51
|
Kim HJ, Peng X, Shin Y, Hillmyer MA, Ellison CJ. Blend Miscibility of Poly(ethylene terephthalate) and Aromatic Polyesters from Salicylic Acid. J Phys Chem B 2021; 125:450-460. [PMID: 33400517 DOI: 10.1021/acs.jpcb.0c09322] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Poly(ethylene terephthalate) (PET) is one of the most prevalent polymers in the world due to its combined thermal, mechanical, and gas barrier attributes. Blending PET with other polymers is an appealing strategy to further tailor properties to meet the needs of an even more diverse range of applications. Most blends with PET are macrophase-separated; only a few miscible systems have been reported. Here, the miscibility of the aromatic polyesters poly(salicylic glycolide) (PSG) and poly(salicylic methyl glycolide) (PSMG) with PET is described. Both PSG and PSMG have similar chemical structures to PET but are derived from sustainable resources and readily degradable. This study suggests that they are fully miscible with PET over the entire composition range, which is attributed to favorable interactions with PET. Negative polymer-polymer interaction parameters (χ) were determined using Flory-Huggins theory to describe melting temperature variations in the blends. In addition, the PET blends showed mechanical properties that are intermediate between the two homopolymers.
Collapse
Affiliation(s)
- Hee Joong Kim
- Department of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota 55455-0132, United States
| | - Xiayu Peng
- Department of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota 55455-0132, United States
| | - Youngsu Shin
- Department of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota 55455-0132, United States
| | - Marc A Hillmyer
- Department of Chemistry, University of Minnesota, 207 Pleasant St SE, Minneapolis, Minnesota 55455-0431, United States
| | - Christopher J Ellison
- Department of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota 55455-0132, United States
| |
Collapse
|
52
|
Wang Z, Gao K, Kan Y, Zhang M, Qiu C, Zhu L, Zhao Z, Peng X, Feng W, Qian Z, Gu X, Jen AKY, Tang BZ, Cao Y, Zhang Y, Liu F. The coupling and competition of crystallization and phase separation, correlating thermodynamics and kinetics in OPV morphology and performances. Nat Commun 2021; 12:332. [PMID: 33436619 PMCID: PMC7804468 DOI: 10.1038/s41467-020-20515-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/03/2020] [Indexed: 01/07/2023] Open
Abstract
The active layer morphology transition of organic photovoltaics under non-equilibrium conditions are of vital importance in determining the device power conversion efficiency and stability; however, a general and unified picture on this issue has not been well addressed. Using combined in situ and ex situ morphology characterizations, morphological parameters relating to kinetics and thermodynamics of morphology evolution are extracted and studied in model systems under thermal annealing. The coupling and competition of crystallization and demixing are found to be critical in morphology evolution, phase purification and interfacial orientation. A unified model summarizing different phase diagrams and all possible kinetic routes is proposed. The current observations address the fundamental issues underlying the formation of the complex multi-length scale morphology in bulk heterojunction blends and provide useful morphology optimization guidelines for processing devices with higher efficiency and stability.
Collapse
Affiliation(s)
- Zaiyu Wang
- Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China.,Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, 999077, Kowloon, Hong Kong, China
| | - Ke Gao
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA.
| | - Yuanyuan Kan
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Ming Zhang
- Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Chaoqun Qiu
- Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Lei Zhu
- Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Zhe Zhao
- Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Xiaobin Peng
- State Key Lab of Luminescent Materials and Devices, South China University of Technology, 510640, Guangzhou, China
| | - Wei Feng
- State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials Company, 256401, Zibo, Shandong, China
| | - Zhiyuan Qian
- School of Polymer Science and Engineering, Center for Optoelectronic Materials and Devices, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Xiaodan Gu
- School of Polymer Science and Engineering, Center for Optoelectronic Materials and Devices, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Alex K-Y Jen
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA. .,Department of Chemistry, City University of Hong Kong, 999077, Kowloon, Hong Kong, China.
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, 999077, Kowloon, Hong Kong, China
| | - Yong Cao
- State Key Lab of Luminescent Materials and Devices, South China University of Technology, 510640, Guangzhou, China
| | - Yongming Zhang
- Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Feng Liu
- Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China.
| |
Collapse
|
53
|
Wang Q, Li M, Peng Z, Kirby N, Deng Y, Ye L, Geng Y. Calculation aided miscibility manipulation enables highly efficient polythiophene:nonfullerene photovoltaic cells. Sci China Chem 2021. [DOI: 10.1007/s11426-020-9890-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
54
|
Sharma J, Singh B, Agrawal AK, Bansal AK. Correlationship of Drug-Polymer Miscibility, Molecular Relaxation and Phase Behavior of Dipyridamole Amorphous Solid Dispersions. J Pharm Sci 2020; 110:1470-1479. [PMID: 33333143 DOI: 10.1016/j.xphs.2020.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 01/20/2023]
Abstract
In present work, a correlationship among quantitative drug-polymer miscibility, molecular relaxation and phase behavior of the dipyridamole (DPD) amorphous solid dispersions (ASDs), prepared with co-povidone (CP), hydroxypropyl methylcellulose phthalate (HPMC P) and hydroxypropyl methylcellulose acetate succinate (HPMC AS) has been investigated. Miscibility predicted using melting point depression approach for DPD with CP, HPMC P and HPMC AS at 25 °C was 0.93% w/w, 0.55% w/w and 0.40% w/w, respectively. Stretched relaxation time (τβ) for DPD ASDs, measured using modulated differential scanning calorimetry (MDSC) at common degree of undercooling, was in the order of DPD- CP > DPD-HPMC P > DPD-HPMC AS ASDs. Phase behavior of 12 months aged (25 ± 5 °C and 0% RH) spray dried 60% w/w ASDs was tracked using MDSC. Initial ASD samples had homogeneous phase revealed by single glass transition temperature (Tg) in the MDSC. MDSC study of aged ASDs revealed single-phase DPD-CP ASD, amorphous-amorphous and amorphous-crystalline phase separated DPD-HPMC P and DPD-HPMC AS ASDs, respectively. The results were supported by X-ray micro computed tomography and confocal laser scanning microscopy studies. This study demonstrated a profound influence of drug-polymer miscibility on molecular mobility and phase behavior of ASDs. This knowledge can help in designing "physical stable" ASDs.
