51
|
Kanematsu T, Oue K, Okumura T, Harada K, Yamawaki Y, Asano S, Mizokami A, Irifune M, Hirata M. Phospholipase C-related catalytically inactive protein: A novel signaling molecule for modulating fat metabolism and energy expenditure. J Oral Biosci 2019; 61:65-72. [DOI: 10.1016/j.job.2019.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 11/25/2022]
|
52
|
Zeng L, Song M, Gu J, Xu Z, Xue B, Li Y, Cao Y. A Highly Stretchable, Tough, Fast Self-Healing Hydrogel Based on Peptide⁻Metal Ion Coordination. Biomimetics (Basel) 2019; 4:E36. [PMID: 31105221 PMCID: PMC6632049 DOI: 10.3390/biomimetics4020036] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/31/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023] Open
Abstract
Metal coordination bonds are widely used as the dynamic cross-linkers to construct self-healing hydrogels. However, it remains challenging to independently improve the toughness of metal coordinated hydrogels without affecting the stretchability and self-healing properties, as all these features are directly correlated with the dynamic properties of the same metal coordination bonds. In this work, using histidine-Zn2+ binding as an example, we show that the coordination number (the number of binding sites in each cross-linking ligand) is an important parameter for the mechanical strength of the hydrogels. By increasing the coordination number of the binding site, the mechanical strength of the hydrogels can be greatly improved without sacrificing the stretchability and self-healing properties. By adjusting the peptide and Zn2+ concentrations, the hydrogels can achieve a set of demanding mechanical features, including the Young's modulus of 7-123 kPa, fracture strain of 434-781%, toughness of 630-1350 kJ m-3, and self-healing time of ~1 h. We anticipate the engineered hydrogels can find broad applications in a variety of biomedical fields. Moreover, the concept of improving the mechanical strength of metal coordinated hydrogels by tuning the coordination number may inspire the design of other dynamically cross-linked hydrogels with further improved mechanical performance.
Collapse
Affiliation(s)
- Liang Zeng
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Mingming Song
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, China.
| | - Jie Gu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, China.
| | - Zhengyu Xu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, China.
| | - Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, China.
| | - Ying Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
53
|
Hor CHH, Tang BL. Beta-propeller protein-associated neurodegeneration (BPAN) as a genetically simple model of multifaceted neuropathology resulting from defects in autophagy. Rev Neurosci 2019; 30:261-277. [DOI: 10.1515/revneuro-2018-0045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/07/2018] [Indexed: 12/13/2022]
Abstract
AbstractAutophagy is an essential and conserved cellular homeostatic process. Defects in the core and accessory components of the autophagic machinery would most severely impact terminally differentiated cells, such as neurons. The neurodevelopmental/neurodegenerative disorder β-propeller protein-associated neurodegeneration (BPAN) resulted from heterozygous or hemizygous germline mutations/pathogenic variant of the X chromosome geneWDR45, encoding WD40 repeat protein interacting with phosphoinositides 4 (WIPI4). This most recently identified subtype of the spectrum of neurodegeneration with brain iron accumulation diseases is characterized by a biphasic mode of disease manifestation and progression. The first phase involves early-onset of epileptic seizures, global developmental delay, intellectual disability and autistic syndrome. Subsequently, Parkinsonism and dystonia, as well as dementia, emerge in a subacute manner in adolescence or early adulthood. BPAN disease phenotypes are thus complex and linked to a wide range of other neuropathological disorders. WIPI4/WDR45 has an essential role in autophagy, acting as a phosphatidylinositol 3-phosphate binding effector that participates in autophagosome biogenesis and size control. Here, we discuss recent updates on WIPI4’s mechanistic role in autophagy and link the neuropathological manifestations of BPAN’s biphasic infantile onset (epilepsy, autism) and adolescent onset (dystonic, Parkinsonism, dementia) phenotypes to neurological consequences of autophagy impairment that are now known or emerging in many other neurodevelopmental and neurodegenerative disorders. As monogenicWDR45mutations in BPAN result in a large spectrum of disease phenotypes that stem from autophagic dysfunctions, it could potentially serve as a simple and unique genetic model to investigate disease pathology and therapeutics for a wider range of neuropathological conditions with autophagy defects.
Collapse
|
54
|
Wu Z, Lu H, Yao J, Zhang X, Huang Y, Ma S, Zou K, Wei Y, Yang Z, Li J, Zhao J. GABARAP promotes bone marrow mesenchymal stem cells-based the osteoarthritis cartilage regeneration through the inhibition of PI3K/AKT/mTOR signaling pathway. J Cell Physiol 2019; 234:21014-21026. [PMID: 31020644 DOI: 10.1002/jcp.28705] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/02/2019] [Accepted: 04/10/2019] [Indexed: 12/16/2022]
Abstract
Osteoarthritis (OA) is a degenerative disease of the cartilage prevalent in the middle-aged and elderly demographic. Direct transplantation of bone marrow mesenchymal stem cells (BMSCs) or stem cell-derived chondrocytes into the damaged cartilage is a promising therapeutic strategy for OA, but is limited by the poor survival and in situ stability of the chondrocytes. Autophagy is a unique catabolic pathway conserved across eukaryotes that maintains cellular homeostasis, recycles damaged proteins and organelles, and promotes survival. The aim of this study was to determine the role of the proautophagic γ-aminobutyric acid receptor-associated protein (GABARAP) on the therapeutic effects of BMSCs-derived chondrocytes in a rat model of OA, and elucidate the underlying mechanisms. Anterior cruciate ligament transection (ACLT) was performed in Sprague-Dawley rats to simulate OA, and the animals were injected weekly with recombinant human His6-GABARAP protein, BMSCs-derived differentiated chondrocytes (DCs) or their combination directly into the knee cartilage. The regenerative effects of GABARAP and/or DCs were determined in term of International Cartilage Repair Society scores and cartilage thickness. The combination treatment of DCs and GABARAP significantly increased the levels of the ECM proteins Col II and SOX9, indicating formation of hyaline-like cartilage, and decreased chondrocyte apoptosis and inflammation. DCs + GABARAP treatment also upregulated the mediators of the autophagy pathway and suppressed the PI3K/AKT/mTOR pathway, indicating a mechanistic basis of its therapeutic action.
Collapse
Affiliation(s)
- Zhengyuan Wu
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Huiping Lu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jun Yao
- Department of Bone and Joint Surgery, The First Affliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaohan Zhang
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yimei Huang
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shiting Ma
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Kai Zou
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yan Wei
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhengyi Yang
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jia Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinmin Zhao
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
55
|
Hui KK, Takashima N, Watanabe A, Chater TE, Matsukawa H, Nekooki-Machida Y, Nilsson P, Endo R, Goda Y, Saido TC, Yoshikawa T, Tanaka M. GABARAPs dysfunction by autophagy deficiency in adolescent brain impairs GABA A receptor trafficking and social behavior. SCIENCE ADVANCES 2019; 5:eaau8237. [PMID: 30989111 PMCID: PMC6457945 DOI: 10.1126/sciadv.aau8237] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 02/20/2019] [Indexed: 05/02/2023]
Abstract
Dysfunctional mTOR signaling is associated with the pathogenesis of neurodevelopmental and neuropsychiatric disorders. However, it is unclear what molecular mechanisms and pathogenic mediators are involved and whether mTOR-regulated autophagy continues to be crucial beyond neurodevelopment. Here, we selectively deleted Atg7 in forebrain GABAergic interneurons in adolescent mice and unexpectedly found that these mice showed a set of behavioral deficits similar to Atg7 deletion in forebrain excitatory neurons. By unbiased quantitative proteomic analysis, we identified γ-aminobutyric acid receptor-associated protein-like 2 (GABARAPL2) to differentially form high-molecular weight species in autophagy-deficient brains. Further functional analyses revealed a novel pathogenic mechanism involving the p62-dependent sequestration of GABARAP family proteins, leading to the reduction of surface GABAA receptor levels. Our work demonstrates a novel physiological role for autophagy in regulating GABA signaling beyond postnatal neurodevelopment, providing a potential mechanism for the reduced inhibitory inputs observed in neurodevelopmental and neuropsychiatric disorders with mTOR hyperactivation.
