51
|
van Lierop AH, Appelman-Dijkstra NM, Papapoulos SE. Sclerostin deficiency in humans. Bone 2017; 96:51-62. [PMID: 27742500 DOI: 10.1016/j.bone.2016.10.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 09/09/2016] [Accepted: 10/10/2016] [Indexed: 01/11/2023]
Abstract
Sclerosteosis and van Buchem disease are two rare bone sclerosing dysplasias caused by genetic defects in the synthesis of sclerostin. In this article we review the demographic, clinical, biochemical, radiological, and histological characteristics of patients with sclerosteosis and van Buchem disease that led to a better understanding of the role of sclerostin in bone metabolism in humans and we discuss the relevance of these findings for the development of new therapeutics for the treatment of patients with osteoporosis.
Collapse
Affiliation(s)
- Antoon H van Lierop
- Center for Bone Quality, Leiden University Medical Center, Leiden, The Netherlands
| | | | | |
Collapse
|
52
|
Sebastian A, Loots GG. Transcriptional control of Sost in bone. Bone 2017; 96:76-84. [PMID: 27771382 DOI: 10.1016/j.bone.2016.10.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/15/2016] [Accepted: 10/10/2016] [Indexed: 01/07/2023]
Abstract
Sclerostin is an osteocyte derived negative regulator of bone formation. A highly specific expression pattern and the exclusive bone phenotype have made Sclerostin an attractive target for therapeutic intervention in treating metabolic bone diseases such as osteoporosis and in facilitating fracture repair. Understanding the molecular mechanisms that regulate Sclerostin transcription is of great interest as it may unveil new avenues for therapeutic approaches. Such studies may also elucidate how various signaling pathways intersect to modulate bone metabolism. Here we review the current understanding of the upstream molecular mechanisms that regulate Sost/SOST transcription, in bone.
Collapse
Affiliation(s)
- Aimy Sebastian
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Avenue, L-452, Livermore, CA 94550, USA; School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Gabriela G Loots
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Avenue, L-452, Livermore, CA 94550, USA; School of Natural Sciences, University of California, Merced, CA 95343, USA.
| |
Collapse
|
53
|
Baum R, Gravallese EM. Bone as a Target Organ in Rheumatic Disease: Impact on Osteoclasts and Osteoblasts. Clin Rev Allergy Immunol 2017; 51:1-15. [PMID: 26411424 DOI: 10.1007/s12016-015-8515-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dysregulated bone remodeling occurs when there is an imbalance between bone resorption and bone formation. In rheumatic diseases, including rheumatoid arthritis (RA) and seronegative spondyloarthritis, systemic and local factors disrupt the process of physiologic bone remodeling. Depending upon the local microenvironment, cell types, and local mechanical forces, inflammation results in very different effects on bone, promoting bone loss in the joints and in periarticular and systemic bone in RA and driving bone formation at enthesial and periosteal sites in diseases such as ankylosing spondylitis (AS), included within the classification of axial spondyloarthritis. There has been a great deal of interest in the role of osteoclasts in these processes and much has been learned over the past decade about osteoclast differentiation and function. It is now appreciated that osteoblast-mediated bone formation is also inhibited in the RA joint, limiting the repair of erosions. In contrast, osteoblasts function to produce new bone in AS. The Wnt and BMP signaling pathways have emerged as critical in the regulation of osteoblast function and the outcome for bone in rheumatic diseases, and these pathways have been implicated in both bone loss in RA and bone formation in AS. These pathways provide potential novel approaches for therapeutic intervention in diseases in which inflammation impacts bone.
Collapse
Affiliation(s)
- Rebecca Baum
- Department of Medicine and Division of Rheumatology, University of Massachusetts Medical School, Lazare Research Building Suite 223, 364 Plantation Street, Worcester, MA, 01605, USA
| | - Ellen M Gravallese
- Department of Medicine and Division of Rheumatology, University of Massachusetts Medical School, Lazare Research Building Suite 223, 364 Plantation Street, Worcester, MA, 01605, USA.
| |
Collapse
|
54
|
Spatz JM, Ellman R, Cloutier AM, Louis L, van Vliet M, Dwyer D, Stolina M, Ke HZ, Bouxsein ML. Sclerostin antibody inhibits skeletal deterioration in mice exposed to partial weight-bearing. LIFE SCIENCES IN SPACE RESEARCH 2017; 12:32-38. [PMID: 28212706 DOI: 10.1016/j.lssr.2017.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/04/2016] [Accepted: 01/10/2017] [Indexed: 06/06/2023]
Abstract
Whereas much is known regarding the musculoskeletal responses to full unloading, little is known about the physiological effects and response to pharmacological agents in partial unloading (e.g. Moon and Mars) environments. To address this, we used a previously developed ground-based model of partial weight-bearing (PWB) that allows chronic exposure to reduced weight-bearing in mice to determine the effects of murine sclerostin antibody (SclAbII) on bone microstructure and strength across different levels of mechanical unloading. We hypothesize that treatment with SclAbII would improve bone mass, microarchitecture and strength in all loading conditions, but that there would be a greater skeletal response in the normally loaded mice than in partially unloaded mice suggesting the importance of combined countermeasures for exploration-class long duration spaceflight missions. Eleven-week-old female mice were assigned to one of four loading groups: normal weight-bearing controls (CON) or weight-bearing at 20% (PWB20), 40% (PWB40) or 70% (PWB70) of normal. Mice in each group received either SclAbII (25mg/kg) or vehicle (VEH) via twice weekly subcutaneous injection for 3 weeks. In partially-unloaded VEH-treated groups, leg BMD decreased -5 to -10% in a load-dependent manner. SclAbII treatment completely inhibited bone deterioration due to PWB, with bone properties in SclAbII-treated groups being equal to or greater than those of CON, VEH-treated mice. SclAbII treatment increased leg BMD from +14 to +18% in the PWB groups and 30 ± 3% in CON (p< 0.0001 for all). Trabecular bone volume, assessed by μCT at the distal femur, was lower in all partially unloaded VEH-treated groups vs. CON-VEH (p< 0.05), and was 2-3 fold higher in SclAbII-treated groups (p< 0.001). Midshaft femoral strength was also significantly higher in SclAbII vs. VEH-groups in all-loading conditions. These results suggest that greater weight bearing leads to greater benefits of SclAbII on bone mass, particularly in the trabecular compartment. Altogether, these results demonstrate the efficacy of sclerostin antibody therapy in preventing astronaut bone loss during terrestrial solar system exploration.
Collapse
Affiliation(s)
- J M Spatz
- Massachusetts Institute of Technology, Cambridge, MA, United Staes; Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, United Staes ; Endocrine Division, Massachusetts General Hospital, Boston, MA, United Staes
| | - R Ellman
- Massachusetts Institute of Technology, Cambridge, MA, United Staes; Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, United Staes
| | - A M Cloutier
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, United Staes
| | - L Louis
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, United Staes
| | - M van Vliet
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, United Staes
| | - D Dwyer
- Amgen, Thousand Oaks, CA, United Staes
| | - M Stolina
- Amgen, Thousand Oaks, CA, United Staes
| | - H Z Ke
- Bone Research, UCB Pharma, Slough, Berkshire, UK
| | - M L Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, United Staes ; Endocrine Division, Massachusetts General Hospital, Boston, MA, United Staes; Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA, United Staes.
| |
Collapse
|
55
|
|
56
|
Langdahl B, Ferrari S, Dempster DW. Bone modeling and remodeling: potential as therapeutic targets for the treatment of osteoporosis. Ther Adv Musculoskelet Dis 2016; 8:225-235. [PMID: 28255336 PMCID: PMC5322859 DOI: 10.1177/1759720x16670154] [Citation(s) in RCA: 255] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The adult skeleton is renewed by remodeling throughout life. Bone remodeling is a process where osteoclasts and osteoblasts work sequentially in the same bone remodeling unit. After the attainment of peak bone mass, bone remodeling is balanced and bone mass is stable for one or two decades until age-related bone loss begins. Age-related bone loss is caused by increases in resorptive activity and reduced bone formation. The relative importance of cortical remodeling increases with age as cancellous bone is lost and remodeling activity in both compartments increases. Bone modeling describes the process whereby bones are shaped or reshaped by the independent action of osteoblast and osteoclasts. The activities of osteoblasts and osteoclasts are not necessarily coupled anatomically or temporally. Bone modeling defines skeletal development and growth but continues throughout life. Modeling-based bone formation contributes to the periosteal expansion, just as remodeling-based resorption is responsible for the medullary expansion seen at the long bones with aging. Existing and upcoming treatments affect remodeling as well as modeling. Teriparatide stimulates bone formation, 70% of which is remodeling based and 20-30% is modeling based. The vast majority of modeling represents overflow from remodeling units rather than de novo modeling. Denosumab inhibits bone remodeling but is permissive for modeling at cortex. Odanacatib inhibits bone resorption by inhibiting cathepsin K activity, whereas modeling-based bone formation is stimulated at periosteal surfaces. Inhibition of sclerostin stimulates bone formation and histomorphometric analysis demonstrated that bone formation is predominantly modeling based. The bone-mass response to some osteoporosis treatments in humans certainly suggests that nonremodeling mechanisms contribute to this response and bone modeling may be such a mechanism. To date, this has only been demonstrated for teriparatide, however, it is clear that rediscovering a phenomenon that was first observed more half a century ago will have an important impact on our understanding of how new antifracture treatments work.