Collapse
Affiliation(s)
- Jagadish Sharma
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar, Punjab, 160062, India
| | - Balwant Singh
- Technical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Ashish Kumar Agrawal
- Technical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Arvind K Bansal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar, Punjab, 160062, India.
| |
Collapse
|
55
|
Affiliation(s)
- Maria Laura Di Lorenzo
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council (CNR), Pozzuoli, Italy
| |
Collapse
|
56
|
Li J, Wang Y, Wang Z, Wang J, Wu D. Surface chain engineering of chitin nanocrystals towards tailoring the nucleating capacities for poly(β-hydroxybutyrate). Int J Biol Macromol 2020; 166:967-976. [PMID: 33144256 DOI: 10.1016/j.ijbiomac.2020.10.253] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/30/2020] [Indexed: 11/24/2022]
Abstract
Chitin nanocrystal (ChNC) is good nucleation agent for aliphatic polyesters because of its high-energy surface. To moderate its nucleation activity, silane coupling agents with different chain lengths or functional groups were used to modify ChNCs in this work, and biodegradable poly(β-hydroxybutyrate) (PHB) was used as target polymer for crystallization study. Surface coupling of ChNCs improves their phase adhesion to PHB chain and weakens their nucleation activities. The alterations strongly depend on the surface chain structure of ChNCs: sulfhydryl silane-coupled ChNC shows lowered nucleation activity, whereas amino silane-coupled ChNCs even become antinucleation agents. The interfacial compatibility is vital to altered role of ChNCs and to following changes in spherulite growth and ring-banded morphology, which is further disclosed using Flory-Huggins interaction parameters and rheological responses as probes. This work provides useful information on tailoring the functions of ChNCs as nanoadditive for biodegradable aliphatic polyesters by the way of surface chain engineering.
Collapse
Affiliation(s)
- Jia Li
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Yuankun Wang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Zhifeng Wang
- Testing Center, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Jun Wang
- Jinsen Photoelectric Material Co. Ltd., Yangzhou, Jiangsu Province 225009, PR China
| | - Defeng Wu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China; Provincial Key Laboratories of Environmental Materials & Engineering, Yangzhou, Jiangsu Province 225002, PR China.
| |
Collapse
|
57
|
Mamun A. Advance application of Raman spectroscopy for quantitative analysis of noncrystalline components in thin films of poly(ε‐caprolactone)/poly(butadiene) blends. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Al Mamun
- Department of Physics College of Science, University of Hafr Al Batin Al Jamiah Hafr Al Batin 39524 Saudi Arabia
| |
Collapse
|
58
|
Mamun A. Effect of acrylonitrile content of
SAN
on the bending morphology and its quantitative variation inside crystals of
PCL
/
SAN
blends confined in thin films. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Al Mamun
- Department of Physics, College of Science University of Hafr Al Batin Hafr Al Batin Saudi Arabia
| |
Collapse
|
59
|
Chmiel K, Knapik-Kowalczuk J, Paluch M. Isochronal Conditions-The Key To Maintain the Given Solubility Limit, of a Small Molecule within the Polymer Matrix, at Elevated Pressure. Mol Pharm 2020; 17:3730-3739. [PMID: 32790413 PMCID: PMC7539297 DOI: 10.1021/acs.molpharmaceut.0c00463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 12/16/2022]
Abstract
In this work, we proposed the method to maintain the desired level of drug's solubility within the polymer matrix by adjusting conditions to uphold the same molecular dynamics of the system (e.g., temperature for set elevated pressure or vice versa). Namely, we observed, that recrystallization of the drug from the supersaturated drug-polymer system, initiated for the same structural relaxation time of the sample (τα-1) ceases when certain, different than the initial, molecular mobility of the systems is reached (τα-2)-regardless of a given combination of temperature and pressure conditions. Based on the presented results, one can conclude that the molecular dynamics seem to control the process of recrystallization of the excess amount of solute from the supersaturated solution (e.g., small molecules dissolved within the polymer). Therefore, it appears that the elevated pressure compensates the effect of solubility enhancement caused by the elevated temperature. Such information not only is of fundamental relevance in science but also, from a much broader perspective, could be potentially very useful considering extrusion-based manufacturing methods.