Collapse
Affiliation(s)
- Kelvin K. Hui
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Noriko Takashima
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Akiko Watanabe
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Thomas E. Chater
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Hiroshi Matsukawa
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
- Laboratory for Behavioral Genetics, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Yoko Nekooki-Machida
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Per Nilsson
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge 141 57, Sweden
| | - Ryo Endo
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Yukiko Goda
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Motomasa Tanaka
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
- Corresponding author.
| |
Collapse
|
56
|
Modulation of inhibitory plasticity in basal ganglia output nuclei of patients with Parkinson's disease. Neurobiol Dis 2019; 124:46-56. [DOI: 10.1016/j.nbd.2018.10.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/17/2018] [Accepted: 10/31/2018] [Indexed: 01/07/2023] Open
|
57
|
Sumitomo A, Yukitake H, Hirai K, Horike K, Ueta K, Chung Y, Warabi E, Yanagawa T, Kitaoka S, Furuyashiki T, Narumiya S, Hirano T, Niwa M, Sibille E, Hikida T, Sakurai T, Ishizuka K, Sawa A, Tomoda T. Ulk2 controls cortical excitatory-inhibitory balance via autophagic regulation of p62 and GABAA receptor trafficking in pyramidal neurons. Hum Mol Genet 2019; 27:3165-3176. [PMID: 29893844 DOI: 10.1093/hmg/ddy219] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/04/2018] [Indexed: 01/21/2023] Open
Abstract
Autophagy plays an essential role in intracellular degradation and maintenance of cellular homeostasis in all cells, including neurons. Although a recent study reported a copy number variation of Ulk2, a gene essential for initiating autophagy, associated with a case of schizophrenia (SZ), it remains to be studied whether Ulk2 dysfunction could underlie the pathophysiology of the disease. Here we show that Ulk2 heterozygous (Ulk2+/-) mice have upregulated expression of sequestosome-1/p62, an autophagy-associated stress response protein, predominantly in pyramidal neurons of the prefrontal cortex (PFC), and exhibit behavioral deficits associated with the PFC functions, including attenuated sensorimotor gating and impaired cognition. Ulk2+/- neurons showed imbalanced excitatory-inhibitory neurotransmission, due in part to selective down-modulation of gamma-aminobutyric acid (GABA)A receptor surface expression in pyramidal neurons. Genetically reducing p62 gene dosage or suppressing p62 protein levels with an autophagy-inducing agent restored the GABAA receptor surface expression and rescued the behavioral deficits in Ulk2+/- mice. Moreover, expressing a short peptide that specifically interferes with the interaction of p62 and GABAA receptor-associated protein, a protein that regulates endocytic trafficking of GABAA receptors, also restored the GABAA receptor surface expression and rescued the behavioral deficits in Ulk2+/- mice. Thus, the current study reveals a novel mechanism linking deregulated autophagy to functional disturbances of the nervous system relevant to SZ, through regulation of GABAA receptor surface presentation in pyramidal neurons.
Collapse
Affiliation(s)
- Akiko Sumitomo
- Department of Research and Drug Discovery, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroshi Yukitake
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kazuko Hirai
- Department of Research and Drug Discovery, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kouta Horike
- Department of Research and Drug Discovery, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Keisho Ueta
- Department of Research and Drug Discovery, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Youjin Chung
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eiji Warabi
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Toru Yanagawa
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Shiho Kitaoka
- CREST Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Pharmacology, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Tomoyuki Furuyashiki
- CREST Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Pharmacology, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Shuh Narumiya
- CREST Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomoo Hirano
- Department of Biophysics, Kyoto University Graduate School of Science, Kyoto, Japan
| | - Minae Niwa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Etienne Sibille
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Takatoshi Hikida
- Department of Research and Drug Discovery, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takeshi Sakurai
- Department of Research and Drug Discovery, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Koko Ishizuka
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Toshifumi Tomoda
- Department of Research and Drug Discovery, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
58
|
Mele M, Costa RO, Duarte CB. Alterations in GABA A-Receptor Trafficking and Synaptic Dysfunction in Brain Disorders. Front Cell Neurosci 2019; 13:77. [PMID: 30899215 PMCID: PMC6416223 DOI: 10.3389/fncel.2019.00077] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/15/2019] [Indexed: 12/12/2022] Open
Abstract
GABAA receptors (GABAAR) are the major players in fast inhibitory neurotransmission in the central nervous system (CNS). Regulation of GABAAR trafficking and the control of their surface expression play important roles in the modulation of the strength of synaptic inhibition. Different pieces of evidence show that alterations in the surface distribution of GABAAR and dysregulation of their turnover impair the activity of inhibitory synapses. A diminished efficacy of inhibitory neurotransmission affects the excitatory/inhibitory balance and is a common feature of various disorders of the CNS characterized by an increased excitability of neuronal networks. The synaptic pool of GABAAR is mainly controlled through regulation of internalization, recycling and lateral diffusion of the receptors. Under physiological condition these mechanisms are finely coordinated to define the strength of GABAergic synapses. In this review article, we focus on the alteration in GABAAR trafficking with an impact on the function of inhibitory synapses in various disorders of the CNS. In particular we discuss how similar molecular mechanisms affecting the synaptic distribution of GABAAR and consequently the excitatory/inhibitory balance may be associated with a wide diversity of pathologies of the CNS, from psychiatric disorders to acute alterations leading to neuronal death. A better understanding of the cellular and molecular mechanisms that contribute to the impairment of GABAergic neurotransmission in these disorders, in particular the alterations in GABAAR trafficking and surface distribution, may lead to the identification of new pharmacological targets and to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Miranda Mele
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Rui O Costa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Carlos B Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
59
|
Li K, Chen HS, Li D, Li HH, Wang J, Jia L, Wu PF, Long LH, Hu ZL, Chen JG, Wang F. SAR405, a Highly Specific VPS34 Inhibitor, Disrupts Auditory Fear Memory Consolidation of Mice via Facilitation of Inhibitory Neurotransmission in Basolateral Amygdala. Biol Psychiatry 2019; 85:214-225. [PMID: 30253884 DOI: 10.1016/j.biopsych.2018.07.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/18/2018] [Accepted: 07/29/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Autophagy has been demonstrated to play an important role in memory deficits as well as the degradation of neurotransmitter receptors. SAR405 is a newly discovered inhibitor that can specifically inhibit vacuolar sorting protein 34 and prevent autophagosome biogenesis. However, the effects of SAR405 on memory processes remain largely unknown. METHODS Western blotting, immunofluorescence, and transmission electron microscopy were used to assess the level of autophagy after fear conditioning and SAR405 treatment. Behavioral tests, biotinylation assay, electrophysiology, and co-immunoprecipitation were used to unravel the mechanisms of SAR405 in memory consolidation. RESULTS SAR405 infusion into the basolateral amygdala impaired long-term memory through autophagy inhibition. Furthermore, the trafficking of gamma-aminobutyric acid type A receptors (GABAARs) following fear conditioning was disrupted by SAR405, and the decreased frequency and amplitude of miniature inhibitory postsynaptic currents induced by fear conditioning were also reversed by SAR405, suggesting that SAR405 disrupted memory consolidation through blockade of the downregulated inhibitory neurotransmission in basolateral amygdala. GABAAR-associated protein (GABARAP) and its interaction with GABAAR γ2 subunit were found to be upregulated after fear conditioning, and SAR405 could suppress this increased interaction. Moreover, disruption of the GABARAP-GABAAR binding by a trans-activating transcriptional activator-GABARAP inhibitory peptide blocked the decrease in surface expression of GABAARs and attenuated long-term memory. CONCLUSIONS The present study suggests that SAR405 can prevent the memory consolidation via intervening autophagy and GABAAR trafficking and has a potential therapeutic value for disorders characterized by exaggerated fear memories, such as posttraumatic stress disorder.