Collapse
Affiliation(s)
- Bente Langdahl
- Medical Department of Endocrinology, Aarhus University Hospital, Tage-Hansensgade 2, Aarhus, DK-8000, Denmark
| | - Serge Ferrari
- Department of Geriatric Medicine, Geneva University Hospital, Geneva, Switzerland
| | - David W. Dempster
- Department of Clinical Pathology and Cell Biology, College of Physicians and Surgeons of Columbia University, and Regional Bone Center, Helen Hayes Hospital, New York State Department of Health, West Haverstraw, NY, USA
| |
Collapse
|
57
|
Basha G, Ordobadi M, Scott WR, Cottle A, Liu Y, Wang H, Cullis PR. Lipid Nanoparticle Delivery of siRNA to Osteocytes Leads to Effective Silencing of SOST and Inhibition of Sclerostin In Vivo. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e363. [PMID: 27623445 PMCID: PMC5056992 DOI: 10.1038/mtna.2016.68] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/19/2016] [Indexed: 01/22/2023]
Abstract
Sclerostin is a protein secreted by osteocytes that is encoded by the SOST gene; it decreases bone formation by reducing osteoblast differentiation through inhibition of the Wnt signaling pathway. Silencing the SOST gene using RNA interference (RNAi) could therefore be an effective way to treat osteoporosis. Here, we investigate the utility of lipid nanoparticle (LNP) formulations of siRNA to silence the SOST gene in vitro and in vivo. It is shown that primary mouse embryonic fibroblasts (MEF) provide a useful model system in which the SOST gene can be induced by incubation in osteogenic media, allowing development of optimized SOST siRNA for silencing the SOST gene. Incubation of MEF cells with LNP containing optimized SOST siRNA produced significant, prolonged knockdown of the induced SOST gene in vitro, which was associated with an increase in osteogenic markers. Intravenous (i.v.) administration of LNP containing SOST siRNA to mice showed significant accumulation of LNP in osteocytes in compact bone, depletion of SOST mRNA and subsequent reduction of circulating sclerostin protein, establishing the potential utility for LNP siRNA systems to promote bone formation.
Collapse
Affiliation(s)
- Genc Basha
- NanoMedicines Research Group, Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mina Ordobadi
- NanoMedicines Research Group, Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wilder R Scott
- Department of Cellular and Physiological Sciences, Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew Cottle
- NanoMedicines Research Group, Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yan Liu
- NanoMedicines Research Group, Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Haitang Wang
- NanoMedicines Research Group, Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pieter R Cullis
- NanoMedicines Research Group, Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
58
|
MacNabb C, Patton D, Hayes JS. Sclerostin Antibody Therapy for the Treatment of Osteoporosis: Clinical Prospects and Challenges. J Osteoporos 2016; 2016:6217286. [PMID: 27313945 PMCID: PMC4899597 DOI: 10.1155/2016/6217286] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/21/2016] [Indexed: 01/22/2023] Open
Abstract
It is estimated that over 200 million adults worldwide have osteoporosis, a disease that has increasing socioeconomic impact reflected by unsustainable costs associated with disability, fracture management, hospital stays, and treatment. Existing therapeutic treatments for osteoporosis are associated with a variety of issues relating to use, clinical predictability, and health risks. Consequently, additional novel therapeutic targets are increasingly sought. A promising therapeutic candidate is sclerostin, a Wnt pathway antagonist and, as such, a negative regulator of bone formation. Sclerostin antibody treatment has demonstrated efficacy and superiority compared to other anabolic treatments for increasing bone formation in both preclinical and clinical settings. Accordingly, it has been suggested that sclerostin antibody treatment is set to achieve market approval by 2017 and aggressively compete as the gold standard for osteoporotic treatment by 2021. In anticipation of phase III trial results which may potentially signify a significant step in achieving market approval here, we review the preclinical and clinical emergence of sclerostin antibody therapies for both osteoporosis and alternative applications. Potential clinical challenges are also explored as well as ongoing developments that may impact on the eventual clinical application of sclerostin antibodies as an effective treatment of osteoporosis.
Collapse
Affiliation(s)
- Claire MacNabb
- Regenerative Medicine Institute, NUI Galway, Biosciences Research Building, Corrib Village, Dangan, Galway, Ireland
| | - D. Patton
- Regenerative Medicine Institute, NUI Galway, Biosciences Research Building, Corrib Village, Dangan, Galway, Ireland
| | - J. S. Hayes
- Regenerative Medicine Institute, NUI Galway, Biosciences Research Building, Corrib Village, Dangan, Galway, Ireland
| |
Collapse
|
59
|
Asamiya Y, Tsuchiya K, Nitta K. Role of sclerostin in the pathogenesis of chronic kidney disease-mineral bone disorder. RENAL REPLACEMENT THERAPY 2016. [DOI: 10.1186/s41100-016-0024-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
60
|
Appelman-Dijkstra NM, Papapoulos SE. Sclerostin Inhibition in the Management of Osteoporosis. Calcif Tissue Int 2016; 98:370-80. [PMID: 27016922 PMCID: PMC4824823 DOI: 10.1007/s00223-016-0126-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/03/2016] [Indexed: 01/06/2023]
Abstract
The recognition of the importance of the Wnt-signaling pathway in bone metabolism and studies of patients with rare skeletal disorders characterized by high bone mass identified sclerostin as target for the development of new therapeutics for osteoporosis. Findings in animals and humans with sclerostin deficiency as well as results of preclinical and early clinical studies with sclerostin inhibitors demonstrated a new treatment paradigm with a bone building agent for the management of patients with osteoporosis, the antifracture efficacy, and long-term tolerability of which remain to be established in on-going phase III clinical studies. In this article we review the currently available preclinical and clinical evidence supporting the use of sclerostin inhibitors in osteoporosis.
Collapse
Affiliation(s)
| | - Socrates E Papapoulos
- Center for Bone Quality, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
61
|
The potential use of antisclerostin therapy in chronic kidney disease-mineral and bone disorder. Curr Opin Nephrol Hypertens 2016; 24:324-9. [PMID: 26050118 DOI: 10.1097/mnh.0000000000000133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW Sclerostin is a regulator of the osteoanabolic canonical Wnt signaling pathway, and thus helps to govern rates of bone formation. The Wnt pathway is also recognized as playing an important role in the pathophysiology of the chronic kidney disease-mineral and bone disorder (CKD-MBD). It also may serve as an interface between bone and the vascular system. Pharmacological inhibition of sclerostin has shown promise as an osteoanabolic approach to the treatment of osteoporosis. Inhibition of sclerostin is a potentially useful but unproven strategy in the management of CKD-MBD. RECENT FINDINGS Clinical trials with humanized monoclonal sclerostin antibodies (Scl-Ab) have shown a rapid initial increase in bone formation and a marked increase in bone mineral density. Although clinical data, to this point, in CKD are not available, animal models of low bone turnover CKD show that Scl-Ab improves trabecular bone volume and mineralization without affecting biochemical indices. SUMMARY Targeted clinical trials are needed to evaluate the potential effectiveness of Scl-Ab in CKD. Based upon the available data, there is potential not only for this new therapeutic class to improve skeletal health but perhaps also to have substantial cardiovascular benefits in CKD.
Collapse
|
62
|
Abstract
Several decades ago, a clinical condition that included severe bone overgrowth was described in a few patients in South Africa. The autosomal-recessive disease that later was named sclerosteosis was found to be caused by a mutation in the SOTS gene causing a lack of the protein sclerostin. This protein is produced by osteocytes and exerts its effect as an inhibitor of bone formation by blocking the Wnt signaling pathway. By the use of a monoclonal antibody that can block sclerostin a novel therapeutic pathway for rebuilding bone has been described. Preclinical studies have shown increased bone mass following subcutaneously administered anti-sclerostin antibody in animals with induced postmenopausal osteoporosis as well as in intact male rats and non-human primates. In a phase II study the efficacy and safety of an anti-sclerostin antibody, romosozumab, has been evaluated in 419 postmenopausal women for 12 months. 70, 140 or 210 mg was given subcutaneously monthly or every three months and compared to 70 mg of oral alendronate given once a week or 20 μg of teriparatide subcutaneously once daily. All dose levels of romosozumab were associated with significant increase in BMD with the most pronounced gain in the group receiving 210 mg where lumbar spine BMD increased with 11.3% from baseline. The BMD for the placebo group decreased by 0.1% while the alendronate group increased 4.1% and the teriparatide increased 7.1%. Biochemical markers revealed a transitory increase in the bone formation marker P1NP while no change in the bone resorption marker β-CTX. In comparison, teriparatide resulted in an increase for both P1NP and β-CTX for the complete study period. Even though the rapid gain in BMD is promising when considering a treatment option for osteoporosis and other conditions with bone loss, there are so far no published studies on whether anti-sclerostin can reduce the number of fractures. Wnt signaling might also play an important role in fracture healing with substances that causes an upregulation of the Wnt pathway producing enhancement of the fracture healing process. Healing of experimental fractures in various animal models have shown improvement following subcutaneously administered anti-sclerostin antibody. While there are no published reports on the potential effect of systemically administered anti-sclerostin antibodies on fracture healing in humans.
