51
|
Abstract
Over the last 50 years, the posttranslational modification (PTM) of proteins has emerged as a central mechanism for cells to regulate metabolism, growth, differentiation, cell-cell interactions, and immune responses. By influencing protein structure and function, PTM leads to a multiplication of proteome diversity. Redox-dependent PTMs, mediated by environmental and endogenously generated reactive species, induce cell signaling responses and can have toxic effects in organisms. PTMs induced by the electrophilic by-products of redox reactions most frequently occur at protein thiols; other nucleophilic amino acids serve as less favorable targets. Advances in mass spectrometry and affinity-chemistry strategies have improved the detection of electrophile-induced protein modifications both in vitro and in vivo and have revealed a high degree of amino acid and protein selectivity of electrophilic PTM. The identification of biological targets of electrophiles has motivated further study of the functional impact of various PTM reactions on specific signaling pathways and how this might affect organisms.
Collapse
Affiliation(s)
- Tanja K. Rudolph
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Cardiology, University Heart Center Hamburg, Hamburg, Germany
| | - Bruce A. Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
52
|
Loeber RL, Michaelson-Richie ED, Codreanu SG, Liebler DC, Campbell CR, Tretyakova NY. Proteomic analysis of DNA-protein cross-linking by antitumor nitrogen mustards. Chem Res Toxicol 2009; 22:1151-62. [PMID: 19480393 DOI: 10.1021/tx900078y] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nitrogen mustards are antitumor agents used clinically for the treatment of a variety of neoplastic conditions. The biological activity of these compounds is typically attributed to their ability to induce DNA-DNA cross-links. However, nitrogen mustards are able to produce a variety of other lesions, including DNA-protein cross-links (DPCs). DPCs induced by nitrogen mustards are not well-characterized because of their structural complexity and the insufficient specificity and sensitivity of previously available experimental methodologies. In the present work, affinity capture methodology in combination with mass spectrometry-based proteomics was employed to identify mammalian proteins that form covalent cross-links to DNA in the presence of a simple nitrogen mustard, mechlorethamine. Following incubation of 5'-biotinylated DNA duplexes with nuclear protein extracts, DPCs were isolated by affinity capture on streptavidin beads, and the cross-linked proteins were identified by high-performance liquid chromatography-electrospray tandem mass spectrometry of tryptic peptides. Mechlorethamine treatment resulted in the formation of DPCs with nuclear proteins involved in chromatin regulation, DNA replication and repair, cell cycle control, transcriptional regulation, and cell architecture. Western blot analysis was employed to confirm protein identification and to quantify the extent of drug-mediated cross-linking. Mass spectrometry of amino acid-nucleobase conjugates found in total proteolytic digests revealed that mechlorethamine-induced DPCs are formed via alkylation of the N7 position of guanine in duplex DNA and cysteine thiols within the proteins to give N-[2-[S-cysteinyl]ethyl]-N-[2-(guan-7-yl)ethyl]methylamine lesions. The results described herein suggest that cellular exposure to nitrogen mustards leads to cross-linking of a large spectrum of nuclear proteins to chromosomal DNA, potentially contributing to the cytotoxic and mutagenic effects of these drugs.
