51
|
Priyam A, Afonso LOB, Schultz AG, Singh PP. Investigation into the trophic transfer and acute toxicity of phosphorus-based nano-agromaterials in Caenorhabditis elegans. NANOIMPACT 2021; 23:100327. [PMID: 35559851 DOI: 10.1016/j.impact.2021.100327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/04/2021] [Accepted: 05/27/2021] [Indexed: 06/15/2023]
Abstract
Biogenic phosphorus (P) based - nanomaterials (NMs) are currently being explored as nanofertilizers. In this study, the acute toxic effects and trophic transfer of multiple types of P-based NMs were examined on soil-dwelling nematode, Caenorhabditis elegans. The study involved four variants of nanohydroxyapatites (nHAPs) synthesized either via a biogenic or a chemical route and another NM, nanophosphorus (nP), biosynthesized from bulk rock phosphate (RP). The pristine NMs differed in their physicochemical properties with each possessing different shapes (biogenic nHAP: platelet-shaped, ˜35 nm; biogenic nP, ˜5-10 nm: dots; chemically synthesized nHAPs: spherical, ˜33 nm, rod, ˜80 nm and needle-shaped, ˜64 nm). The toxic effects of NMs' in C. elegans were assessed using survival, hatching and reproductive cycle as the key endpoints in comparison to bulk controls, calcium phosphate and RP. The interactions and potential uptake of fluorescent-tagged nHAP to E. coli OP50 and C. elegans were investigated using confocal microscopy. The transformation of NMs within the nematode gut was also explored using dynamic light scattering and electron microscopy. C. elegans exposed to all of the variants of nHAP and the nP had 88-100% survival and 82-100% hatch rates and insignificant effects on brood size as observed at the tested environmentally relevant concentrations ranging from 5 to 100 μg.mL-1. Confocal microscopy confirmed the interaction and binding of fluorescent-tagged nHAP with the surface of E. coli OP50 and their trophic transfer and internalization into C. elegans. Interestingly, there was only a small reduction in the hydrodynamic diameter of the nHAP after their uptake into C. elegans and the transformed NMs did not induce any additional toxicity as evident by healthy brood sizes after 72 h. This study provides key information about the environmental safety of agriculturally relevant P-based NMs on non-target species.
Collapse
Affiliation(s)
- Ayushi Priyam
- National Centre of Excellence for Advanced Research in Agricultural Nanotechnology, TERI - Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute (TERI), DS Block, India Habitat Centre, Lodhi Road, New Delhi 110003, India; School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3217, Australia
| | - Luis O B Afonso
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3217, Australia
| | - Aaron G Schultz
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3217, Australia
| | - Pushplata Prasad Singh
- National Centre of Excellence for Advanced Research in Agricultural Nanotechnology, TERI - Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute (TERI), DS Block, India Habitat Centre, Lodhi Road, New Delhi 110003, India; School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3217, Australia.
| |
Collapse
|
52
|
Färkkilä SMA, Kiers ET, Jaaniso R, Mäeorg U, Leblanc RM, Treseder KK, Kang Z, Tedersoo L. Fluorescent nanoparticles as tools in ecology and physiology. Biol Rev Camb Philos Soc 2021; 96:2392-2424. [PMID: 34142416 DOI: 10.1111/brv.12758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/21/2022]
Abstract
Fluorescent nanoparticles (FNPs) have been widely used in chemistry and medicine for decades, but their employment in biology is relatively recent. Past reviews on FNPs have focused on chemical, physical or medical uses, making the extrapolation to biological applications difficult. In biology, FNPs have largely been used for biosensing and molecular tracking. However, concerns over toxicity in early types of FNPs, such as cadmium-containing quantum dots (QDs), may have prevented wide adoption. Recent developments, especially in non-Cd-containing FNPs, have alleviated toxicity problems, facilitating the use of FNPs for addressing ecological, physiological and molecule-level processes in biological research. Standardised protocols from synthesis to application and interdisciplinary approaches are critical for establishing FNPs in the biologists' tool kit. Here, we present an introduction to FNPs, summarise their use in biological applications, and discuss technical issues such as data reliability and biocompatibility. We assess whether biological research can benefit from FNPs and suggest ways in which FNPs can be applied to answer questions in biology. We conclude that FNPs have a great potential for studying various biological processes, especially tracking, sensing and imaging in physiology and ecology.
Collapse
Affiliation(s)
- Sanni M A Färkkilä
- Institute of Ecology and Earth Sciences, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - E Toby Kiers
- Department of Ecological Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, NL-1081 HV, Amsterdam, Noord-Holland, The Netherlands
| | - Raivo Jaaniso
- Institute of Physics, University of Tartu, W. Ostwaldi Str 1, 50411, Tartu, Tartumaa, Estonia
| | - Uno Mäeorg
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - Roger M Leblanc
- Department of Chemistry, Cox Science Center, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33124, U.S.A
| | - Kathleen K Treseder
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine, 3106 Biological Sciences III, Mail Code: 2525, 92697, Irvine, CA, U.S.A
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Leho Tedersoo
- Institute of Ecology and Earth Sciences, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| |
Collapse
|
53
|
Johnson ME, Bennett J, Montoro Bustos AR, Hanna SK, Kolmakov A, Sharp N, Petersen EJ, Lapasset PE, Sims CM, Murphy KE, Nelson BC. Combining secondary ion mass spectrometry image depth profiling and single particle inductively coupled plasma mass spectrometry to investigate the uptake and biodistribution of gold nanoparticles in Caenorhabditis elegans. Anal Chim Acta 2021; 1175:338671. [PMID: 34330435 DOI: 10.1016/j.aca.2021.338671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
Analytical techniques capable of determining the spatial distribution and quantity (mass and/or particle number) of engineered nanomaterials in organisms are essential for characterizing nano-bio interactions and for nanomaterial risk assessments. Here, we combine the use of dynamic secondary ion mass spectrometry (dynamic SIMS) and single particle inductively coupled mass spectrometry (spICP-MS) techniques to determine the biodistribution and quantity of gold nanoparticles (AuNPs) ingested by Caenorhabditis elegans. We report the application of SIMS in image depth profiling mode for visualizing, identifying, and characterizing the biodistribution of AuNPs ingested by nematodes in both the lateral and z (depth) dimensions. In parallel, conventional- and sp-ICP-MS quantified the mean number of AuNPs within the nematode, ranging from 2 to 36 NPs depending on the size of AuNP. The complementary data from both SIMS image depth profiling and spICP-MS provides a complete view of the uptake, translocation, and size distribution of ingested NPs within Caenorhabditis elegans.
Collapse
Affiliation(s)
- Monique E Johnson
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, United States.
| | - Joe Bennett
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, United States
| | - Antonio R Montoro Bustos
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, United States
| | - Shannon K Hanna
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, United States
| | - Andrei Kolmakov
- Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, United States
| | - Nicholas Sharp
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, United States
| | - Elijah J Petersen
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, United States
| | - Patricia E Lapasset
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, United States
| | - Christopher M Sims
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, United States
| | - Karen E Murphy
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, United States
| | - Bryant C Nelson
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, United States
| |
Collapse
|
54
|
Tjo K, Varamini P. Nanodiamonds and their potential applications in breast cancer therapy: a narrative review. Drug Deliv Transl Res 2021; 12:1017-1028. [PMID: 33970463 DOI: 10.1007/s13346-021-00996-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2021] [Indexed: 12/24/2022]
Abstract
Breast cancer remains the most commonly diagnosed cancer and the leading cause of cancer-related death among women worldwide. With the projected increase in breast cancer cases in recent years, optimising treatment becomes increasingly important. Current treatment modalities in breast cancer present major limitations, including chemoresistance, dose-limiting adverse effects and lack of selectivity in aggressive subtypes of breast cancers such as triple-negative breast cancer. Nanodiamonds have demonstrated promising outcomes in preclinical models from their unique surface characteristics allowing optimised delivery of various therapeutic agents, overcoming some of the significant hurdles in conventional treatment modalities. This review will present an update on preclinical findings of nanodiamond-based drug delivery systems for breast cancer therapy to date, challenges with the use of nanodiamonds along with considerations for future research.
Collapse
Affiliation(s)
- Kenny Tjo
- Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2016, Australia
| | - Pegah Varamini
- Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2016, Australia. .,Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
55
|
Guryev EL, Shanwar S, Zvyagin A, Deyev SM, Balalaeva IV. Photoluminescent Nanomaterials for Medical Biotechnology. Acta Naturae 2021; 13:16-31. [PMID: 34377553 PMCID: PMC8327149 DOI: 10.32607/actanaturae.11180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022] Open
Abstract
Creation of various photoluminescent nanomaterials has significantly expanded the arsenal of approaches used in modern biomedicine. Their unique photophysical properties can significantly improve the sensitivity and specificity of diagnostic methods, increase therapy effectiveness, and make a theranostic approach to treatment possible through the application of nanoparticle conjugates with functional macromolecules. The most widely used nanomaterials to date are semiconductor quantum dots; gold nanoclusters; carbon dots; nanodiamonds; semiconductor porous silicon; and up-conversion nanoparticles. This paper considers the promising groups of photoluminescent nanomaterials that can be used in medical biotechnology: in particular, for devising agents for optical diagnostic methods, sensorics, and various types of therapy.