Collapse
Affiliation(s)
- Sune Larsson
- Department of Orthopedics, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
63
|
Ren Y, Han X, Jing Y, Yuan B, Ke H, Liu M, Feng JQ. Sclerostin antibody (Scl-Ab) improves osteomalacia phenotype in dentin matrix protein 1(Dmp1) knockout mice with little impact on serum levels of phosphorus and FGF23. Matrix Biol 2015; 52-54:151-161. [PMID: 26721590 DOI: 10.1016/j.matbio.2015.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 02/05/2023]
Abstract
Unlike treatments for most rickets, the treatment using 1,25-(OH)2 vitamin D3 has little efficacy on patients with hypophosphatemic rickets, a set of rare genetic diseases. Thus, understanding the local cause for osteomalacia in hypophosphatemic rickets and developing an effective treatment to restore mineralization in this rare disease has been a longstanding goal in medicine. Here, we used Dmp1 knockout (KO) mice (whose mutations led to the same type of autosomal recessive hypophosphatemic rickets in humans) as the model in which the monoclonal antibody of sclerostin (Scl-Ab) was tested in two age groups for 8weeks: the prevention group (starting at age 4weeks) and the treatment group (starting at age 12weeks). Applications of Scl-Ab greatly improved the osteomalacia phenotype (>15%) and the biomechanical properties (3-point bending, ~60%) in the treated long-bone group. Our studies not only showed improvement of the osteomalacia in the alveolar bone, which has the highest bone metabolism rate, as well as the long bone phenotypes in treated mice. All these improvements attributed to the use of Scl-Ab are independent of the change in serum levels of phosphorus and FGF23, since Scl-Ab had little efficacy on those parameters. Finally, we propose a model to explain how Scl-Ab can improve the Dmp1 KO osteomalacia phenotype, in which the sclerostin level is already low.
Collapse
Affiliation(s)
- Yinshi Ren
- Department of Biomedical Sciences, Texas A&M University Baylor College of Dentistry, Dallas, TX, USA
| | - Xianglong Han
- Department of Biomedical Sciences, Texas A&M University Baylor College of Dentistry, Dallas, TX, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, China
| | - Yan Jing
- Department of Biomedical Sciences, Texas A&M University Baylor College of Dentistry, Dallas, TX, USA
| | - Baozhi Yuan
- Department of Medicine, University of Wisconsin-Madison and Geriatric Research and Education Center, Madison, WI, USA
| | - Huazhu Ke
- Department of Metabolic Disorders, Amgen Inc., Thousand Oaks, CA, USA
| | - Min Liu
- Department of Metabolic Disorders, Amgen Inc., Thousand Oaks, CA, USA
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M University Baylor College of Dentistry, Dallas, TX, USA.
| |
Collapse
|
64
|
He W, Chen C, Pan C, Zhang M, Yu X, Wang D, Hu S. Sclerosteosis caused by a novel nonsense mutation of
SOST
in a consanguineous family. Clin Genet 2015; 89:205-9. [DOI: 10.1111/cge.12655] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 08/14/2015] [Accepted: 08/14/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Wen‐Tao He
- Department of Endocrinology and Metabolism Wuhan P. R. China
| | - Chen Chen
- Department of Cardiology Wuhan P. R. China
| | - Chu Pan
- Department of RadiologyTongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan P. R. China
| | - Mu‐Xun Zhang
- Department of Endocrinology and Metabolism Wuhan P. R. China
| | - Xue‐Feng Yu
- Department of Endocrinology and Metabolism Wuhan P. R. China
| | | | - Shu‐Hong Hu
- Department of Endocrinology and Metabolism Wuhan P. R. China
| |
Collapse
|
65
|
|
66
|
|
67
|
Abstract
Sclerostin is a cysteine-knot glycoprotein product of the SOST gene, predominately expressed by osteocytes, that is a regulator of osteoblastic bone formation. When sclerostin binds to its low-density lipoprotein receptor-related proteins 5 and 6 on the cell membrane of osteoblasts, it inhibits canonical Wnt/β-catenin signaling and reduces osteoblastic bone formation. Sclerostin was first identified in the study of two rare autosomal recessive disorders, sclerosteosis and van Buchem disease, which are associated with absent or reduced levels of sclerostin. Although homozygote patients with these disorders have serious adverse clinical consequences due to excessive bone growth, heterozygote patients have a normal phenotype, high bone mass, and very low risk of fractures. This has led to the concept that downregulation of sclerostin might be effective in the treatment of osteoporosis. Several humanized monoclonal antibodies to sclerostin, including romosozumab and blosozumab, are now in clinical development. Preliminary data show that these agents result in a transient increase in bone formation markers, a sustained decrease in bone resorption markers, and a robust increase in bone mineral density. If any of these agents are found to reduce fracture risk with a favorable safety profile, it will expand the options for osteoanabolic therapy for patients at high risk for fractures.
Collapse
Affiliation(s)
- Maryam Sharifi
- University of New Mexico School of Medicine, Albuquerque, NM, USA
| | | | | |
Collapse
|
68
|
Baker EK, Taylor S, Gupte A, Chalk AM, Bhattacharya S, Green AC, Martin TJ, Strbenac D, Robinson MD, Purton LE, Walkley CR. Wnt inhibitory factor 1 (WIF1) is a marker of osteoblastic differentiation stage and is not silenced by DNA methylation in osteosarcoma. Bone 2015; 73:223-32. [PMID: 25571841 DOI: 10.1016/j.bone.2014.12.063] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/03/2014] [Accepted: 12/28/2014] [Indexed: 12/29/2022]
Abstract
Wnt pathway targeting is of high clinical interest for treating bone loss disorders such as osteoporosis. These therapies inhibit the action of negative regulators of osteoblastic Wnt signaling. The report that Wnt inhibitory factor 1 (WIF1) was epigenetically silenced via promoter DNA methylation in osteosarcoma (OS) raised potential concerns for such treatment approaches. Here we confirm that Wif1 expression is frequently reduced in OS. However, we demonstrate that silencing is not driven by DNA methylation. Treatment of mouse and human OS cells showed that Wif1 expression was robustly induced by HDAC inhibition but not by methylation inhibition. Consistent with HDAC dependent silencing, the Wif1 locus in OS was characterized by low acetylation levels and a bivalent H3K4/H3K27-trimethylation state. Wif1 expression marked late stages of normal osteoblast maturation and stratified OS tumors based on differentiation stage across species. Culture of OS cells under differentiation inductive conditions increased expression of Wif1. Together these results demonstrate that Wif1 is not targeted for silencing by DNA methylation in OS. Instead, the reduced expression of Wif1 in OS cells is in context with their stage in differentiation.
Collapse
Affiliation(s)
- Emma K Baker
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical Research, Fitzroy, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Australia.
| | - Scott Taylor
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Ankita Gupte
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Alistair M Chalk
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical Research, Fitzroy, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Australia
| | - Shreya Bhattacharya
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical Research, Fitzroy, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Australia
| | - Alanna C Green
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical Research, Fitzroy, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Australia
| | - T John Martin
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Australia; Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Dario Strbenac
- Cancer Epigenetics, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Mark D Robinson
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland; SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Louise E Purton
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical Research, Fitzroy, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Australia
| | - Carl R Walkley
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical Research, Fitzroy, Australia; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Australia.
| |
Collapse
|
69
|
Recker RR, Benson CT, Matsumoto T, Bolognese MA, Robins DA, Alam J, Chiang AY, Hu L, Krege JH, Sowa H, Mitlak BH, Myers SL. A randomized, double-blind phase 2 clinical trial of blosozumab, a sclerostin antibody, in postmenopausal women with low bone mineral density. J Bone Miner Res 2015; 30:216-24. [PMID: 25196993 DOI: 10.1002/jbmr.2351] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 08/26/2014] [Accepted: 08/28/2014] [Indexed: 11/11/2022]
Abstract
Sclerostin, a SOST protein secreted by osteocytes, negatively regulates formation of mineralized bone matrix and bone mass. We report the results of a randomized, double-blind, placebo-controlled multicenter phase 2 clinical trial of blosozumab, a humanized monoclonal antibody targeted against sclerostin, in postmenopausal women with low bone mineral density (BMD). Postmenopausal women with a lumbar spine T-score -2.0 to -3.5, inclusive, were randomized to subcutaneous blosozumab 180 mg every 4 weeks (Q4W), 180 mg every 2 weeks (Q2W), 270 mg Q2W, or matching placebo for 1 year, with calcium and vitamin D. Serial measurements of spine and hip BMD and biochemical markers of bone turnover were performed. Overall, 120 women were enrolled in the study (mean age 65.8 years, mean lumbar spine T-score -2.8). Blosozumab treatment resulted in statistically significant dose-related increases in spine, femoral neck, and total hip BMD as compared with placebo. In the highest dose group, BMD increases from baseline reached 17.7% at the spine, and 6.2% at the total hip. Biochemical markers of bone formation increased rapidly during blosozumab treatment, and trended toward pretreatment levels by study end. However, bone specific alkaline phosphatase remained higher than placebo at study end in the highest-dose group. CTx, a biochemical marker of bone resorption, decreased early in blosozumab treatment to a concentration less than that of the placebo group by 2 weeks, and remained reduced throughout blosozumab treatment. Mild injection site reactions were reported more frequently with blosozumab than placebo. In conclusion, treatment of postmenopausal women with an antibody targeted against sclerostin resulted in substantial increases in spine and hip BMD. These results support further study of blosozumab as a potential anabolic therapy for osteoporosis.