Collapse
Affiliation(s)
- Rachel L Loeber
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | |
Collapse
|
53
|
Rubino FM, Pitton M, Di Fabio D, Colombi A. Toward an "omic" physiopathology of reactive chemicals: thirty years of mass spectrometric study of the protein adducts with endogenous and xenobiotic compounds. MASS SPECTROMETRY REVIEWS 2009; 28:725-84. [PMID: 19127566 DOI: 10.1002/mas.20207] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Cancer and degenerative diseases are major causes of morbidity and death, derived from the permanent modification of key biopolymers such as DNA and regulatory proteins by usually smaller, reactive molecules, present in the environment or generated from endogenous and xenobiotic components by the body's own biochemical mechanisms (molecular adducts). In particular, protein adducts with organic electrophiles have been studied for more than 30 [see, e.g., Calleman et al., 1978] years essentially for three purposes: (a) as passive monitors of the mean level of individual exposure to specific chemicals, either endogenously present in the human body or to which the subject is exposed through food or environmental contamination; (b) as quantitative indicators of the mean extent of the individual metabolic processing which converts a non-reactive chemical substance into its toxic products able to damage DNA (en route to cancer induction through genotoxic mechanisms) or key proteins (as in the case of several drugs, pesticides or otherwise biologically active substances); (c) to relate the extent of protein modification to that of biological function impairment (such as enzyme inhibition) finally causing the specific health damage. This review describes the role that contemporary mass spectrometry-based approaches employed in the qualitative and quantitative study of protein-electrophile adducts play in the discovery of the (bio)chemical mechanisms of toxic substances and highlights the future directions of research in this field. A particular emphasis is given to the measurement of often high levels of the protein adducts of several industrial and environmental pollutants in unexposed human populations, a phenomenon which highlights the possibility that a number of small organic molecules are generated in the human organism through minor metabolic processes, the imbalance of which may be the cause of "spontaneous" cases of cancer and of other degenerative diseases of still uncharacterized etiology. With all this in mind, it is foreseen that a holistic description of cellular functions will take advantage of new analytical methods based on time-integrated metabolomic measurements of a new biological compartment, the "adductome," aimed at better understanding integrated organism response to environmental and endogenous stressors.
Collapse
Affiliation(s)
- Federico Maria Rubino
- Laboratory for Analytical Toxicology and Metabonomics, Department of Medicine, Surgery and Odontology, Università degli Studi di Milano at Ospedale San Paolo, v. Antonio di Rudinì 8, Milano I-20142, Italy.
| | | | | | | |
Collapse
|
54
|
Lin D, Saleh S, Liebler DC. Reversibility of covalent electrophile-protein adducts and chemical toxicity. Chem Res Toxicol 2009; 21:2361-9. [PMID: 19548357 DOI: 10.1021/tx800248x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The biotin-tagged electrophiles 1-biotinamido-4-(4'-[maleimidoethylcyclohexane]-carboxamido)butane (BMCC) and N-iodoacetyl-N-biotinylhexylenediamine (IAB) have been used as model electrophile probes in complex proteomes to identify protein targets associated with chemical toxicity. Whereas IAB activates stress signaling and apoptosis in HEK293 cells, BMCC does not. Cysteine Michael adducts formed from BMCC and nonbiotinylated analogues rapidly disappeared in the intact cells, whereas the adducts were stable in BMCC-treated subcellular fractions, even in the presence of the cellular reductants reduced glutathione, NADH, and NADPH. In contrast, cysteine thioether adducts formed from IAB and its nonbiotinylated analogues were stable in intact cells. Loss of the BMCC adduct in cells was reduced at 4 degrees C, which suggests the involvement of a metabolic process in adduct removal. Model studies with a glutathione-BMCC conjugate indicated rapid hydrolysis of the adducted imide ring, but neither the conjugate nor its hydrolysis product dissociated to release the electrophile in neutral aqueous buffer at significant rates. The results suggest that low BMCC toxicity reflects facile repair that results in transient adduction, which fails to trigger damage-signaling pathways.
Collapse
Affiliation(s)
- De Lin
- Department of Biochemistry, Vanderbilt Institute for Chemical Biology, Vanderbilt University School of Medicine, U1213C Medical Research Building III, 465 21st Avenue South, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
55
|
Veith GD, Petkova EP, Wallace KB. A baseline inhalation toxicity model for narcosis in mammals. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2009; 20:567-578. [PMID: 19916115 DOI: 10.1080/10629360903278669] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This paper presents the results of an analysis of the rodent inhalation literature and the development of a quantitative structure-activity relationships (QSAR) model for 4-hour LC50 as baseline toxicity to complement the baseline toxicity model for aquatic animals. We used the same literature review criteria developed for the ECOTOX database which selects only primary references with explicit experimental methods to form a high-quality database. Our literature review focused on the primary references reporting a 4-hour exposure for a single species of rodent in which the chemical had been clearly tested as a vapour and for which the exposure concentrations were not ambiguous. An expert system was used to remove reactive chemicals, receptor-mediated toxicants, and any test that produced symptoms inconsistent with non-polar narcosis. The QSAR model derived for narcosis in rodents was log LC50 = 0.69 x log VP + 1.54 which had an r(2) of 0.91, which is significantly better than the baseline toxicity model for aquatic animals. This simple model suggests that there is no intrinsic barrier to estimating baseline toxicity for in vivo endpoints in mammalian or terrestrial toxicology.