Collapse
Affiliation(s)
- Kuan Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Sheng Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hou-Hong Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Jia
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng-Fei Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Laboratory of Neuropsychiatric Diseases, the Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Li-Hong Long
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Laboratory of Neuropsychiatric Diseases, the Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Neurological Diseases, Ministry of Education of China, Wuhan, China; Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Zhuang-Li Hu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Laboratory of Neuropsychiatric Diseases, the Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Laboratory of Neuropsychiatric Diseases, the Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Neurological Diseases, Ministry of Education of China, Wuhan, China; Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China; Collaborative Innovation Center for Brain Science, Wuhan, China.
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Laboratory of Neuropsychiatric Diseases, the Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Neurological Diseases, Ministry of Education of China, Wuhan, China; Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China; Collaborative Innovation Center for Brain Science, Wuhan, China.
| |
Collapse
|
60
|
The highly GABARAP specific rat monoclonal antibody 8H5 visualizes GABARAP in immunofluorescence imaging at endogenous levels. Sci Rep 2019; 9:526. [PMID: 30679523 PMCID: PMC6346085 DOI: 10.1038/s41598-018-36717-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 11/25/2018] [Indexed: 12/16/2022] Open
Abstract
The determination of unique functions of GABARAP (gamma-aminobutyric acid type A receptor-associated protein), a member of the highly conserved protein family of mammalian autophagy-related 8 protein (mATG8), within diverse cellular processes remains challenging. Because available anti-GABARAP antibodies perform inadequate, especially within various microscopy-based applications, we aimed to develop an antibody that targets GABARAP but not its close orthologs. Following the latest recommendations for antibody validation including fluorescence protein tagging, genetic and orthogonal strategies, we characterized the resulting anti-GABARAP (8H5) antibody during confocal immunofluorescence imaging in-depth. We compared the antibody staining pattern with that obtained for fluorescence protein tagged GABARAP, GABARAPL1 or GABARAPL2 each ectopically expressed in GABARAP knockout cells. Furthermore, we imaged cells expressing all mATG8 family members at endogenous levels and checked GABARAP knockout cells for unspecific staining under fed or macroautophagy-inducing conditions. Finally, we simultaneously stained cells for endogenous GABARAP and the common autophagosomal marker LC3B. Summarized, the presented antibody shows high specificity for GABARAP without cross-reactivity to other mATG8 family members in immunofluorescence imaging making it a valuable tool for the identification of unique GABARAP functions.
Collapse
|
61
|
Shi L, Ding P, Wang Y, Zhang Y, Ossipov D, Hilborn J. Self-Healing Polymeric Hydrogel Formed by Metal-Ligand Coordination Assembly: Design, Fabrication, and Biomedical Applications. Macromol Rapid Commun 2019; 40:e1800837. [PMID: 30672628 DOI: 10.1002/marc.201800837] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/04/2019] [Indexed: 01/28/2023]
Abstract
Self-healing hydrogels based on metal-ligand coordination chemistry provide new and exciting properties that improve injectability, rheological behaviors, and even biological functionalities. The inherent reversibility of coordination bonds improves on the covalent cross-linking employed previously, allowing for the preparation of completely self-healing hydrogels. In this article, recent advances in the development of this class of hydrogels are summarized and their applications in biology and medicine are discussed. Various chelating ligands such as bisphosphonate, catechol, histidine, thiolate, carboxylate, pyridines (including bipyridine and terpyridine), and iminodiacetate conjugated onto polymeric backbones, as well as the chelated metal ions and metal ions containing inorganic particles, which are used to form dynamic networks, are highlighted. This article provides general ideas and methods for the design of self-healing hydrogel biomaterials based on coordination chemistry.
Collapse
Affiliation(s)
- Liyang Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China.,Division of Polymer Chemistry, Department of Chemistry-Ångström, Uppsala University, Uppsala, 75121, Sweden
| | - Pinghui Ding
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, China
| | - Yuzhi Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yu Zhang
- College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Dmitri Ossipov
- Department of Biosciences and Nutrition, Karolinska Institute, Häsovägen 7c,, Huddinge, 14157, Sweden
| | - Jöns Hilborn
- Division of Polymer Chemistry, Department of Chemistry-Ångström, Uppsala University, Uppsala, 75121, Sweden
| |
Collapse
|
62
|
Möckel C, Kubiak J, Schillinger O, Kühnemuth R, Della Corte D, Schröder GF, Willbold D, Strodel B, Seidel CAM, Neudecker P. Integrated NMR, Fluorescence, and Molecular Dynamics Benchmark Study of Protein Mechanics and Hydrodynamics. J Phys Chem B 2018; 123:1453-1480. [DOI: 10.1021/acs.jpcb.8b08903] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Christina Möckel
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- Institute of Complex Systems (ICS-6: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Jakub Kubiak
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Oliver Schillinger
- Institute of Complex Systems (ICS-6: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
- Institut für Theoretische Chemie und Computerchemie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Ralf Kühnemuth
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Dennis Della Corte
- Institute of Complex Systems (ICS-6: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Gunnar F. Schröder
- Institute of Complex Systems (ICS-6: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
- Physics Department, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Dieter Willbold
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- Institute of Complex Systems (ICS-6: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Birgit Strodel
- Institute of Complex Systems (ICS-6: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
- Institut für Theoretische Chemie und Computerchemie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Claus A. M. Seidel
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Philipp Neudecker
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- Institute of Complex Systems (ICS-6: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
63
|
Fan J, Li D, Chen HS, Huang JG, Xu JF, Zhu WW, Chen JG, Wang F. Metformin produces anxiolytic-like effects in rats by facilitating GABA A receptor trafficking to membrane. Br J Pharmacol 2018; 176:297-316. [PMID: 30318707 DOI: 10.1111/bph.14519] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 09/15/2018] [Accepted: 09/19/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE Altered function or expression of GABAA receptors contributes to anxiety disorders. Benzodiazepines are widely prescribed for the treatment of anxiety. However, the long-term use of benzodiazepines increases the risk of developing drug dependence and tolerance. Thus, it is urgent to explore new therapeutic approaches. Metformin is widely used to treat Type 2 diabetes and other metabolic syndromes. However, the role of metformin in psychiatric disorders, especially anxiety, remains largely unknown. EXPERIMENTAL APPROACH We examined the effects of metformin on anxiety-like behaviour of rats in open field test and elevated plus maze test. We also observed the effect of metformin (10 μM, in vitro; 100 mg·kg-1 , in vivo) on the trafficking of GABAA receptors, as mechanisms underlying the anxiolytic effects of metformin. KEY RESULTS Metformin (100 mg·kg-1 , i.p. 30 min) displayed a robust and rapid anxiolytic effect, without tolerance. Metformin up-regulated the surface expression of GABAA receptors and increased miniature inhibitory postsynaptic currents (mIPSCs). AMP-activated protein kinase (AMPK) activated by metformin-induced stimulation of forkhead box O3a (FoxO3a) transcriptional activity, followed by increased expression of GABAA receptor-associated protein (GABARAP) and its binding to GABAA receptors finally resulted in the membrane insertion of GABAA receptors. CONCLUSIONS AND IMPLICATIONS Metformin increased mIPSCs by up-regulating the membrane insertion of GABAA receptors, via a pathway involving AMPK, FoxO3a, and the GABAA receptor-associated protein. Thus metformin has a potential new use in the treatment of anxiety disorders.