Collapse
Affiliation(s)
- Krzysztof Chmiel
- Faculty
of Science and Technology, Institute of Physics, University of Silesia, SMCEBI, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Justyna Knapik-Kowalczuk
- Faculty
of Science and Technology, Institute of Physics, University of Silesia, SMCEBI, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Marian Paluch
- Faculty
of Science and Technology, Institute of Physics, University of Silesia, SMCEBI, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| |
Collapse
|
60
|
Non-Isothermal Crystallization Behavior of Poly(vinylidene fluoride) in Dialkyl Phthalate Diluents during Thermally Induced Phase Separation Process. CRYSTALS 2020. [DOI: 10.3390/cryst10090782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The non-isothermal crystallization behavior of poly(vinylidene fluoride) (PVDF) in dialkyl phthalate diluents during the thermally induced phase separation (TIPS) process was investigated by differential scanning calorimetry (DSC) at various cooling rates. Dialkyl phthalates with different alkyl chain-length, namely dimethyl phthalate (DMP), diethyl phthalate (DEP) and dibutyl phthalate (DBP), were used as the diluent. The effects of alkyl chain-length of dialkyl phthalate and cooling rate on the non-isothermal crystallization behavior as implied by the Avrami analysis modified by Jeziorny and Mo’s analysis were determined. The values of half-time, t1/2, and the parameters Zc and F(t), which characterized the kinetics of non-isothermal crystallization, showed that the crystallization rate increased with the increase of the alkyl chain-length of dialkyl phthalate due to the lower compatibility between PVDF and dialkyl phthalate. Moreover, the alkyl chain-length of dialkyl phthalate also has a great impact on the compact spherulitic structure of PVDF membranes prepared from different PVDF/dialkyl phthalate blends. With the decrease of the alkyl chain-length of dialkyl phthalate, the number of spherulites increased and the size of spherulites became smaller. This research thus not only proves the effects of alkyl chain-length of dialkyl phthalate on the non-isothermal crystallization behavior of PVDF, but also provides a systematic strategy to evaluate a single diluent during the TIPS process.
Collapse
|
61
|
Alghamdi AA, Alattas H, Saeed WS, Al-Odayni AB, Alrahlah A, Aouak T. Preparation and Characterization of Poly(ethylene- co-vinyl alcohol)/poly(ε-caprolactone) Blend for Bioscaffolding Applications. Int J Mol Sci 2020; 21:ijms21165881. [PMID: 32824305 PMCID: PMC7461558 DOI: 10.3390/ijms21165881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/05/2020] [Accepted: 08/14/2020] [Indexed: 11/16/2022] Open
Abstract
In order to improve the cell adhesion on poly(ε-caprolactone) (PCL) scaffolds, poly(ethylene-co-vinyl alcohol) (E-VAL) which has hydroxyl groups capable of developing hydrogen bonds with celling was blended with this polymer. To reach this goal, a series of E-VAL/PCL blends with different compositions were prepared by the solvent casting method. The miscibility of the polymer blend was proved by differential scanning calorimetry and Fourier-transform infrared spectroscopy spectrometry. Furthermore, the mechanical properties of the polymer blends were assessed in their wet state by dynamic mechanical analysis. The surfaces wettability of blends and their components were examined through static contact angle measurements. The pore interconnections in the resulted scaffolds were achieved by the incorporation of naphthalene microparticles which were used as porogen and then removed in its gas state by sublimation under reduced pressure. The presence of pores interconnected inside the polymeric materials and their surface morphologies was examined by scanning electron microscopy. The in-vitro cytotoxicity and cell adhesion on the prepared materials were examined by an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay.
Collapse
Affiliation(s)
- Abdulaziz Ali Alghamdi
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.A.); (H.A.)
| | - Hussain Alattas
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.A.); (H.A.)
| | - Waseem Sharaf Saeed
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (A.-B.A.-O.); (A.A.)
- Correspondence: (W.S.S.); (T.A.)
| | - Abdel-Basit Al-Odayni
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (A.-B.A.-O.); (A.A.)
| | - Ali Alrahlah
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (A.-B.A.-O.); (A.A.)
- Restorative Dental Sciences Department, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | - Taieb Aouak
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.A.); (H.A.)
- Correspondence: (W.S.S.); (T.A.)
| |
Collapse
|
62
|
Grimann M, Ueberschaer R, Tatarov E, Fuhrmann-Lieker T. Phase Separation and Nanostructure Formation in Binary and Ternary Blends of Spiro-Linked Molecular Glasses. J Phys Chem B 2020; 124:5507-5516. [PMID: 32496773 DOI: 10.1021/acs.jpcb.0c02360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding phase separation phenomena in blends of organic electron acceptor and donor materials is of special interest in the context of organic optoelectronic applications. In this study, we focus on the phase behavior of a special class of spiro-linked compounds, which serve as model systems for morphological control in phase-separated small-molecule electron donor-acceptor blends. Thermal analysis and quantitative image analysis were the key techniques for developing a suitable approach for modeling the phase diagram with minimal material consumption. We report an uncommon miscibility gap in the liquid and glassy phase and show that the phase diagram can be modified by addition of a third, ambipolar compound in analogy to ternary A/B/AB polymeric blends. For an exemplary ternary system, a bicontinuous morphology with a pattern length scale of a few tens of nanometers was realized in the bulk that verifies the applicability of this approach to morphology control.
Collapse
Affiliation(s)
- Michael Grimann
- Macromolecular Chemistry and Molecular Materials, Institute of Chemistry and Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel, Heinrich-Plett-Strasse 40, 34109 Kassel, Germany
| | - Roman Ueberschaer
- Macromolecular Chemistry and Molecular Materials, Institute of Chemistry and Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel, Heinrich-Plett-Strasse 40, 34109 Kassel, Germany
| | - Evgeny Tatarov
- Macromolecular Chemistry and Molecular Materials, Institute of Chemistry and Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel, Heinrich-Plett-Strasse 40, 34109 Kassel, Germany
| | - Thomas Fuhrmann-Lieker
- Macromolecular Chemistry and Molecular Materials, Institute of Chemistry and Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel, Heinrich-Plett-Strasse 40, 34109 Kassel, Germany
| |
Collapse
|
63
|
Chang R, Lata R, Rohindra D. Study of mechanical, enzymatic degradation and antimicrobial properties of poly(butylene succinate)/pine-resin blends. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-019-02938-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
64
|
Angunawela I, Nahid MM, Ghasemi M, Amassian A, Ade H, Gadisa A. The Critical Role of Materials' Interaction in Realizing Organic Field-Effect Transistors Via High-Dilution Blending with Insulating Polymers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:26239-26249. [PMID: 32410453 DOI: 10.1021/acsami.0c04208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
High-performance low-band-gap polymer semiconductors are visibly colored, making them unsuitable for transparent and imperceptible electronics without reducing film thickness to the nanoscale range. Herein, we demonstrate polymer/insulator blends exhibiting favorable miscibility that improves the transparency and carrier transport in an organic field-effect transistor (OFET) device. The mesoscale structures leading to more efficient charge transport in ultrathin films relevant to the realization of transparent and flexible electronic applications are explored based on thermodynamic material interaction principles in conjunction with optical and morphological studies. By blending the commodity polymer polystyrene (PS) with two high-performing polymers, PDPP3T and P (NDI2OD-T2) (known as N2200), a drastic difference in morphology and fiber network are observed due to considerable differences in the degree of thermodynamic interaction between the conjugated polymers and PS. Intrinsic material interaction behavior establishes a long-range intermolecular interaction in the PDPP3T polymer fibrillar network dispersed in the majority (80%) PS matrix resulting in a ca. 3-fold increased transistor hole mobility of 1.15 cm2 V-1 s-1 (highest = 1.5 cm2 V-1 s-1) as compared to the pristine material, while PS barely affects the electron mobility in N2200. These basic findings provide important guidelines to achieve high mobility in transparent OFETs.