Collapse
Affiliation(s)
- G D Veith
- International QSAR Foundation, Two Harbors, Minnesota 55616, USA.
| | | | | |
Collapse
|
56
|
Wen B, Fitch WL. Analytical strategies for the screening and evaluation of chemically reactive drug metabolites. Expert Opin Drug Metab Toxicol 2009; 5:39-55. [PMID: 19236228 DOI: 10.1517/17425250802665706] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Metabolic activation leading to formation of chemically reactive drug metabolites is a long-standing issue for drug development inasmuch as some, but not all, reactive intermediates play a role as mediators of drug-induced toxicities. The risk assessment profile/decision-making guide requires a comprehensive understanding of bioactivation mechanism(s), quantitative magnitude and cellular consequences of this principal and continued safety attrition. OBJECTIVE To evaluate analytical methodologies with improved sensitivity, selectivity and throughput for the analysis of reactive metabolites. CONCLUSIONS Identification and quantification of short-lived electrophilic intermediates through appropriate trapping experiments have become relatively straightforward. Minimizing the bioactivation potential of drug candidates during the discovery/lead optimization phase has been adopted as a default strategy. Together with advances of proteomics, metabolomics and toxicogenomics, an integrated multitier approach possibly provides a deeper insight into mechanistic aspects of drug-induced toxicities, and contributes to bridging the relationships between metabolic activation, drug-protein adduct formation and their toxicological consequences.
Collapse
Affiliation(s)
- Bo Wen
- Department of Drug Metabolism and Pharmacokinetics, Roche Palo Alto, Palo Alto, CA 94304, USA.
| | | |
Collapse
|
57
|
Leclercq L, Cuyckens F, Mannens GSJ, de Vries R, Timmerman P, Evans DC. Which human metabolites have we MIST? Retrospective analysis, practical aspects, and perspectives for metabolite identification and quantification in pharmaceutical development. Chem Res Toxicol 2009; 22:280-93. [PMID: 19183054 DOI: 10.1021/tx800432c] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
With the recent publication of the FDA guidance on metabolites in safety testing (MIST), a reflection is provided that describes the impact of this guidance on the processes of drug metabolite identification and quantification at various stages of drug development. First, a retrospective analysis is described that was conducted on 12 human absorption, metabolism, and excretion (AME) trials with the application of these MIST criteria. This analysis showed that the number of metabolites requiring identification, (semi)-quantification, and coverage in the toxicology species would substantially increase. However, a significant proportion of these metabolites were direct or indirect conjugates, a class of metabolites that was specifically addressed in the guidance as being largely innocuous. The nonconjugated metabolites were all covered in at least one toxicology animal species, with no need for additional safety evaluation. Second, analytical considerations pertaining to the efficient identification of metabolites are discussed. Topics include software-assisted detection and structural identification of metabolites, the emerging hyphenation of ultraperformance liquid chromatography (UPLC) with radioactivity detection, and the various ways to estimate metabolite abundance in the absence of an authentic standard. Technical aspects around the analysis of metabolite profiles are also presented, focusing on precautions to be taken in order not to introduce artifacts. Finally, a tiered approach for metabolite quantification is proposed, starting with quantification of metabolites prior to the multiple ascending dose study (MAD) in humans in only specific cases (Tier A). The following step is the identification and quantification of metabolites expected to be of pharmacological or toxicological relevance (based on MIST and other complementary criteria) in selected samples from the MAD study and preclinical studies in order to assess metabolite exposure coverage (Tier B). Finally, a metabolite quantification strategy for the studies after the MAD phase (Tier C) is proposed.
