51
|
Dao BN, Viard M, Martins AN, Kasprzak WK, Shapiro BA, Afonin KA. Triggering RNAi with multifunctional RNA nanoparticles and their delivery. DNA AND RNA NANOTECHNOLOGY 2015; 2:1-12. [PMID: 34322586 PMCID: PMC8315566 DOI: 10.1515/rnan-2015-0001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proteins are considered to be the key players in structure, function, and metabolic regulation of our bodies. The mechanisms used in conventional therapies often rely on inhibition of proteins with small molecules, but another promising method to treat disease is by targeting the corresponding mRNAs. In 1998, Craig Mellow and Andrew Fire discovered dsRNA-mediated gene silencing via RNA interference or RNAi. This discovery introduced almost unlimited possibilities for new gene silencing methods, thus opening new doors to clinical medicine. RNAi is a biological process that inhibits gene expression by targeting the mRNA. RNAi-based therapeutics have several potential advantages (i) a priori ability to target any gene, (ii) relatively simple design process, (iii) site-specificity, (iv) potency, and (v) a potentially safe and selective knockdown of the targeted cells. However, the problem lies within the formulation and delivery of RNAi therapeutics including rapid excretion, instability in the bloodstream, poor cellular uptake, and inefficient intracellular release. In an attempt to solve these issues, different types of RNAi therapeutic delivery strategies including multifunctional RNA nanoparticles are being developed. In this mini-review, we will briefly describe some of the current approaches.
Collapse
Affiliation(s)
- Bich Ngoc Dao
- Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, North Carolina 28223, USA
| | - Mathias Viard
- Basic Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, Maryland, USA; Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Angelica N. Martins
- Department of Biology, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, North Carolina 28223, USA
| | - Wojciech K. Kasprzak
- Basic Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, Maryland, USA; Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Bruce A. Shapiro
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Kirill A. Afonin
- Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, North Carolina 28223, USA
| |
Collapse
|
52
|
Abstract
Purification of large quantities of supramolecular RNA complexes is of paramount importance due to the large quantities of RNA needed and the purity requirements for in vitro and in vivo assays. Purification is generally carried out by liquid chromatography (HPLC), polyacrylamide gel electrophoresis (PAGE), or agarose gel electrophoresis (AGE). Here, we describe an efficient method for the large-scale purification of RNA prepared by in vitro transcription using T7 RNA polymerase by cesium chloride (CsCl) equilibrium density gradient ultracentrifugation and the large-scale purification of RNA nanoparticles by sucrose gradient rate-zonal ultracentrifugation or cushioned sucrose gradient rate-zonal ultracentrifugation.
Collapse
|
53
|
Afonin KA, Lindsay B, Shapiro BA. Engineered RNA Nanodesigns for Applications in RNA Nanotechnology. DNA AND RNA NANOTECHNOLOGY 2015; 1:1-15. [PMID: 34322585 PMCID: PMC8315564 DOI: 10.2478/rnan-2013-0001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nucleic acids have emerged as an extremely promising platform for nanotechnological applications because of their unique biochemical properties and functions. RNA, in particular, is characterized by relatively high thermal stability, diverse structural flexibility, and its capacity to perform a variety of functions in nature. These properties make RNA a valuable platform for bio-nanotechnology, specifically RNA Nanotechnology, that can create de novo nanostructures with unique functionalities through the design, integration, and re-engineering of powerful mechanisms based on a variety of existing RNA structures and their fundamental biochemical properties. This review highlights the principles that underlie the rational design of RNA nanostructures, describes the main strategies used to construct self-assembling nanoparticles, and discusses the challenges and possibilities facing the application of RNA Nanotechnology in the future.
Collapse
Affiliation(s)
- Kirill A. Afonin
- Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Brian Lindsay
- Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Bruce A. Shapiro
- Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
54
|
Endo M, Takeuchi Y, Emura T, Hidaka K, Sugiyama H. Preparation of chemically modified RNA origami nanostructures. Chemistry 2014; 20:15330-3. [PMID: 25313942 DOI: 10.1002/chem.201404084] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Indexed: 12/11/2022]
Abstract
In nucleic acid nanotechnology, designed RNA molecules are widely explored because of their usability originating from RNA's structural and functional diversity. Herein, a method to design and prepare RNA nanostructures by employing DNA origami strategy was developed. A single-stranded RNA scaffold and staple RNA strands were used for the formation of RNA nanostructures. After the annealing of the mixtures, 7-helix bundled RNA tile and 6-helix bundled RNA tube structures were observed as predesigned shapes. These nanostructures were easily functionalized by introducing chemical modification to the RNA scaffolds. The DNA origami method is extended and utilized to construct RNA nanostructures.
Collapse
Affiliation(s)
- Masayuki Endo
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501 (Japan); CREST (Japan) Science and Technology Agency (JST), Sanbancho, Chiyoda-ku, Tokyo 102-0075 (Japan).
| | | | | | | | | |
Collapse
|
55
|
Afonin K, Viard M, Koyfman AY, Martins AN, Kasprzak WK, Panigaj M, Desai R, Santhanam A, Grabow WW, Jaeger L, Heldman E, Reiser J, Chiu W, Freed EO, Shapiro BA. Multifunctional RNA nanoparticles. NANO LETTERS 2014; 14:5662-71. [PMID: 25267559 PMCID: PMC4189619 DOI: 10.1021/nl502385k] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/27/2014] [Indexed: 05/06/2023]
Abstract
Our recent advancements in RNA nanotechnology introduced novel nanoscaffolds (nanorings); however, the potential of their use for biomedical applications was never fully revealed. As presented here, besides functionalization with multiple different short interfering RNAs for combinatorial RNA interference (e.g., against multiple HIV-1 genes), nanorings also allow simultaneous embedment of assorted RNA aptamers, fluorescent dyes, proteins, as well as recently developed RNA-DNA hybrids aimed to conditionally activate multiple split functionalities inside cells.