Collapse
Affiliation(s)
- E. L. Guryev
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603022 Russia
| | - S. Shanwar
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603022 Russia
| | - A.V. Zvyagin
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603022 Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
- I. M. Sechenov First Moscow State Medical University, Moscow, 119991 Russia
| | - S. M. Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
- I. M. Sechenov First Moscow State Medical University, Moscow, 119991 Russia
| | - I. V. Balalaeva
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603022 Russia
| |
Collapse
|
56
|
Nishimura Y, Oshimi K, Umehara Y, Kumon Y, Miyaji K, Yukawa H, Shikano Y, Matsubara T, Fujiwara M, Baba Y, Teki Y. Wide-field fluorescent nanodiamond spin measurements toward real-time large-area intracellular thermometry. Sci Rep 2021; 11:4248. [PMID: 33608613 PMCID: PMC7895939 DOI: 10.1038/s41598-021-83285-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/29/2021] [Indexed: 01/24/2023] Open
Abstract
Measuring optically detected magnetic resonance (ODMR) of diamond nitrogen vacancy centers significantly depends on the photon detectors used. We study camera-based wide-field ODMR measurements to examine the performance in thermometry by comparing the results to those of the confocal-based ODMR detection. We show that the temperature sensitivity of the camera-based measurements can be as high as that of the confocal detection and that possible artifacts of the ODMR shift are produced owing to the complexity of the camera-based measurements. Although measurements from wide-field ODMR of nanodiamonds in living cells can provide temperature precisions consistent with those of confocal detection, the technique requires the integration of rapid ODMR measurement protocols for better precisions. Our results can aid the development of camera-based real-time large-area spin-based thermometry of living cells.
Collapse
Affiliation(s)
- Yushi Nishimura
- Department of Chemistry, Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan
- Institute of Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Keisuke Oshimi
- Department of Chemistry, Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan
| | - Yumi Umehara
- Department of Chemistry, Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan
| | - Yuka Kumon
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Kazu Miyaji
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Hiroshi Yukawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, 464-8603, Japan
- Institute of Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Yutaka Shikano
- Quantum Computing Center, Keio University, Yokohama, 223-8522, Japan
- Institute for Quantum Studies, Chapman University, Orange , CA, 92866, USA
- JST PRESTO, Saitama, 332-0012, Japan
| | - Tsutomu Matsubara
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka City University, Osaka, 545-8585, Japan
| | - Masazumi Fujiwara
- Department of Chemistry, Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan.
| | - Yoshinobu Baba
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, 464-8603, Japan
- Institute of Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Yoshio Teki
- Department of Chemistry, Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan
| |
Collapse
|
57
|
Du X, Li L, Wei S, Wang S, Li Y. A tumor-targeted, intracellular activatable and theranostic nanodiamond drug platform for strongly enhanced in vivo antitumor therapy. J Mater Chem B 2021; 8:1660-1671. [PMID: 32011619 DOI: 10.1039/c9tb02259g] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enhancing tumor homing and improving the efficacy of drugs are urgent needs for cancer treatment. Herein a novel targeted, intracellularly activatable fluorescence and cytotoxicity nanodiamond (ND) drug system (ND-PEG-HYD-FA/DOX, NPHF/D) was successfully prepared based on doxorubicin (DOX) and folate (FA) covalently bound to PEGylated NDs, in which the DOX was covalently coupled via an intracellularly hydrolyzable hydrazone bond that was stable in the physiological environment to ensure minimal drug release in circulation. Cell uptake studies demonstrated the selective internalization of NPHF/D by folate receptor (FR) mediated endocytosis in the order MCF-7 > HeLa > HepG2 ≫ CHO, using confocal laser scanning microscopy (CLSM) and flow cytometry. Interestingly, the DOX fluorescence of NPHF/D was significantly quenched, while the fluorescence recovery and cytotoxicity took place by low pH regulation in intracellular lysosomes, which made NPHF/D act as a fluorescence OFF-ON messenger for activatable imaging and cancer therapy. Of note, NPHF/D significantly inhibited the growth of tumors. Simultaneously, it was demonstrated that the introduction of FA and the cleavability of the hydrazone greatly enhanced the therapeutic performance of NPHF/D. In addition, toxicity studies in mice verified that the composites were devoid of any detected hepatotoxicity, cardiotoxicity, and nephrotoxicity using histopathology and blood biochemistry studies. Our work provides a novel strategy for cancer therapy, using ND-conjugated cancer drugs, and the exploration of theranostic drug-delivery systems.
Collapse
Affiliation(s)
- Xiangbin Du
- Department of Chemistry, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Lin Li
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China. and Department of Chemistry, Taiyuan Normal University, Jinzhong, 030619, P. R. China
| | - Shiguo Wei
- Department of Chemistry, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Songbai Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
| | - Yingqi Li
- Department of Chemistry, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China and Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China.
| |
Collapse
|
58
|
Zhang S, Chu Q, Zhang Z, Xu Y, Mao X, Zhang M. Responses of Caenorhabditis elegans to various surface modifications of alumina nanoparticles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116335. [PMID: 33383418 DOI: 10.1016/j.envpol.2020.116335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/24/2020] [Accepted: 12/14/2020] [Indexed: 05/24/2023]
Abstract
The surface modifications of nanoparticles (NPs), are well-recognized parameters that affect the toxicity, while there has no study on toxicity of Al2O3 NPs with different surface modification. Therefore, for the first time, this study pays attention to evaluating the toxicity and potential mechanism of pristine Al2O3 NPs (p-Al2O3), hydrophilic (w-Al2O3) and lipophilic (o-Al2O3) modifications of Al2O3 NPs both in vitro and in vivo. Applied concentrations of 10, 20, 40, 80,100 and 200 μg/mL for 24 h exposure on Caenorhabditis elegans (C. elegans), while 100 μg/mL of Al2O3 NPs significantly decreased the survival rate. Using multiple toxicological endpoints, we found that o-Al2O3 NPs (100 μg/mL) could induce more severe toxicity than p-Al2O3 and w-Al2O3 NPs. After uptake by C. elegans, o-Al2O3 NPs increased the intestinal permeability, easily swallow and further destroy the intestinal membrane cells. Besides, cytotoxicity evaluation revealed that o-Al2O3 NPs (100 μg/mL) are more toxic than p-Al2O3 and w-Al2O3. Once inside the cell, o-Al2O3 NPs could attack mitochondria and induce the over-production of reactive oxygen species (ROS), which destroy the intracellular redox balance and lead to apoptosis. Furthermore, the transcriptome sequencing and RT-qPCR data also demonstrated that the toxicity of o-Al2O3 NPs is highly related to the damage of cell membrane and the imbalance of intracellular redox. Generally, our study has offered a comprehensive sight to the adverse effects of different surface modifications of Al2O3 NPs on environmental organisms and the possible underlying mechanisms.
Collapse
Affiliation(s)
- Shuang Zhang
- Institute of Soil and Water Resource and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Qiang Chu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, PR China
| | - Zhang Zhang
- Administration for Market Regulation of Mengcheng County, Anhui province, 233500, PR China
| | - Yingfei Xu
- Institute of Soil and Water Resource and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xiali Mao
- Institute of Soil and Water Resource and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Mingkui Zhang
- Institute of Soil and Water Resource and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
59
|
Yu W, Long H, Gao J, Wang Y, Tu Y, Sun L, Chen N. Study on Caenorhabditis Elegans as a Combined Model of Microdosimetry and Biology. Dose Response 2021; 19:1559325821990125. [PMID: 33628153 PMCID: PMC7883169 DOI: 10.1177/1559325821990125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 11/16/2022] Open
Abstract
Microdosimetry is a tool for the investigation of microscopic energy deposition of ionizing radiation. This work used Caenorhabditis elegans as a model to estimate the microdosimetric deposition level at the 60Co gamma radiation. Monte Carlo software PHITS was employed to establish irradiated nematodes model. The dose deposition of the entire body and gonad irradiated to 100 Gy was calculated. The injury levels of radiation were evaluated by the detection of biological indicators. The result of microdosimetric experiment suggested that the dose of whole body of nematodes was estimated to be 99.9 ± 57.8 Gy, ranging from 19.6 to 332.2 Gy. The dose of gonad was predicted to be 129.4 ± 558.8 Gy (9.5-6597 Gy). The result of biological experiment suggested that there were little changes in the length of nematodes after irradiation. However, times of head thrash per minute and the spawning yield in 3 consecutive days decreased 27.1% and 94.7%, respectively. Nematodes in the irradiated group displayed heterogeneity. Through contour analysis, trends of behavior kinematics and reproductive capacity of irradiated nematodes proved to be consistent with the dose distribution levels estimated by microdosimetric model. Finally, C. elegans presented a suitable combined model of microdosimetry and biology for studying radiation.
