purpose of this paper is to review the recent progress of the naturally derived biopolymers and the methods applied to generate biomimetic biopolymer/calcium phosphate composites as well as their biomedical applications in bone tissue engineering.
Collapse
Affiliation(s)
- Jianhua Li
- State Key Lab of Crystal Materials, Shandong University; 27 Shandanan Road Jinan 250100 China
| | - Bryan. A. Baker
- Biosystems and Biomaterials Division, The National Institute of Standards and Technology; MD 20899-8300 USA
| | - Xiaoning Mou
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences; Beijing China
| | - Na Ren
- State Key Lab of Crystal Materials, Shandong University; 27 Shandanan Road Jinan 250100 China
| | - Jichuan Qiu
- State Key Lab of Crystal Materials, Shandong University; 27 Shandanan Road Jinan 250100 China
| | - Robert I. Boughton
- Department of Physics and Astronomy; Bowling Green State University; Bowling Green OH 43403 USA
| | - Hong Liu
- State Key Lab of Crystal Materials, Shandong University; 27 Shandanan Road Jinan 250100 China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences; Beijing China
| |
Collapse
|
52
|
Chatakun P, Núñez-Toldrà R, Díaz López EJ, Gil-Recio C, Martínez-Sarrà E, Hernández-Alfaro F, Ferrés-Padró E, Giner-Tarrida L, Atari M. The effect of five proteins on stem cells used for osteoblast differentiation and proliferation: a current review of the literature. Cell Mol Life Sci 2014; 71:113-42. [PMID: 23568025 PMCID: PMC11113514 DOI: 10.1007/s00018-013-1326-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/13/2013] [Accepted: 03/14/2013] [Indexed: 01/04/2023]
Abstract
Bone-tissue engineering is a therapeutic target in the field of dental implant and orthopedic surgery. It is therefore essential to find a microenvironment that enhances the growth and differentiation of osteoblasts both from mesenchymal stem cells (MSCs) and those derived from dental pulp. The aim of this review is to determine the relationship among the proteins fibronectin (FN), osteopontin (OPN), tenascin (TN), bone sialoprotein (BSP), and bone morphogenetic protein (BMP2) and their ability to coat different types of biomaterials and surfaces to enhance osteoblast differentiation. Pre-treatment of biomaterials with FN during the initial phase of osteogenic differentiation on all types of surfaces, including slotted titanium and polymers, provides an ideal microenvironment that enhances adhesion, morphology, and proliferation of pluripotent and multipotent cells. Likewise, in the second stage of differentiation, surface coating with BMP2 decreases the diameter and the pore size of the scaffold, causing better adhesion and reduced proliferation of BMP-MSCs. Coating oligomerization surfaces with OPN and BSP promotes cell adhesion, but it is clear that the polymeric coating material BSP alone is insufficient to induce priming of MSCs and functional osteoblastic differentiation in vivo. Finally, TN is involved in mineralization and can accelerate new bone formation in a multicellular environment but has no effect on the initial stage of osteogenesis.