Collapse
Affiliation(s)
- Indunil Angunawela
- Department of Physics, Organic and Carbon Electronics Labs (ORaCEL), North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Masrur M Nahid
- Department of Physics, Organic and Carbon Electronics Labs (ORaCEL), North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Masoud Ghasemi
- Department of Materials Science and Engsineering, Organic and Carbon Electronics Labs (ORaCEL), North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Aram Amassian
- Department of Materials Science and Engsineering, Organic and Carbon Electronics Labs (ORaCEL), North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Harald Ade
- Department of Physics, Organic and Carbon Electronics Labs (ORaCEL), North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Abay Gadisa
- Department of Physics, Organic and Carbon Electronics Labs (ORaCEL), North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
65
|
Wang J, Ding M, Cheng X, Ye C, Li F, Li Y, You J. Hierarchically porous membranes with isolated-round-pores connected by narrow-nanopores: A novel solution for trade-off effect in separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
66
|
Jha DK, Shah DS, Amin PD. Thermodynamic aspects of the preparation of amorphous solid dispersions of Naringenin with enhanced dissolution rate. Int J Pharm 2020; 583:119363. [DOI: 10.1016/j.ijpharm.2020.119363] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 01/01/2023]
|
67
|
Inducing β phase crystallinity of PVDF homopolymer, blends and block copolymers by anti-solvent crystallization. J Fluor Chem 2020. [DOI: 10.1016/j.jfluchem.2020.109522] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
68
|
Olmedo-Martínez JL, Porcarelli L, Alegría Á, Mecerreyes D, Müller AJ. High Lithium Conductivity of Miscible Poly(ethylene oxide)/Methacrylic Sulfonamide Anionic Polyelectrolyte Polymer Blends. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00703] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jorge L. Olmedo-Martínez
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018 Donostia-San Sebastián, Spain
| | - Luca Porcarelli
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018 Donostia-San Sebastián, Spain
- ARC Centre of Excellence for Electromaterials Science and Institute for Frontier Materials, Deakin University, Melbourne 3125, Australia
| | - Ángel Alegría
- Materials Physics Center, CSIC-UPV/EHU, Paseo Manuel Lardizábal 5, San Sebastian 20018, Spain
- Departamento de Física de Materiales, University of the Basque Country (UPV/EHU), Apartado 1072, San Sebastián 20080, Spain
| | - David Mecerreyes
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Alejandro J. Müller
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
69
|
Xu Y, Qin J, Zhang X, Shen J, Guo S, Sue HJ. Enhancing scratch damage resistance of PMMA via layer assembly with PVDF: Numerical modeling prediction and experimental verification. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
70
|
Development of double porous poly (ε - caprolactone)/chitosan polymer as tissue engineering scaffold. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 107:110257. [DOI: 10.1016/j.msec.2019.110257] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 12/24/2022]
|
71
|
Gao M, Liang Z, Geng Y, Ye L. Significance of thermodynamic interaction parameters in guiding the optimization of polymer:nonfullerene solar cells. Chem Commun (Camb) 2020; 56:12463-12478. [PMID: 32969427 DOI: 10.1039/d0cc04869k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Polymer solar cells (PSCs) based on polymer donors and nonfullerene small molecule acceptors are a very attractive technology for solar energy conversion, and their performance is heavily determined by film morphology. It is of considerable interest to reveal instructive morphology-performance relationships of these blends. This feature article discusses the recent advances in analysing the morphology formation of nonfullerene PSCs with an effective polymer thermodynamic quantity, i.e., Flory-Huggins interaction parameter χ. In particular, guidelines of high and low χ systems are summarized. The fundamental understanding of χ and its correlations to film morphology and photovoltaic device parameters is of utmost relevance for providing essential material design criteria, establishing suitable morphology processing guidelines, and thus advancing the practical applications of PSCs based on nonfullerene acceptors.