Collapse
Affiliation(s)
- Robert R Recker
- Osteoporosis Research Center, Creighton University, Omaha, NE, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Osteoarthritis and bone mineral density: are strong bones bad for joints? BONEKEY REPORTS 2015; 4:624. [PMID: 25628884 PMCID: PMC4303262 DOI: 10.1038/bonekey.2014.119] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/19/2014] [Indexed: 02/02/2023]
Abstract
Osteoarthritis (OA) is a common and disabling joint disorder affecting millions of people worldwide. In OA, pathological changes are seen in all of the joint tissues including bone. Although both cross-sectional and longitudinal epidemiological studies have consistently demonstrated an association between higher bone mineral density (BMD) and OA, suggesting that increased BMD is a risk factor for OA, the mechanisms underlying this observation remain unclear. Recently, novel approaches to examining the BMD-OA relationship have included studying the disease in individuals with extreme high bone mass, and analyses searching for genetic variants associated with both BMD variation and OA, suggesting possible pleiotropic effects on bone mass and OA risk. These studies have yielded valuable insights into potentially relevant pathways that might one day be exploited therapeutically. Although animal models have suggested that drugs reducing bone turnover (antiresorptives) may retard OA progression, it remains to be seen whether this approach will prove to be useful in human OA. Identifying individuals with a phenotype of OA predominantly driven by increased bone formation could help improve the overall response to these treatments. This review aims to summarise current knowledge regarding the complex relationship between BMD and OA.
Collapse
|
71
|
Abstract
Fractures are the most common large-organ, traumatic injuries to humans. The repair of bone fractures is a postnatal regenerative process that recapitulates many of the ontological events of embryonic skeletal development. Although fracture repair usually restores the damaged skeletal organ to its pre-injury cellular composition, structure and biomechanical function, about 10% of fractures will not heal normally. This article reviews the developmental progression of fracture healing at the tissue, cellular and molecular levels. Innate and adaptive immune processes are discussed as a component of the injury response, as are environmental factors, such as the extent of injury to the bone and surrounding tissue, fixation and the contribution of vascular tissues. We also present strategies for fracture treatment that have been tested in animal models and in clinical trials or case series. The biophysical and biological basis of the molecular actions of various therapeutic approaches, including recombinant human bone morphogenetic proteins and parathyroid hormone therapy, are also discussed.
Collapse
Affiliation(s)
- Thomas A Einhorn
- Orthopaedic Surgery, Boston University Medical Centre, Doctor's Office Building Suite 808, 720 Harrison Avenue, Boston, MA 02118, USA
| | - Louis C Gerstenfeld
- Orthopaedic Surgery, Boston University School of Medicine, 72 East Concord Street, E243, Boston, MA 02118, USA
| |
Collapse
|
72
|
Abstract
Despite the availability of efficacious treatments for fracture reduction in patients with osteoporosis, there are still unmet needs requiring a broader range of therapeutics. In particular, agents that are capable of replacing already lost bone and that also drastically reduce the risk of non-vertebral fractures are needed. Studies of rare bone diseases in humans and animal genetics have identified targets in bone cells for the development of therapies for osteoporosis with novel mechanisms of action. Here, we review these new developments, with emphasis on inhibitors of cathepsin K in osteoclasts and sclerostin in osteocytes, which are currently studied in phase 3 clinical trials.
Collapse
Affiliation(s)
| | - Socrates E Papapoulos
- Center for Bone Quality, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
| |
Collapse
|
73
|
Li X, Niu QT, Warmington KS, Asuncion FJ, Dwyer D, Grisanti M, Han CY, Stolina M, Eschenberg MJ, Kostenuik PJ, Simonet WS, Ominsky MS, Ke HZ. Progressive increases in bone mass and bone strength in an ovariectomized rat model of osteoporosis after 26 weeks of treatment with a sclerostin antibody. Endocrinology 2014; 155:4785-97. [PMID: 25259718 DOI: 10.1210/en.2013-1905] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The effects of up to 26 weeks of sclerostin antibody (Scl-Ab) treatment were investigated in ovariectomized (OVX) rats. Two months after surgery, 6-month-old osteopenic OVX rats were treated with vehicle or Scl-Ab (25 mg/kg, sc, one time per week) for 6, 12, or 26 weeks. In vivo dual-energy x-ray absorptiometry analysis demonstrated that the bone mineral density of lumbar vertebrae and femur-tibia increased progressively through 26 weeks of Scl-Ab treatment along with progressive increases in trabecular and cortical bone mass and bone strength at multiple sites. There was a strong correlation between bone mass and maximum load at lumbar vertebra, femoral neck, and diaphysis at weeks 6 and 26. Dynamic histomorphometric analysis showed that lumbar trabecular and tibial shaft endocortical and periosteal bone formation rates (BFR/BS) increased and peaked at week 6 with Scl-Ab-treatment; thereafter trabecular and endocortical BFR/BS gradually declined but remained significantly greater than OVX controls at week 26, whereas periosteal BFR/BS returned to OVX control levels at week 26. In the tibia metaphysis, trabecular BFR/BS in the Scl-Ab treated group remained elevated from week 6 to week 26. The osteoclast surface and eroded surface were significantly lower in Scl-Ab-treated rats than in OVX controls at all times. In summary, bone mass and strength increased progressively over 26 weeks of Scl-Ab treatment in adult OVX rats. The early gains were accompanied by increased cortical and trabecular bone formation and reduced osteoclast activity, whereas later gains were attributed to residual endocortical and trabecular osteoblast stimulation and persistently low osteoclast activity.
Collapse
Affiliation(s)
- Xiaodong Li
- Departments of Metabolic Disorders (X.L., Q.-T.N., K.S.W., F.J.A., D.D., M.G., C.-Y.H., M.S., P.J.K., W.S.S., M.S.O., H.Z.K.) and Biostatistics (M.J.E.), Amgen Inc, Thousand Oaks, California 91320
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Feng G, Chang-Qing Z, Yi-Min C, Xiao-Lin L. Systemic administration of sclerostin monoclonal antibody accelerates fracture healing in the femoral osteotomy model of young rats. Int Immunopharmacol 2014; 24:7-13. [PMID: 25479724 DOI: 10.1016/j.intimp.2014.11.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/26/2014] [Accepted: 11/10/2014] [Indexed: 12/20/2022]
Abstract
Genetic studies have demonstrated that sclerostin was a key negative regulator of bone formation. Sclerostin monoclonal antibody (Scl-Ab) treatment enhanced bone healing in experimental fracture healing. The purpose was to investigate the effects of systemic Scl-Ab administration on open fracture healing in young rats. Unilateral femoral fractures were generated in eight-week-old Sprague-Dawley rats. Rats were treated with vehicle or Scl-Ab for 6weeks. Fracture healing was evaluated by western blotting, immunohistochemistry, histology, radiography, micro-CT, and biomechanical testing. In addition, the bone mass of intact femur was also evaluated by micro-CT. The results showed that, at 1 and 2weeks after fracture, proliferating cell nuclear antigen (PCNA) score and bone morphogenetic protein-2 (BMP-2) expression in the Scl-Ab group were significantly increased compared with the control group. A decrease in cartilage in the Scl-Ab group was also observed after fracture, and this was accompanied by more rapider fracture healing. At 4 and 6weeks, there were significant increases in bone mass and mechanical properties in the calluses from Scl-Ab group compared with control group. In addition, Scl-Ab treatment also showed significant anabolic effects in intact femur. In conclusion, systemic Scl-Ab administration has a significant enhancement in a rat femoral osteotomy model. These results support the therapeutic potential of Scl-Ab as a noninvasive strategy to enhance open fracture healing.
Collapse
Affiliation(s)
- Gao Feng
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Jiaotong University, China
| | - Zhang Chang-Qing
- Department of Orthopedic Surgery, Shanghai Jiao Tong University affiliated Sixth People's Hospital, Shanghai Jiaotong University, China
| | - Chai Yi-Min
- Department of Orthopedic Surgery, Shanghai Jiao Tong University affiliated Sixth People's Hospital, Shanghai Jiaotong University, China
| | - Li Xiao-Lin
- Department of Orthopedic Surgery, Shanghai Jiao Tong University affiliated Sixth People's Hospital, Shanghai Jiaotong University, China.
| |
Collapse
|
75
|
|
76
|
Lewiecki EM. Role of sclerostin in bone and cartilage and its potential as a therapeutic target in bone diseases. Ther Adv Musculoskelet Dis 2014; 6:48-57. [PMID: 24688605 PMCID: PMC3956136 DOI: 10.1177/1759720x13510479] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Sclerostin is a small protein expressed by the SOST gene in osteocytes, bone cells that respond to mechanical stress applied to the skeleton and appear to play an important role in the regulation of bone remodeling. When sclerostin binds to its receptors on the cell surface of osteoblasts, a downstream cascade of intracellular signaling is initiated, with the ultimate effect of inhibiting osteoblastic bone formation. Recent studies have shown that the SOST gene is also expressed by articular chondrocytes and that modulation of its activity may have effects on articular cartilage and subchondral bone. The role of sclerostin in the pathogenesis of osteoarthritis in humans has not yet been defined, and the potential utility of treating osteoarthritis with interventions that alter sclerostin is not known. Rare genetic skeletal disorders in humans with low sclerostin levels, such as sclerosteosis and van Buchem disease, have been associated with a high bone mineral density (BMD) phenotype and low risk of fractures. This has led to the concept that antisclerostin interventions might be useful in the treatment of patients with osteoporosis and skeletal disorders associated with low bone mass. Compounds that inhibit sclerostin have been shown to stimulate bone formation and reduce bone resorption, with a robust increase in BMD. Investigational monoclonal antibodies to sclerostin, including romosozumab, blosozumab, and BPS804, have advanced to phase II clinical trials or beyond. If antisclerostin therapy is found to have beneficial effects on clinical endpoints, such as reduction of fracture risk or improvement in quality of life in patients with osteoarthritis, with a favorable balance of benefit and risk, then this class of compounds may become a prominent addition to the options for therapy of osteoporosis and other skeletal disorders.