Collapse
Affiliation(s)
- Kirill
A. Afonin
- Basic
Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Mathias Viard
- Basic
Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Basic
Science Program, Leidos Biomedical Research,
Inc., NCI Center for Cancer Research, Frederick National Laboratory
for Cancer Research, Frederick, Maryland 21702, United States
| | - Alexey Y. Koyfman
- National
Center for Macromolecular Imaging, Verna and Marrs McLean Department
of Biochemistry and Molecular Biology, Baylor
College of Medicine, Houston, Texas 77030, United States
| | - Angelica N. Martins
- HIV
Drug Resistance Program, National Cancer
Institute, Frederick, Maryland 21702, United
States
| | - Wojciech K. Kasprzak
- Basic
Science Program, Leidos Biomedical Research,
Inc., NCI Center for Cancer Research, Frederick National Laboratory
for Cancer Research, Frederick, Maryland 21702, United States
| | - Martin Panigaj
- Food
and Drug Administration, Center for Biologics Evaluation and Research,
Office of Cellular, Tissue and Gene Therapies, Silver Spring, Maryland 20993, United States
| | - Ravi Desai
- Basic
Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Arti Santhanam
- Basic
Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Wade W. Grabow
- Department
of Chemistry, Seattle Pacific University, Seattle, Washington 98119, United States
| | - Luc Jaeger
- Department
of Chemistry and Biochemistry, Biomolecular Science and Engineering
Program, University of California, Santa Barbara, California 93106-9510, United States
| | - Eliahu Heldman
- Basic
Science Program, Leidos Biomedical Research,
Inc., NCI Center for Cancer Research, Frederick National Laboratory
for Cancer Research, Frederick, Maryland 21702, United States
| | - Jakob Reiser
- Food
and Drug Administration, Center for Biologics Evaluation and Research,
Office of Cellular, Tissue and Gene Therapies, Silver Spring, Maryland 20993, United States
| | - Wah Chiu
- National
Center for Macromolecular Imaging, Verna and Marrs McLean Department
of Biochemistry and Molecular Biology, Baylor
College of Medicine, Houston, Texas 77030, United States
| | - Eric O. Freed
- HIV
Drug Resistance Program, National Cancer
Institute, Frederick, Maryland 21702, United
States
| | - Bruce A. Shapiro
- Basic
Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
56
|
Zhang F, Nangreave J, Liu Y, Yan H. Structural DNA nanotechnology: state of the art and future perspective. J Am Chem Soc 2014; 136:11198-211. [PMID: 25029570 PMCID: PMC4140475 DOI: 10.1021/ja505101a] [Citation(s) in RCA: 404] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Indexed: 12/12/2022]
Abstract
Over the past three decades DNA has emerged as an exceptional molecular building block for nanoconstruction due to its predictable conformation and programmable intra- and intermolecular Watson-Crick base-pairing interactions. A variety of convenient design rules and reliable assembly methods have been developed to engineer DNA nanostructures of increasing complexity. The ability to create designer DNA architectures with accurate spatial control has allowed researchers to explore novel applications in many directions, such as directed material assembly, structural biology, biocatalysis, DNA computing, nanorobotics, disease diagnosis, and drug delivery. This Perspective discusses the state of the art in the field of structural DNA nanotechnology and presents some of the challenges and opportunities that exist in DNA-based molecular design and programming.
Collapse
Affiliation(s)
- Fei Zhang
- Center
for Molecular Design and Biomimicry, Biodesign Institute, and Department of
Chemistry and Biochemistry, Arizona State
University, Tempe, Arizona 85287, United
States
| | - Jeanette Nangreave
- Center
for Molecular Design and Biomimicry, Biodesign Institute, and Department of
Chemistry and Biochemistry, Arizona State
University, Tempe, Arizona 85287, United
States
| | - Yan Liu
- Center
for Molecular Design and Biomimicry, Biodesign Institute, and Department of
Chemistry and Biochemistry, Arizona State
University, Tempe, Arizona 85287, United
States
| | - Hao Yan
- Center
for Molecular Design and Biomimicry, Biodesign Institute, and Department of
Chemistry and Biochemistry, Arizona State
University, Tempe, Arizona 85287, United
States
| |
Collapse
|
57
|
Abstract
Over the past three decades DNA has emerged as an exceptional molecular building block for nanoconstruction due to its predictable conformation and programmable intra- and intermolecular Watson-Crick base-pairing interactions. A variety of convenient design rules and reliable assembly methods have been developed to engineer DNA nanostructures of increasing complexity. The ability to create designer DNA architectures with accurate spatial control has allowed researchers to explore novel applications in many directions, such as directed material assembly, structural biology, biocatalysis, DNA computing, nanorobotics, disease diagnosis, and drug delivery. This Perspective discusses the state of the art in the field of structural DNA nanotechnology and presents some of the challenges and opportunities that exist in DNA-based molecular design and programming.