Collapse
Affiliation(s)
- P. Chatakun
- Laboratory for Regenerative Medicine, College of Dentistry, Universitat Internacional de Catalunya, C/Josep Trueta s/n, Sant Cugat del Vallès, 08195 Barcelona, Spain
- Police General Hospital, Bangkok, Thailand
| | - R. Núñez-Toldrà
- Laboratory for Regenerative Medicine, College of Dentistry, Universitat Internacional de Catalunya, C/Josep Trueta s/n, Sant Cugat del Vallès, 08195 Barcelona, Spain
- Chair of Regenerative Implantology MIS-UIC, Universitat Internacional de Catalunya, Barcelona, Spain
| | - E. J. Díaz López
- Laboratory for Regenerative Medicine, College of Dentistry, Universitat Internacional de Catalunya, C/Josep Trueta s/n, Sant Cugat del Vallès, 08195 Barcelona, Spain
| | - C. Gil-Recio
- Laboratory for Regenerative Medicine, College of Dentistry, Universitat Internacional de Catalunya, C/Josep Trueta s/n, Sant Cugat del Vallès, 08195 Barcelona, Spain
- Chair of Regenerative Implantology MIS-UIC, Universitat Internacional de Catalunya, Barcelona, Spain
| | - E. Martínez-Sarrà
- Laboratory for Regenerative Medicine, College of Dentistry, Universitat Internacional de Catalunya, C/Josep Trueta s/n, Sant Cugat del Vallès, 08195 Barcelona, Spain
- Chair of Regenerative Implantology MIS-UIC, Universitat Internacional de Catalunya, Barcelona, Spain
| | - F. Hernández-Alfaro
- Surgery and Oral Implantology Department, College of Dentistry, Universitat Internacional de Catalunya, Barcelona, Spain
| | - E. Ferrés-Padró
- Surgery and Oral Implantology Department, College of Dentistry, Universitat Internacional de Catalunya, Barcelona, Spain
- Oral and Maxillofacial Surgery Department, Fundacio Hospital de Nens de Barcelona, Barcelona, Spain
| | - L. Giner-Tarrida
- Laboratory for Regenerative Medicine, College of Dentistry, Universitat Internacional de Catalunya, C/Josep Trueta s/n, Sant Cugat del Vallès, 08195 Barcelona, Spain
- Chair of Regenerative Implantology MIS-UIC, Universitat Internacional de Catalunya, Barcelona, Spain
| | - M. Atari
- Laboratory for Regenerative Medicine, College of Dentistry, Universitat Internacional de Catalunya, C/Josep Trueta s/n, Sant Cugat del Vallès, 08195 Barcelona, Spain
- Chair of Regenerative Implantology MIS-UIC, Universitat Internacional de Catalunya, Barcelona, Spain
- Surgery and Oral Implantology Department, College of Dentistry, Universitat Internacional de Catalunya, Barcelona, Spain
| |
Collapse
|
53
|
Uysal A, Stripe B, Lin B, Meron M, Dutta P. Assembly of amorphous clusters under floating monolayers: a comparison of in situ and ex situ techniques. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:14361-14368. [PMID: 24164244 DOI: 10.1021/la402682r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We report synchrotron X-ray scattering studies of biomimetic crystallization of hydroxyapatite (the primary constituent of bone), using monolayers of fatty acid molecules floating on simulated body fluid (SBF) as well as aqueous solutions of calcium phosphate. A ∼10 Å thick film of amorphous material is observed to form immediately at the molecular monolayer, consistent with the proposed formation of "Posner clusters". This layer becomes denser but not significantly thicker as the subphase concentration and the temperature approach physiological conditions. The amorphous films do not crystallize within 24 h, in contrast to prior reports of more rapid crystallization using electron microscopy on ex situ samples. However, crystallization occurs almost immediately after our films are transferred onto solid substrates. These results illustrate the importance of in situ measurements for model biomineralization experiments.