Collapse
Affiliation(s)
- Jun Fan
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Sheng Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Geng Huang
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun-Feng Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen-Wen Zhu
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China.,Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation (HUST), Wuhan, China.,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China.,The Collaborative-Innovation Center for Brain Science, Wuhan, China
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China.,Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation (HUST), Wuhan, China.,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China.,The Collaborative-Innovation Center for Brain Science, Wuhan, China
| |
Collapse
|
64
|
Yeh CN, Chen MH, Chang YC, Wu RC, Tsao LC, Wang SY, Cheng CT, Chiang KC, Chen TW, Hsiao M, Weng WH. Over-expression of TNNI3K is associated with early-stage carcinogenesis of cholangiocarcinoma. Mol Carcinog 2018; 58:270-278. [PMID: 30334579 DOI: 10.1002/mc.22925] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/05/2018] [Indexed: 01/10/2023]
Abstract
Cholangiocarcinoma (CCA) is a devastating disease with very poor prognosis due to late diagnosis and resistance to traditional chemotherapies and radiotherapies. Herein, thioacetamide (TAA)-induced rat CCA model and CGCCA cell line were used; we aim to study the cytogenetic features during tumoral development of CCA and uncover the mystery regarding carcinogenesis of CCA. The Array comparative genomic hybridization analysis, in silico method, gene knockdown, Western blot, cell count proliferation assay, clonogenecity assay, and IHC staining were applied in this study. Array comparative genomic hybridization analysis was performed on all different TAA-induced phases of rat tissues to reveal the certain pattern, +2q45, +Xq22, -12p12, have been identified for the tumor early stage, where involve the gene TNNI3K. In addition, 16 genes and 3 loci were associated with rapid tumor progression; JAK-STAT signaling pathway was highly correlated to late stage of CCA. In silico database was used to observe TNNI3K was highly express at tumor part compared with normal adjacent tissue in CCA patients from TCGA dataset. Furthermore, the growth of TNNI3K-knockdown SNU308 and HuCCT1 cells decreased when compared with cells transfected with an empty vector cell demonstrated by proliferation and colonogenecity assay. Besides, over expression of TNNI3K was especially confirmed on human CCA tumors and compared with the intrahepatic duct stone bile duct tissues and normal bile duct tissues (P < 0.001). Our findings might uncover the mystery regarding carcinogenesis of CCA, and provide the potential genetic mechanism to the clinicians some ideas for the patients' treatment.
Collapse
Affiliation(s)
- Chun-Nan Yeh
- Department of Surgery, Liver Research Center, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Huang Chen
- Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Chan Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Ren-Chin Wu
- Department of Pathology, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Lee-Cheng Tsao
- Department of Chemical Engineering and Biotechnology and Graduate Institute of Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Shang-Yu Wang
- Department of Surgery, Liver Research Center, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Tung Cheng
- Department of Surgery, Liver Research Center, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan.,Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Kun-Chun Chiang
- Department of Surgery, Chang Gung Memorial Hospital, Kee-lung, Taiwan
| | - Tsung-Wen Chen
- Department of Surgery, Liver Research Center, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Wen-Hui Weng
- Department of Chemical Engineering and Biotechnology and Graduate Institute of Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| |
Collapse
|
65
|
Irwin BWJ, Vukovič S, Payne MC, ElGamacy M, Chau PL. Prediction of GABARAP interaction with the GABA type A receptor. Proteins 2018; 86:1251-1264. [PMID: 30218455 PMCID: PMC6492159 DOI: 10.1002/prot.25589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/17/2018] [Accepted: 08/05/2018] [Indexed: 01/05/2023]
Abstract
We have performed docking simulations on GABARAP interacting with the GABA type A receptor using SwarmDock. We have also used a novel method to study hydration sites on the surface of these two proteins; this method identifies regions around proteins where desolvation is relatively easy, and these are possible locations where proteins can bind each other. There is a high degree of consistency between the predictions of these two methods. Moreover, we have also identified binding sites on GABARAP for other proteins, and listed possible binding sites for as yet unknown proteins on both GABARAP and the GABA type A receptor intracellular domain.
Collapse
Affiliation(s)
- B W J Irwin
- Department of Physics, Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Siniša Vukovič
- Department of Physics, Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - M C Payne
- Department of Physics, Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Mohammad ElGamacy
- Abteilung Proteinevolution, Max-Planck-Institut für Entwicklungsbiologie, Tübingen, Germany
| | - P-L Chau
- Bioinformatique Structurale, CNRS URA 3528, Paris, France
| |
Collapse
|
66
|
Lorenz-Guertin JM, Bambino MJ, Jacob TC. γ2 GABA AR Trafficking and the Consequences of Human Genetic Variation. Front Cell Neurosci 2018; 12:265. [PMID: 30190672 PMCID: PMC6116786 DOI: 10.3389/fncel.2018.00265] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/02/2018] [Indexed: 11/13/2022] Open
Abstract
GABA type A receptors (GABAARs) mediate the majority of fast inhibitory neurotransmission in the central nervous system (CNS). Most prevalent as heteropentamers composed of two α, two β, and a γ2 subunit, these ligand-gated ionotropic chloride channels are capable of extensive genetic diversity (α1-6, β1-3, γ1-3, δ, 𝜀, 𝜃, π, ρ1-3). Part of this selective GABAAR assembly arises from the critical role for γ2 in maintaining synaptic receptor localization and function. Accordingly, mutations in this subunit account for over half of the known epilepsy-associated genetic anomalies identified in GABAARs. Fundamental structure-function studies and cellular pathology investigations have revealed dynamic GABAAR trafficking and synaptic scaffolding as critical regulators of GABAergic inhibition. Here, we introduce in vitro and in vivo findings regarding the specific role of the γ2 subunit in receptor trafficking. We then examine γ2 subunit human genetic variation and assess disease related phenotypes and the potential role of altered GABAAR trafficking. Finally, we discuss new-age imaging techniques and their potential to provide novel insight into critical regulatory mechanisms of GABAAR function.