Collapse
Affiliation(s)
- Fei Zhang
- Center for Molecular Design and Biomimicry, Biodesign Institute, and ‡Department of Chemistry and Biochemistry, Arizona State University , Tempe, Arizona 85287, United States
| | | | | | | |
Collapse
|
58
|
Afonin K, Kasprzak WK, Bindewald E, Kireeva M, Viard M, Kashlev M, Shapiro BA. In silico design and enzymatic synthesis of functional RNA nanoparticles. Acc Chem Res 2014; 47:1731-41. [PMID: 24758371 PMCID: PMC4066900 DOI: 10.1021/ar400329z] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Indexed: 12/25/2022]
Abstract
CONSPECTUS: The use of RNAs as scaffolds for biomedical applications has several advantages compared with other existing nanomaterials. These include (i) programmability, (ii) precise control over folding and self-assembly, (iii) natural functionalities as exemplified by ribozymes, riboswitches, RNAi, editing, splicing, and inherent translation and transcription control mechanisms, (iv) biocompatibility, (v) relatively low immune response, and (vi) relatively low cost and ease of production. We have tapped into several of these properties and functionalities to construct RNA-based functional nanoparticles (RNA NPs). In several cases, the structural core and the functional components of the NPs are inherent in the same construct. This permits control over the spatial disposition of the components, intracellular availability, and precise stoichiometry. To enable the generation of RNA NPs, a pipeline is being developed. On one end, it encompasses the rational design and various computational schemes that promote design of the RNA-based nanoconstructs, ultimately producing a set of sequences consisting of RNA or RNA-DNA hybrids, which can assemble into the designed construct. On the other end of the pipeline is an experimental component, which takes the produced sequences and uses them to initialize and characterize their proper assembly and then test the resulting RNA NPs for their function and delivery in cell culture and animal models. An important aspect of this pipeline is the feedback that constantly occurs between the computational and the experimental parts, which synergizes the refinement of both the algorithmic methodologies and the experimental protocols. The utility of this approach is depicted by the several examples described in this Account (nanocubes, nanorings, and RNA-DNA hybrids). Of particular interest, from the computational viewpoint, is that in most cases, first a three-dimensional representation of the assembly is produced, and only then are algorithms applied to generate the sequences that will assemble into the designated three-dimensional construct. This is opposite to the usual practice of predicting RNA structures from a given sequence, that is, the RNA folding problem. To be considered is the generation of sequences that upon assembly have the proper intra- or interstrand interactions (or both). Of particular interest from the experimental point of view is the determination and characterization of the proper thermodynamic, kinetic, functionality, and delivery protocols. Assembly of RNA NPs from individual single-stranded RNAs can be accomplished by one-pot techniques under the proper thermal and buffer conditions or, potentially more interestingly, by the use of various RNA polymerases that can promote the formation of RNA NPs cotransciptionally from specifically designed DNA templates. Also of importance is the delivery of the RNA NPs to the cells of interest in vitro or in vivo. Nonmodified RNAs rapidly degrade in blood serum and have difficulties crossing biological membranes due to their negative charge. These problems can be overcome by using, for example, polycationic lipid-based carriers. Our work involves the use of bolaamphiphiles, which are amphipathic compounds with positively charged hydrophilic head groups at each end connected by a hydrophobic chain. We have correlated results from molecular dynamics computations with various experiments to understand the characteristics of such delivery agents.
Collapse
Affiliation(s)
- Kirill
A. Afonin
- Basic
Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Wojciech K. Kasprzak
- Basic
Science Program, Leidos Biomedical Research,
Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Eckart Bindewald
- Basic
Science Program, Leidos Biomedical Research,
Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Maria Kireeva
- Gene
Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Mathias Viard
- Basic
Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Basic
Science Program, Leidos Biomedical Research,
Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Mikhail Kashlev
- Gene
Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Bruce A. Shapiro
- Basic
Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
59
|
Afonin KA, Kasprzak W, Bindewald E, Puppala PS, Diehl AR, Hall KT, Kim TJ, Zimmermann MT, Jernigan RL, Jaeger L, Shapiro BA. Computational and experimental characterization of RNA cubic nanoscaffolds. Methods 2014; 67:256-65. [PMID: 24189588 PMCID: PMC4007386 DOI: 10.1016/j.ymeth.2013.10.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/11/2013] [Accepted: 10/16/2013] [Indexed: 01/03/2023] Open
Abstract
The fast-developing field of RNA nanotechnology requires the adoption and development of novel and faster computational approaches to modeling and characterization of RNA-based nano-objects. We report the first application of Elastic Network Modeling (ENM), a structure-based dynamics model, to RNA nanotechnology. With the use of an Anisotropic Network Model (ANM), a type of ENM, we characterize the dynamic behavior of non-compact, multi-stranded RNA-based nanocubes that can be used as nano-scale scaffolds carrying different functionalities. Modeling the nanocubes with our tool NanoTiler and exploring the dynamic characteristics of the models with ANM suggested relatively minor but important structural modifications that enhanced the assembly properties and thermodynamic stabilities. In silico and in vitro, we compared nanocubes having different numbers of base pairs per side, showing with both methods that the 10 bp-long helix design leads to more efficient assembly, as predicted computationally. We also explored the impact of different numbers of single-stranded nucleotide stretches at each of the cube corners and showed that cube flexibility simulations help explain the differences in the experimental assembly yields, as well as the measured nanomolecule sizes and melting temperatures. This original work paves the way for detailed computational analysis of the dynamic behavior of artificially designed multi-stranded RNA nanoparticles.
Collapse
Affiliation(s)
- Kirill A Afonin
- Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Wojciech Kasprzak
- Basic Science Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Eckart Bindewald
- Basic Science Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Praneet S Puppala
- Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Alex R Diehl
- Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Kenneth T Hall
- Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Tae Jin Kim
- Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Michael T Zimmermann
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Robert L Jernigan
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Luc Jaeger
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9510, USA.
| | - Bruce A Shapiro
- Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
60
|
Zheng HN, Ma YZ, Xiao SJ. Periodical assembly of repetitive RNA sequences synthesized by rolling circle transcription with short DNA staple strands to RNA–DNA hybrid nanowires. Chem Commun (Camb) 2014; 50:2100-3. [DOI: 10.1039/c3cc48808j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
61
|
de la Iglesia D, Cachau RE, García-Remesal M, Maojo V. Nanoinformatics knowledge infrastructures: bringing efficient information management to nanomedical research. COMPUTATIONAL SCIENCE & DISCOVERY 2013; 6:014011. [PMID: 24932210 PMCID: PMC4053539 DOI: 10.1088/1749-4699/6/1/014011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nanotechnology represents an area of particular promise and significant opportunity across multiple scientific disciplines. Ongoing nanotechnology research ranges from the characterization of nanoparticles and nanomaterials to the analysis and processing of experimental data seeking correlations between nanoparticles and their functionalities and side effects. Due to their special properties, nanoparticles are suitable for cellular-level diagnostics and therapy, offering numerous applications in medicine, e.g. development of biomedical devices, tissue repair, drug delivery systems and biosensors. In nanomedicine, recent studies are producing large amounts of structural and property data, highlighting the role for computational approaches in information management. While in vitro and in vivo assays are expensive, the cost of computing is falling. Furthermore, improvements in the accuracy of computational methods (e.g. data mining, knowledge discovery, modeling and simulation) have enabled effective tools to automate the extraction, management and storage of these vast data volumes. Since this information is widely distributed, one major issue is how to locate and access data where it resides (which also poses data-sharing limitations). The novel discipline of nanoinformatics addresses the information challenges related to nanotechnology research. In this paper, we summarize the needs and challenges in the field and present an overview of extant initiatives and efforts.