Collapse
Affiliation(s)
- Ahmet Uysal
- Department of Physics and Astronomy, Northwestern University , Evanston, Illinois 60208, United States
| | | | | | | | | |
Collapse
|
54
|
Xu Z, Yang Y, Wang Z, Mkhonto D, Shang C, Liu ZP, Cui Q, Sahai N. Small molecule-mediated control of hydroxyapatite growth: Free energy calculations benchmarked to density functional theory. J Comput Chem 2013; 35:70-81. [DOI: 10.1002/jcc.23474] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 09/01/2013] [Accepted: 10/06/2013] [Indexed: 02/04/2023]
Affiliation(s)
- Zhijun Xu
- Department of Polymer Science; 170 University Avenue; University of Akron; Akron Ohio 44325-3909
| | - Yang Yang
- Department of Chemistry and Biochemistry; 201 Mullica Hill Road; Rowan University; Glassboro New Jersey 08028
| | - Ziqiu Wang
- Department of Polymer Science; 170 University Avenue; University of Akron; Akron Ohio 44325-3909
| | - Donald Mkhonto
- Council for Scientific and Industrial Research; Meiring Naude Road Brumeria 0184 South Africa
| | - Cheng Shang
- Department of Chemistry; Key Laboratory of Computational Physical Science (Ministry of Education); Fudan University; Shanghai 200433 People's Republic China
| | - Zhi-Pan Liu
- Department of Chemistry; Key Laboratory of Computational Physical Science (Ministry of Education); Fudan University; Shanghai 200433 People's Republic China
| | - Qiang Cui
- Department of Chemistry and Theoretical Chemistry Institute; 1101 University Avenue; University of Wisconsin; Madison Wisconsin 53706
| | - Nita Sahai
- Department of Polymer Science; 170 University Avenue; University of Akron; Akron Ohio 44325-3909
| |
Collapse
|
55
|
Allo BA, Lin S, Mequanint K, Rizkalla AS. Role of bioactive 3D hybrid fibrous scaffolds on mechanical behavior and spatiotemporal osteoblast gene expression. ACS APPLIED MATERIALS & INTERFACES 2013; 5:7574-7583. [PMID: 23826710 DOI: 10.1021/am401861w] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Three-dimensional (3D) bioactive organic-inorganic (O/I) hybrid fibrous scaffolds are attractive extracellular matrix (ECM) surrogates for bone tissue engineering. With the aim of regulating osteoblast gene expression in 3D, a new class of hybrid fibrous scaffolds with two distinct fiber diameters (260 and 600 nm) and excellent physico-mechanical properties were fabricated from tertiary (SiO2-CaO-P2O5) bioactive glass (BG) and poly (ε-caprolactone) (PCL) by in situ sol-gel and electrospinning process. The PCL/BG hybrid fibrous scaffolds exhibited accelerated wetting properties, enhanced pore sizes and porosity, and superior mechanical properties that were dependent on fiber diameter. Contrary to control PCL fibrous scaffolds that were devoid of bonelike apatite particles, incubating PCL/BG hybrid fibrous scaffolds in simulated body fluid (SBF) revealed bonelike apatite deposition. Osteoblast cells cultured on PCL/BG hybrid fibrous scaffolds spread with multiple attachments and actively proliferated suggesting that the low temperature in situ sol-gel and electrospinning process did not have a detrimental effect. Targeted bone-associated gene expressions by rat calvarial osteoblasts seeded on these hybrid scaffolds demonstrated remarkable spatiotemporal gene activation. Transcriptional-level gene expressions for alkaline phosphatase (ALP), osteopontin (OPN), bone sialoprotein (BSP), and osteocalcin (OCN) were significantly higher on the hybrid fibrous scaffolds (p < 0.001) that were largely dependent on fiber diameter compared. Taken together, our results suggest that PCL/BG fibrous scaffolds may accelerate bone formation by providing a favorable microenvironment.
Collapse
Affiliation(s)
- Bedilu A Allo
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
56
|
Wang K, Leng Y, Lu X, Ren F. Calcium phosphate bioceramics induce mineralization modulated by proteins. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:3245-55. [DOI: 10.1016/j.msec.2013.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 03/29/2013] [Accepted: 04/01/2013] [Indexed: 10/27/2022]
|
57
|
Jeong N, Cha M, Park YC, Lee KM, Lee JH, Park BC, Lee J. Single-crystal apatite nanowires sheathed in graphitic shells: synthesis, characterization, and application. ACS NANO 2013; 7:5711-5723. [PMID: 23755838 DOI: 10.1021/nn305767t] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Vertically aligned one-dimensional hybrid structures, which are composed of apatite and graphitic structures, can be beneficial for orthopedic applications. However, they are difficult to generate using the current method. Here, we report the first synthesis of a single-crystal apatite nanowire encapsulated in graphitic shells by a one-step chemical vapor deposition. Incipient nucleation of apatite and its subsequent transformation to an oriented crystal are directed by derived gaseous phosphorine. Longitudinal growth of the oriented apatite crystal is achieved by a vapor-solid growth mechanism, whereas lateral growth is suppressed by the graphitic layers formed through arrangement of the derived aromatic hydrocarbon molecules. We show that this unusual combination of the apatite crystal and the graphitic shells can lead to an excellent osteogenic differentiation and bony fusion through a programmed smart behavior. For instance, the graphitic shells are degraded after the initial cell growth promoted by the graphitic nanostructures, and the cells continue proliferation on the bare apatite nanowires. Furthermore, a bending experiment indicates that such core-shell nanowires exhibited a superior bending stiffness compared to single-crystal apatite nanowires without graphitic shells. The results suggest a new strategy and direction for bone grafting materials with a highly controllable morphology and material conditions that can best stimulate bone cell differentiation and growth.