Collapse
Affiliation(s)
- E Michael Lewiecki
- New Mexico Clinical Research & Osteoporosis Center, University of New Mexico School of Medicine, 300 Oak Street NE, Albuquerque, NM 87106, USA
| |
Collapse
|
77
|
Costa AG, Bilezikian JP, Lewiecki EM. Update on romosozumab : a humanized monoclonal antibody to sclerostin. Expert Opin Biol Ther 2014; 14:697-707. [PMID: 24665957 DOI: 10.1517/14712598.2014.895808] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Disorders with inactivating mutations of the SOST gene result in reduced or absent expression of sclerostin and are associated with high bone mass. Sclerostin is an important regulator of bone formation due to its inhibitory actions in the osteoanabolic Wnt signaling pathway. Advances in understanding the mechanisms of action of this signaling molecule have led to the development of a pharmacological inhibitor of sclerostin with potential clinical applications as an osteoanabolic drug for the treatment of osteoporosis. AREAS COVERED Romosozumab is the first humanized monoclonal sclerostin antibody to be tested in clinical trials. Similar to preclinical animal studies with sclerostin antibodies, initial clinical studies show that romosozumab increases bone formation and bone mineral density. EXPERT OPINION Blocking sclerostin action with romosozumab is a promising new therapeutic approach to osteoanabolic therapy of osteoporosis; efficacy and safety data on large controlled studies are awaited.
Collapse
Affiliation(s)
- Aline G Costa
- Columbia University, College of Physicians and Surgeons, Division of Endocrinology, Department of Medicine, Metabolic Bone Diseases Unit , 630 West 168th Street, NY 10032 , USA
| | | | | |
Collapse
|
78
|
Potgieter JM, Swanepoel DW, Heinze BM, Hofmeyr LM, Burger AAS, Hamersma H. An auditory profile of sclerosteosis. J Laryngol Otol 2014; 128:1-9. [PMID: 24642276 DOI: 10.1017/s0022215113002648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Objective: To characterise auditory involvement secondary to excessive craniotubular bone growth in individuals with sclerosteosis in South Africa. Methods: This cross-sectional study assessed the auditory profile of 10 participants with sclerosteosis. An auditory test battery was used and results for each ear were recorded using descriptive and comparative analyses. Results: All participants presented with bilateral, mixed hearing losses. Of the 20 ears, hearing loss was moderate in 5 per cent (n = 1), severe in 55 per cent (n = 11) and profound in 40 per cent (n = 8). Air-bone gaps were smaller in older participants, although the difference was not statistically significant (p > 0.05). Computed tomography scans indicated pervasive abnormalities of the external auditory canal, tympanic membrane, middle-ear space, ossicles, oval window, round window and internal auditory canal. Narrowed internal auditory canals corresponded to poor speech discrimination, indicative of retrocochlear pathology and absent auditory brainstem response waves. Conclusion: Progressive abnormal bone formation in sclerosteosis involves the middle ear, the round and oval windows of the cochlea, and the internal auditory canal. The condition compromises conductive, sensory and neural auditory pathways, which results in moderate to profound, mixed hearing loss.
Collapse
Affiliation(s)
- J M Potgieter
- Department of Speech-Language Pathology and Audiology, University of Pretoria, South Africa
| | - D W Swanepoel
- Department of Speech-Language Pathology and Audiology, University of Pretoria, South Africa
| | - B M Heinze
- Department of Speech-Language Pathology and Audiology, University of Pretoria, South Africa
| | - L M Hofmeyr
- Department of Otorhinolaryngology, Faculty of Health Sciences, University of Pretoria, South Africa
| | | | - H Hamersma
- Private Practice, Roodepoort, South Africa
| |
Collapse
|
79
|
Agholme F, Macias B, Hamang M, Lucchesi J, Adrian MD, Kuhstoss S, Harvey A, Sato M, Aspenberg P. Efficacy of a sclerostin antibody compared to a low dose of PTH on metaphyseal bone healing. J Orthop Res 2014; 32:471-6. [PMID: 24243768 DOI: 10.1002/jor.22525] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 10/25/2013] [Indexed: 02/04/2023]
Abstract
We compared the effect of a sclerostin antibody to that of a clinically relevant dose of parathyroid hormone (PTH) in a rat model for metaphyseal bone healing. Screws of steel or poly methyl methacrylate (PMMA) were inserted bilaterally into the proximal tibia of young male rats. During 4 weeks the animals then received injections of either phosphate buffered saline (control), sclerostin antibody (25 mg/kg, twice weekly) or PTH (5 µg/kg, daily). The healing response around the screws was then assessed by mechanical testing and X-ray microtomography (µCT). To distinguish between effects on healing and general effects on the skeleton, other untraumatized bone sites and serum biomarkers were also assessed. After 4 weeks of treatment, PTH yielded a 48% increase in screw pull-out force compared to control (p = 0.03), while the antibody had no significant effect. In contrast, the antibody increased femoral cortical and vertebral strength where PTH had no significant effect. µCT showed only slight changes that were statistically significant for the antibody mainly at cortical sites. The results suggest that a relatively low dose of PTH stimulates metaphyseal repair (screw fixation) specifically, whereas the sclerostin antibody has wide-spread effects, mainly on cortical bone, with less influence on metaphyseal healing.
Collapse
Affiliation(s)
- Fredrik Agholme
- Orthopaedics, Department of Clinical and Experimental Medicine, Linköping University, Linkoping, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Waterval JJ, Borra VM, Van Hul W, Stokroos RJ, Manni JJ. Sclerosing bone dysplasias with involvement of the craniofacial skeleton. Bone 2014; 60:48-67. [PMID: 24325978 DOI: 10.1016/j.bone.2013.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 11/25/2013] [Accepted: 12/02/2013] [Indexed: 01/13/2023]
Abstract
In this review we provide a complete overview of the existing sclerosing bone dysplasias with craniofacial involvement. Clinical presentation, disease course, the craniofacial symptoms, genetic transmission pattern and pathophysiology are discussed. There is an emphasis on radiologic features with a large collection of CT and MRI images. In previous reviews the craniofacial area of the sclerosing bone dysplasias was underexposed. However, craniofacial symptoms are often the first symptoms to address a physician. The embryology of the skull and skull base is explained and illustrated for a better understanding of the affected areas.
Collapse
Affiliation(s)
- J J Waterval
- Department of Otorhinolaryngology-Head & Neck Surgery, Maastricht University Medical Center, P.O. 5800, 6202AZ Maastricht, The Netherlands.
| | - V M Borra
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43, B-2650 Edegem, Belgium.
| | - W Van Hul
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43, B-2650 Edegem, Belgium.
| | - R J Stokroos
- Department of Otorhinolaryngology-Head & Neck Surgery, Maastricht University Medical Center, P.O. 5800, 6202AZ Maastricht, The Netherlands.
| | - J J Manni
- Department of Otorhinolaryngology-Head & Neck Surgery, Maastricht University Medical Center, P.O. 5800, 6202AZ Maastricht, The Netherlands.
| |
Collapse
|
81
|
Belkhribchia MR, Collet C, Laplanche JL, Hassani R. Novel SOST gene mutation in a sclerosteosis patient from Morocco: a case report. Eur J Med Genet 2014; 57:133-7. [PMID: 24594238 DOI: 10.1016/j.ejmg.2014.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 02/09/2014] [Indexed: 10/25/2022]
Abstract
Sclerosteosis (OMIM 269500) is a rare autosomal recessive condition characterized by increased bone density associated with syndactyly. It is linked to a genetic defect in the SOST gene coding for sclerostin. So far, seven different loss-of-function mutations in SOST have been reported in patients with sclerosteosis. Recently, two mutations in LRP4 gene underlying sclerosteosis were identified, reflecting the genetic heterogeneity of this disease. We report here a 30-years-old Moroccan man presented with typical clinical and radiological features of sclerosteosis who carries a novel homozygous mutation in the SOST gene, characterized as a nonsense mutation (c.79C > T; p.Gln27∗) in exon 1 of the SOST gene. This is to our knowledge the first case of sclerosteosis reported from Morocco and North Africa.