Collapse
Affiliation(s)
- D de la Iglesia
- Biomedical Informatics Group, Dept. Inteligencia Artificial, Facultad de Informatica, Universidad Politecnica de Madrid, 28660, Boadilla del Monte, Madrid, Spain
| | - R E Cachau
- Advanced Biomedical Computing Center, National Cancer Institute, SAIC-Frederick Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - M García-Remesal
- Biomedical Informatics Group, Dept. Inteligencia Artificial, Facultad de Informatica, Universidad Politecnica de Madrid, 28660, Boadilla del Monte, Madrid, Spain
| | - V Maojo
- Biomedical Informatics Group, Dept. Inteligencia Artificial, Facultad de Informatica, Universidad Politecnica de Madrid, 28660, Boadilla del Monte, Madrid, Spain
| |
Collapse
|
62
|
Aptamer-based therapeutics: new approaches to combat human viral diseases. Pharmaceuticals (Basel) 2013; 6:1507-42. [PMID: 24287493 PMCID: PMC3873675 DOI: 10.3390/ph6121507] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/12/2013] [Accepted: 11/15/2013] [Indexed: 12/18/2022] Open
Abstract
Viruses replicate inside the cells of an organism and continuously evolve to contend with an ever-changing environment. Many life-threatening diseases, such as AIDS, SARS, hepatitis and some cancers, are caused by viruses. Because viruses have small genome sizes and high mutability, there is currently a lack of and an urgent need for effective treatment for many viral pathogens. One approach that has recently received much attention is aptamer-based therapeutics. Aptamer technology has high target specificity and versatility, i.e., any viral proteins could potentially be targeted. Consequently, new aptamer-based therapeutics have the potential to lead a revolution in the development of anti-infective drugs. Additionally, aptamers can potentially bind any targets and any pathogen that is theoretically amenable to rapid targeting, making aptamers invaluable tools for treating a wide range of diseases. This review will provide a broad, comprehensive overview of viral therapies that use aptamers. The aptamer selection process will be described, followed by an explanation of the potential for treating virus infection by aptamers. Recent progress and prospective use of aptamers against a large variety of human viruses, such as HIV-1, HCV, HBV, SCoV, Rabies virus, HPV, HSV and influenza virus, with particular focus on clinical development of aptamers will also be described. Finally, we will discuss the challenges of advancing antiviral aptamer therapeutics and prospects for future success.
Collapse
|
63
|
Endo M, Yamamoto S, Tatsumi K, Emura T, Hidaka K, Sugiyama H. RNA-templated DNA origami structures. Chem Commun (Camb) 2013; 49:2879-81. [PMID: 23446278 DOI: 10.1039/c3cc38804b] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Using the RNA transcript as a template, RNA-templated DNA origami structures were constructed by annealing with designed DNA staple strands. RNA-templated DNA origami structures were folded to form seven-helix bundled rectangular structures and six-helix bundled tubular structures. The chemically modified RNA-DNA hybrid origami structures were prepared by using RNA templates containing modified uracils.
Collapse
Affiliation(s)
- Masayuki Endo
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | | | | | | | |
Collapse
|
64
|
Zhang H, Endrizzi JA, Shu Y, Haque F, Sauter C, Shlyakhtenko LS, Lyubchenko Y, Guo P, Chi YI. Crystal structure of 3WJ core revealing divalent ion-promoted thermostability and assembly of the Phi29 hexameric motor pRNA. RNA (NEW YORK, N.Y.) 2013; 19:1226-37. [PMID: 23884902 PMCID: PMC3753930 DOI: 10.1261/rna.037077.112] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 06/06/2013] [Indexed: 05/22/2023]
Abstract
The bacteriophage phi29 DNA packaging motor, one of the strongest biological motors characterized to date, is geared by a packaging RNA (pRNA) ring. When assembled from three RNA fragments, its three-way junction (3WJ) motif is highly thermostable, is resistant to 8 M urea, and remains associated at extremely low concentrations in vitro and in vivo. To elucidate the structural basis for its unusual stability, we solved the crystal structure of this pRNA 3WJ motif at 3.05 Å. The structure revealed two divalent metal ions that coordinate 4 nt of the RNA fragments. Single-molecule fluorescence resonance energy transfer (smFRET) analysis confirmed a structural change of 3WJ upon addition of Mg²⁺. The reported pRNA 3WJ conformation is different from a previously published construct that lacks the metal coordination sites. The phi29 DNA packaging motor contains a dodecameric connector at the vertex of the procapsid, with a central pore for DNA translocation. This portal connector serves as the foothold for pRNA binding to procapsid. Subsequent modeling of a connector/pRNA complex suggests that the pRNA of the phi29 DNA packaging motor exists as a hexameric complex serving as a sheath over the connector. The model of hexameric pRNA on the connector agrees with AFM images of the phi29 pRNA hexamer acquired in air and matches all distance parameters obtained from cross-linking, complementary modification, and chemical modification interference.
Collapse
Affiliation(s)
- Hui Zhang
- Nanobiotechnology Center, Markey Cancer Center and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536, USA
| | - James A. Endrizzi
- Section of Structural Biology, Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | - Yi Shu
- Nanobiotechnology Center, Markey Cancer Center and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Farzin Haque
- Nanobiotechnology Center, Markey Cancer Center and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Claude Sauter
- Institut de Biologie Moléculaire et Cellulaire (IBMC-ARN-CNRS) Cristallogenèse & Biologie Structurale, F-67084 Strasbourg, France
| | - Lyudmila S. Shlyakhtenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Yuri Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Peixuan Guo
- Nanobiotechnology Center, Markey Cancer Center and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536, USA
- Corresponding authorsE-mail E-mail
| | - Young-In Chi
- Section of Structural Biology, Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
- Corresponding authorsE-mail E-mail
| |
Collapse
|
65
|
Leontis N, Sweeney B, Haque F, Guo P. Conference Scene: Advances in RNA nanotechnology promise to transform medicine. Nanomedicine (Lond) 2013; 8:1051-4. [DOI: 10.2217/nnm.13.105] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The second International Conference on RNA Nanotechnology and Therapeutics was held on the 3–5 April in Lexington, (KY, USA). The focus of the conference was on leveraging the unique chemical and biological properties of RNA to promote transformative advances in medicine. The conference convened more than 200 researchers from 15 countries and many disciplines, roughly double the participants of the first conference. While many presentations focused on the design, assembly and characterization of RNA nanoparticles and their uses for in vivo and in vitro sensing, diagnosis and therapy, others covered a variety of relevant areas of RNA biology and chemistry.