Collapse
Affiliation(s)
- Namjo Jeong
- Energy Materials and Convergence Research Department, Korea Institute of Energy Research, 71-2 Jang-dong, Yuseong-gu, Daejeon 305-343, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
58
|
A structural and functional model for human bone sialoprotein. J Mol Graph Model 2012; 39:108-17. [PMID: 23261880 DOI: 10.1016/j.jmgm.2012.10.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/24/2012] [Accepted: 10/25/2012] [Indexed: 11/22/2022]
Abstract
Human bone sialoprotein (BSP) is an essential component of the extracellular matrix of bone. It is thought to be the primary nucleator of hydroxyapatite crystallization, and is known to bind to hydroxyapatite, collagen, and cells. Mature BSP shows extensive post-translational modifications, including attachment of glycans, sulfation, and phosphorylation, and is highly flexible with no specific 2D or 3D structure in solution or the solid state. These features have severely limited the experimental characterization of the structure of this protein. We have therefore developed a 3D structural model for BSP, based on the available literature data, using molecular modelling techniques. The complete model consists of 301 amino acids, including six phosphorylated serines and two sulfated tyrosines, plus 92 N- and O-linked glycan residues. A notable feature of the model is a large acidic patch that provides a surface for binding Ca(2+) ions. Density functional theory quantum calculations with an implicit solvent model indicate that Ca(2+) ions are bound most strongly by the phosphorylated serines within BSP, along with reasonably strong binding to Asp and Glu, but weak binding to His and sulfated tyrosine. The process of early hydroxyapatite nucleation has been studied by molecular dynamics on an acidic surface loop of the protein; the results suggest that the cationic nature of the loop promotes nucleation by attracting Ca(2+) ions, while its flexibility allows for their rapid self-assembly with PO(4)(3-) ions, rather than providing a regular template for crystallization. The binding of a hydroxyapatite crystal at the protein's acidic patch has also been modelled. The relationships between hydroxyapatite, collagen and BSP are discussed.
Collapse
|
59
|
In vitromineralization and bone osteogenesis in poly(ε-caprolactone)/gelatin nanofibers. J Biomed Mater Res A 2012; 100:3008-19. [DOI: 10.1002/jbm.a.34233] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/09/2012] [Accepted: 04/23/2012] [Indexed: 11/07/2022]
|
60
|
Wang K, Zhou C, Hong Y, Zhang X. A review of protein adsorption on bioceramics. Interface Focus 2012; 2:259-77. [PMID: 23741605 DOI: 10.1098/rsfs.2012.0012] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 02/28/2012] [Indexed: 11/12/2022] Open
Abstract
Bioceramics, because of its excellent biocompatible and mechanical properties, has always been considered as the most promising materials for hard tissue repair. It is well know that an appropriate cellular response to bioceramics surfaces is essential for tissue regeneration and integration. As the in vivo implants, the implanted bioceramics are immediately coated with proteins from blood and body fluids, and it is through this coated layer that cells sense and respond to foreign implants. Hence, the adsorption of proteins is critical within the sequence of biological activities. However, the biological mechanisms of the interactions of bioceramics and proteins are still not well understood. In this review, we will recapitulate the recent studies on the bioceramic-protein interactions.