Collapse
Affiliation(s)
| | - Corinne Collet
- UF de Génétique Moléculaire, Hôpital Lariboisière, Paris, France
| | | | | |
Collapse
|
82
|
Abstract
Normal bone remodeling depends upon a balance between the action of bone-resorbing cells, osteoclasts, and bone-forming cells, osteoblasts. When this balance is disrupted, as is seen in inflammatory diseases such as rheumatoid arthritis (RA) and ankylosing spondylitis (AS), abnormal bone loss or bone formation occurs. In RA, proinflammatory cytokines induce osteoclast differentiation and inhibit osteoblast maturation, leading to articular bone erosions. In contrast, the inflammatory milieu in AS leads to excessive osteoblast activation and bone formation at sites of entheses. While much information exists about the effects of proinflammatory cytokines on osteoclast differentiation and function, more recent studies have begun to elucidate the impact of inflammation on the osteoblast. This review will summarize the mechanisms by which inflammation perturbs bone homeostasis, with a specific focus on the osteoblast.
Collapse
Affiliation(s)
- Rebecca Baum
- Division of Rheumatology, Department of Medicine, University of Massachusetts Medical School, Lazare Research Building, Suite 223, 364 Plantation Street, Worcester, MA, 01605, USA
| | | |
Collapse
|
83
|
Tholpady S, Dodd ZH, Havlik RJ, Fulkerson DH. Cranial Reconstruction for Treatment of Intracranial Hypertension from Sclerosteosis: Case-Based Update. World Neurosurg 2014. [DOI: 10.1016/j.wneu.2012.11.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
84
|
Williams BO. Insights into the mechanisms of sclerostin action in regulating bone mass accrual. J Bone Miner Res 2014; 29:24-8. [PMID: 24285419 DOI: 10.1002/jbmr.2154] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Bart O Williams
- Center for Skeletal Disease and Tumor Metastasis, Van Andel Research Institute, Grand Rapids, MI, USA
| |
Collapse
|
85
|
Abstract
Sclerosteosis or Truswell-Hansen disease is a rare autosomal recessive disorder characterized by dense bones, tall stature, and syndactyly. Most of the reports are from South Africa. Here we report the first such case from India.
Collapse
Affiliation(s)
- S Deepak Amalnath
- Department of Medicine, Indira Gandhi Medical College and Research Institute, Pondicherry, India
| | | |
Collapse
|
86
|
Sost and its paralog Sostdc1 coordinate digit number in a Gli3-dependent manner. Dev Biol 2013; 383:90-105. [PMID: 23994639 PMCID: PMC3861057 DOI: 10.1016/j.ydbio.2013.08.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/15/2013] [Accepted: 08/16/2013] [Indexed: 01/08/2023]
Abstract
WNT signaling is critical in most aspects of skeletal development and
homeostasis, and antagonists of WNT signaling are emerging as key regulatory
proteins with great promise as therapeutic agents for bone disorders. Here we
show that Sost and its paralog Sostdc1 emerged
through ancestral genome duplication and their expression patterns have diverged
to delineate non-overlapping domains in most organ systems including
musculoskeletal, cardiovascular, nervous, digestive, reproductive and
respiratory. In the developing limb, Sost and
Sostdc1 display dynamic expression patterns with
Sost being restricted to the distal ectoderm and
Sostdc1 to the proximal ectoderm and the mesenchyme. While
Sostdc1–/– mice lack any obvious
limb or skeletal defects, Sost–/–
mice recapitulate the hand defects described for Sclerosteosis patients.
However, elevated WNT signaling in
Sost–/–;
Sostdc1–/– mice causes
misregulation of SHH signaling, ectopic activation of Sox9 in
the digit 1 field and preaxial polydactyly in a Gli1- and Gli3-dependent manner.
In addition, we show that the syndactyly documented in Sclerosteosis is present
in both Sost–/– and
Sost–/–;
Sostdc1–/– mice, and is driven
by misregulation of Fgf8 in the AER, a region lacking
Sost and Sostdc1 expression. This study
highlights the complexity of WNT signaling in skeletal biology and disease and
emphasizes how redundant mechanism and non-cell autonomous effects can synergize
to unveil new intricate phenotypes caused by elevated WNT signaling.
Collapse
|
87
|
Robinson MK, Caminis J, Brunkow ME. Sclerostin: how human mutations have helped reveal a new target for the treatment of osteoporosis. Drug Discov Today 2013; 18:637-43. [DOI: 10.1016/j.drudis.2013.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/29/2013] [Accepted: 04/03/2013] [Indexed: 12/14/2022]
|
88
|
Roudier M, Li X, Niu QT, Pacheco E, Pretorius JK, Graham K, Yoon BRP, Gong J, Warmington K, Ke HZ, Black RA, Hulme J, Babij P. Sclerostin is expressed in articular cartilage but loss or inhibition does not affect cartilage remodeling during aging or following mechanical injury. ACTA ACUST UNITED AC 2013; 65:721-31. [PMID: 23233270 DOI: 10.1002/art.37802] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 11/15/2012] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Sclerostin plays a major role in regulating skeletal bone mass, but its effects in articular cartilage are not known. The purpose of this study was to determine whether genetic loss or pharmacologic inhibition of sclerostin has an impact on knee joint articular cartilage. METHODS Expression of sclerostin was determined in articular cartilage and bone tissue obtained from mice, rats, and human subjects, including patients with knee osteoarthritis (OA). Mice with genetic knockout (KO) of sclerostin and pharmacologic inhibition of sclerostin with a sclerostin-neutralizing monoclonal antibody (Scl-Ab) in aged male rats and ovariectomized (OVX) female rats were used to study the effects of sclerostin on pathologic processes in the knee joint. The rat medial meniscus tear (MMT) model of OA was used to investigate the pharmacologic efficacy of systemic Scl-Ab or intraarticular (IA) delivery of a sclerostin antibody-Fab (Scl-Fab) fragment. RESULTS Sclerostin expression was detected in rodent and human articular chondrocytes. No difference was observed in the magnitude or distribution of sclerostin expression between normal and OA cartilage or bone. Sclerostin-KO mice showed no difference in histopathologic features of the knee joint compared to age-matched wild-type mice. Pharmacologic treatment of intact aged male rats or OVX female rats with Scl-Ab had no effect on morphologic characteristics of the articular cartilage. In the rat MMT model, pharmacologic treatment of animals with either systemic Scl-Ab or IA injection of Scl-Fab had no effect on lesion development or severity. CONCLUSION Genetic absence of sclerostin does not alter the normal development of age-dependent OA in mice, and pharmacologic inhibition of sclerostin with Scl-Ab has no impact on articular cartilage remodeling in rats with posttraumatic OA.
Collapse
|
89
|
van Lierop AH, Hamdy NAT, van Egmond ME, Bakker E, Dikkers FG, Papapoulos SE. Van Buchem disease: clinical, biochemical, and densitometric features of patients and disease carriers. J Bone Miner Res 2013; 28:848-54. [PMID: 23074140 DOI: 10.1002/jbmr.1794] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 09/18/2012] [Accepted: 10/01/2012] [Indexed: 01/08/2023]
Abstract
Van Buchem disease (VBD) is a rare bone sclerosing dysplasia caused by the lack of a regulatory element of the SOST gene, which encodes for sclerostin, an osteocyte-derived negative regulator of bone formation. We studied the demographic, clinical, biochemical, and densitometric features of 15 patients with VBD (12 adults and 3 children) and 28 related carriers of the gene mutation. The most common clinical findings in patients were facial palsy (100%) and various degrees of hearing impairment (93%); raised intracranial pressure had been documented in 20%. The clinical course of the disease appeared to stabilize in adulthood, with the majority of patients reporting no progression of symptoms or development of complications with time. Carriers of the disease had none of the clinical features or complications of the disease. Sclerostin could be detected in the serum in all but 1 VBD patients (mean 8.0 pg/mL; 95% confidence interval [CI], 4.9-11.0 pg/mL), and were lower than those of carriers (mean 28.7 pg/mL; 95% CI, 24.5-32.9 pg/mL; p < 0.001) and healthy controls (mean 40.0 pg/mL; 95% CI, 34.5-41.0 pg/mL; p < 0.). Serum procollagen type 1 amino-terminal propeptide (P1NP) levels were also significantly higher in adult patients (mean 96.0; 95% CI, 54.6-137.4 ng/mL versus mean 47.8; 95% CI, 39.4-56.2 ng/mL, p = 0.003 in carriers and mean 37.8; 95% CI, 34.5-41.0 ng/mL, p = 0.028 in healthy controls) and declined with age. Bone mineral density (BMD) was markedly increased in all patients (mean Z-score 8.7 ± 2.1 and 9.5 ± 1.9 at the femoral neck and spine, respectively); BMD of carriers was significantly lower than that of patients but varied widely (mean Z-scores 0.9 ± 1.0 and 1.3 ± 1.5 at the femoral neck and spine, respectively). Serum sclerostin levels were inversely correlated with serum P1NP levels (r = -0.39, p = 0.018) and BMD values (femoral neck r = -0.69, p < 0.001; lumbar spine r = -0.78, p < 0.001). Our results show that there is a gene-dose effect of the VBD deletion on circulating sclerostin and provide further in vivo evidence of the role of sclerostin in bone formation in humans. The small amounts of sclerostin produced by patients with VBD may explain their milder phenotype compared to that of patients with sclerosteosis, in whom serum sclerostin is undetectable.