Collapse
Affiliation(s)
- Neocles Leontis
- Department of Chemistry, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Blake Sweeney
- Department of Chemistry, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Farzin Haque
- Nanobiotechnology Center, Markey Cancer Center & Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Peixuan Guo
- Nanobiotechnology Center, Markey Cancer Center & Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
66
|
Shu Y, Haque F, Shu D, Li W, Zhu Z, Kotb M, Lyubchenko Y, Guo P. Fabrication of 14 different RNA nanoparticles for specific tumor targeting without accumulation in normal organs. RNA (NEW YORK, N.Y.) 2013; 19:767-77. [PMID: 23604636 PMCID: PMC3683911 DOI: 10.1261/rna.037002.112] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 03/05/2013] [Indexed: 05/19/2023]
Abstract
Due to structural flexibility, RNase sensitivity, and serum instability, RNA nanoparticles with concrete shapes for in vivo application remain challenging to construct. Here we report the construction of 14 RNA nanoparticles with solid shapes for targeting cancers specifically. These RNA nanoparticles were resistant to RNase degradation, stable in serum for >36 h, and stable in vivo after systemic injection. By applying RNA nanotechnology and exemplifying with these 14 RNA nanoparticles, we have established the technology and developed "toolkits" utilizing a variety of principles to construct RNA architectures with diverse shapes and angles. The structure elements of phi29 motor pRNA were utilized for fabrication of dimers, twins, trimers, triplets, tetramers, quadruplets, pentamers, hexamers, heptamers, and other higher-order oligomers, as well as branched diverse architectures via hand-in-hand, foot-to-foot, and arm-on-arm interactions. These novel RNA nanostructures harbor resourceful functionalities for numerous applications in nanotechnology and medicine. It was found that all incorporated functional modules, such as siRNA, ribozymes, aptamers, and other functionalities, folded correctly and functioned independently within the nanoparticles. The incorporation of all functionalities was achieved prior, but not subsequent, to the assembly of the RNA nanoparticles, thus ensuring the production of homogeneous therapeutic nanoparticles. More importantly, upon systemic injection, these RNA nanoparticles targeted cancer exclusively in vivo without accumulation in normal organs and tissues. These findings open a new territory for cancer targeting and treatment. The versatility and diversity in structure and function derived from one biological RNA molecule implies immense potential concealed within the RNA nanotechnology field.
Collapse
Affiliation(s)
- Yi Shu
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Farzin Haque
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Dan Shu
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Wei Li
- Nanobiotechnology Center, SEEBME, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - Zhenqi Zhu
- Department of Molecular Genetics, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - Malak Kotb
- Department of Molecular Genetics, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - Yuri Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Peixuan Guo
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, USA
- Corresponding authorE-mail
| |
Collapse
|
67
|
Paredes E, Zhang X, Ghodke H, Yadavalli VK, Das SR. Backbone-branched DNA building blocks for facile angular control in nanostructures. ACS NANO 2013; 7:3953-3961. [PMID: 23600590 DOI: 10.1021/nn305787m] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Nanotechnology based on the highly specific pairing of nucleobases in DNA has been used to generate a wide variety of well-defined two- and three-dimensional assemblies, both static and dynamic. However, control over the junction angles to achieve them has been limited. To achieve higher order assemblies, the strands of the DNA duplex are typically made to deviate at junctions with configurations based on crossovers or non-DNA moieties. Such strand crossovers tend to be intrinsically unstructured with the overall structural rigidity determined by the architecture of the nanoassembly, rather than the junction itself. Specific approaches to define nanoassembly junction angles are based either on the cooperative twist- and strain-promoted tuning of DNA persistence length leading to bent DNA rods for fairly large nano-objects, or de novo synthesis of individual junction inserts that are typically non-DNA and based on small organic molecules or metal-coordinating ligand moieties. Here, we describe a general strategy for direct control of junction angles in DNA nanostructures that are completely tunable about the DNA helix. This approach is used to define angular vertices through readily accessible backbone-branched DNAs (bbDNAs). We demonstrate how such bbDNAs can be used as a new building block in DNA nanoconstruction to obtain well-defined nanostructures. Angular control through readily accessible bbDNA building block provides a general and versatile approach for incorporating well-defined junctions in nanoconstructs and expands the toolkit toward achieving strain free, highly size- and shape-tunable DNA based architectures.
Collapse
Affiliation(s)
- Eduardo Paredes
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | | | | | | | | |
Collapse
|
68
|
Afonin KA, Viard M, Martins AN, Lockett SJ, Maciag AE, Freed EO, Heldman E, Jaeger L, Blumenthal R, Shapiro BA. Activation of different split functionalities on re-association of RNA-DNA hybrids. NATURE NANOTECHNOLOGY 2013; 8:296-304. [PMID: 23542902 PMCID: PMC3618561 DOI: 10.1038/nnano.2013.44] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 02/26/2013] [Indexed: 05/12/2023]
Abstract
Split-protein systems, an approach that relies on fragmentation of proteins with their further conditional re-association to form functional complexes, are increasingly used for various biomedical applications. This approach offers tight control of protein functions and improved detection sensitivity. Here we report a similar technique based on a pair of RNA-DNA hybrids that can be used generally for triggering different split functionalities. Individually, each hybrid is inactive but when two cognate hybrids re-associate, different functionalities are triggered inside mammalian cells. As a proof of concept, this work mainly focuses on the activation of RNA interference. However, the release of other functionalities (such as resonance energy transfer and RNA aptamer) is also shown. Furthermore, in vivo studies demonstrate a significant uptake of the hybrids by tumours together with specific gene silencing. This split-functionality approach presents a new route in the development of 'smart' nucleic acid-based nanoparticles and switches for various biomedical applications.