Collapse
Affiliation(s)
- Mengyuan Gao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300350, China.
| | - Ziqi Liang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300350, China.
| | - Yanhou Geng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300350, China.
| | - Long Ye
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300350, China. and State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
72
|
Jimenez AM, Krauskopf AA, Pérez-Camargo RA, Zhao D, Pribyl J, Jestin J, Benicewicz BC, Müller AJ, Kumar SK. Effects of Hairy Nanoparticles on Polymer Crystallization Kinetics. Macromolecules 2019; 52:9186-9198. [PMID: 31866692 PMCID: PMC6906929 DOI: 10.1021/acs.macromol.9b01380] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/10/2019] [Indexed: 01/27/2023]
Abstract
We previously showed that nanoparticles (NPs) could be ordered into structures by using the growth rate of polymer crystals as the control variable. In particular, for slow enough spherulitic growth fronts, the NPs grafted with amorphous polymer chains are selectively moved into the interlamellar, interfibrillar, and interspherulitic zones of a lamellar morphology, specifically going from interlamellar to interspherulitic with progressively decreasing crystal growth rates. Here, we examine the effect of NP polymer grafting density on crystallization kinetics. We find that while crystal nucleation is practically unaffected by the presence of the NPs, spherulitic growth, final crystallinity, and melting point values decrease uniformly as the volume fraction of the crystallizable polymer, poly(ethylene oxide) or PEO, ϕPEO, decreases. A surprising aspect here is that these results are apparently unaffected by variations in the relative amounts of the amorphous polymer graft and silica NPs at constant ϕ, implying that chemical details of the amorphous defect apparently only play a secondary role. We therefore propose that the grafted NPs in this size range only provide geometrical confinement effects which serve to set the crystal growth rates and melting point depressions without causing any changes to crystallization mechanisms.
Collapse
Affiliation(s)
- Andrew M Jimenez
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Alejandro A Krauskopf
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Ricardo A Pérez-Camargo
- POLYMAT and Department of Polymer Science and Technology, Faculty of Chemistry, Basque Country University UPV/EHU, Paseo Lardizabal 3, 20018, Donostia-San Sebastián, Spain
| | - Dan Zhao
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Julia Pribyl
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Jacques Jestin
- Laboratoire Léon Brillouin, CEA Saclay, 91191 Gif-Sur-Yvette, France
| | - Brian C Benicewicz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Alejandro J Müller
- POLYMAT and Department of Polymer Science and Technology, Faculty of Chemistry, Basque Country University UPV/EHU, Paseo Lardizabal 3, 20018, Donostia-San Sebastián, Spain.,Ikerbasque, Basque Science Foundation, Bilbao, Spain
| | - Sanat K Kumar
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
73
|
Li F, Zhang Y, Zhao X, Chen Q, Li Y, You J. Graft ratio: Quantitative measurement and direct evidence for its blending sequence dependence during reactive compatibilization in PVDF/PLLA. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121970] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
74
|
Multiple-Step Melting/Irradiation: A Strategy to Fabricate Thermoplastic Polymers with Improved Mechanical Performance. Polymers (Basel) 2019; 11:polym11111812. [PMID: 31694160 PMCID: PMC6918411 DOI: 10.3390/polym11111812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 01/23/2023] Open
Abstract
To fabricate thermoplastic polymers exhibiting improved ductility without the loss of strength, a novel multiple-step melting/irradiation (MUSMI) strategy was developed by taking poly(vinylidene fluoride)/triallyl isocyanate (PVDF/TAIC) as an example, in which alternate melting and irradiation were adopted and repeated for several times. The initial irradiation with a low dose produced some local crosslinked points (not 3-dimensional network). When the specimen was reheated above the melting temperature, they redistributed in the PVDF matrix, which is an efficient way to avoid the high crosslinking density at certain positions and the disappearance of thermoplastic properties. During the subsequent cooling process, the crosslinked domains in the thermoplastic polymer matrix is expected to play double roles in turning crystal structures for enhancing the ductility without reducing strength. On one hand, they can act as heterogeneous nucleation agents, resulting in higher nucleation density and smaller spherulites; on the other hand, the existence of crosslinked structures restricts the lamellar thickening, accounting for the thinner crystal lamellae. Both smaller spherulites and thinner lamellae contribute to better ductility. At the same time, these local crosslinked points enhance the connectivity of crystal structures (including lamellae and spherulites), which is beneficial to the improvement of strength. Based on the influence of local crosslinked points on the ductility and strength, thermoplastic PVDF with much higher elongation at break and comparable yielding stress (relative to the reference specimen upon strong irradiation only once) was prepared via MUSMI successfully.
Collapse
|
75
|
Xu Y, Li D, Shen J, Guo S, Sue HJ. Scratch damage behaviors of PVDF/PMMA multilayered materials: Experiments and finite element modeling. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
76
|
Xie K, Shen J, Ye L, Liu Z, Li Y. Increased gt Conformer Contents of PLLA Molecular Chains Induced by Li-TFSI in Melt: Another Route to Promote PLLA Crystallization. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01188] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kangyuan Xie
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, People’s Republic of China
| | - Jieqing Shen
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, People’s Republic of China
| | - Lijun Ye
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, People’s Republic of China
| | - Zhiyong Liu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, People’s Republic of China
| | - Yongjin Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, People’s Republic of China
| |
Collapse
|
77
|
Zhang L, Yi N, Zhou W, Yu Z, Liu F, Chen Y. Miscibility Tuning for Optimizing Phase Separation and Vertical Distribution toward Highly Efficient Organic Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900565. [PMID: 31406670 PMCID: PMC6685468 DOI: 10.1002/advs.201900565] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/02/2019] [Indexed: 06/10/2023]
Abstract
Blending multidonor or multiacceptor organic materials as ternary devices has been recognized as an efficient and potential method to improve the power conversion efficiency of bulk heterojunction devices or single-junction components in tandem design. In this work, a highly crystalline molecule, DRCN5T, is involved into a PTB7-Th:PC70BM system to fabricate large-area organic solar cells (OSCs) whose blend film thickness is up to 270 nm, achieving an impressive performance of 11.1%. The significant improvement of OSCs after adding DRCN5T is due to the formation of an interconnected fibrous network with decreased π-π stacking and enhanced domain purity, in addition to the optimized vertical distribution of PTB7-Th and PC70BM, producing more effective charge separation, transport, and collection. The optimized morphology and performance are actually determined by the miscibility in different components, which can be quantitatively described by the Flory-Huggins interaction parameter of -0.80 and 2.94 in DRCN5T:PTB7-Th and DRCN5T:PC70BM blends, respectively. The findings in this work can potentially guide the selection of an appropriate third additive for high-performance OSCs for the sake of large-area printing and roll-to-roll fabrication from the view of miscibility.