Collapse
Affiliation(s)
- Wentao Yu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Huiqiang Long
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Jin Gao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Yidi Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Yu Tu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Liang Sun
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Na Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| |
Collapse
|
60
|
Ma X, Liu X, Li Y, Xi X, Yao Q, Fan J. Influence of crystallization temperature on fluorescence of n-diamond quantum dots. NANOTECHNOLOGY 2020; 31:505712. [PMID: 33021232 DOI: 10.1088/1361-6528/abb72d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanodiamonds are popular biological labels because of their superior mechanical and optical properties. Their surfaces bridging the core and surrounding medium play a key role in determining their bio-linkage and photophysical properties. n-diamond is a mysterious carbon allotrope whose crystal structure remains debated. We study the influence of the crystallization temperature on the fluorescence properties of the colloidal n-diamond quantum dots (n-DQDs) with sizes of several nanometers. They exhibit multiband fluorescence across the whole visible region which depends sensitively on the crystallization temperature. Their surfaces turn from hydrophobic ones rich of sp2-bonded carbon into hydrophilic ones rich of carboxyl derivatives and hydroxyl groups as the crystallization temperature increases. The different surface states correlated with the surface structures account for the distinct fluorescence properties of the n-DQDs crystallized at different temperatures. These high-purity ultrasmall n-DQDs with tunable surface chemistry and fluorescence properties are promising multicolor biomarkers and lighting sources.
Collapse
Affiliation(s)
- Xuanxuan Ma
- School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Xiaoyu Liu
- School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Yuanyuan Li
- School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Xiaonan Xi
- School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Qianqin Yao
- School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Jiyang Fan
- School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| |
Collapse
|
61
|
Coated nanodiamonds interact with tubulin beta-III negative cells of adult brain tissue. Biointerphases 2020; 15:061009. [PMID: 33272020 DOI: 10.1116/6.0000525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Fluorescent nanodiamonds (NDs) coated with therapeutics and cell-targeting structures serve as effective tools for drug delivery. However, NDs circulating in blood can eventually interact with the blood-brain barrier, resulting in undesired pathology. Here, we aimed to detect interaction between NDs and adult brain tissue. First, we cultured neuronal tissue with ND ex vivo and studied cell prosperity, regeneration, cytokine secretion, and nanodiamond uptake. Then, we applied NDs systemically into C57BL/6 animals and assessed accumulation of nanodiamonds in brain tissue and cytokine response. We found that only non-neuronal cells internalized coated nanodiamonds and responded by excretion of interleukin-6 and interferon-γ. Cells of neuronal origin expressing tubulin beta-III did not internalize any NDs. Once we applied coated NDs intravenously, we found no presence of NDs in the adult cortex but observed transient release of interleukin-1α. We conclude that specialized adult neuronal cells do not internalize plain or coated NDs. However, coated nanodiamonds interact with non-neuronal cells present within the cortex tissue. Moreover, the coated NDs do not cross the blood-brain barrier but they interact with adjacent barrier cells and trigger a temporary cytokine response. This study represents the first report concerning interaction of NDs with adult brain tissue.
Collapse
|
62
|
Fujiwara M, Sun S, Dohms A, Nishimura Y, Suto K, Takezawa Y, Oshimi K, Zhao L, Sadzak N, Umehara Y, Teki Y, Komatsu N, Benson O, Shikano Y, Kage-Nakadai E. Real-time nanodiamond thermometry probing in vivo thermogenic responses. SCIENCE ADVANCES 2020; 6:eaba9636. [PMID: 32917703 PMCID: PMC7486095 DOI: 10.1126/sciadv.aba9636] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/22/2020] [Indexed: 05/24/2023]
Abstract
Real-time temperature monitoring inside living organisms provides a direct measure of their biological activities. However, it is challenging to reduce the size of biocompatible thermometers down to submicrometers, despite their potential applications for the thermal imaging of subtissue structures with single-cell resolution. Here, using quantum nanothermometers based on optically accessible electron spins in nanodiamonds, we demonstrate in vivo real-time temperature monitoring inside Caenorhabditis elegans worms. We developed a microscope system that integrates a quick-docking sample chamber, particle tracking, and an error correction filter for temperature monitoring of mobile nanodiamonds inside live adult worms with a precision of ±0.22°C. With this system, we determined temperature increases based on the worms' thermogenic responses during the chemical stimuli of mitochondrial uncouplers. Our technique demonstrates the submicrometer localization of temperature information in living animals and direct identification of their pharmacological thermogenesis, which may allow for quantification of their biological activities based on temperature.
Collapse
Affiliation(s)
- Masazumi Fujiwara
- Department of Chemistry, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan.
| | - Simo Sun
- Food and Human Health Sciences, Graduate School of Human Life Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Alexander Dohms
- Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Yushi Nishimura
- Department of Chemistry, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Ken Suto
- Department of Chemistry, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Yuka Takezawa
- Food and Human Health Sciences, Graduate School of Human Life Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Keisuke Oshimi
- Department of Chemistry, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Li Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Nikola Sadzak
- Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Yumi Umehara
- Department of Chemistry, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Yoshio Teki
- Department of Chemistry, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Naoki Komatsu
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Oliver Benson
- Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Yutaka Shikano
- Quantum Computing Center, Keio University, 3-14-1 Hiyoshi Kohoku, Yokohama 223-8522, Japan.
- Institute for Quantum Studies, Chapman University, 1 University Dr., Orange, CA 92866, USA
| | - Eriko Kage-Nakadai
- Food and Human Health Sciences, Graduate School of Human Life Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan.
| |
Collapse
|
63
|
Yakovlev RY, Mingalev PG, Leonidov NB, Lisichkin GV. Detonation Nanodiamonds as Promising Drug Carriers. Pharm Chem J 2020. [DOI: 10.1007/s11094-020-02210-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
64
|
Abstract
Dental implants are frequently used to support fixed or removable dental prostheses to replace missing teeth. The clinical success of titanium dental implants is owed to the exceptional biocompatibility and osseointegration with the bone. Therefore, the enhanced therapeutic effectiveness of dental implants had always been preferred. Several concepts for implant coating and local drug delivery had been developed during the last decades. A drug is generally released by diffusion-controlled, solvent-controlled, and chemical controlled methods. Although a range of surface modifications and coatings (antimicrobial, bioactive, therapeutic drugs) have been explored for dental implants, it is still a long way from designing sophisticated therapeutic implant surfaces to achieve the specific needs of dental patients. The present article reviews various interdisciplinary aspects of surface coatings on dental implants from the perspectives of biomaterials, coatings, drug release, and related therapeutic effects. Additionally, the various types of implant coatings, localized drug release from coatings, and how released agents influence the bone–implant surface interface characteristics are discussed. This paper also highlights several strategies for local drug delivery and their limitations in dental implant coatings as some of these concepts are yet to be applied in clinical settings due to the specific requirements of individual patients.
Collapse
|
65
|
Probing and manipulating embryogenesis via nanoscale thermometry and temperature control. Proc Natl Acad Sci U S A 2020; 117:14636-14641. [PMID: 32541064 DOI: 10.1073/pnas.1922730117] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Understanding the coordination of cell-division timing is one of the outstanding questions in the field of developmental biology. One active control parameter of the cell-cycle duration is temperature, as it can accelerate or decelerate the rate of biochemical reactions. However, controlled experiments at the cellular scale are challenging, due to the limited availability of biocompatible temperature sensors, as well as the lack of practical methods to systematically control local temperatures and cellular dynamics. Here, we demonstrate a method to probe and control the cell-division timing in Caenorhabditis elegans embryos using a combination of local laser heating and nanoscale thermometry. Local infrared laser illumination produces a temperature gradient across the embryo, which is precisely measured by in vivo nanoscale thermometry using quantum defects in nanodiamonds. These techniques enable selective, controlled acceleration of the cell divisions, even enabling an inversion of division order at the two-cell stage. Our data suggest that the cell-cycle timing asynchrony of the early embryonic development in C. elegans is determined independently by individual cells rather than via cell-to-cell communication. Our method can be used to control the development of multicellular organisms and to provide insights into the regulation of cell-division timings as a consequence of local perturbations.
Collapse
|
66
|
Yang G, Long W, Yan W, Huang H, Liu M, Ouyang H, Feng Y, Liu L, Zhang X, Wei Y. Surface PEGylation of nanodiamond through a facile Michael addition reaction for intracellular drug delivery. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101644] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
67
|
Schaumann EN, Tian B. Biological Interfaces, Modulation, and Sensing with Inorganic Nano-Bioelectronic Materials. SMALL METHODS 2020; 4:1900868. [PMID: 34295965 PMCID: PMC8294120 DOI: 10.1002/smtd.201900868] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/16/2020] [Indexed: 05/30/2023]
Abstract
The last several years have seen a large and increasing interest in scientific developments that combine methods and materials from nanotechnology with questions and applications in bioelectronics. This follows with a number of broader trends: the rapid increase in functionality for materials at the nanoscale; a growing recognition of the importance of electric fields in diverse physiological processes; and continuous improvements in technologies that are naturally complementary with bioelectronics, such as optogenetics. Here, a progress report is provided on several of the most exciting recent developments in this field. The three critical functions of biointerface formation, biological modulation, and biological sensing using newly developed nanoscale materials are considered.