Collapse
Affiliation(s)
- Joshua M Lorenz-Guertin
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Matthew J Bambino
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Tija C Jacob
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
67
|
Mohan J, Wollert T. Human ubiquitin-like proteins as central coordinators in autophagy. Interface Focus 2018; 8:20180025. [PMID: 30443326 DOI: 10.1098/rsfs.2018.0025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2018] [Indexed: 02/07/2023] Open
Abstract
Autophagy is one of the most versatile recycling systems of eukaryotic cells. It degrades diverse cytoplasmic components such as organelles, protein aggregates, ribosomes and multi-enzyme complexes. Not surprisingly, any failure of autophagy or reduced activity of the pathway contributes to the onset of various pathologies, including neurodegeneration, cancer and metabolic disorders such as diabetes or immune diseases. Furthermore, autophagy contributes to the innate immune response and combats bacterial or viral pathogens. The hallmark of macroautophagy is the formation of a membrane sack that sequesters cytoplasmic cargo and delivers it to lysosomes for degradation. More than 40 autophagy-related (ATG) proteins have so far been identified. A unique protein-conjugation system represents one of the core components of this highly elaborate machinery. It conjugates six homologous ATG8 family proteins to the autophagic membrane. In this review, we summarize the current knowledge regarding the various functions of ATG8 proteins in autophagy and briefly discuss how physical approaches and in vitro reconstitution contributed in deciphering their function.
Collapse
Affiliation(s)
- Jagan Mohan
- Membrane Biochemistry and Transport, Institute Pasteur, 28 rue du Dr Roux, 75015 Paris, France
| | - Thomas Wollert
- Membrane Biochemistry and Transport, Institute Pasteur, 28 rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
68
|
Napierala JS, Li Y, Lu Y, Lin K, Hauser LA, Lynch DR, Napierala M. Comprehensive analysis of gene expression patterns in Friedreich's ataxia fibroblasts by RNA sequencing reveals altered levels of protein synthesis factors and solute carriers. Dis Model Mech 2018; 10:1353-1369. [PMID: 29125828 PMCID: PMC5719256 DOI: 10.1242/dmm.030536] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/21/2017] [Indexed: 12/30/2022] Open
Abstract
Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disease usually caused by large homozygous expansions of GAA repeat sequences in intron 1 of the frataxin (FXN) gene. FRDA patients homozygous for GAA expansions have low FXN mRNA and protein levels when compared with heterozygous carriers or healthy controls. Frataxin is a mitochondrial protein involved in iron–sulfur cluster synthesis, and many FRDA phenotypes result from deficiencies in cellular metabolism due to lowered expression of FXN. Presently, there is no effective treatment for FRDA, and biomarkers to measure therapeutic trial outcomes and/or to gauge disease progression are lacking. Peripheral tissues, including blood cells, buccal cells and skin fibroblasts, can readily be isolated from FRDA patients and used to define molecular hallmarks of disease pathogenesis. For instance, FXN mRNA and protein levels as well as FXN GAA-repeat tract lengths are routinely determined using all of these cell types. However, because these tissues are not directly involved in disease pathogenesis, their relevance as models of the molecular aspects of the disease is yet to be decided. Herein, we conducted unbiased RNA sequencing to profile the transcriptomes of fibroblast cell lines derived from 18 FRDA patients and 17 unaffected control individuals. Bioinformatic analyses revealed significantly upregulated expression of genes encoding plasma membrane solute carrier proteins in FRDA fibroblasts. Conversely, the expression of genes encoding accessory factors and enzymes involved in cytoplasmic and mitochondrial protein synthesis was consistently decreased in FRDA fibroblasts. Finally, comparison of genes differentially expressed in FRDA fibroblasts to three previously published gene expression signatures defined for FRDA blood cells showed substantial overlap between the independent datasets, including correspondingly deficient expression of antioxidant defense genes. Together, these results indicate that gene expression profiling of cells derived from peripheral tissues can, in fact, consistently reveal novel molecular pathways of the disease. When performed on statistically meaningful sample group sizes, unbiased global profiling analyses utilizing peripheral tissues are critical for the discovery and validation of FRDA disease biomarkers. Summary: Transcriptome profiling of Friedreich's ataxia fibroblasts by RNA sequencing reveals that this peripheral tissue can be used as a disease model for gene expression biomarker discovery.
Collapse
Affiliation(s)
- Jill Sergesketter Napierala
- University of Alabama at Birmingham, Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, 1825 University Blvd., Birmingham, Alabama 35294, USA
| | - Yanjie Li
- University of Alabama at Birmingham, Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, 1825 University Blvd., Birmingham, Alabama 35294, USA
| | - Yue Lu
- University of Texas MD Anderson Cancer Center, Department of Molecular Carcinogenesis, Center for Cancer Epigenetics, Science Park, Smithville, Texas 78957, USA
| | - Kevin Lin
- University of Texas MD Anderson Cancer Center, Department of Molecular Carcinogenesis, Center for Cancer Epigenetics, Science Park, Smithville, Texas 78957, USA
| | - Lauren A Hauser
- Departments of Neurology and Pediatrics, Children's Hospital of Philadelphia, Abramson Research Center Room 502, Philadelphia, PA 19104, USA
| | - David R Lynch
- Departments of Neurology and Pediatrics, Children's Hospital of Philadelphia, Abramson Research Center Room 502, Philadelphia, PA 19104, USA
| | - Marek Napierala
- University of Alabama at Birmingham, Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, 1825 University Blvd., Birmingham, Alabama 35294, USA .,Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland
| |
Collapse
|
69
|
Hernando N. NaPi-IIa interacting partners and their (un)known functional roles. Pflugers Arch 2018; 471:67-82. [PMID: 30022249 DOI: 10.1007/s00424-018-2176-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 06/26/2018] [Indexed: 01/14/2023]
Abstract
The sorting and stabilization of proteins at specific subcellular domains depend upon the formation of networks build up by specific protein-protein interactions. In addition, protein networks also ensure the specificity of many regulatory processes by bringing together regulatory molecules with their targets. Whereas the success on the identification of protein-protein interactions is (up to a point) technology-driven, the assignment of functional roles to specific partners remains a major challenge. This review summarizes the work that led to the identification of partners of the Na+/phosphate cotransporter NaPi-IIa as well as the effects of the interactions in the expression and/or regulation of the cotransporter.
Collapse
Affiliation(s)
- Nati Hernando
- Institute of Physiology, University Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
70
|
Chen Y, Sun HQ, Eichorst JP, Albanesi JP, Yin H, Mueller JD. Comobility of GABARAP and Phosphatidylinositol 4-Kinase 2A on Cytoplasmic Vesicles. Biochemistry 2018; 57:3556-3559. [PMID: 29792687 DOI: 10.1021/acs.biochem.8b00224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We previously reported that recruitment of the type IIA phosphatidylinositol 4-kinase (PI4K2A) to autophagosomes by GABARAP, a member of the Atg8 family of autophagy-related proteins, is important for autophagosome-lysosome fusion. Because both PI4K2A and GABARAP have also been implicated in the intracellular trafficking of plasma membrane receptors in the secretory/endocytic pathway, we characterized their interaction in cells under nonautophagic conditions. Fluorescence fluctuation spectroscopy measurements revealed that GABARAP exists predominantly as a cytosolic monomer in live cells, but is recruited to small cytoplasmic vesicles upon overexpression of PI4K2A. C-Terminal lipidation of GABARAP, which is essential for its autophagic activities, is not necessary for its recruitment to these PI4K2A-containing transport vesicles. However, a GABARAP truncation mutant lacking C-terminal residues 103-117 fails to bind to PI4K2A, is not recruited to cytoplasmic vesicles, and does not codistribute with PI4K2A on subcellular organelles. These observations suggest that the PI4K2A-GABARAP interaction plays a role in membrane trafficking both under autophagic and nonautophagic conditions.