Collapse
Affiliation(s)
- Lifu Zhang
- College of ChemistryNanchang University999 Xuefu AvenueNanchang330031China
- Institute of Polymers and Energy Chemistry (IPEC)Nanchang University999 Xuefu AvenueNanchang330031China
| | - Nan Yi
- Institute of Polymers and Energy Chemistry (IPEC)Nanchang University999 Xuefu AvenueNanchang330031China
- School of Material Science and EngineeringNanchang University999 Xuefu AvenueNanchang330031China
| | - Weihua Zhou
- Institute of Polymers and Energy Chemistry (IPEC)Nanchang University999 Xuefu AvenueNanchang330031China
- School of Material Science and EngineeringNanchang University999 Xuefu AvenueNanchang330031China
| | - Zoukangning Yu
- Institute of Polymers and Energy Chemistry (IPEC)Nanchang University999 Xuefu AvenueNanchang330031China
- School of Material Science and EngineeringNanchang University999 Xuefu AvenueNanchang330031China
| | - Feng Liu
- School of Chemistry and Chemical EngineeringShanghai Jiaotong University800 DongchuanShanghai200240China
| | - Yiwang Chen
- College of ChemistryNanchang University999 Xuefu AvenueNanchang330031China
- Institute of Polymers and Energy Chemistry (IPEC)Nanchang University999 Xuefu AvenueNanchang330031China
| |
Collapse
|
78
|
Chmiel K, Knapik-Kowalczuk J, Paluch M. How does the high pressure affects the solubility of the drug within the polymer matrix in solid dispersion systems. Eur J Pharm Biopharm 2019; 143:8-17. [PMID: 31398439 DOI: 10.1016/j.ejpb.2019.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/18/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022]
Abstract
In this paper, we employed Broadband Dielectric Spectroscopy (BDS) in order to determine the effect of the high pressure on the solubility limits of the amorphous flutamide within Kollidon VA64 matrix. In order to achieve this goal, drug-polymer systems have been examined: (i) at ambient pressure and both isothermal and nonisothermal conditions by means of BDS as well as Differential Scanning Calorimetry (DSC), to validate proposed method; (ii) at high pressure conditions (20 and 50 MPa) and elevated temperatures (343 K, 353 K and 363 K) by means of dielectric spectroscopy. Our studies revealed that regardless of applied pressure the solubility of the flutamide within the co-polymer matrix increases with increasing temperature at isobar conditions. Moreover, our results clearly indicate that with increasing pressure the solubility of the drug within the polymer matrix is decreasing at isothermal conditions. Therefore, during the solubility limit studies one should consider the situation in which by increasing the pressure (at constant temperature) would achieve an effect similar to the lowering of the temperature (at constant pressure).
Collapse
Affiliation(s)
- K Chmiel
- Institute of Physics, University of Silesia, ul. 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland; Silesian Center for Education and Interdisciplinary Research, ul. 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland.
| | - J Knapik-Kowalczuk
- Institute of Physics, University of Silesia, ul. 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland; Silesian Center for Education and Interdisciplinary Research, ul. 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - M Paluch
- Institute of Physics, University of Silesia, ul. 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland; Silesian Center for Education and Interdisciplinary Research, ul. 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| |
Collapse
|
79
|
Liu S, Chen D, Zhou W, Yu Z, Chen L, Liu F, Chen Y. Vertical Distribution to Optimize Active Layer Morphology for Efficient All-Polymer Solar Cells by J71 as a Compatibilizer. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00411] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
| | | | | | | | | | - Feng Liu
- School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China
| | | |
Collapse
|
80
|
Zhang KJ, Qiu ZB. Miscibility and Crystallization Behavior of Novel Branched Poly(ethylene succinate)/Poly(vinyl phenol) Blends. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2269-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
81
|
Blanchard A, Gouanvé F, Espuche E. Morphology, mechanical, and water transport properties of melt blended EVOH/PVOH films. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/polb.24840] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anthony Blanchard
- Ingénierie des Matériaux Polymères, UMR CNRS 5223Université de Lyon, Université Lyon 1 15 boulevard Latarjet, F‐69622 Lyon France
| | - Fabrice Gouanvé
- Ingénierie des Matériaux Polymères, UMR CNRS 5223Université de Lyon, Université Lyon 1 15 boulevard Latarjet, F‐69622 Lyon France
| | - Eliane Espuche
- Ingénierie des Matériaux Polymères, UMR CNRS 5223Université de Lyon, Université Lyon 1 15 boulevard Latarjet, F‐69622 Lyon France
| |
Collapse
|
82
|
Lee JE, Eom Y, Shin YE, Hwang SH, Ko HH, Chae HG. Effect of Interfacial Interaction on the Conformational Variation of Poly(vinylidene fluoride) (PVDF) Chains in PVDF/Graphene Oxide (GO) Nanocomposite Fibers and Corresponding Mechanical Properties. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13665-13675. [PMID: 30883081 DOI: 10.1021/acsami.8b22586] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Poly(vinylidene fluoride) (PVDF)/graphene oxide (GO) nanocomposite fibers were dry-jet wet spun at the GO concentrations of 0, 1, and 2 wt % with respect to the polymer. The as-spun fibers were drawn in the draw ratio (DR) range of 2-6.5, and the correlation between the PVDF chain conformation and the mechanical properties of the fibers upon drawing has been studied by two-dimensional correlation spectroscopy of Fourier-transformed infrared, wide-angle X-ray diffraction, differential scanning calorimetry, and tensile testing. The PVDF/GO nanocomposite fibers exhibited that the mobile PVDF crystals due to the conformational defects and kinks were nucleated because of the polar interaction between PVDF chains and functional groups of GO, whereas the control PVDF fiber showed the conventional conversion of crystal polymorphs (α and γ phases to β phase). As a result, the nanocomposite fiber showed dramatically improved toughness (enhanced by 1123% at a DR of 2 and 120% at a DR of 6.5) as compared to that of the control fiber. Furthermore, the tensile strength and modulus of the PVDF/GO (2 wt %) fiber were 394 MPa and 4.6 GPa, respectively, whereas those of the control PVDF fiber were 295 MPa and 3.9 GPa, respectively.