Collapse
Affiliation(s)
- Erik N Schaumann
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Bozhi Tian
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
68
|
Brand SJ, Botha TL, Wepener V. Behavioural response as a reliable measure of acute nanomaterial toxicity in zebrafish larvae exposed to a carbon-based versus a metal-based nanomaterial. AFRICAN ZOOLOGY 2020. [DOI: 10.1080/15627020.2019.1702098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Sarel J Brand
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- South African Research Chair in Nanotechnology for Water, Department of Applied Chemistry, University of Johannesburg, South Africa
| | - Tarryn L Botha
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Victor Wepener
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
69
|
Igarashi R, Sugi T, Sotoma S, Genjo T, Kumiya Y, Walinda E, Ueno H, Ikeda K, Sumiya H, Tochio H, Yoshinari Y, Harada Y, Shirakawa M. Tracking the 3D Rotational Dynamics in Nanoscopic Biological Systems. J Am Chem Soc 2020; 142:7542-7554. [DOI: 10.1021/jacs.0c01191] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ryuji Igarashi
- Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
- National Institute for Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1,
Inage-ku, Chiba 263-8555, Japan
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takuma Sugi
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Shingo Sotoma
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, Kyoto 615-8510, Japan
- Institute for Protein Research (IPR), Osaka University, 3-2 Yamadaoka,
Suita-shi, Osaka 565-0871, Japan
| | - Takuya Genjo
- Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, Kyoto 615-8510, Japan
| | - Yuta Kumiya
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, Kyoto 615-8510, Japan
| | - Erik Walinda
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Hiroshi Ueno
- Department of Applied Chemistry, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| | - Kazuhiro Ikeda
- Advanced Materials Laboratory, Sumitomo Electric Industries, Ltd., 1-1-1, Koyakita, Itami, Hyogo 664-0016, Japan
| | - Hitoshi Sumiya
- Advanced Materials Laboratory, Sumitomo Electric Industries, Ltd., 1-1-1, Koyakita, Itami, Hyogo 664-0016, Japan
| | - Hidehito Tochio
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, Kyoto 615-8510, Japan
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo, Kyoto 606-8502, Japan
| | - Yohsuke Yoshinari
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshie Harada
- Institute for Protein Research (IPR), Osaka University, 3-2 Yamadaoka,
Suita-shi, Osaka 565-0871, Japan
- Center for Quantum Information and Quantum Biology, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka 565-0871, Japan
| | - Masahiro Shirakawa
- Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, Kyoto 615-8510, Japan
| |
Collapse
|
70
|
Ghaemi R, Tong J, Gupta BP, Selvaganapathy PR. Microfluidic Device for Microinjection of Caenorhabditis elegans. MICROMACHINES 2020; 11:mi11030295. [PMID: 32168862 PMCID: PMC7143065 DOI: 10.3390/mi11030295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/26/2022]
Abstract
Microinjection is an established and reliable method to deliver transgenic constructs and other reagents to specific locations in C. elegans worms. Specifically, microinjection of a desired DNA construct into the distal gonad is the most widely used method to generate germ-line transformation of C. elegans. Although, current C. elegans microinjection method is effective to produce transgenic worms, it requires expensive multi degree of freedom (DOF) micromanipulator, careful injection alignment procedure and skilled operator, all of which make it slow and not suitable for scaling to high throughput. A few microfabricated microinjectors have been developed recently to address these issues. However, none of them are capable of immobilizing a freely mobile animal such as C. elegans worm using a passive immobilization mechanism. Here, a microfluidic microinjector was developed to passively immobilize a freely mobile animal such as C. elegans and simultaneously perform microinjection by using a simple and fast mechanism for needle actuation. The entire process of the microinjection takes ~30 s which includes 10 s for worm loading and aligning, 5 s needle penetration, 5 s reagent injection and 5 s worm unloading. The device is suitable for high-throughput and can be potentially used for creating transgenic C. elegans.
Collapse
Affiliation(s)
- Reza Ghaemi
- Department of Mechanical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada;
| | - Justin Tong
- Department of Biology, McMaster University, Hamilton, ON L8S 4L8, Canada; (J.T.); (B.P.G.)
| | - Bhagwati P. Gupta
- Department of Biology, McMaster University, Hamilton, ON L8S 4L8, Canada; (J.T.); (B.P.G.)
| | - P. Ravi Selvaganapathy
- Department of Mechanical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada;
- Correspondence: ; Tel.: +1-905-525-9140 (ext. 27435)
| |
Collapse
|
71
|
Affiliation(s)
| | - Jonathan P. Goss
- School of Engineering, University of Newcastle, Newcastle upon Tyne, NE1 7RU, U.K
| | - Ben L. Green
- Department of Physics, University of Warwick, Coventry, CV4 7AL, U.K
| | - Paul W. May
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, U.K
| | - Mark E. Newton
- Department of Physics, University of Warwick, Coventry, CV4 7AL, U.K
| | - Chloe V. Peaker
- Gemological Institute of America, 50 West 47th Street, New York, New York 10036, United States
| |
Collapse
|
72
|
Chauhan S, Jain N, Nagaich U. Nanodiamonds with powerful ability for drug delivery and biomedical applications: Recent updates on in vivo study and patents. J Pharm Anal 2020; 10:1-12. [PMID: 32123595 PMCID: PMC7037532 DOI: 10.1016/j.jpha.2019.09.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 09/21/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022] Open
Abstract
Nanodiamonds are novel nanosized carbon building blocks possessing varied fascinating mechanical, chemical, optical and biological properties, making them significant active moiety carriers for biomedical application. These are known as the most 'captivating' crystals attributed to their chemical inertness and unique properties posing them useful for variety of applications in biomedical era. Alongside, it becomes increasingly important to find, ascertain and circumvent the negative aspects associated with nanodiamonds. Surface modification or functionalization with biological molecules plays a significant role in managing the toxic behavior since nanodiamonds have tailorable surface chemistry. To take advantage of nanodiamond potential in drug delivery, focus has to be laid on its purity, surface chemistry and other considerations which may directly or indirectly affect drug adsorption on nanodiamond and drug release in biological environment. This review emphasizes on the basic properties, synthesis techniques, surface modification techniques, toxicity issues and biomedical applications of nanodiamonds. For the development of nanodiamonds as an effective dosage form, researchers are still engaged in the in-depth study of nanodiamonds and their effect on life interfaces.
Collapse
Affiliation(s)
| | | | - Upendra Nagaich
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, U.P., India
| |
Collapse
|
73
|
Terada D, Genjo T, Segawa TF, Igarashi R, Shirakawa M. Nanodiamonds for bioapplications–specific targeting strategies. Biochim Biophys Acta Gen Subj 2020; 1864:129354. [DOI: 10.1016/j.bbagen.2019.04.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/25/2019] [Indexed: 12/21/2022]
|
74
|
Rehman A, Houshyar S, Wang X. Nanodiamond in composite: Biomedical application. J Biomed Mater Res A 2020; 108:906-922. [DOI: 10.1002/jbm.a.36868] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Aisha Rehman
- School of Fashion and Textiles RMIT University Brunswick Victoria Australia
| | - Shadi Houshyar
- School of Engineering RMIT University Melbourne Victoria Australia
| | - Xin Wang
- School of Fashion and Textiles RMIT University Brunswick Victoria Australia
| |
Collapse
|
75
|
Alawdi SH, Eidi H, Safar MM, Abdel-Wahhab MA. Loading Amlodipine on Diamond Nanoparticles: A Novel Drug Delivery System. Nanotechnol Sci Appl 2019; 12:47-53. [PMID: 32099339 PMCID: PMC6997232 DOI: 10.2147/nsa.s232517] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 10/31/2019] [Indexed: 01/11/2023] Open
Abstract
Background Diamond nanoparticles (Nanodiamond) are biocompatible drug delivery platforms with outstanding surface properties. Their passage into the brain has been confirmed previously. Thus, nanodiamond could provide a drug delivery system to shuttle several drugs through the blood-brain barrier (BBB) which represents a real challenge for the effective delivery of several drugs into the brain. Amlodipine is a calcium channel blocker that cannot pass through BBB and may elicit neuroprotective effects to reverse calcium-induced excitotoxicity and mitochondrial dysfunction that underlie several neurologic disorders including Alzheimer’s disease and stroke. Aim The study aimed to investigate the loading of amlodipine on nanodiamond particles. Methods Nanodiamond particles were oxidized in a strong oxidizing acidic mixture of sulfuric and nitric acids. Adsorption of amlodipine on nanodiamond particles was achieved in alkaline pH using various concentrations of sodium hydroxide. The loaded amlodipine was determined by high-performance liquid chromatography and confirmed by Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy. Results The highest percentage (41%) of loaded amlodipine onto nanodiamond particles was achieved in alkaline medium using 2 mM NaOH at a corresponding pH of 8.5. Also, characteristic FTIR bands of amlodipine and nanodiamond were shown obviously in the nanodiamond–amlodipine conjugates. Moreover, the successful loading of amlodipine on diamond nanoparticles was confirmed by transmission electron microscopy. Conclusion The present study demonstrates the successful loading of amlodipine onto nanodiamond particles. These findings offer a potential for applying diamond nanoparticles as a drug delivery system to shuttle amlodipine into the brain and open the door to deliver other similar drugs into the brain.