Collapse
Affiliation(s)
- Laurent Leclercq
- Department of Drug Metabolism and Pharmacokinetics, Global Preclinical Development, Johnson & Johnson Pharmaceutical Research and Development, A Division of Janssen Pharmaceutica N.V., Turnhoutseweg 30, B-2340 Beerse, Belgium.
| | | | | | | | | | | |
Collapse
|
58
|
Recent advances in applications of liquid chromatography–tandem mass spectrometry to the analysis of reactive drug metabolites. Chem Biol Interact 2009; 179:25-37. [DOI: 10.1016/j.cbi.2008.09.014] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2008] [Revised: 09/09/2008] [Accepted: 09/10/2008] [Indexed: 01/09/2023]
|
59
|
Tzouros M, Pähler A. A Targeted Proteomics Approach to the Identification of Peptides Modified by Reactive Metabolites. Chem Res Toxicol 2009; 22:853-62. [DOI: 10.1021/tx800426x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Manuel Tzouros
- Drug Metabolism and Pharmacokinetics, Non-Clinical Safety, Pharmaceuticals Division, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Axel Pähler
- Drug Metabolism and Pharmacokinetics, Non-Clinical Safety, Pharmaceuticals Division, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| |
Collapse
|
60
|
MacFaul PA, Morley AD, Crawford JJ. A simple in vitro assay for assessing the reactivity of nitrile containing compounds. Bioorg Med Chem Lett 2009; 19:1136-8. [DOI: 10.1016/j.bmcl.2008.12.105] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 12/22/2008] [Accepted: 12/24/2008] [Indexed: 11/25/2022]
|
61
|
Rooney JP, George AD, Patil A, Begley U, Bessette E, Zappala MR, Huang X, Conklin DA, Cunningham RP, Begley TJ. Systems based mapping demonstrates that recovery from alkylation damage requires DNA repair, RNA processing, and translation associated networks. Genomics 2009; 93:42-51. [PMID: 18824089 PMCID: PMC2633870 DOI: 10.1016/j.ygeno.2008.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 08/29/2008] [Accepted: 09/03/2008] [Indexed: 12/31/2022]
Abstract
The identification of cellular responses to damage can promote mechanistic insight into stress signalling. We have screened a library of 3968 Escherichia coli gene-deletion mutants to identify 99 gene products that modulate the toxicity of the alkylating agent methyl methanesulfonate (MMS). We have developed an ontology mapping approach to identify functional categories over-represented with MMS-toxicity modulating proteins and demonstrate that, in addition to DNA re-synthesis (replication, recombination, and repair), proteins involved in mRNA processing and translation influence viability after MMS damage. We have also mapped our MMS-toxicity modulating proteins onto an E. coli protein interactome and identified a sub-network consisting of 32 proteins functioning in DNA repair, mRNA processing, and translation. Clustering coefficient analysis identified seven highly connected MMS-toxicity modulating proteins associated with translation and mRNA processing, with the high connectivity suggestive of a coordinated response. Corresponding results from reporter assays support the idea that the SOS response is influenced by activities associated with the mRNA-translation interface.
Collapse
Affiliation(s)
- John P. Rooney
- Department of Biomedical Sciences, University at Albany, State University of New York, Rensselaer NY 12144-3456
- Gen*NY*Sis Center for Excellence in Cancer Genomics, University at Albany, State University of New York, Rensselaer NY 12144-3456
| | - Ajish D. George
- Department of Biomedical Sciences, University at Albany, State University of New York, Rensselaer NY 12144-3456
- Gen*NY*Sis Center for Excellence in Cancer Genomics, University at Albany, State University of New York, Rensselaer NY 12144-3456
| | - Ashish Patil
- Department of Biomedical Sciences, University at Albany, State University of New York, Rensselaer NY 12144-3456
- Gen*NY*Sis Center for Excellence in Cancer Genomics, University at Albany, State University of New York, Rensselaer NY 12144-3456
| | - Ulrike Begley
- Department of Biomedical Sciences, University at Albany, State University of New York, Rensselaer NY 12144-3456
- Gen*NY*Sis Center for Excellence in Cancer Genomics, University at Albany, State University of New York, Rensselaer NY 12144-3456
| | - Erin Bessette
- Department of Biomedical Sciences, University at Albany, State University of New York, Rensselaer NY 12144-3456
- Gen*NY*Sis Center for Excellence in Cancer Genomics, University at Albany, State University of New York, Rensselaer NY 12144-3456
| | - Maria R. Zappala
- Gen*NY*Sis Center for Excellence in Cancer Genomics, University at Albany, State University of New York, Rensselaer NY 12144-3456
- Department of Biological Sciences, University at Albany, State University of New York, Albany NY 12222
| | - Xin Huang
- Gen*NY*Sis Center for Excellence in Cancer Genomics, University at Albany, State University of New York, Rensselaer NY 12144-3456
- Department of Biological Sciences, University at Albany, State University of New York, Albany NY 12222
| | - Douglas A. Conklin
- Department of Biomedical Sciences, University at Albany, State University of New York, Rensselaer NY 12144-3456
- Gen*NY*Sis Center for Excellence in Cancer Genomics, University at Albany, State University of New York, Rensselaer NY 12144-3456