Collapse
Affiliation(s)
- Kirill A. Afonin
- Center for Cancer Research Nanobiology Program, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Mathias Viard
- Center for Cancer Research Nanobiology Program, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
- Basic Science Program, SAIC-Frederick, Inc., NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Angelica N. Martins
- HIV Drug Resistance Program, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Stephen J. Lockett
- Advanced Technology Program, SAIC-Frederick, Inc., NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Anna E. Maciag
- Basic Science Program, SAIC-Frederick, Inc., NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
- Chemical Biology Laboratory, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Eric O. Freed
- HIV Drug Resistance Program, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Eliahu Heldman
- Basic Science Program, SAIC-Frederick, Inc., NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Luc Jaeger
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9510, USA
| | - Robert Blumenthal
- Center for Cancer Research Nanobiology Program, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Bruce A. Shapiro
- Center for Cancer Research Nanobiology Program, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| |
Collapse
|
69
|
Kim T, Afonin KA, Viard M, Koyfman AY, Sparks S, Heldman E, Grinberg S, Linder C, Blumenthal RP, Shapiro BA. In Silico, In Vitro, and In Vivo Studies Indicate the Potential Use of Bolaamphiphiles for Therapeutic siRNAs Delivery. MOLECULAR THERAPY. NUCLEIC ACIDS 2013; 2:e80. [PMID: 23511334 PMCID: PMC3615820 DOI: 10.1038/mtna.2013.5] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 01/21/2013] [Indexed: 12/20/2022]
Abstract
Specific small interfering RNAs (siRNAs) designed to silence different oncogenic pathways can be used for cancer therapy. However, non-modified naked siRNAs have short half-lives in blood serum and encounter difficulties in crossing biological membranes due to their negative charge. These obstacles can be overcome by using siRNAs complexed with bolaamphiphiles, consisting of two positively charged head groups that flank an internal hydrophobic chain. Bolaamphiphiles have relatively low toxicities, long persistence in the blood stream, and most importantly, in aqueous conditions can form poly-cationic micelles thus, becoming amenable to association with siRNAs. Herein, two different bolaamphiphiles with acetylcholine head groups attached to an alkyl chain in two distinct configurations are compared for their abilities to complex with siRNAs and deliver them into cells inducing gene silencing. Our explicit solvent molecular dynamics (MD) simulations showed that bolaamphiphiles associate with siRNAs due to electrostatic, hydrogen bonding, and hydrophobic interactions. These in silico studies are supported by various in vitro and in cell culture experimental techniques as well as by some in vivo studies. Results demonstrate that depending on the application, the extent of siRNA chemical protection, delivery efficiency, and further intracellular release can be varied by simply changing the type of bolaamphiphile used.Molecular Therapy-Nucleic Acids (2013) 2, e80; doi:10.1038/mtna.2013.5; published online 19 March 2013.
Collapse
Affiliation(s)
- Taejin Kim
- Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, Maryland, USA
| | - Kirill A. Afonin
- Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, Maryland, USA
| | - Mathias Viard
- Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, Maryland, USA
- Basic Science Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Alexey Y Koyfman
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Selene Sparks
- Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, Maryland, USA
| | - Eliahu Heldman
- Basic Science Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
- Ben-Gurion University of the Negev, Beer Sheva, Israel
| | | | | | - Robert P Blumenthal
- Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, Maryland, USA
| | - Bruce A Shapiro
- Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
70
|
Recent Advances in Ribonucleic Acid Interference (RNAi). NATIONAL ACADEMY SCIENCE LETTERS 2013. [DOI: 10.1007/s40009-012-0102-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
71
|
Polymeric nanogels as vaccine delivery systems. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:159-73. [DOI: 10.1016/j.nano.2012.06.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 04/11/2012] [Accepted: 06/18/2012] [Indexed: 01/22/2023]
|
72
|
Shum KT, Zhou J, Rossi JJ. Nucleic Acid Aptamers as Potential Therapeutic and Diagnostic Agents for Lymphoma. ACTA ACUST UNITED AC 2013; 4:872-890. [PMID: 25057429 PMCID: PMC4104705 DOI: 10.4236/jct.2013.44099] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Lymphomas are cancers that arise from white blood cells and usually present as solid tumors. Treatment of lymphoma often involves chemotherapy, and can also include radiotherapy and/or bone marrow transplantation. There is an un-questioned need for more effective therapies and diagnostic tool for lymphoma. Aptamers are single stranded DNA or RNA oligonucleotides whose three-dimensional structures are dictated by their sequences. The immense diversity in function and structure of nucleic acids enable numerous aptamers to be generated through an iterative in vitro selection technique known as Systematic Evolution of Ligands by EXponential enrichment (SELEX). Aptamers have several biochemical properties that make them attractive tools for use as potential diagnostic and pharmacologic agents. Isolated aptamers may directly inhibit the function of target proteins, or they can also be formulated for use as delivery agents for other therapeutic or imaging cargoes. More complex aptamer identification methods, using whole cancer cells (Cell-SELEX), may identify novel targets and aptamers to affect them. This review focuses on recent advances in the use of nucleic acid aptamers as diagnostic and therapeutic agents and as targeted delivery carriers that are relevant to lymphoma. Some representative examples are also discussed.
Collapse
Affiliation(s)
- Ka-To Shum
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Jiehua Zhou
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - John J Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA ; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| |
Collapse
|
73
|
Guo P, Haque F, Hallahan B, Reif R, Li H. Uniqueness, advantages, challenges, solutions, and perspectives in therapeutics applying RNA nanotechnology. Nucleic Acid Ther 2012; 22:226-45. [PMID: 22913595 DOI: 10.1089/nat.2012.0350] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The field of RNA nanotechnology is rapidly emerging. RNA can be manipulated with the simplicity characteristic of DNA to produce nanoparticles with a diversity of quaternary structures by self-assembly. Additionally RNA is tremendously versatile in its function and some RNA molecules display catalytic activities much like proteins. Thus, RNA has the advantage of both worlds. However, the instability of RNA has made many scientists flinch away from RNA nanotechnology. Other concerns that have deterred the progress of RNA therapeutics include the induction of interferons, stimulation of cytokines, and activation of other immune systems, as well as short pharmacokinetic profiles in vivo. This review will provide some solutions and perspectives on the chemical and thermodynamic stability, in vivo half-life and biodistribution, yield and production cost, in vivo toxicity and side effect, specific delivery and targeting, as well as endosomal trapping and escape.