Collapse
Affiliation(s)
- Shawqi H Alawdi
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Thamar University, Dhamar, Yemen.,Department of Pharmacy Practice, Faculty of Pharmacy, University of Science and Technology, Sana'a, Yemen
| | - Housam Eidi
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, Canada
| | - Marwa M Safar
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, El Shorouk, Egypt
| | - Mosaad A Abdel-Wahhab
- Department of Food Toxicology and Contaminants, National Research Center, Cairo, Egypt
| |
Collapse
|
76
|
Cong S, Wang N, Wang K, Wu Y, Li D, Song Y, Prakash S, Tan M. Fluorescent nanoparticles in the popular pizza: properties, biodistribution and cytotoxicity. Food Funct 2019; 10:2408-2416. [PMID: 30957811 DOI: 10.1039/c8fo01944d] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Food-borne nanoparticles that are generated during the thermal processing of various consumed foods are of great concern due to their unique properties. In this study, the presence of fluorescent nanoparticles (FNPs) in pizza, their biodistribution and cytotoxicity were investigated. The spherical FNPs have a diameter of about 3.33 nm. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy analysis revealed that they contained 68.21% C, 27.44% O, 2.75% N and 1.60% S, and the functional groups on their surface included -OH, -COOH, C[double bond, length as m-dash]C, -NH2 and C[double bond, length as m-dash]O. In vitro and in vivo biodistribution of pizza FNPs was evaluated using normal rat kidney (NRK) cells, onion epidermal cells, Caenorhabditis elegans and mice. The fluorescence microscopy images clearly indicate that the pizza FNPs appear to be localized within the cytoplasm. However, the FNPs remained restricted to the extracellular space of the onion epithelium and did not enter the onion cell cytoplasm because of the cell wall. The FNPs were swallowed by the Caenorhabditis elegans worms when exposed to food OP50 and distributed within the pharynx, intestine and anus. Obvious fluorescence of the FNPs in the stomach, intestine, liver, lung and kidney was observed for the FNPs in mouse organs, but not the brain, heart, and spleen. Furthermore, the produced FNPs were found to cause cell cycle arrest at the G0/G1 phase in NRK cells, and resulted in cell apoptosis at high doses. The outcome of this research offers an important insight into the nature of thermal processing-induced nanoparticles and their in vivo and in vitro biological effects.
Collapse
Affiliation(s)
- Shuang Cong
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China.
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Gao G, Guo Q, Zhi J. Nanodiamond-Based Theranostic Platform for Drug Delivery and Bioimaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902238. [PMID: 31304686 DOI: 10.1002/smll.201902238] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/31/2019] [Indexed: 06/10/2023]
Abstract
Nanodiamonds (NDs) are promising candidates for biomedical application due to their excellent biocompatibility and innate physicochemical properties. In this Concept article, nanodiamond-based theranostic platforms, which combine both drug delivery features and bioimaging functions, are discussed. The latest developments of therapeutic strategies are introduced and future perspectives for theranostic NDs are addressed.
Collapse
Affiliation(s)
- Guanyue Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qingyue Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinfang Zhi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
78
|
Raja IS, Song SJ, Kang MS, Lee YB, Kim B, Hong SW, Jeong SJ, Lee JC, Han DW. Toxicity of Zero- and One-Dimensional Carbon Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1214. [PMID: 31466309 PMCID: PMC6780407 DOI: 10.3390/nano9091214] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 12/14/2022]
Abstract
The zero (0-D) and one-dimensional (1-D) carbon nanomaterials have gained attention among researchers because they exhibit a larger surface area to volume ratio, and a smaller size. Furthermore, carbon is ubiquitously present in all living organisms. However, toxicity is a major concern while utilizing carbon nanomaterials for biomedical applications such as drug delivery, biosensing, and tissue regeneration. In the present review, we have summarized some of the recent findings of cellular and animal level toxicity studies of 0-D (carbon quantum dot, graphene quantum dot, nanodiamond, and carbon black) and 1-D (single-walled and multi-walled carbon nanotubes) carbon nanomaterials. The in vitro toxicity of carbon nanomaterials was exemplified in normal and cancer cell lines including fibroblasts, osteoblasts, macrophages, epithelial and endothelial cells of different sources. Similarly, the in vivo studies were illustrated in several animal species such as rats, mice, zebrafish, planktons and, guinea pigs, at various concentrations, route of administrations and exposure of nanoparticles. In addition, we have described the unique properties and commercial usage, as well as the similarities and differences among the nanoparticles. The aim of the current review is not only to signify the importance of studying the toxicity of 0-D and 1-D carbon nanomaterials, but also to emphasize the perspectives, future challenges and possible directions in the field.
Collapse
Affiliation(s)
| | - Su-Jin Song
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea
| | - Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea
| | - Yu Bin Lee
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea
| | - Bongju Kim
- Dental Life Science Research Institute & Clinical Translational Research Center for Dental Science, Seoul National University Dental Hospital, Seoul 03080, Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea
| | - Seung Jo Jeong
- GS Medical Co., Ltd., Cheongju-si, Chungcheongbuk-do 28161, Korea
| | - Jae-Chang Lee
- Bio-Based Chemistry Research Center, Korea Research Institute of Chemical Technology, Ulsan 44429, Korea.
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea.
| |
Collapse
|
79
|
Reproductive Toxicity of Pomegranate Peel Extract Synthesized Gold Nanoparticles: A Multigeneration Study in C. elegans. JOURNAL OF NANOMATERIALS 2019. [DOI: 10.1155/2019/8767943] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
C. elegans is a preferential model for testing environmental toxicity of compounds including nanomaterials. The impact of multigeneration exposure of gold nanoparticles (AuNPs) on the lifespan and fertility of C. elegans is not known and therefore is investigated in this study. We used pomegranate (Punica granatum) peel extracts as a reducing agent to synthesize gold nanoparticles (PPE-AuNPs) from chloroauric acid. Nematodes were grown till adult stage and then exposed to 25, 50, and 100 μg/ml of PPE-AuNPs at 20°C for 72 hours and then assessed for lifespan and fertility. The same protocols were followed for subsequent F1, F2, and F3 generations. The results showed that PPE-AuNPs dose-dependently but insignificantly reduced the lifespan of C. elegans. Exposure of PPE-AuNPs significantly and dose-dependently reduced the fertility of C. elegans in terms of the number of eggs produced. The reproductive toxicity of PPE-AuNPs was found to be minimal in parental generation (F0) and maximal in F3 generation. In conclusion, biologically synthesized PPE-AuNPs adversely affect the fertility of C. elegans while the factors responsible for reproductive toxicity are inherited by subsequent generations.
Collapse
|
80
|
Piechulek A, Berwanger LC, von Mikecz A. Silica nanoparticles disrupt OPT-2/PEP-2-dependent trafficking of nutrient peptides in the intestinal epithelium. Nanotoxicology 2019; 13:1133-1148. [DOI: 10.1080/17435390.2019.1643048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Annette Piechulek
- IUF – Leibniz Research Institute for Environmental Medicine, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Lutz C. Berwanger
- IUF – Leibniz Research Institute for Environmental Medicine, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Anna von Mikecz
- IUF – Leibniz Research Institute for Environmental Medicine, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
81
|
Fluorescent carbon dots functionalization. Adv Colloid Interface Sci 2019; 270:165-190. [PMID: 31265929 DOI: 10.1016/j.cis.2019.06.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 01/03/2023]
Abstract
Carbon dots (CDs), as a new type of luminescent zero-dimensional carbon nanomaterial, have been applied in a variety of fields. Currently, functionalization of CDs is an extremely useful method for effectively tuning their intrinsic structure and surface state. Heteroatom doping and surface modification are two functionalization strategies for improving the photophysical performance and broadening the range of applications for fluorescent CDs. Heteroatom doping in CDs can be used to tune their intrinsic properties, which has received significant research interests because of its simplicity. Surface modification can be applied for varying active sites and the functional groups on the CDs surface, which can endow fluorescent CDs with the unique properties resulting from functional ligand. In this review, we summarize the structural and physicochemical properties of functional CDs. We focused our review on the latest developments in functionalization strategies for CDs and discuss the detailed characteristics of different functionalization methods. Ultimately, we hope to inform researchers on the latest progress in functionalization of CDs and provide perspectives on future developments for functionalization of CDs and their potential applications.
Collapse
|
82
|
Czarniewska E, Nowicki P, Kuczer M, Schroeder G. Impairment of the immune response after transcuticular introduction of the insect gonadoinhibitory and hemocytotoxic peptide Neb-colloostatin: A nanotech approach for pest control. Sci Rep 2019; 9:10330. [PMID: 31316090 PMCID: PMC6637150 DOI: 10.1038/s41598-019-46720-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/28/2019] [Indexed: 12/18/2022] Open
Abstract
This article shows that nanodiamonds can transmigrate through the insect cuticle easily, and the doses used were not hemocytotoxic and did not cause inhibition of cellular and humoral immune responses in larvae, pupae and adults of Tenebrio molitor. The examination of the nanodiamond biodistribution in insect cells demonstrated the presence of nanodiamond aggregates mainly in hemocytes, where nanoparticles were efficiently collected as a result of phagocytosis. To a lesser extent, nanodiamond aggregates were also detected in fat body cells, while they were not observed in Malpighian tubule cells. We functionalized nanodiamonds with Neb-colloostatin, an insect hemocytotoxic and gonadoinhibitory peptide, and we showed that this conjugate passed through the insect cuticle into the hemolymph, where the peptide complexed with the nanodiamonds induced apoptosis of hemocytes, significantly decreased the number of hemocytes circulating in the hemolymph and inhibited cellular and humoral immune responses in all developmental stages of insects. The results indicate that it is possible to introduce a peptide that interferes with the immunity and reproduction of insects to the interior of the insect body by means of a nanocarrier. In the future, the results of these studies may contribute to the development of new pest control agents.