Collapse
Affiliation(s)
- Kefeng Wang
- National Engineering Research Center for Biomaterials , Sichuan University , 610064 Chengdu , People's Republic of China
| | | | | | | |
Collapse
|
61
|
Wang K, Leng Y, Lu X, Ren F, Ge X, Ding Y. Theoretical analysis of protein effects on calcium phosphate precipitation in simulated body fluid. CrystEngComm 2012. [DOI: 10.1039/c2ce25216c] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
62
|
Schrier SB, Sayeg MK, Gray JJ. Prediction of calcite morphology from computational and experimental studies of mutations of a de novo-designed peptide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:11520-11527. [PMID: 21797243 DOI: 10.1021/la201904k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Many organisms use macromolecules, often proteins or peptides, to control the growth of inorganic crystals into complex materials. The ability to model peptide-mineral interactions accurately could allow for the design of novel peptides to produce materials with desired properties. Here, we tested a computational algorithm developed to predict the structure of peptides on mineral surfaces. Using this algorithm, we analyzed energetic and structural differences between a 16-residue peptide (bap4) designed to interact with a calcite growth plane and single- and double-point mutations of the charged residues. Currently, no experimental method is available to resolve the structures of proteins on solid surfaces, which precludes benchmarking for computational models. Therefore, to test the models, we chemically synthesized each peptide and analyzed its effects on calcite crystal growth. Whereas bap4 affected the crystal growth by producing heavily stepped corners and edges, point mutants had variable influences on morphology. Calculated residue-specific binding energies correlated with experimental observations; point mutations of residues predicted to be crucial to surface interactions produced morphologies most similar to unmodified calcite. These results suggest that peptide conformation plays a role in mineral interactions and that the computational model supplies valid energetic and structural data that can provide information about expected crystal morphology.
Collapse
Affiliation(s)
- Sarah B Schrier
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | |
Collapse
|
63
|
Recombinant hBMP4 incorporated with non-canonical amino acid for binding to hydroxyapatite. Biotechnol Lett 2011; 33:1885-90. [DOI: 10.1007/s10529-011-0637-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 04/19/2011] [Indexed: 12/30/2022]
|
64
|
Gomes S, Numata K, Leonor IB, Mano JF, Reis RL, Kaplan DL. AFM study of morphology and mechanical properties of a chimeric spider silk and bone sialoprotein protein for bone regeneration. Biomacromolecules 2011; 12:1675-85. [PMID: 21370930 DOI: 10.1021/bm2000605] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Atomic force microscopy (AFM) was used to assess a new chimeric protein consisting of a fusion protein of the consensus repeat for Nephila clavipes spider dragline protein and bone sialoprotein (6mer+BSP). The elastic modulus of this protein in film form was assessed through force curves, and film surface roughness was also determined. The results showed a significant difference among the elastic modulus of the chimeric silk protein, 6mer+BSP, and control films consisting of only the silk component (6mer). The behavior of the 6mer+BSP and 6mer proteins in aqueous solution in the presence of calcium (Ca) ions was also assessed to determine interactions between the inorganic and organic components related to bone interactions, anchoring, and biomaterial network formation. The results demonstrated the formation of protein networks in the presence of Ca(2+) ions, characteristics that may be important in the context of controlling materials assembly and properties related to bone formation with this new chimeric silk-BSP protein.
Collapse
Affiliation(s)
- Sílvia Gomes
- Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
| | | | | | | | | | | |
Collapse
|
65
|
Yang Y, Mkhonto D, Cui Q, Sahai N. Theoretical Study of Bone Sialoprotein in Bone Biomineralization. Cells Tissues Organs 2011; 194:182-7. [DOI: 10.1159/000324648] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
66
|
How to control the size and morphology of apatite nanocrystals in bone. Proc Natl Acad Sci U S A 2010; 107:22369-70. [PMID: 21169505 DOI: 10.1073/pnas.1017493108] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|