Collapse
Affiliation(s)
- Peixuan Guo
- Nanobiotechnology Center, Markey Cancer Center and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536, USA.
| | | | | | | | | |
Collapse
|
74
|
Afonin KA, Kireeva M, Grabow WW, Kashlev M, Jaeger L, Shapiro BA. Co-transcriptional assembly of chemically modified RNA nanoparticles functionalized with siRNAs. NANO LETTERS 2012; 12:5192-5. [PMID: 23016824 PMCID: PMC3498980 DOI: 10.1021/nl302302e] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We report a generalized methodology for the one-pot production of chemically modified functional RNA nanoparticles during in vitro transcription with T7 RNA polymerase. The efficiency of incorporation of 2'-fluoro-dNTP in the transcripts by the wild type T7 RNA polymerase dramatically increases in the presence of manganese ions, resulting in a high-yield production of chemically modified RNA nanoparticles functionalized with siRNAs that are resistant to nucleases from human blood serum. Moreover, the unpurified transcription mixture can be used for functional ex vivo pilot experiments.
Collapse
Affiliation(s)
- Kirill A. Afonin
- Computational RNA Structure Group, Center for Cancer Research Nanobiology Program, NCI, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Maria Kireeva
- Gene Regulation and Chromosome Biology Laboratory, NCI, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Wade W. Grabow
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| | - Mikhail Kashlev
- Gene Regulation and Chromosome Biology Laboratory, NCI, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Luc Jaeger
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
- Bio-Molecular Science and Engineering Program, University of California, Santa Barbara, California 93106-9510, United States
- Corresponding Author: (B.A.S.) Phone 301-846-5536. Fax 301-846-5598. . (L.J.) Phone 805-893-3628. Fax 805-893-4120.
| | - Bruce A. Shapiro
- Computational RNA Structure Group, Center for Cancer Research Nanobiology Program, NCI, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
- Corresponding Author: (B.A.S.) Phone 301-846-5536. Fax 301-846-5598. . (L.J.) Phone 805-893-3628. Fax 805-893-4120.
| |
Collapse
|
75
|
Nanotechnology-Based Biosensors and Diagnostics: Technology Push versus Industrial/Healthcare Requirements. BIONANOSCIENCE 2012. [DOI: 10.1007/s12668-012-0047-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
76
|
Guo P, Haque F, Hallahan B, Reif R, Li H. Uniqueness, advantages, challenges, solutions, and perspectives in therapeutics applying RNA nanotechnology. Nucleic Acid Ther 2012. [PMID: 22913595 DOI: 10.1201/b15152-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
The field of RNA nanotechnology is rapidly emerging. RNA can be manipulated with the simplicity characteristic of DNA to produce nanoparticles with a diversity of quaternary structures by self-assembly. Additionally RNA is tremendously versatile in its function and some RNA molecules display catalytic activities much like proteins. Thus, RNA has the advantage of both worlds. However, the instability of RNA has made many scientists flinch away from RNA nanotechnology. Other concerns that have deterred the progress of RNA therapeutics include the induction of interferons, stimulation of cytokines, and activation of other immune systems, as well as short pharmacokinetic profiles in vivo. This review will provide some solutions and perspectives on the chemical and thermodynamic stability, in vivo half-life and biodistribution, yield and production cost, in vivo toxicity and side effect, specific delivery and targeting, as well as endosomal trapping and escape.
Collapse
Affiliation(s)
- Peixuan Guo
- Nanobiotechnology Center, Markey Cancer Center and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536, USA.
| | | | | | | | | |
Collapse
|
77
|
Pezzoli D, Olimpieri F, Malloggi C, Bertini S, Volonterio A, Candiani G. Chitosan-graft-branched polyethylenimine copolymers: influence of degree of grafting on transfection behavior. PLoS One 2012; 7:e34711. [PMID: 22509349 PMCID: PMC3324502 DOI: 10.1371/journal.pone.0034711] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 03/05/2012] [Indexed: 12/11/2022] Open
Abstract
Background Successful non-viral gene delivery currently requires compromises to achieve useful transfection levels while minimizing toxicity. Despite high molecular weight (MW) branched polyethylenimine (bPEI) is considered the gold standard polymeric transfectant, it suffers from high cytotoxicity. Inversely, its low MW counterpart is less toxic and effective in transfection. Moreover, chitosan is a highly biocompatible and biodegradable polymer but characterized by very low transfection efficiency. In this scenario, a straightforward approach widely exploited to develop effective transfectants relies on the synthesis of chitosan-graft-low MW bPEIs (Chi-g-bPEIx) but, despite the vast amount of work that has been done in developing promising polymeric assemblies, the possible influence of the degree of grafting on the overall behavior of copolymers for gene delivery has been largely overlooked. Methodology/Principal Findings With the aim of providing a comprehensive evaluation of the pivotal role of the degree of grafting in modulating the overall transfection effectiveness of copolymeric vectors, we have synthesized seven Chi-g-bPEIx derivatives with a variable amount of bPEI grafts (minimum: 0.6%; maximum: 8.8%). Along the Chi-g-bPEIx series, the higher the degree of grafting, the greater the ζ-potential and the cytotoxicity of the resulting polyplexes. Most important, in all cell lines tested the intermediate degree of grafting of 2.7% conferred low cytotoxicity and higher transfection efficiency compared to other Chi-g-bPEIx copolymers. We emphasize that, in transfection experiments carried out in primary articular chondrocytes, Chi-g-bPEI2.7% was as effective as and less cytotoxic than the gold standard 25 kDa bPEI. Conclusions/Significance This work underlines for the first time the pivotal role of the degree of grafting in modulating the overall transfection effectiveness of Chi-g-bPEIx copolymers. Crucially, we have demonstrated that, along the copolymer series, the fine tuning of the degree of grafting directly affected the overall charge of polyplexes and, altogether, had a direct effect on cytotoxicity.