Collapse
Affiliation(s)
- Antoon H van Lierop
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
90
|
Gregson CL, Hardcastle SA, Cooper C, Tobias JH. Friend or foe: high bone mineral density on routine bone density scanning, a review of causes and management. Rheumatology (Oxford) 2013; 52:968-85. [PMID: 23445662 DOI: 10.1093/rheumatology/ket007] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A finding of high BMD on routine DXA scanning is not infrequent and most commonly reflects degenerative disease. However, BMD increases may also arise secondary to a range of underlying disorders affecting the skeleton. Although low BMD increases fracture risk, the converse may not hold for high BMD, since elevated BMD may occur in conditions where fracture risk is increased, unaffected or reduced. Here we outline a classification for the causes of raised BMD, based on identification of focal or generalized BMD changes, and discuss an approach to guide appropriate investigation by clinicians after careful interpretation of DXA scan findings within the context of the clinical history. We will also review the mild skeletal dysplasia associated with the currently unexplained high bone mass phenotype and discuss recent advances in osteoporosis therapies arising from improved understanding of rare inherited high BMD disorders.
Collapse
Affiliation(s)
- Celia L Gregson
- Musculoskeletal Research Unit, School of Clinical Sciences, University of Bristol, Bristol, UK.
| | | | | | | |
Collapse
|
91
|
Gregson CL, Paggiosi MA, Crabtree N, Steel SA, McCloskey E, Duncan EL, Fan B, Shepherd JA, Fraser WD, Smith GD, Tobias JH. Analysis of body composition in individuals with high bone mass reveals a marked increase in fat mass in women but not men. J Clin Endocrinol Metab 2013; 98:818-28. [PMID: 23337721 PMCID: PMC3589712 DOI: 10.1210/jc.2012-3342] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
CONTEXT High bone mass (HBM), detected in 0.2% of dual-energy x-ray absorptiometry (DXA) scans, is characterized by raised body mass index, the basis for which is unclear. OBJECTIVE To investigate why body mass index is elevated in individuals with HBM, we characterized body composition and examined whether differences could be explained by bone phenotypes, eg, bone mass and/or bone turnover. DESIGN, SETTING, AND PARTICIPANTS We conducted a case-control study of 153 cases with unexplained HBM recruited from 4 UK centers by screening 219 088 DXA scans. A total of 138 first-degree relatives (of whom 51 had HBM) and 39 spouses were also recruited. Unaffected individuals served as controls. MAIN OUTCOME MEASURES We measured fat mass, by DXA, and bone turnover markers. RESULTS Among women, fat mass was inversely related to age in controls (P = .01), but not in HBM cases (P = .96) in whom mean fat mass was 8.9 [95% CI 4.7, 13.0] kg higher compared with controls (fully adjusted mean difference, P < .001). Increased fat mass in male HBM cases was less marked (gender interaction P = .03). Compared with controls, lean mass was also increased in female HBM cases (by 3.3 [1.2, 5.4] kg; P < .002); however, lean mass increases were less marked than fat mass increases, resulting in 4.5% lower percentage lean mass in HBM cases (P < .001). Osteocalcin was also lower in female HBM cases compared with controls (by 2.8 [0.1, 5.5] μg/L; P = .04). Differences in fat mass were fully attenuated after hip bone mineral density (BMD) adjustment (P = .52) but unchanged after adjustment for bone turnover (P < .001), whereas the greater hip BMD in female HBM cases was minimally attenuated by fat mass adjustment (P < .001). CONCLUSIONS HBM is characterized by a marked increase in fat mass in females, statistically explained by their greater BMD, but not by markers of bone turnover.
Collapse
Affiliation(s)
- Celia L Gregson
- Musculoskeletal Research Unit, University of Bristol, Avon Orthopaedic Centre, Southmead Hospital, Bristol BS10 5NB, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Hardcastle SA, Gregson CL, Deere KC, Davey Smith G, Dieppe P, Tobias JH. High bone mass is associated with an increased prevalence of joint replacement: a case-control study. Rheumatology (Oxford) 2013; 52:1042-51. [PMID: 23362220 PMCID: PMC3651613 DOI: 10.1093/rheumatology/kes411] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Objective. Epidemiological studies have shown an association between OA and increased BMD. To explore the nature of this relationship, we examined whether the risk of OA is increased in individuals with high bone mass (HBM), in whom BMD is assumed to be elevated due to a primary genetic cause. Methods. A total of 335 115 DXA scans were screened to identify HBM index cases (defined by DXA scan as an L1 Z-score of ≥+3.2 and total hip Z-score ≥+1.2, or total hip Z-score ≥+3.2 and L1 Z-score ≥+1.2). In relatives, the definition of HBM was L1 Z-score plus total hip Z-score ≥+3.2. Controls comprised unaffected relatives and spouses. Clinical indicators of OA were determined by structured assessment. Analyses used logistic regression adjusting for age, gender, BMI and social deprivation. Results. A total of 353 HBM cases (mean age 61.7 years, 77% female) and 197 controls (mean age 54.1 years, 47% female) were included. Adjusted NSAID use was more prevalent in HBM cases versus controls [odds ratio (OR) 2.17 (95% CI 1.10, 4.28); P = 0.03]. The prevalence of joint replacement was higher in HBM cases (13.0%) than controls (4.1%), with an adjusted OR of 2.42 (95% CI 1.06, 5.56); P = 0.04. Adjusted prevalence of joint pain and knee crepitus did not differ between cases and controls. Conclusion. HBM is associated with increased prevalence of joint replacement surgery and NSAID use compared with unaffected controls.
Collapse
Affiliation(s)
- Sarah A Hardcastle
- Musculoskeletal Research Unit, School of Clinical Sciences, University of Bristol, Bristol, UK.
| | | | | | | | | | | |
Collapse
|
93
|
[Wnt pathway and sclerostin as new targets for assessment and treatment of osteoporosis]. Med Clin (Barc) 2012; 139:634-9. [PMID: 22613824 DOI: 10.1016/j.medcli.2012.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 02/27/2012] [Accepted: 03/01/2012] [Indexed: 11/20/2022]
Abstract
The increasing knowledge of bone biology has allowed the identification of new intracellular pathways involved in the regulation of remodelling and osteoblast activity. In this respect, the characterization of the Wnt pathway has been a breakthrough for its involvement and role in disorders of mineral metabolism. A better understanding of these signaling pathways may allow the development of new diagnostic markers and new drugs for metabolic bone disease, where despite extensive available therapies, unmet needs still persist. In this review, we make an approach to the discovery and functions of the Wnt pathway with a focus on bone effects. Next, we briefly review the main data about their endogenous antagonist, sclerostin, precisely where drug research is more advanced.
Collapse
|
94
|
Ardawi MSM, Rouzi AA, Al-Sibiani SA, Al-Senani NS, Qari MH, Mousa SA. High serum sclerostin predicts the occurrence of osteoporotic fractures in postmenopausal women: the Center of Excellence for Osteoporosis Research Study. J Bone Miner Res 2012; 27:2592-602. [PMID: 22836717 DOI: 10.1002/jbmr.1718] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 06/27/2012] [Accepted: 07/06/2012] [Indexed: 12/30/2022]
Abstract
Sclerostin regulates bone formation by inhibiting Wnt pathway signaling. Low circulating sclerostin levels cause high bone mass. We hypothesized that postmenopausal women with increased sclerostin levels have a greater risk for osteoporosis-related fractures. We examined the association between circulating sclerostin together with bone turnover markers and osteoporosis-related fracture risk in 707 postmenopausal women, in a population-based study with a mean follow-up period of 5.2 ± 1.3 years. Multivariate Cox proportional hazards regression models were used to analyze fracture risk, adjusted for age, body mass index, and other confounding risk factors. High sclerostin levels were strongly associated with increased fracture risk. After adjustment for age and other confounders, the relative fracture risk was more than sevenfold among postmenopausal women for each 1-SD increment increase in sclerostin level. Women in the highest quartile of sclerostin levels had about a 15-fold increase in fracture risk. Results were similar when we compared sclerostin at the 1-year visit to an average of two to three annual measurements. Fracture risk attributable to sclerostin levels was 56.6% in the highest quartile. Only high levels of bone resorption markers (plasma cross-linked C-terminal telopeptide of type 1 collagen [p-CTx], urinary CTx [u-CTx], and urinary N-telopeptide of type 1 collagen [u-NTx]) were predictive of osteoporosis-related fractures but at much lower hazard ratio (HR) values than that of serum sclerostin. Associations between sclerostin levels and fracture risk were independent of bone mineral density and other confounding risk factors. High sclerostin levels are a strong and independent risk factor for osteoporosis-related fractures among postmenopausal women. © 2012 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Mohammed-Salleh M Ardawi
- Center of Excellence for Osteoporosis Research, King Abdulaziz University, Jeddah, Saudi Arabia.
| | | | | | | | | | | |
Collapse
|
95
|
Ke HZ, Richards WG, Li X, Ominsky MS. Sclerostin and Dickkopf-1 as therapeutic targets in bone diseases. Endocr Rev 2012; 33:747-83. [PMID: 22723594 DOI: 10.1210/er.2011-1060] [Citation(s) in RCA: 295] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The processes of bone growth, modeling, and remodeling determine the structure, mass, and biomechanical properties of the skeleton. Dysregulated bone resorption or bone formation may lead to metabolic bone diseases. The Wnt pathway plays an important role in bone formation and regeneration, and expression of two Wnt pathway inhibitors, sclerostin and Dickkopf-1 (DKK1), appears to be associated with changes in bone mass. Inactivation of sclerostin leads to substantially increased bone mass in humans and in genetically manipulated animals. Studies in various animal models of bone disease have shown that inhibition of sclerostin using a monoclonal antibody (Scl-Ab) increases bone formation, density, and strength. Additional studies show that Scl-Ab improves bone healing in models of bone repair. Inhibition of DKK1 by monoclonal antibody (DKK1-Ab) stimulates bone formation in younger animals and to a lesser extent in adult animals and enhances fracture healing. Thus, sclerostin and DKK1 are emerging as the leading new targets for anabolic therapies to treat bone diseases such as osteoporosis and for bone repair. Clinical trials are ongoing to evaluate the effects of Scl-Ab and DKK1-Ab in humans for the treatment of bone loss and for bone repair.