| | - Richard P. Cunningham
- Gen*NY*Sis Center for Excellence in Cancer Genomics, University at Albany, State University of New York, Rensselaer NY 12144-3456
- Department of Biological Sciences, University at Albany, State University of New York, Albany NY 12222
| | - Thomas J. Begley
- Department of Biomedical Sciences, University at Albany, State University of New York, Rensselaer NY 12144-3456
- Gen*NY*Sis Center for Excellence in Cancer Genomics, University at Albany, State University of New York, Rensselaer NY 12144-3456
| |
Collapse
|
62
|
Codreanu SG, Zhang B, Sobecki SM, Billheimer DD, Liebler DC. Global analysis of protein damage by the lipid electrophile 4-hydroxy-2-nonenal. Mol Cell Proteomics 2008; 8:670-80. [PMID: 19054759 PMCID: PMC2667350 DOI: 10.1074/mcp.m800070-mcp200] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lipid peroxidation yields a variety of electrophiles, which are thought to contribute to the molecular pathogenesis of diseases involving oxidative stress, yet little is known of the scope of protein damage caused by lipid electrophiles. We identified protein targets of the prototypical lipid electrophile 4-hydroxy-2-nonenal (HNE) in RKO cells treated with 50 or 100 μm HNE. HNE Michael adducts were biotinylated by reaction with biotinamidohexanoic acid hydrazide, captured with streptavidin, and the captured proteins were resolved by one dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis, digested with trypsin, and identified by liquid chromatography-tandem mass spectrometry. Of the 1500+ proteins identified, 417 displayed a statistically significant increase in adduction with increasing HNE exposure concentration. We further identified 18 biotin hydrazide-modified, HNE-adducted peptides by specific capture using anti-biotin antibody and analysis by high resolution liquid chromatography-tandem mass spectrometry. A subset of the identified HNE targets were validated with a streptavidin capture and immunoblotting approach, which enabled detection of adducts at HNE exposures as low as 1 μm. Protein interaction network analysis indicated several subsystems impacted by endogenous electrophiles in oxidative stress, including the 26 S proteasomal and chaperonin containing TCP-1 (CCT) systems involved in protein-folding and degradation, as well as the COP9 signalosome, translation initiation complex, and a large network of ribonucleoproteins. Global analyses of protein lipid electrophile adducts provide a systems-level perspective on the mechanisms of diseases involving oxidative stress.
Collapse
Affiliation(s)
- Simona G Codreanu
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
63
|
Mutlib AE. Application of stable isotope-labeled compounds in metabolism and in metabolism-mediated toxicity studies. Chem Res Toxicol 2008; 21:1672-89. [PMID: 18702535 DOI: 10.1021/tx800139z] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Stable isotope-labeled compounds have been synthesized and utilized by scientists from various areas of biomedical research during the last several decades. Compounds labeled with stable isotopes, such as deuterium and carbon-13, have been used effectively by drug metabolism scientists and toxicologists to gain better understanding of drugs' disposition and their potential role in target organ toxicities. The combination of stable isotope-labeling techniques with mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy, which allows rapid acquisition and interpretation of data, has promoted greater use of these stable isotope-labeled compounds in absorption, distribution, metabolism, and excretion (ADME) studies. Examples of the use of stable isotope-labeled compounds in elucidating structures of metabolites and delineating complex metabolic pathways are presented in this review. The application of labeled compounds in mechanistic toxicity studies will be discussed by providing an example of how strategic placement of a deuterium atom in a drug molecule mitigated specific-specific renal toxicity. Other examples from the literature demonstrating the application of stable isotope-labeled compounds in understanding metabolism-mediated toxicities are presented. Furthermore, an example of how a stable isotope-labeled compound was utilized to better understand some of the gene changes in toxicogenomic studies is discussed. The interpretation of large sets of data produced from toxicogenomics studies can be a challenge. One approach that could be used to simplify interpretation of the data, especially from studies designed to link gene changes with the formation of reactive metabolites thought to be responsible for toxicities, is through the use of stable isotope-labeled compounds. This is a relatively unexplored territory and needs to be further investigated. The employment of analytical techniques, especially mass spectrometry and NMR, used in conjunction with stable isotope-labeled compounds to establish and understand mechanistic link between reactive metabolite formation, genomic, and proteomic changes and onset of toxicity is proposed. The use of stable isotope-labeled compounds in early human ADME studies as a way of identifying and possibly quantifying all drug-related components present in systemic circulation is suggested.