Collapse
Affiliation(s)
- Elżbieta Czarniewska
- Department of Animal Physiology and Development, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego str. 6, 61-614, Poznań, Poland.
| | - Patryk Nowicki
- Department of Animal Physiology and Development, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego str. 6, 61-614, Poznań, Poland
| | - Mariola Kuczer
- Faculty of Chemistry, University in Wrocław, F. Joliot-Curie str. 14, 50-383, Wrocław, Poland
| | - Grzegorz Schroeder
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego str. 8, 61-614, Poznań, Poland
| |
Collapse
|
83
|
Panwar N, Soehartono AM, Chan KK, Zeng S, Xu G, Qu J, Coquet P, Yong KT, Chen X. Nanocarbons for Biology and Medicine: Sensing, Imaging, and Drug Delivery. Chem Rev 2019; 119:9559-9656. [DOI: 10.1021/acs.chemrev.9b00099] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nishtha Panwar
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Alana Mauluidy Soehartono
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kok Ken Chan
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Shuwen Zeng
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Singapore 637553, Singapore
| | - Gaixia Xu
- Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Junle Qu
- Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Philippe Coquet
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Singapore 637553, Singapore
- Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN), CNRS UMR 8520—Université de Lille, 59650 Villeneuve d’Ascq, France
| | - Ken-Tye Yong
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
84
|
Karami P, Salkhi Khasraghi S, Hashemi M, Rabiei S, Shojaei A. Polymer/nanodiamond composites - a comprehensive review from synthesis and fabrication to properties and applications. Adv Colloid Interface Sci 2019; 269:122-151. [PMID: 31082543 DOI: 10.1016/j.cis.2019.04.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/14/2019] [Accepted: 04/24/2019] [Indexed: 11/28/2022]
Abstract
Nanodiamond (ND) is an allotrope of carbon nanomaterials which exhibits many outstanding physical, mechanical, thermal, optical and biocompatibility characteristics. Meanwhile, ND particles possess unique spherical shape containing diamond-like structure at the core with graphitic carbon outer shell which intuitively contains many oxygen-containing functional groups at the outer surface. Such superior properties and unique structural morphology of NDs are essentially attractive to develop polymer composites with multifunctional properties. However, despite a long history from the discovery of NDs, which is dated back to the1960s, this nanoparticle has been less explored in the field of polymer (nano)composites compared with other carbon nanomaterials, e.g. carbon nanotube (CNT) and graphene. However, open literature indicates that research works in the field of polymer/ND (PND) composites have gained great momentum in the past half a decade. The present article provides a comprehensive review on recent achievements in ND based polymer composites. This review covers a very broad aspect from the synthesis, purification and functionalization of NDs to dispersion, preparation and fabrication of polymer/ND (PND) composites with a look in their recent applications for both structural and functional basis. Therefore, the review would be useful to pave the way for researchers to take some advancing steps in this respect.
Collapse
Affiliation(s)
- Pooria Karami
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11155-9465, Tehran, Iran
| | - Samaneh Salkhi Khasraghi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11155-9465, Tehran, Iran
| | - Mohammadjafar Hashemi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11155-9465, Tehran, Iran
| | - Sima Rabiei
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11155-9465, Tehran, Iran
| | - Akbar Shojaei
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11155-9465, Tehran, Iran.
| |
Collapse
|
85
|
Effect of Rare-Earth Element Oxides on Diamond Crystallization in Mg-Based Systems. CRYSTALS 2019. [DOI: 10.3390/cryst9060300] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Diamond crystallization in Mg-R2O3-C systems (R = Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, and Yb) was studied at 7.8 GPa and 1800 °C. It was found that rare-earth oxide additives in an amount of 10 wt % did not significantly affect both the degree of graphite-to-diamond conversion and crystal morphology relative to the Mg-C system. The effect of higher amounts of rare-earth oxide additives on diamond crystallization was studied for a Mg-Sm2O3-C system with a Sm2O3 content varied from 0 to 50 wt %. It was established that with an increase in the Sm2O3 content in the growth system, the degree of graphite-to-diamond conversion decreased from 80% at 10% Sm2O3 to 0% at 40% Sm2O3. At high Sm2O3 contents (40 and 50 wt %), instead of diamond, mass crystallization of metastable graphite was established. The observed changes in the degree of the graphite-to-diamond conversion, the changeover of diamond crystallization to the crystallization of metastable graphite, and the changes in diamond crystal morphology with increasing the Sm2O3 content attested the inhibiting effect of rare-earth oxides on diamond crystallization processes in the Mg-Sm-O-C system. The crystallized diamonds were studied by a suite of optical spectroscopy techniques, and the major characteristics of their defect and impurity structures were revealed. For diamond crystals produced with 10 wt % and 20 wt % Sm2O3 additives, a specific photoluminescence signal comprising four groups of lines centered at approximately 580, 620, 670, and 725 nm was detected, which was tentatively assigned to emission characteristic of Sm3+ ions.
Collapse
|
86
|
Křivohlavá R, Neuhӧferová E, Jakobsen KQ, Benson V. Knockdown of microRNA-135b in Mammary Carcinoma by Targeted Nanodiamonds: Potentials and Pitfalls of In Vivo Applications. NANOMATERIALS 2019; 9:nano9060866. [PMID: 31181619 PMCID: PMC6632128 DOI: 10.3390/nano9060866] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/26/2022]
Abstract
Nanodiamonds (ND) serve as RNA carriers with potential for in vivo application. ND coatings and their administration strategy significantly change their fate, toxicity, and effectivity within a multicellular system. Our goal was to develop multiple ND coating for effective RNA delivery in vivo. Our final complex (NDA135b) consisted of ND, polymer, antisense RNA, and transferrin. We aimed (i) to assess if a tumor-specific coating promotes NDA135b tumor accumulation and effective inhibition of oncogenic microRNA-135b and (ii) to outline off-targets and immune cell interactions. First, we tested NDA135b toxicity and effectivity in tumorospheres co-cultured with immune cells ex vivo. We found NDA135b to target tumor cells, but it binds also to granulocytes. Then, we followed with NDA135b intravenous and intratumoral applications in tumor-bearing animals in vivo. Application of NDA135b in vivo led to the effective knockdown of microRNA-135b in tumor tissue regardless administration. Only intravenous application resulted in NDA135b circulation in peripheral blood and urine and the decreased granularity of splenocytes. Our data show that localized intratumoral application of NDA135b represents a suitable and safe approach for in vivo application of nanodiamond-based constructs. Systemic intravenous application led to an interaction of NDA135b with bio-interface, and needs further examination regarding its safety.
Collapse
Affiliation(s)
- Romana Křivohlavá
- Institute of Microbiology of the CAS, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic.
| | - Eva Neuhӧferová
- Institute of Microbiology of the CAS, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic.
| | - Katrine Q Jakobsen
- Institute of Microbiology of the CAS, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic.
| | - Veronika Benson
- Institute of Microbiology of the CAS, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic.
| |
Collapse
|
87
|
Yokota H. Fluorescence microscopy for visualizing single-molecule protein dynamics. Biochim Biophys Acta Gen Subj 2019; 1864:129362. [PMID: 31078674 DOI: 10.1016/j.bbagen.2019.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/26/2019] [Accepted: 05/07/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND Single-molecule fluorescence imaging (smFI) has evolved into a valuable method used in biophysical and biochemical studies as it can observe the real-time behavior of individual protein molecules, enabling understanding of their detailed dynamic features. smFI is also closely related to other state-of-the-art microscopic methods, optics, and nanomaterials in that smFI and these technologies have developed synergistically. SCOPE OF REVIEW This paper provides an overview of the recently developed single-molecule fluorescence microscopy methods, focusing on critical techniques employed in higher-precision measurements in vitro and fluorescent nanodiamond, an emerging promising fluorophore that will improve single-molecule fluorescence microscopy. MAJOR CONCLUSIONS smFI will continue to improve regarding the photostability of fluorophores and will develop via combination with other techniques based on nanofabrication, single-molecule manipulation, and so on. GENERAL SIGNIFICANCE Quantitative, high-resolution single-molecule studies will help establish an understanding of protein dynamics and complex biomolecular systems.
Collapse
Affiliation(s)
- Hiroaki Yokota
- Biophotonics Laboratory, Graduate School for the Creation of New Photonics Industries, Kurematsu-cho, Nishi-ku, Hamamatsu, Shizuoka 431-1202, Japan.
| |
Collapse
|
88
|
Salari M, Bitounis D, Bhattacharya K, Pyrgiotakis G, Zhang Z, Purington E, Gramlich W, Grondin Y, Rogers R, Bousfield D, Demokritou P. Development & Characterization of Fluorescently Tagged Nanocellulose for Nanotoxicological Studies. ENVIRONMENTAL SCIENCE. NANO 2019; 6:1516-1526. [PMID: 31844523 PMCID: PMC6914317 DOI: 10.1039/c8en01381k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The rapid adoption of nanocellulose-based engineered nanomaterials (CNM) by many industries generates environmental health and safety (EHS) concerns. This work presents the development of fluorescently tagged CNM which can be used to study their interactions with biological systems. Specifically, cellulose nano-fibrils and cellulose nano-crystals with covalently attached fluorescein isothiocyanate (FITC) molecules on their surface were synthesized. The fluorescence of the FITC-tagged materials was assessed along with potential FITC detachment under pH conditions encountered in the human gastrointestinal tract, in intracellular compartments, and in cell culture media. Finally, the potential cytotoxicity due to the presence of FITC molecules on the surface of CNM was assessed using a cellular gut epithelium model. The results showed that neither FITC-CNF nor FITC-CNC were cytotoxic and that they have a comparable bioactivity to their untagged counterparts, rendering them suitable for biological studies.