Collapse
|
83
|
Don TM, Li TS, Lai WC. Miscibility and flexibility of poly(lactic acid) blends with octadecenylsuccinic anhydride. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.01.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
84
|
Seraji SM, Guo Q. Nanophase morphology and crystallization in poly(vinylidene fluoride)/polydimethylsiloxane‐
block
‐poly(methyl methacrylate)‐
block
‐polystyrene blends. POLYM INT 2019. [DOI: 10.1002/pi.5796] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Seyed Mohsen Seraji
- Polymers Research Group, Institute for Frontier MaterialsDeakin University Geelong Victoria Australia
| | - Qipeng Guo
- Polymers Research Group, Institute for Frontier MaterialsDeakin University Geelong Victoria Australia
| |
Collapse
|
85
|
Jagtap S, Dalvi V, Sankar K, Ratna D. Shape memory properties and unusual optical behaviour of an interpenetrating network of poly(ethylene oxide) and poly(2‐hydroxyethyl methacrylate). POLYM INT 2019. [DOI: 10.1002/pi.5776] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Vishal Dalvi
- Naval Materials Research Laboratory Ambernath India
| | | | | |
Collapse
|
86
|
Wu H, Fan H, Xu S, Ye L, Guo Y, Yi Y, Ade H, Zhu X. Isomery-Dependent Miscibility Enables High-Performance All-Small-Molecule Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804271. [PMID: 30506976 DOI: 10.1002/smll.201804271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/21/2018] [Indexed: 06/09/2023]
Abstract
Nonfullerene polymer solar cells develop quickly. However, nonfullerene small-molecule solar cells (NF-SMSCs) still show relatively inferior performance, attributing to the lack of comprehensive understanding of the structure-performance relationship. To address this issue, two isomeric small-molecule acceptors, NBDTP-Fout and NBDTP-Fin , with varied oxygen position in the benzodi(thienopyran) (BDTP) core are designed and synthesized. When blended with molecular donor BDT3TR-SF, devices based on the two isomeric acceptors show disparate photovoltaic performance. Fabricated with an eco-friendly processing solvent (tetrahydrofuran), the BDT3TR-SF:NBDTP-Fout blend delivers a high power conversion efficiency of 11.2%, ranked to the top values reported to date, while the BDT3TR-SF:NBDTP-Fin blend almost shows no photovoltaic response (0.02%). With detailed investigations on inherent optoelectronic processes as well as morphological evolution, this performance disparity is correlated to the interfacial tension of the two combinations and concludes that proper interfacial tension is a key factor for effective phase separation, optimal blend morphology, and superior performance, which can be achieved by the "isomerization" design on molecular acceptors. This work reveals the importance of modulating the materials miscibility by interfacial-tension-oriented molecular design, which provides a general guideline toward efficient NF-SMSCs.
Collapse
Affiliation(s)
- Hao Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Department of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haijun Fan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shengjie Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Long Ye
- Department of Physics and Organic and Carbon Electronics Lab, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yuan Guo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Department of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Department of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Harald Ade
- Department of Physics and Organic and Carbon Electronics Lab, North Carolina State University, Raleigh, NC, 27695, USA
| | - Xiaozhang Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Department of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
87
|
Li J, Zhao Y, Jiang Z, Qiu Z. Effect of low molecular weight poly(diethylene glycol adipate) on the crystallization behavior and mechanical properties of biodegradable poly(L-lactide) in their partially miscible blends. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2018.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
88
|
Affiliation(s)
- Mark C. Staub
- Department of Materials Science and Engineering Drexel University Philadelphia Pennsylvania
| | - Christopher Y. Li
- Department of Materials Science and Engineering Drexel University Philadelphia Pennsylvania
| |
Collapse
|
89
|
Polyhedral oligomeric silsesquioxane-capped poly(N-vinyl pyrrolidone) amphiphiles: synthesis, self-assembly, and use as porogen of nanoporous poly(vinylidene fluoride). Colloid Polym Sci 2018. [DOI: 10.1007/s00396-018-4440-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
90
|
Poly-ε-caprolactone/polysulfhydrylated polyester blend: A platform for topical and degradable nitric oxide-releasing materials. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.09.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
91
|
Zhang L, Liu Z, Kong C, Liu C, Yang K, Chen H, Huang J, Qian F. Improving Drug Delivery of Micellar Paclitaxel against Non-Small Cell Lung Cancer by Coloading Itraconazole as a Micelle Stabilizer and a Tumor Vascular Manipulator. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802112. [PMID: 30444572 DOI: 10.1002/smll.201802112] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/09/2018] [Indexed: 06/09/2023]
Abstract
Although polymeric micelles of paclitaxel (PTX) significantly reduce excipient-induced toxicity compared with Taxol, they exhibit few clinical advantages in tumor inhibition and overall survival. To improve, itraconazole (ITA), an antifungal drug with potent anti-angiogenesis activity, is co-encapsulated together with PTX within the PEG-PLA micelles. The strong intermolecular interactions between the payloads inhibit drug crystallization and prevent drugs from binding with external proteins, render super-stable micelles upon dilution and exposure to biological environment, and enter the tumor cells through endocytosis. The co-encapsulated micelles show strong anti-proliferation potency against non-small-cell lung cancer (NSCLC) and even PTX resistant NSCLC cells in vitro and significantly improve the drug accumulation within the tumor in vivo. Compared with PTX monotherapy or combination therapy using individual PTX and ITA micelles, the co-encapsulated micelle demonstrates strikingly superior efficacy in tumor growth inhibition, recurrence prevention, and reversion of PTX resistance, in Kras mutant patient derived xenografts, orthotropic models, and paclitaxel-resistance subcutaneous models. Besides the pharmacokinetic improvement, therapeutic benefits are also contributed by angiogenesis inhibition and blood vessel normalization by ITA. Utilizing the pharmaceutical and pharmacological synergies between the therapeutic agents, a simple yet effective design of a combination cancer nanomedicine that is industrially scalable and clinically translatable is achieved.