Collapse
Affiliation(s)
- Abdul E Mutlib
- Biotransformation Department, Drug Safety and Metabolism, Wyeth Research, Collegeville, Pennsylvania 19426, USA.
| |
Collapse
|
64
|
Obach RS, Kalgutkar AS, Soglia JR, Zhao SX. Can in vitro metabolism-dependent covalent binding data in liver microsomes distinguish hepatotoxic from nonhepatotoxic drugs? An analysis of 18 drugs with consideration of intrinsic clearance and daily dose. Chem Res Toxicol 2008; 21:1814-22. [PMID: 18690722 DOI: 10.1021/tx800161s] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In vitro covalent binding assessments of drugs have been useful in providing retrospective insights into the association between drug metabolism and a resulting toxicological response. On the basis of these studies, it has been advocated that in vitro covalent binding to liver microsomal proteins in the presence and the absence of NADPH be used routinely to screen drug candidates. However, the utility of this approach in predicting toxicities of drug candidates accurately remains an unanswered question. Importantly, the years of research that have been invested in understanding metabolic bioactivation and covalent binding and its potential role in toxicity have focused only on those compounds that demonstrate toxicity. Investigations have not frequently queried whether in vitro covalent binding could be observed with drugs with good safety records. Eighteen drugs (nine hepatotoxins and nine nonhepatotoxins in humans) were assessed for in vitro covalent binding in NADPH-supplemented human liver microsomes. Of the two sets of nine drugs, seven in each set were shown to undergo some degree of covalent binding. Among hepatotoxic drugs, acetaminophen, carbamazepine, diclofenac, indomethacin, nefazodone, sudoxicam, and tienilic acid demonstrated covalent binding, while benoxaprofen and felbamate did not. Of the nonhepatotoxic drugs evaluated, buspirone, diphenhydramine, meloxicam, paroxetine, propranolol, raloxifene, and simvastatin demonstrated covalent binding, while ibuprofen and theophylline did not. A quantitative comparison of covalent binding in vitro intrinsic clearance did not separate the two groups of compounds, and in fact, paroxetine, a nonhepatotoxin, showed the greatest amount of covalent binding in microsomes. Including factors such as the fraction of total metabolism comprised by covalent binding and the total daily dose of each drug improved the discrimination between hepatotoxic and nontoxic drugs based on in vitro covalent binding data; however, the approach still would falsely identify some agents as potentially hepatotoxic.
Collapse
Affiliation(s)
- R Scott Obach
- Pharmacokinetics, Dynamics and Metabolism Department, Pfizer Global Research and Development, Groton, Connecticut 06340, USA.
| | | | | | | |
Collapse
|
65
|
Gerberick F, Aleksic M, Basketter D, Casati S, Karlberg AT, Kern P, Kimber I, Lepoittevin JP, Natsch A, Ovigne JM, Rovida C, Sakaguchi H, Schultz T. Chemical reactivity measurement and the predicitve identification of skin sensitisers. The report and recommendations of ECVAM Workshop 64. Altern Lab Anim 2008; 36:215-42. [PMID: 18522487 DOI: 10.1177/026119290803600210] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Frank Gerberick
- Procter & Gamble Company, Miami Valley Innovation Center, Cincinnati, OH 45253, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Disparate proteome reactivity profiles of carbon electrophiles. Nat Chem Biol 2008; 4:405-7. [PMID: 18488014 DOI: 10.1038/nchembio.91] [Citation(s) in RCA: 210] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 04/29/2008] [Indexed: 11/08/2022]
Abstract
Insights into the proteome reactivity of electrophiles are crucial for designing activity-based probes for enzymes lacking cognate affinity labels. Here, we show that different classes of carbon electrophiles exhibit markedly distinct amino acid labeling profiles in proteomes, ranging from selective reactivity with cysteine to adducts with several amino acids. These data specify electrophilic chemotypes with restricted and permissive reactivity profiles to guide the design of next-generation functional proteomics probes.