Collapse
Affiliation(s)
- Maryam Salari
- Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health, Boston, MA, 07016, USA
| | - Dimitrios Bitounis
- Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health, Boston, MA, 07016, USA
| | - Kunal Bhattacharya
- Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health, Boston, MA, 07016, USA
| | - Georgios Pyrgiotakis
- Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health, Boston, MA, 07016, USA
| | - Zhenyuan Zhang
- Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health, Boston, MA, 07016, USA
| | - Emilia Purington
- Department of Chemical and Biological Engineering, University of Maine, Orono ME 04469 USA
| | - William Gramlich
- Department of Chemistry, University of Maine, Orono, ME 04469 USA
| | - Yohann Grondin
- Department of Environmental Health, Molecular and Integrative Physiological Sciences Program, Harvard T. H. Chan School of Public Health, Boston, MA, 07016, USA
| | - Rick Rogers
- Department of Environmental Health, Molecular and Integrative Physiological Sciences Program, Harvard T. H. Chan School of Public Health, Boston, MA, 07016, USA
| | - Douglas Bousfield
- Department of Chemical and Biological Engineering, University of Maine, Orono ME 04469 USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health, Boston, MA, 07016, USA
| |
Collapse
|
89
|
Badun GA, Myasnikov IY, Kazakov AG, Fedorova NV, Chernysheva MG. Noncovalent Modification of Nanodiamonds with Tritium-Labeled Pantothenic Acid Derivatives. RADIOCHEMISTRY 2019. [DOI: 10.1134/s106636221902019x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
90
|
Fujiwara M, Tsukahara R, Sera Y, Yukawa H, Baba Y, Shikata S, Hashimoto H. Monitoring spin coherence of single nitrogen-vacancy centers in nanodiamonds during pH changes in aqueous buffer solutions. RSC Adv 2019; 9:12606-12614. [PMID: 35515823 PMCID: PMC9063689 DOI: 10.1039/c9ra02282a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/15/2019] [Indexed: 12/05/2022] Open
Abstract
We report on the sensing stability of quantum nanosensors in aqueous buffer solutions for the two detection schemes of quantum decoherence spectroscopy and nanoscale thermometry. The electron spin properties of single nitrogen-vacancy (NV) centers in 25 nm-sized nanodiamonds have been characterized by observing individual nanodiamonds during a continuous pH change from 4 to 11. We have determined the stability of the NV quantum sensors during the pH change as the fluctuations of ±12% and ±0.2 MHz for the spin coherence time (T 2) and the resonance frequency (ω 0) of their mean values, which are comparable to the instrument error of the measurement system. We discuss the importance of characterizing the sensing stability during the pH change and how the present observation affects the measurement scheme of nanodiamond-based NV quantum sensing.
Collapse
Affiliation(s)
- Masazumi Fujiwara
- Department of Chemistry, Graduate School of Science, Osaka City University Sumiyoshi-ku Osaka 558-8585 Japan
- School of Science and Technology, Kwansei Gakuin University Sanda Hyogo 669-1337 Japan
| | - Ryuta Tsukahara
- School of Science and Technology, Kwansei Gakuin University Sanda Hyogo 669-1337 Japan
| | - Yoshihiko Sera
- School of Science and Technology, Kwansei Gakuin University Sanda Hyogo 669-1337 Japan
| | - Hiroshi Yukawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University Chikusa-ku Nagoya 464-8603 Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University Chikusa-ku Nagoya 464-8603 Japan
- Institute of Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology Anagawa 4-9-1, Inage-ku 263-8555 Chiba Japan
| | - Yoshinobu Baba
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University Chikusa-ku Nagoya 464-8603 Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University Chikusa-ku Nagoya 464-8603 Japan
- Institute of Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology Anagawa 4-9-1, Inage-ku 263-8555 Chiba Japan
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Takamatsu 761-0395 Japan
- College of Pharmacy, Kaohsiung Medical University Kaohsiung 807 Taiwan Republic of China
| | - Shinichi Shikata
- School of Science and Technology, Kwansei Gakuin University Sanda Hyogo 669-1337 Japan
| | - Hideki Hashimoto
- School of Science and Technology, Kwansei Gakuin University Sanda Hyogo 669-1337 Japan
| |
Collapse
|
91
|
Wu T, Xu H, Liang X, Tang M. Caenorhabditis elegans as a complete model organism for biosafety assessments of nanoparticles. CHEMOSPHERE 2019; 221:708-726. [PMID: 30677729 DOI: 10.1016/j.chemosphere.2019.01.021] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/24/2018] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
The number of biosafety evaluation studies of nanoparticles (NPs) using different biological models is increasing with the rapid development of nanotechnology. Thus far, nematode Caenorhabditis elegans (C. elegans), as a complete model organism, has become an important in vivo alternative assay system to assess the risk of NPs, especially at the environmental level. According to results of qualitative and quantitative analyses, it can be concluded that studies of nanoscientific research using C. elegans is persistently growing. However, the comprehensive conclusion and analysis of toxic effects of NPs in C. elegans are limited and chaotic. This review focused on the effects, especially sublethal ones, induced by NPs in C. elegans, including the development, intestinal function, immune response, neuronal function, and reproduction, as well as the underlying mechanisms of NPs causing these effects, including oxidative stress and alterations of several signaling pathways. Furthermore, we presented some factors that influence the toxic effects of NPs in C. elegans. The advantages and limitations of using nematodes in the nanotoxicology study were also discussed. Finally, we predicted that the application of C. elegans to assess long-term impacts of metal oxide NPs in the ecosystem would become a vital part of the nanoscientific research field, which provided an insight for further study.
Collapse
Affiliation(s)
- Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210009, China.
| | - Hongsheng Xu
- State Grid Electric Power Research Institute, NARI Group Corporation, Nanjing, 211000, China
| | - Xue Liang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210009, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
92
|
Li H, Roxo M, Cheng X, Zhang S, Cheng H, Wink M. Pro-oxidant and lifespan extension effects of caffeine and related methylxanthines in Caenorhabditis elegans. Food Chem X 2019; 1:100005. [PMID: 31432005 PMCID: PMC6694850 DOI: 10.1016/j.fochx.2019.100005] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/07/2019] [Indexed: 12/23/2022] Open
Abstract
Caffeine and related purine alkaloids are common ingredients of many stimulating drinks. Studies have shown that lower concentrations of caffeine have a protective role in aging-related disorders. However, the associated mode of action of caffeine and its related methylxanthines is still not clear. In this study, we demonstrated that caffeine and theophylline promote longevity in Caenorhabditis elegans. Lifespan studies with the wild type, DAF-16 and SKN-1 mutant strains indicated that the methylxanthines-mediated lifespan extension in C. elegans was independent of DAF-16/FOXO and SKN-1. All the tested methylxanthines could protect C. elegans against acute oxidative stress. At early stages of life, an increase of ROS (reactive oxygen species) induced the translocation of DAF-16 and SKN-1, resulting in upregulation of several antioxidant genes, for example, sod-3p::GFP, gst-4p::GFP, gcs-1p::GFP; and downregulation of hsp-16.2p::GFP. RT-PCR corroborates the upregulation of gst-4 and skn-1 genes. The expression of DAF-16 decreased although its nuclear translocation was induced.
Collapse
Affiliation(s)
- Hanmei Li
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | - Mariana Roxo
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | - Xinlai Cheng
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | - Shaoxiong Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haoran Cheng
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| |
Collapse
|
93
|
Targeting EGFR of triple-negative breast cancer enhances the therapeutic efficacy of paclitaxel- and cetuximab-conjugated nanodiamond nanocomposite. Acta Biomater 2019; 86:395-405. [PMID: 30660004 DOI: 10.1016/j.actbio.2019.01.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 12/17/2022]
Abstract
Breast cancer is the most common malignancy and a leading cause of cancer-related mortality among women worldwide. Triple-negative breast cancer (TNBC) is characterized by the lack of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor-2 (HER2). However, epidermal growth factor receptor (EGFR) is highly expressed in most of the TNBCs, which may provide a potential target for EGFR targeting therapy. Nanodiamond (ND) is a carbon-based nanomaterial with several advantages, including fluorescence emission, biocompatibility, and drug delivery applications. In this study, we designed a nanocomposite by using ND conjugated with paclitaxel (PTX) and cetuximab (Cet) for targeting therapy on the EGFR-positive TNBC cells. ND-PTX inhibited cell viability and induced mitotic catastrophe in various human breast cancer cell lines (MDA-MB-231, MCF-7, and BT474); in contrast, ND alone did not induce cell death. ND-PTX inhibited the xenografted human breast tumors in nude mice. We further investigated ND-PTX-Cet drug efficacy on the TNBC of MDA-MB-231 breast cancer cells. ND-PTX-Cet could specifically bind to EGFR and enhanced the anticancer effects including drug uptake levels, mitotic catastrophe, and apoptosis in the EGFR-expressed MDA-MB-231 cells but not in the EGFR-negative MCF-7 cells. In addition, ND-PTX-Cet increased the protein levels of active caspase-3 and phospho-histone H3 (Ser10). Furthermore, ND-PTX-Cet showed more effective on the reduction of TNBC tumor volume by comparison with ND-PTX. Taken together, these results demonstrated that ND-PTX-Cet nanocomposite enhanced mitotic catastrophe and apoptosis by targeting EGFR of TNBC cells, which can provide a feasible strategy for TNBC therapy. STATEMENT OF SIGNIFICANCE: Current TNBC treatment is ineffective against the survival rate of TNBC patients. Therefore, the development of new treatment strategies for TNBC patients is urgently needed. Here, we have designed a nanocomposite by targeting on the EGFR of TNBC to enhance therapeutic efficacy by ND-conjugated PTX and Cet (ND-PTX-Cet). Interestingly, we found that the co-delivery of Cet and PTX by ND enhanced the apoptosis, mitotic catastrophe and tumor inhibition in the EGFR-expressed TNBC in vitro and in vivo. Consequently, this nanocomposite ND-PTX-Cet can be applied for targeting EGFR of human TNBC therapy.