Collapse
Affiliation(s)
- Yan Chen
- School of Physics and Astronomy , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | | | - John P Eichorst
- School of Physics and Astronomy , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | | | | | - Joachim D Mueller
- School of Physics and Astronomy , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
71
|
Ismail OZ, Sriranganathan S, Zhang X, Bonventre JV, Zervos AS, Gunaratnam L. Tctex-1, a novel interaction partner of Kidney Injury Molecule-1, is required for efferocytosis. J Cell Physiol 2018; 233:6877-6895. [PMID: 29693725 DOI: 10.1002/jcp.26578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 03/01/2018] [Indexed: 02/04/2023]
Abstract
Kidney injury molecule-1 (KIM-1) is a phosphatidylserine receptor that is specifically upregulated on proximal tubular epithelial cells (PTECs) during acute kidney injury and mitigates tissue damage by mediating efferocytosis (the phagocytic clearance of apoptotic cells). The signaling molecules that regulate efferocytosis in TECs are not well understood. Using a yeast two-hybrid screen, we identified the dynein light chain protein, Tctex-1, as a novel KIM-1-interacting protein. Immunoprecipitation and confocal imaging studies suggested that Tctex-1 associates with KIM-1 in cells at baseline, but, dissociates from KIM-1 within 90 min of initiation of efferocytosis. Interfering with actin or microtubule polymerization interestingly prevented the dissociation of KIM-1 from Tctex-1. Moreover, the subcellular localization of Tctex-1 changed from being microtubule-associated to mainly cytosolic upon expression of KIM-1. Short hairpin RNA-mediated silencing of endogenous Tctex-1 in cells significantly inhibited efferocytosis to levels comparable to that of knock down of KIM-1 in the same cells. Importantly, Tctex-1 was not involved in the delivery of KIM-1 to the cell-surface. On the other hand, KIM-1 expression significantly inhibited the phosphorylation of Tctex-1 at threonine 94 (T94), a post-translational modification which is known to disrupt the binding of Tctex-1 to dynein on microtubules. In keeping with this, we found that KIM-1 bound less efficiently to the phosphomimic (T94E) mutant of Tctex-1 compared to wild type Tctex-1. Surprisingly, expression of Tctex-1 T94E did not influence KIM-1-mediated efferocytosis. Our studies uncover a previously unknown role for Tctex-1 in KIM-1-dependent efferocytosis in epithelial cells.
Collapse
Affiliation(s)
- Ola Z Ismail
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Lawson Health Research Institute, London, Ontario, Canada
| | - Saranga Sriranganathan
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Lawson Health Research Institute, London, Ontario, Canada
| | - Xizhong Zhang
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Lawson Health Research Institute, London, Ontario, Canada
| | - Joseph V Bonventre
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Antonis S Zervos
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida
| | - Lakshman Gunaratnam
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Lawson Health Research Institute, London, Ontario, Canada.,Division of Nephrology, Department of Medicine, Schulich School of Medicine and Dentistry, London, Western University, Ontario, Canada
| |
Collapse
|
72
|
Vanparijs N, Nuhn L, De Geest BG. Transiently thermoresponsive polymers and their applications in biomedicine. Chem Soc Rev 2018; 46:1193-1239. [PMID: 28165097 DOI: 10.1039/c6cs00748a] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The focus of this review is on the class of transiently thermoresponsive polymers. These polymers are thermoresponsive, but gradually lose this property upon chemical transformation - often a hydrolysis reaction - in the polymer side chain or backbone. An overview of the different approaches used for the design of these polymers along with their physicochemical properties is given. Their amphiphilic properties and degradability into fully soluble compounds make this class of responsive polymers attractive for drug delivery and tissue engineering applications. Examples of these are also provided in this review.
Collapse
Affiliation(s)
- Nane Vanparijs
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Lutz Nuhn
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Bruno G De Geest
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
73
|
Lorenz-Guertin JM, Jacob TC. GABA type a receptor trafficking and the architecture of synaptic inhibition. Dev Neurobiol 2018; 78:238-270. [PMID: 28901728 PMCID: PMC6589839 DOI: 10.1002/dneu.22536] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 12/21/2022]
Abstract
Ubiquitous expression of GABA type A receptors (GABAA R) in the central nervous system establishes their central role in coordinating most aspects of neural function and development. Dysregulation of GABAergic neurotransmission manifests in a number of human health disorders and conditions that in certain cases can be alleviated by drugs targeting these receptors. Precise changes in the quantity or activity of GABAA Rs localized at the cell surface and at GABAergic postsynaptic sites directly impact the strength of inhibition. The molecular mechanisms constituting receptor trafficking to and from these compartments therefore dictate the efficacy of GABAA R function. Here we review the current understanding of how GABAA Rs traffic through biogenesis, plasma membrane transport, and degradation. Emphasis is placed on discussing novel GABAergic synaptic proteins, receptor and scaffolding post-translational modifications, activity-dependent changes in GABAA R confinement, and neuropeptide and neurosteroid mediated changes. We further highlight modern techniques currently advancing the knowledge of GABAA R trafficking and clinically relevant neurodevelopmental diseases connected to GABAergic dysfunction. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 238-270, 2018.
Collapse
Affiliation(s)
- Joshua M Lorenz-Guertin
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| | - Tija C Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| |
Collapse
|
74
|
Dutta P, Dargahi L, O'Connell KE, Bolia A, Ozkan B, Sailer AW, Dev KK. A novel modelling mechanism of PAEL receptor and GABARAPL2 interaction involved in Parkinson's disease. Neurosci Lett 2018; 673:12-18. [PMID: 29496607 DOI: 10.1016/j.neulet.2018.02.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/30/2018] [Accepted: 02/25/2018] [Indexed: 11/18/2022]
Abstract
Parkin associated endothelin like receptor (PAELR) is G-protein coupled and ubiquitinated by parkin, promoting its degradation. In autosomal recessive Parkinson's disease, mutations in parkin lead to PAELR aggregation in the endoplasmic reticulum (ER), ER stress, neurotoxicity and cell death. We have identified previously that the protein kinase C interacting protein (PICK1) interacts with and regulates the expression and cell toxicity of PAELR. Here, we experimentally identify and provide in-silico modelling of a novel interaction between PAELR and GABARAPL2 (γ-aminobutyrate type A receptor associated protein like 2), which is an autophagosome-specific Ub-like protein implicated in vesicle trafficking and autophagy. We show that the family of GABARAPs interact with the carboxy terminal (ct) of PAELR and find the cysteine rich region (-CCCCCC-EEC) of ct-PAELR interacts with the GABAA binding site of GABARAPL2. This interaction is modelled by in-slico analysis and confirmed using affinity chromatography, showing Myc-tagged GABARAPL2 is retained by a GST fusion of the ct-PAELR. We also demonstrate that transient transfection of GABARAPL2 in HEK293 cells reduces PAELR expression. This study supports the idea that protein levels of PAELR are likely regulated by a multitude of proteins including parkin, PICK1 and GABARAPL2 via mechanisms that include ubiquitination, proteasomal degradagtion and autophagy.