Collapse
|
67
|
Wong HL, Liebler DC. Mitochondrial protein targets of thiol-reactive electrophiles. Chem Res Toxicol 2008; 21:796-804. [PMID: 18324786 DOI: 10.1021/tx700433m] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondria serve a pivotal role in the regulation of apoptosis or programmed cell death. Recent studies have demonstrated that reactive electrophiles induce mitochondrion-dependent apoptosis. We hypothesize that covalent modification of specific mitochondrial proteins by reactive electrophiles serves as a trigger leading to the initiation of apoptosis. In this study, we identified protein targets of the model biotin-tagged electrophile probes N-iodoacetyl- N-biotinylhexylene-diamine (IAB) and 1-biotinamido-4-(4'-[maleimidoethylcyclohexane]carboxamido)butane (BMCC) in HEK293 cell mitochondrial fractions by liquid chromatography-tandem mass spectrometry (LC-MS-MS). These electrophiles reproducibly adducted a total of 1693 cysteine residues that mapped to 809 proteins. Protein modifications were selective in that only 438 cysteine sites in 1255 cysteinyl peptide adducts (35%) and 362 of the 809 identified protein targets (45%) were adducted by both electrophiles. Of these, approximately one-third were annotated to the mitochondria following protein database analysis. IAB initiated apoptotic events including cytochrome c release, caspase-3 activation, and poly(ADP-ribose)polymerase (PARP) cleavage, whereas BMCC did not. Of the identified targets of IAB and BMCC, 44 were apoptosis-related proteins, and adduction site specificity on these targets differed between the two probes. Differences in sites of modification between these two electrophiles may reveal alkylation sites whose modification triggers apoptosis.
Collapse
Affiliation(s)
- Hansen L Wong
- Department of Biochemistry, Vanderbilt University School of Medicine, U1213C Medical Research Building III, 465 21st Avenue South, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
68
|
Loeber R, Michaelson E, Fang Q, Campbell C, Pegg AE, Tretyakova N. Cross-linking of the DNA repair protein Omicron6-alkylguanine DNA alkyltransferase to DNA in the presence of antitumor nitrogen mustards. Chem Res Toxicol 2008; 21:787-95. [PMID: 18324787 DOI: 10.1021/tx7004508] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The antitumor activity of chemotherapeutic nitrogen mustards including chlorambucil, cyclophosphamide, and melphalan is commonly attributed to their ability to induce DNA-DNA cross-links by consecutive alkylation of two nucleophilic sites within the DNA duplex. DNA-protein cross-linking by nitrogen mustards is not well characterized, probably because of its inherent complexity and the insufficient sensitivity of previous methodologies. If formed, DNA-protein conjugates are likely to contribute to both target and off-target cytotoxicity of nitrogen mustard drugs. Here, we show that the DNA repair protein, O (6)-alkylguanine DNA alkyltransferase (AGT), can be readily cross-linked to DNA in the presence of nitrogen mustards. Both chlorambucil and mechlorethamine induced the formation of covalent conjugates between (32)P-labeled double-stranded oligodeoxynucleotides and recombinant human AGT protein, which were detected by SDS-PAGE. Capillary HPLC-electrospray ionization mass spectrometry (ESI-MS) analysis of AGT that had been treated with the guanine half-mustards of chlorambucil or mechlorethamine revealed the ability of the protein to form either one or two cross-links to guanine. C145A AGT (a variant containing a single point mutation in the protein's active site) was found capable of forming a single guanine conjugate, while cross-linking was virtually abolished upon treatment of the C145A/C150S AGT double mutant with the guanine half-mustards. HPLC-ESI (+)-MS/MS sequencing of tryptic peptides obtained from the wild-type AGT protein that had been treated with nitrogen mustards in the presence of DNA confirmed that the cross-linking took place between the N7 position of guanine in DNA and two active site residues within the AGT protein (Cys (145) and Cys (150)). The exact chemical structures of AGT-DNA cross-links induced by chlorambucil and mechlorethamine were identified as N-(2-[ S-cysteinyl]ethyl)- N-(2-[guan-7-yl]ethyl)- p-aminophenylbuyric acid and N-(2-[ S-cysteinyl]ethyl)- N-(2-[guan-7-yl]ethyl)methylamine, respectively, based upon HPLC-MS/MS analysis of protein hydrolysates in parallel with the corresponding amino acid conjugates prepared synthetically. Mechlorethamine-induced AGT-DNA conjugates were isolated from protein extracts of AGT-expressing CHO cells but not control cells, demonstrating that nitrogen mustards can cross-link the AGT protein to DNA in the presence of other nuclear proteins. Because AGT is overexpressed in many tumor types, further investigations of the potential role of AGT-DNA cross-linking in the antitumor and mutagenic activity of antitumor nitrogen mustards are warranted.