Collapse
|
94
|
Ma H, Lenz KA, Gao X, Li S, Wallis LK. Comparative toxicity of a food additive TiO 2, a bulk TiO 2, and a nano-sized P25 to a model organism the nematode C. elegans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:3556-3568. [PMID: 30523524 DOI: 10.1007/s11356-018-3810-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
To help fill the knowledge gap regarding the potential human health impacts of food pigment TiO2, a comparative toxicity study was performed on a food-grade TiO2 (f-TiO2), a bulk TiO2 (b-TiO2), and a nano-sized TiO2 (Degussa P25), and in the nematode Caenorhabditis elegans. Acute phototoxicity and chronic toxicity effects including reproduction, lifespan, and vulval integrity were evaluated. The f-TiO2, b-TiO2, and P25 had a primary particle size (size range) of 149 (53-308) nm, 129 (64-259) nm, and 26 (11-52) nm, respectively. P25 showed the greatest phototoxicity with a 24-h LC50 of 6.0 mg/L (95% CI 5.95, 6.3), followed by the f-TiO2 (LC50 = 6.55 mg/L (95% CI 6.35, 6.75)), and b-TiO2 was the least toxic. All three TiO2 (1-10 mg/L) induced concentration-dependent effects on the worm's reproduction, with a reduction in brood size by 8.5 to 34%. They all caused a reduction of worm lifespan, accompanied by an increased frequency of age-associated vulval integrity defects (Avid). The impact on lifespan and Avid phenotype was more notable for P25 than the f-TiO2 or b-TiO2. Ingestion and accumulation of TiO2 particles in the worm intestine was observed for all three materials by light microscopy. These findings demonstrate that the food pigment TiO2 induces toxicity effects in the worm and further studies are needed to elucidate the human health implication of such toxicities.
Collapse
Affiliation(s)
- Hongbo Ma
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| | - Kade A Lenz
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Xianfeng Gao
- Department of Materials Science & Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Shibin Li
- Mid-Continent Ecology Division, United States Environmental Protection Agency, Duluth, MN, USA
| | - Lindsay K Wallis
- Mid-Continent Ecology Division, United States Environmental Protection Agency, Duluth, MN, USA
| |
Collapse
|
95
|
Prabhakar N, Rosenholm JM. Nanodiamonds for advanced optical bioimaging and beyond. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.02.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
96
|
Saraf J, Kalia K, Bhattacharya P, Tekade RK. Growing synergy of nanodiamonds in neurodegenerative interventions. Drug Discov Today 2019; 24:584-594. [DOI: 10.1016/j.drudis.2018.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/30/2018] [Accepted: 10/22/2018] [Indexed: 12/24/2022]
|
97
|
Huang H, Liu M, Jiang R, Chen J, Huang Q, Wen Y, Tian J, Zhou N, Zhang X, Wei Y. Water-dispersible fluorescent nanodiamonds for biological imaging prepared by thiol-ene click chemistry. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2018.08.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
98
|
Muller O, Pichot V, Merlat L, Spitzer D. Optical limiting properties of surface functionalized nanodiamonds probed by the Z-scan method. Sci Rep 2019; 9:519. [PMID: 30679574 PMCID: PMC6345928 DOI: 10.1038/s41598-018-36838-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/23/2018] [Indexed: 01/17/2023] Open
Abstract
This work focuses on the optical limiting behavior of surface modified nanodiamonds (DNDs) namely, amino-terminated DNDs (DND-NH2) and hydrogen-terminated DNDs (DND-H). Their relevant nonlinear optical properties for optical limiting are compared to those of unfunctionalized DNDs. The optical limitation is characterized by means of nonlinear transmittance, Z-scan, and scattered intensity assessments when submitted to a nanosecond pulsed Nd:YAG laser operating at a wavelength of 532 nm. It is stated that the largest nonlinear attenuation is attributed to the DND-H system, whereas the exceedingly low threshold values for optical limiting for the DND-H and the DND-NH2 systems is attributed to their negative electron affinity character (NEA). Using Z-scan experiments, it is shown that nonlinear refraction combined with a significant nonlinear absorption predominates in the DND-H suspension, while the pure thermal origin of the nonlinear refractive index change is conjectured in the case of the DNDs. Besides, an amazing valley to peak profile was measured on DND - NH2indicating an unexpected positive sign of the nonlinear refraction coefficient. In addition, a stronger backscattered intensity signal is highlighted for the unfunctionalized DNDs through nonlinear scattering measurements.
Collapse
Affiliation(s)
- O Muller
- Laboratory for Radiation Interaction with Matter, French-German Research Insitute of Saint-Louis, 5 rue du Général Cassagnou, 68301, Saint-Louis, France.
| | - V Pichot
- NS3E "Nanomatériaux pour Systèmes Sous Sollicitations Extrêmes" UMR 3208 ISL/CNRS/UNISTRA, French-German Research Insitute of Saint-Louis, 5 rue du Général Cassagnou, 68301, Saint-Louis, France
| | - L Merlat
- Laboratory for Radiation Interaction with Matter, French-German Research Insitute of Saint-Louis, 5 rue du Général Cassagnou, 68301, Saint-Louis, France
| | - D Spitzer
- NS3E "Nanomatériaux pour Systèmes Sous Sollicitations Extrêmes" UMR 3208 ISL/CNRS/UNISTRA, French-German Research Insitute of Saint-Louis, 5 rue du Général Cassagnou, 68301, Saint-Louis, France
| |
Collapse
|
99
|
Ali MS, Metwally AA, Fahmy RH, Osman R. Nanodiamonds: Minuscule gems that ferry antineoplastic drugs to resistant tumors. Int J Pharm 2019; 558:165-176. [PMID: 30641180 DOI: 10.1016/j.ijpharm.2018.12.090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/21/2018] [Accepted: 12/27/2018] [Indexed: 10/27/2022]
Abstract
Remarkable efforts are currently devoted to the area of nanodiamonds (NDs) research due to their superior properties viz: biocompatibility, minute size, inert core, and tunable surface chemistry. The use of NDs for the delivery of anticancer drugs has been at the forefront of NDs applications owing to their ability to increase chemosensitivity, sustain drug release, and minimize drug side effects. Accelerated steps towards the move of NDs from bench side to bedside have been recently witnessed. In this review, the effects of NDs production and purification techniques on NDs' final properties are discussed. Special concern is given to studies focusing on NDs use for anticancer drug delivery, stability enhancement and mediated targeted delivery. The aim of this review is to put the results of studies oriented towards NDs-mediated anticancer drug delivery side by side such that the reader can assess the potential use of NDs in clinics and follow up the upcoming results of clinical testing of NDs on animals and humans.
Collapse
Affiliation(s)
- Moustafa S Ali
- Department of Pharmaceutics, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, Egypt.
| | - Abdelkader A Metwally
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Health Sciences Center, Kuwait University, Kuwait
| | - Rania H Fahmy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, Egypt
| | - Rihab Osman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
100
|
Iyer J, DeVaul N, Hansen T, Nebenfuehr B. Using Microinjection to Generate Genetically Modified Caenorhabditis elegans by CRISPR/Cas9 Editing. Methods Mol Biol 2019; 1874:431-457. [PMID: 30353529 DOI: 10.1007/978-1-4939-8831-0_25] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this chapter, we describe the procedure for generating genetically modified Caenorhabditis elegans using microinjection via the Cas9-mediated Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) editing technique. Specifically, we describe the detailed method of performing CRISPR editing by microinjection using the Cloning-free Co-CRISPR method described by the Seydoux lab. This microinjection protocol can also be used for CRISPR editing with protocols from other labs as well as for a variety of other editing techniques including Mos1-mediated single-copy transgene insertions (MosSCI), transcriptional activator-like nucleases (TALENs), and zinc-finger nucleases (ZFNs). Further, this microinjection protocol can also be used for injecting plasmid DNA to generate heritable extrachromosomal arrays for gene expression and mosaic analysis, performing RNAi by injection and delivering RNA, dyes or other molecules into the C. elegans germline.
Collapse
Affiliation(s)
- Jyoti Iyer
- Department of Chemistry and Biochemistry, The University of Tulsa, Tulsa, OK, USA.
| | - Nicole DeVaul
- The Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Tulsa, OK, USA
| | - Tyler Hansen
- Department of Biochemistry, Vanderbilt University School of Medicine, Tulsa, OK, USA
| | - Ben Nebenfuehr
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Tulsa, OK, USA
| |
Collapse
|