Collapse
Affiliation(s)
- Ling Zhang
- School of Pharmaceutical Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, P. R. China
| | - Zhengsheng Liu
- School of Pharmaceutical Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, P. R. China
| | - Chao Kong
- School of Pharmaceutical Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, P. R. China
| | - Chun Liu
- School of Pharmaceutical Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, P. R. China
| | - Kuan Yang
- School of Pharmaceutical Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, P. R. China
| | - Huijun Chen
- School of Pharmaceutical Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, P. R. China
| | - Jinfeng Huang
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medicine College, Beijing 100021, P. R. China
| | - Feng Qian
- School of Pharmaceutical Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
92
|
Desmaisons J, Rueff M, Bras J, Dufresne A. Impregnation of paper with cellulose nanocrystal reinforced polyvinyl alcohol: synergistic effect of infrared drying and CNC content on crystallinity. SOFT MATTER 2018; 14:9425-9435. [PMID: 30427032 DOI: 10.1039/c8sm01484a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Paper was impregnated with neat polyvinyl alcohol (PVOH) or cellulose nanocrystal (CNC) reinforced PVOH, and dried by infrared radiation. Complex phenomena involved during paper impregnation and drying have been rarely investigated in the scientific literature, although these steps are crucial for the properties of the ensuing paper. The drying kinetics was studied and it showed that CNC tends to reduce the skin effect classically observed during fast PVOH drying. Furthermore, the nanoparticles induced faster water removal at the end of the drying step, which can be explained by an increase of the absorbed heat flux density. In addition, PVOH crystallization mechanisms have been studied through classical equations (Avrami, and Arrhenius) and a model (the Hoffman-Weeks method) and it was proved that both the drying conditions and the presence of CNC act on the crystallization of the polymer.
Collapse
Affiliation(s)
- Johanna Desmaisons
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France.
| | | | | | | |
Collapse
|
93
|
Seraji SM, Gui H, Zhang J, Guo Q. Nanophase morphology and crystallization in poly(vinylidene fluoride)/polydimethylsiloxane-block
-poly(methyl methacrylate) blends. POLYM INT 2018. [DOI: 10.1002/pi.5725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Seyed Mohsen Seraji
- Polymers Research Group; Institute for Frontier Materials, Deakin University; Geelong Victoria Australia
| | - Haoguan Gui
- Polymers Research Group; Institute for Frontier Materials, Deakin University; Geelong Victoria Australia
| | - Jin Zhang
- Polymers Research Group; Institute for Frontier Materials, Deakin University; Geelong Victoria Australia
| | - Qipeng Guo
- Polymers Research Group; Institute for Frontier Materials, Deakin University; Geelong Victoria Australia
| |
Collapse
|
94
|
Taherian S, Rahmani S, Sharif A, Zeinolebadi A, Abdollahi M. In-situ polymerization of aliphatic-aromatic polyamide nanocomposites in the presence of Halloysite nanotubes. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sara Taherian
- Department of Polymer Reaction Engineering, Faculty of Chemical Engineering; Tarbiat Modares University; 14155/143 Tehran Iran
| | - Sima Rahmani
- Department of Polymer Reaction Engineering, Faculty of Chemical Engineering; Tarbiat Modares University; 14155/143 Tehran Iran
| | - Alireza Sharif
- Department of Polymer Reaction Engineering, Faculty of Chemical Engineering; Tarbiat Modares University; 14155/143 Tehran Iran
| | | | - Mahdi Abdollahi
- Department of Polymer Reaction Engineering, Faculty of Chemical Engineering; Tarbiat Modares University; 14155/143 Tehran Iran
| |
Collapse
|
95
|
Gravity-driven ultrafast separation of water-in-oil emulsion by hierarchically porous electrospun Poly(L-lactide) fabrics. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.06.053] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
96
|
Chaves Lins L, Livi S, Maréchal M, Duchet-Rumeau J, Gérard JF. Structural dependence of cations and anions to building the polar phase of PVDF. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.08.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
97
|
A study to identify the contribution of Soluplus® component homopolymers to the solubilization of nifedipine and sulfamethoxazole using the melting point depression method. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2018.07.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
98
|
Kangovi GN, Park S, Lee S. Thermodynamic and Kinetic Effects on the Phase States of Amorphous Polymer and Organic Crystal Mixtures. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
99
|
Salman RK. The correlation between theoretical calculations and experimental findings on melting points for PVDF polymer-based gels. Colloid Polym Sci 2018. [DOI: 10.1007/s00396-018-4355-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
100
|
Shi G, Yin X, Wu G. Thermodynamic phase analysis of acrylic polymer/hindered phenol hybrids: Effects of hydrogen bonding strength. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.08.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|