Collapse
Affiliation(s)
- Rachel Loeber
- Department of Medicinal Chemistry and Cancer Center and Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | |
Collapse
|
69
|
Merrick BA. The plasma proteome, adductome and idiosyncratic toxicity in toxicoproteomics research. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2008; 7:35-49. [PMID: 18270218 DOI: 10.1093/bfgp/eln004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Toxicoproteomics uses the discovery potential of proteomics in toxicology research by applying global protein measurement technologies to biofluids and tissues after host exposure to injurious agents. Toxicoproteomic studies thus far have focused on protein profiling of major organs and biofluids such as liver and blood in preclinical species exposed to model toxicants. The slow pace of discovery for new biomarkers, toxicity signatures and mechanistic insights is partially due to the limited proteome coverage derived from analysis of native organs, tissues and body fluids by traditional proteomic platforms. Improved toxicoproteomic analysis would result by combining higher data density LC-MS/MS platforms with stable isotope labelled peptides and parallel use of complementary platforms. Study designs that remove abundant proteins from biofluids, enrich subcellular structures and include cell specific isolation from heterogeneous tissues would greatly increase differential expression capabilities. By leveraging resources from immunology, cell biology and nutrition research communities, toxicoproteomics could make particular contributions in three inter-related areas to advance mechanistic insights and biomarker development: the plasma proteome and circulating microparticles, the adductome and idiosyncratic toxicity.
Collapse
Affiliation(s)
- B Alex Merrick
- National Center for Toxicogenomics, National Institute of Environmental Health Sciences, PO Box 12233, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
70
|
Baillie TA. Metabolism and Toxicity of Drugs. Two Decades of Progress in Industrial Drug Metabolism. Chem Res Toxicol 2007; 21:129-37. [DOI: 10.1021/tx7002273] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Thomas A. Baillie
- Merck Research Laboratories, Department of Drug Metabolism and Pharmacokinetics WP75B-330, Sumneytown Pike, West Point, Pennsylvania 19486-0004
| |
Collapse
|
71
|
Liebler DC. Protein damage by reactive electrophiles: targets and consequences. Chem Res Toxicol 2007; 21:117-28. [PMID: 18052106 DOI: 10.1021/tx700235t] [Citation(s) in RCA: 197] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
It has been 60 years since the Millers first described the covalent binding of carcinogens to tissue proteins. Protein covalent binding was gradually overshadowed by the emergence of DNA adduct formation as the dominant paradigm in chemical carcinogenesis but re-emerged in the early 1970s as a critical mechanism of drug and chemical toxicity. Technology limitations hampered the characterization of protein adducts until the emergence of mass spectrometry-based proteomics in the late 1990s. The time since then has seen rapid progress in the characterization of the protein targets of electrophiles and the consequences of protein damage. Recent integration of novel affinity chemistries for electrophile probes, shotgun proteomics methods, and systems modeling tools has led to the identification of hundreds of protein targets of electrophiles in mammalian systems. The technology now exists to map the targets of damage to critical components of signaling pathways and metabolic networks and to understand mechanisms of damage at a systems level. The implementation of sensitive, specific analyses for protein adducts from both xenobiotic-derived and endogenous electrophiles offers a means to link protein damage to clinically relevant health effects of both chemical exposures and disease processes.
Collapse
Affiliation(s)
- Daniel C Liebler
- Department of Biochemistry, Vanderbilt University School of Medicine,, Nashville, Tennessee 37232, USA.
| |
Collapse
|