Collapse
Affiliation(s)
- Priyanka Dutta
- Drug Development, School of Medicine, Trinity College Dublin, Ireland
| | - Leila Dargahi
- Drug Development, School of Medicine, Trinity College Dublin, Ireland
| | - Kara E O'Connell
- Drug Development, School of Medicine, Trinity College Dublin, Ireland
| | - Ashini Bolia
- Department of Physics, Center for Biological Physics, Arizona State University, Tempe, AZ, USA
| | - Banu Ozkan
- Department of Physics, Center for Biological Physics, Arizona State University, Tempe, AZ, USA
| | - Andreas W Sailer
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Kumlesh K Dev
- Drug Development, School of Medicine, Trinity College Dublin, Ireland.
| |
Collapse
|
75
|
ATG8 Is Essential Specifically for an Autophagy-Independent Function in Apicoplast Biogenesis in Blood-Stage Malaria Parasites. mBio 2018; 9:mBio.02021-17. [PMID: 29295911 PMCID: PMC5750400 DOI: 10.1128/mbio.02021-17] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Plasmodium parasites and related pathogens contain an essential nonphotosynthetic plastid organelle, the apicoplast, derived from secondary endosymbiosis. Intriguingly, a highly conserved eukaryotic protein, autophagy-related protein 8 (ATG8), has an autophagy-independent function in the apicoplast. Little is known about the novel apicoplast function of ATG8 and its importance in blood-stage Plasmodium falciparum Using a P. falciparum strain in which ATG8 expression was conditionally regulated, we showed that P. falciparum ATG8 (PfATG8) is essential for parasite replication. Significantly, growth inhibition caused by the loss of PfATG8 was reversed by addition of isopentenyl pyrophosphate (IPP), which was previously shown to rescue apicoplast defects in P. falciparum Parasites deficient in PfATG8, but whose growth was rescued by IPP, had lost their apicoplast. We designed a suite of functional assays, including a new fluorescence in situ hybridization (FISH) method for detection of the low-copy-number apicoplast genome, to interrogate specific steps in apicoplast biogenesis and detect apicoplast defects which preceded the block in parasite replication. Though protein import and membrane expansion of the apicoplast were unaffected, the apicoplast was not inherited by daughter parasites. Our findings demonstrate that, though multiple autophagy-dependent and independent functions have been proposed for PfATG8, only its role in apicoplast biogenesis is essential in blood-stage parasites. We propose that PfATG8 is required for fission or segregation of the apicoplast during parasite replication.IMPORTANCEPlasmodium parasites, which cause malaria, and related apicomplexan parasites are important human and veterinary pathogens. They are evolutionarily distant from traditional model organisms and possess a unique plastid organelle, the apicoplast, acquired by an unusual eukaryote-eukaryote endosymbiosis which established novel protein/lipid import and organelle inheritance pathways in the parasite cell. Though the apicoplast is essential for parasite survival in all stages of its life cycle, little is known about these novel biogenesis pathways. We show that malaria parasites have adapted a highly conserved protein required for macroautophagy in yeast and mammals to function specifically in apicoplast inheritance. Our finding elucidates a novel mechanism of organelle biogenesis, essential for pathogenesis, in this divergent branch of pathogenic eukaryotes.
Collapse
|
76
|
Rosas-Arellano A, Estrada-Mondragón A, Mantellero CA, Tejeda-Guzmán C, Castro MA. The adjustment of γ-aminobutyric acid A tonic subunits in Huntington's disease: from transcription to translation to synaptic levels into the neostriatum. Neural Regen Res 2018; 13:584-590. [PMID: 29722299 PMCID: PMC5950657 DOI: 10.4103/1673-5374.230270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
γ-Aminobutyric acid (GABA), plays a key role in all stages of life, also is considered the main inhibitory neurotransmitter. GABA activates two kind of membrane receptors known as GABAA and GABAB, the first one is responsible to render tonic inhibition by pentameric receptors containing α4−6, β3, δ, or ρ1−3 subunits, they are located at perisynaptic and/or in extrasynaptic regions. The biophysical properties of GABAA tonic inhibition have been related with cellular protection against excitotoxic injury and cell death in presence of excessive excitation. On this basis, GABAA tonic inhibition has been proposed as a potential target for therapeutic intervention of Huntington's disease. Huntington's disease is a neurodegenerative disorder caused by a genetic mutation of the huntingtin protein. For experimental studies of Huntington's disease mouse models have been developed, such as R6/1, R6/2, HdhQ92, HdhQ150, as well as YAC128. In all of them, some key experimental reports are focused on neostriatum. The neostriatum is considered as the most important connection between cerebral cortex and basal ganglia structures, its cytology display two pathways called direct and indirect constituted by medium sized spiny neurons expressing dopamine D1 and D2 receptors respectively, they display strong expression of many types of GABAA receptors, including tonic subunits. The studies about of GABAA tonic subunits and Huntington's disease into the neostriatum are rising in recent years, suggesting interesting changes in their expression and localization which can be used as a strategy to delay the cellular damage caused by the imbalance between excitation and inhibition, a hallmark of Huntington's disease.
Collapse
Affiliation(s)
- Abraham Rosas-Arellano
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile; Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile; Departamento de Fisiología, Biofísica y Neurociencias, Cinvestav del IPN, Ciudad de México, México
| | | | - Carola A Mantellero
- Laboratorio de Neurociencias, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago de Chile, Chile
| | - Carlos Tejeda-Guzmán
- Departamento de Fisiología, Biofísica y Neurociencias, Cinvestav del IPN, Ciudad de México, México
| | - Maite A Castro
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias; Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
77
|
Yamasaki T, Hoyos-Ramirez E, Martenson JS, Morimoto-Tomita M, Tomita S. GARLH Family Proteins Stabilize GABA A Receptors at Synapses. Neuron 2017; 93:1138-1152.e6. [PMID: 28279354 DOI: 10.1016/j.neuron.2017.02.023] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 05/26/2016] [Accepted: 02/09/2017] [Indexed: 10/20/2022]
Abstract
Ionotropic neurotransmitter receptors mediate fast synaptic transmission by functioning as ligand-gated ion channels. Fast inhibitory transmission in the brain is mediated mostly by ionotropic GABAA receptors (GABAARs), but their essential components for synaptic localization remain unknown. Here, we identify putative auxiliary subunits of GABAARs, which we term GARLHs, consisting of LH4 and LH3 proteins. LH4 forms a stable tripartite complex with GABAARs and neuroligin-2 in the brain. Moreover, LH4 is required for the synaptic localization of GABAARs and inhibitory synaptic transmission in the hippocampus. Our findings propose GARLHs as the first identified auxiliary subunits for anion channels. These findings provide new insights into the regulation of inhibitory transmission and the molecular constituents of native anion channels in vivo.