Collapse
Affiliation(s)
- Daniele Pezzoli
- Unità Politecnico di Milano, Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali - INSTM, Milan, Italy
| | - Francesca Olimpieri
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Chiara Malloggi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Sabrina Bertini
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, Milan, Italy
| | - Alessandro Volonterio
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
- * E-mail: (AV); (GC)
| | - Gabriele Candiani
- Unità Politecnico di Milano, Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali - INSTM, Milan, Italy
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
- * E-mail: (AV); (GC)
| |
Collapse
|
78
|
|
79
|
Fauster K, Hartl M, Santner T, Aigner M, Kreutz C, Bister K, Ennifar E, Micura R. 2'-Azido RNA, a versatile tool for chemical biology: synthesis, X-ray structure, siRNA applications, click labeling. ACS Chem Biol 2012; 7:581-9. [PMID: 22273279 PMCID: PMC3307367 DOI: 10.1021/cb200510k] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
Chemical modification can significantly enrich the structural
and
functional repertoire of ribonucleic acids and endow them with new
outstanding properties. Here, we report the syntheses of novel 2′-azido
cytidine and 2′-azido guanosine building blocks and demonstrate
their efficient site-specific incorporation into RNA by mastering
the synthetic challenge of using phosphoramidite chemistry in the
presence of azido groups. Our study includes the detailed characterization
of 2′-azido nucleoside containing RNA using UV-melting profile
analysis and CD and NMR spectroscopy. Importantly, the X-ray crystallographic
analysis of 2′-azido uridine and 2′-azido adenosine
modified RNAs reveals crucial structural details of this modification
within an A-form double helical environment. The 2′-azido group
supports the C3′-endo ribose conformation
and shows distinct water-bridged hydrogen bonding patterns in the
minor groove. Additionally, siRNA induced silencing of the brain acid
soluble protein (BASP1) encoding gene in chicken fibroblasts demonstrated
that 2′-azido modifications are well tolerated in the guide
strand, even directly at the cleavage site. Furthermore, the 2′-azido
modifications are compatible with 2′-fluoro and/or 2′-O-methyl modifications to achieve siRNAs of rich modification
patterns and tunable properties, such as increased nuclease resistance
or additional chemical reactivity. The latter was demonstrated by
the utilization of the 2′-azido groups for bioorthogonal Click
reactions that allows efficient fluorescent labeling of the RNA. In
summary, the present comprehensive investigation on site-specifically
modified 2′-azido RNA including all four nucleosides provides
a basic rationale behind the physico- and biochemical properties of
this flexible and thus far neglected type of RNA modification.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Eric Ennifar
- Architecture et Réactivité
de l′ARN, Institut de Biologie Moléculaire et Cellulaire, CNRS/Université de Strasbourg, 67084 Strasbourg,
France
| | | |
Collapse
|
80
|
Afonin KA, Grabow WW, Walker FM, Bindewald E, Dobrovolskaia MA, Shapiro BA, Jaeger L. Design and self-assembly of siRNA-functionalized RNA nanoparticles for use in automated nanomedicine. Nat Protoc 2011; 6:2022-34. [PMID: 22134126 PMCID: PMC3498981 DOI: 10.1038/nprot.2011.418] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Individual genes can be targeted with siRNAs. The use of nucleic acid nanoparticles (NPs) is a convenient method for delivering combinations of specific siRNAs in an organized and programmable manner. We present three assembly protocols to produce two different types of RNA self-assembling functional NPs using processes that are fully automatable. These NPs are engineered based on two complementary nanoscaffold designs (nanoring and nanocube), which serve as carriers of multiple siRNAs. The NPs are functionalized by the extension of up to six scaffold strands with siRNA duplexes. The assembly protocols yield functionalized RNA NPs, and we show that they interact in vitro with human recombinant Dicer to produce siRNAs. Our design strategies allow for fast, economical and easily controlled production of endotoxin-free therapeutic RNA NPs that are suitable for preclinical development.
Collapse
Affiliation(s)
- Kirill A Afonin
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, California, USA
| | | | | | | | | | | | | |
Collapse
|
81
|
Shu D, Shu Y, Haque F, Abdelmawla S, Guo P. Thermodynamically stable RNA three-way junction for constructing multifunctional nanoparticles for delivery of therapeutics. NATURE NANOTECHNOLOGY 2011; 6:658-67. [PMID: 21909084 PMCID: PMC3189281 DOI: 10.1038/nnano.2011.105] [Citation(s) in RCA: 331] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 06/08/2011] [Indexed: 05/12/2023]
Abstract
RNA nanoparticles have applications in the treatment of cancers and viral infection; however, the instability of RNA nanoparticles has hindered their development for therapeutic applications. The lack of covalent linkage or crosslinking in nanoparticles causes dissociation in vivo. Here we show that the packaging RNA of bacteriophage phi29 DNA packaging motor can be assembled from 3-6 pieces of RNA oligomers without the use of metal salts. Each RNA oligomer contains a functional module that can be a receptor-binding ligand, aptamer, short interfering RNA or ribozyme. When mixed together, they self-assemble into thermodynamically stable tri-star nanoparticles with a three-way junction core. These nanoparticles are resistant to 8 M urea denaturation, are stable in serum and remain intact at extremely low concentrations. The modules remain functional in vitro and in vivo, suggesting that the three-way junction core can be used as a platform for building a variety of multifunctional nanoparticles. We studied 25 different three-way junction motifs in biological RNA and found only one other motif that shares characteristics similar to the three-way junction of phi29 pRNA.
Collapse
Affiliation(s)
- Dan Shu
- Nanobiomedical Center, University of Cincinnati, Cincinnati, OH 45267
| | - Yi Shu
- Nanobiomedical Center, University of Cincinnati, Cincinnati, OH 45267
| | - Farzin Haque
- Nanobiomedical Center, University of Cincinnati, Cincinnati, OH 45267
| | - Sherine Abdelmawla
- Kylin Therapeutics, Inc, West Lafayette, IN 47906
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47906
| | - Peixuan Guo
- Nanobiomedical Center, University of Cincinnati, Cincinnati, OH 45267
- Address correspondence to: Peixuan Guo, Rm 1436, ML #0508, Vontz Center for Molecular Studies, 3125 Eden Avenue, University of Cincinnati, Cincinnati, OH 45267, USA, , Phone: (513)558-0041, Fax: (513)558-6079
| |
Collapse
|