Collapse
Affiliation(s)
- Hua Zhu Ke
- Metabolic Disorders Research, Amgen Inc., One Amgen Center Drive, MS 29-M-B, Thousand Oaks, California 91320, USA.
| | | | | | | |
Collapse
|
96
|
Gamie Z, Korres N, Leonidou A, Gray AC, Tsiridis E. Sclerostin monoclonal antibodies on bone metabolism and fracture healing. Expert Opin Investig Drugs 2012; 21:1523-34. [DOI: 10.1517/13543784.2012.713936] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
97
|
Holdsworth G, Slocombe P, Doyle C, Sweeney B, Veverka V, Le Riche K, Franklin RJ, Compson J, Brookings D, Turner J, Kennedy J, Garlish R, Shi J, Newnham L, McMillan D, Muzylak M, Carr MD, Henry AJ, Ceska T, Robinson MK. Characterization of the interaction of sclerostin with the low density lipoprotein receptor-related protein (LRP) family of Wnt co-receptors. J Biol Chem 2012; 287:26464-77. [PMID: 22696217 DOI: 10.1074/jbc.m112.350108] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
LRP5 and LRP6 are proteins predicted to contain four six-bladed β-propeller domains and both bind the bone-specific Wnt signaling antagonist sclerostin. Here, we report the crystal structure of the amino-terminal region of LRP6 and using NMR show that the ability of sclerostin to bind to this molecule is mediated by the central core of sclerostin and does not involve the amino- and carboxyl-terminal flexible arm regions. We show that this structured core region interacts with LRP5 and LRP6 via an NXI motif (found in the sequence PNAIG) within a flexible loop region (loop 2) within the central core region. This sequence is related closely to a previously identified motif in laminin that mediates its interaction with the β-propeller domain of nidogen. However, the NXI motif is not involved in the interaction of sclerostin with LRP4 (another β-propeller containing protein in the LRP family). A peptide derived from the loop 2 region of sclerostin blocked the interaction of sclerostin with LRP5/6 and also inhibited Wnt1 but not Wnt3A or Wnt9B signaling. This suggests that these Wnts interact with LRP6 in different ways.
Collapse
Affiliation(s)
- Gill Holdsworth
- Department of Biology, UCB Pharma, 216 Bath Road, Slough SL1 4EN, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Arasu A, Cawthon PM, Lui LY, Do TP, Arora PS, Cauley JA, Ensrud KE, Cummings SR. Serum sclerostin and risk of hip fracture in older Caucasian women. J Clin Endocrinol Metab 2012; 97:2027-32. [PMID: 22466341 PMCID: PMC3387417 DOI: 10.1210/jc.2011-3419] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Sclerostin, a protein secreted by osteocytes, inhibits bone formation. Individuals with genetic mutations that decrease the availability of sclerostin have very high bone mass. OBJECTIVE The aim of this study was to examine the hypothesis that elevated serum sclerostin levels are associated with increased risk of hip fracture in older women. DESIGN, SETTING, AND PARTICIPANTS This was a case-cohort study of a prospective, community-based cohort of 9704 women aged 65 yr or older. Sclerostin levels were measured in serum collected in 1989-1990 in 228 women with incident hip fractures and 227 women in a randomly selected sample; average follow-up time was 9.8 yr. RESULTS Serum sclerostin levels were correlated with total hip bone mineral density (BMD; r = 0.27, P < 0.001). The risk of hip fracture increased across quartiles of serum sclerostin (test for trend, P < 0.001) and was significantly elevated among those in the fourth quartile (hazard risk 3.4, 95% confidence interval 1.7-7.0) compared with women in the lowest quartile, after adjusting for age, body mass index, estrogen use, history of fracture since age 50 yr, and total hip BMD. When dividing the cohort into eight groups by sclerostin quartile and median hip BMD, women with lower total hip BMD in the highest sclerostin quartile had a 22.3-fold (95% confidence interval 5.8-86.3) increased risk of fracture compared with women with higher total hip BMD in the lowest sclerostin quartile. CONCLUSIONS We conclude that higher serum sclerostin levels are associated with a greater risk of hip fractures in older women. In addition, the risk of hip fracture is amplified when high sclerostin levels are combined with lower BMD.
Collapse
Affiliation(s)
- Aarthi Arasu
- Department of Medicine, University of California, San Francisco, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Abstract
Inactivating mutations of the SOST gene cause a reduction in sclerostin levels and are associated with high bone mass. The clinical phenotypes, sclerosteosis and van Buchem's disease, were described in 1950s. Much later, it was learned that both diseases are due to loss-of-function mutations in the SOST gene. As a regulator of an important osteoanabolic pathway, Wnt, inactivation of SOST leads to a stimulation of the pathway it regulates. The high bone mass in patients with either sclerosteosis or van Buchem's disease is associated with unusual skeletal strength; they do not fracture. Knowledge of this molecule and its actions led rather quickly to the development of anti-sclerostin antibodies that lead to marked increases in bone mass in both animals and human subjects. Blocking sclerostin action with anti-sclerostin antibodies is a promising new therapeutic approach to osteoanabolic therapy of osteoporosis.
Collapse
Affiliation(s)
- Aline G Costa
- Department of Medicine, Division of Endocrinology, Metabolic Bone Diseases Unit, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
100
|
Gregson CL, Steel SA, O'Rourke KP, Allan K, Ayuk J, Bhalla A, Clunie G, Crabtree N, Fogelman I, Goodby A, Langman CM, Linton S, Marriott E, McCloskey E, Moss KE, Palferman T, Panthakalam S, Poole KES, Stone MD, Turton J, Wallis D, Warburton S, Wass J, Duncan EL, Brown MA, Davey-Smith G, Tobias JH. 'Sink or swim': an evaluation of the clinical characteristics of individuals with high bone mass. Osteoporos Int 2012; 23:643-54. [PMID: 21455762 PMCID: PMC3261396 DOI: 10.1007/s00198-011-1603-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 01/31/2011] [Indexed: 01/31/2023]
Abstract
SUMMARY High bone mineral density on routine dual energy X-ray absorptiometry (DXA) may indicate an underlying skeletal dysplasia. Two hundred fifty-eight individuals with unexplained high bone mass (HBM), 236 relatives (41% with HBM) and 58 spouses were studied. Cases could not float, had mandible enlargement, extra bone, broad frames, larger shoe sizes and increased body mass index (BMI). HBM cases may harbour an underlying genetic disorder. INTRODUCTION High bone mineral density is a sporadic incidental finding on routine DXA scanning of apparently asymptomatic individuals. Such individuals may have an underlying skeletal dysplasia, as seen in LRP5 mutations. We aimed to characterize unexplained HBM and determine the potential for an underlying skeletal dysplasia. METHODS Two hundred fifty-eight individuals with unexplained HBM (defined as L1 Z-score ≥ +3.2 plus total hip Z-score ≥ +1.2, or total hip Z-score ≥ +3.2) were recruited from 15 UK centres, by screening 335,115 DXA scans. Unexplained HBM affected 0.181% of DXA scans. Next 236 relatives were recruited of whom 94 (41%) had HBM (defined as L1 Z-score + total hip Z-score ≥ +3.2). Fifty-eight spouses were also recruited together with the unaffected relatives as controls. Phenotypes of cases and controls, obtained from clinical assessment, were compared using random-effects linear and logistic regression models, clustered by family, adjusted for confounders, including age and sex. RESULTS Individuals with unexplained HBM had an excess of sinking when swimming (7.11 [3.65, 13.84], p < 0.001; adjusted odds ratio with 95% confidence interval shown), mandible enlargement (4.16 [2.34, 7.39], p < 0.001), extra bone at tendon/ligament insertions (2.07 [1.13, 3.78], p = 0.018) and broad frame (3.55 [2.12, 5.95], p < 0.001). HBM cases also had a larger shoe size (mean difference 0.4 [0.1, 0.7] UK sizes, p = 0.009) and increased BMI (mean difference 2.2 [1.3, 3.1] kg/m(2), p < 0.001). CONCLUSION Individuals with unexplained HBM have an excess of clinical characteristics associated with skeletal dysplasia and their relatives are commonly affected, suggesting many may harbour an underlying genetic disorder affecting bone mass.
Collapse
Affiliation(s)
- C L Gregson
- Musculoskeletal Research Unit, University of Bristol, Bristol, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|