Hanrahan JP, Copley MP, Ziegler KJ, Spalding TR, Morris MA, Steytler DC, Heenan RK, Schweins R, Holmes JD. Pore size engineering in mesoporous silicas using supercritical CO2.
LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005;
21:4163-4167. [PMID:
15835989 DOI:
10.1021/la0470636]
[Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this paper we investigate the use of supercritical carbon dioxide (sc-CO(2)) for synthesizing calcined mesoporous silicas with tunable pore sizes, wall thickness, and d spacings. Small angle neutron scattering was used to probe the controlled swelling of the triblock copolymer surfactant templating agents, P123 (PEO(20)PPO(69)PEO(20)), P85 (PEO(26)PPO(39)PEO(26)), and F127 (PEO(106)PPO(70)PEO(106)), as a function of CO(2) pressure. The transition from the liquid crystal phase to the calcined mesoporous silicas, formed upon condensation and drying, was also studied in detail. Powder X-ray diffraction, transmission electron microscopy, and nitrogen adsorption techniques were used to establish pore diameters, silica wall widths, and the hexagonal packing of the pores within the calcined silicas. Using a direct templating method, the diameters of mesopores and the spacing between the pores could be tuned with a high level of precision. The swelling process was observed to have no detrimental effects on the quality of silica formed, a distinct advantage over conventional swelling techniques, and all of the silicas synthesized in this study were highly ordered over distances of at least 2000 A.
Collapse