Collapse
Affiliation(s)
- Tokiwa Yamasaki
- Department of Cellular and Molecular Physiology, Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Erika Hoyos-Ramirez
- Department of Cellular and Molecular Physiology, Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - James S Martenson
- Department of Cellular and Molecular Physiology, Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Megumi Morimoto-Tomita
- Department of Cellular and Molecular Physiology, Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Susumu Tomita
- Department of Cellular and Molecular Physiology, Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
78
|
Rozycka A, Liguz-Lecznar M. The space where aging acts: focus on the GABAergic synapse. Aging Cell 2017; 16:634-643. [PMID: 28497576 PMCID: PMC5506442 DOI: 10.1111/acel.12605] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2017] [Indexed: 12/19/2022] Open
Abstract
As it was established that aging is not associated with massive neuronal loss, as was believed in the mid‐20th Century, scientific interest has addressed the influence of aging on particular neuronal subpopulations and their synaptic contacts, which constitute the substrate for neural plasticity. Inhibitory neurons represent the most complex and diverse group of neurons, showing distinct molecular and physiological characteristics and possessing a compelling ability to control the physiology of neural circuits. This review focuses on the aging of GABAergic neurons and synapses. Understanding how aging affects synapses of particular neuronal subpopulations may help explain the heterogeneity of aging‐related effects. We reviewed the literature concerning the effects of aging on the numbers of GABAergic neurons and synapses as well as aging‐related alterations in their presynaptic and postsynaptic components. Finally, we discussed the influence of those changes on the plasticity of the GABAergic system, highlighting our results concerning aging in mouse somatosensory cortex and linking them to plasticity impairments and brain disorders. We posit that aging‐induced impairments of the GABAergic system lead to an inhibitory/excitatory imbalance, thereby decreasing neuron's ability to respond with plastic changes to environmental and cellular challenges, leaving the brain more vulnerable to cognitive decline and damage by synaptopathic diseases.
Collapse
Affiliation(s)
- Aleksandra Rozycka
- Department of Molecular and Cellular Neurobiology; Nencki Institute of Experimental Biology; Polish Academy of Sciences; 3 Pasteur Street Warsaw 02-093 Poland
| | - Monika Liguz-Lecznar
- Department of Molecular and Cellular Neurobiology; Nencki Institute of Experimental Biology; Polish Academy of Sciences; 3 Pasteur Street Warsaw 02-093 Poland
| |
Collapse
|
79
|
Poillet-Perez L, Jacquet M, Hervouet E, Gauthier T, Fraichard A, Borg C, Pallandre JR, Gonzalez BJ, Ramdani Y, Boyer-Guittaut M, Delage-Mourroux R, Despouy G. GABARAPL1 tumor suppressive function is independent of its conjugation to autophagosomes in MCF-7 breast cancer cells. Oncotarget 2017; 8:55998-56020. [PMID: 28915569 PMCID: PMC5593540 DOI: 10.18632/oncotarget.19639] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 07/18/2017] [Indexed: 12/19/2022] Open
Abstract
The GABARAPL1 protein belongs to the ATG8 family whose members are involved in autophagy. Our laboratory previously demonstrated that GABARAPL1 associates with autophagic vesicles, regulates autophagic flux and acts as a tumor suppressor protein in breast cancer. In this study, we aimed to determine whether GABARAPL1 conjugation to autophagosomes is necessary for its tumor suppressive functions using the MCF-7 breast cancer cell line overexpressing GABARAPL1 or a G116A mutant, which is unable to be lipidated and associated to autophagosomes. We show that the G116A mutation impaired GABARAPL1 function in autophagosome/lysosome fusion and inhibited lysosome activity but did not alter MTOR and ULK1 activities or tumor growth in vivo. Our results demonstrate for the first time that GABARAPL1 plays different regulatory functions during early and late stages of autophagy, independently or not of its conjugation to autophagosomes, but its tumor suppressive function appeared to be independent of its conjugation to autophagic vesicles.
Collapse
Affiliation(s)
- Laura Poillet-Perez
- Unité Mixte de Recherche, Interactions Hôte-Greffon-Tumeur, Ingénierie Cellulaire et Génique, Université Bourgogne Franche-Comté, Besançon, France.,Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Marine Jacquet
- Unité Mixte de Recherche, Interactions Hôte-Greffon-Tumeur, Ingénierie Cellulaire et Génique, Université Bourgogne Franche-Comté, Besançon, France
| | - Eric Hervouet
- Unité Mixte de Recherche, Interactions Hôte-Greffon-Tumeur, Ingénierie Cellulaire et Génique, Université Bourgogne Franche-Comté, Besançon, France
| | - Thierry Gauthier
- Unité Mixte de Recherche, Interactions Hôte-Greffon-Tumeur, Ingénierie Cellulaire et Génique, Université Bourgogne Franche-Comté, Besançon, France
| | - Annick Fraichard
- Unité Mixte de Recherche, Interactions Hôte-Greffon-Tumeur, Ingénierie Cellulaire et Génique, Université Bourgogne Franche-Comté, Besançon, France
| | - Christophe Borg
- Unité Mixte de Recherche, Interactions Hôte-Greffon-Tumeur, Ingénierie Cellulaire et Génique, Université Bourgogne Franche-Comté, Besançon, France
| | - Jean-René Pallandre
- Unité Mixte de Recherche, Interactions Hôte-Greffon-Tumeur, Ingénierie Cellulaire et Génique, Université Bourgogne Franche-Comté, Besançon, France
| | - Bruno J Gonzalez
- Microvascular Endothelium and Neonatal Brain Lesions, Université de Normandie, UFR de Médecine et de Pharmacie, Rouen, France
| | - Yasmina Ramdani
- Microvascular Endothelium and Neonatal Brain Lesions, Université de Normandie, UFR de Médecine et de Pharmacie, Rouen, France
| | - Michaël Boyer-Guittaut
- Unité Mixte de Recherche, Interactions Hôte-Greffon-Tumeur, Ingénierie Cellulaire et Génique, Université Bourgogne Franche-Comté, Besançon, France
| | - Régis Delage-Mourroux
- Unité Mixte de Recherche, Interactions Hôte-Greffon-Tumeur, Ingénierie Cellulaire et Génique, Université Bourgogne Franche-Comté, Besançon, France
| | - Gilles Despouy
- Unité Mixte de Recherche, Interactions Hôte-Greffon-Tumeur, Ingénierie Cellulaire et Génique, Université Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
80
|
Vien TN, Moss SJ, Davies PA. Regulating the Efficacy of Inhibition Through Trafficking of γ-Aminobutyric Acid Type A Receptors. Anesth Analg 2017; 123:1220-1227. [PMID: 27285004 DOI: 10.1213/ane.0000000000001349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Trafficking of anesthetic-sensitive receptors within the plasma membrane, or from one cellular component to another, occurs continuously. Changes in receptor trafficking have implications in altering anesthetic sensitivity. γ-Aminobutyric acid type A receptors (GABAARs) are anion-permeable ion channels and are the major class of receptor in the adult mammalian central nervous system that mediates inhibition. GABAergic signaling allows for precise synchronized firing of action potentials within brain circuits that is critical for cognition, behavior, and consciousness. This precision depends upon tightly controlled trafficking of GABAARs into the membrane. General anesthetics bind to and allosterically enhance GABAARs by prolonging the open state of the receptor and thereby altering neuronal and brain circuit activity. Subunit composition and GABAAR localization strongly influence anesthetic end points; therefore, changes in GABAAR trafficking could have significant consequences to anesthetic sensitivity. GABAARs are not static membrane structures but are in a constant state of flux between extrasynaptic and synaptic locations and are continually endocytosed and recycled from and to the membrane. Neuronal activity, posttranslational modifications, and some naturally occurring and synthetic compounds can influence the expression and trafficking of GABAARs. In this article, we review GABAARs, their trafficking, and how phosphorylation of GABAAR subunits can influence the surface expression and function of the receptor. Ultimately, alterations of GABAAR trafficking could modify anesthetic end points, both unintentionally through pathologic processes but potentially as a therapeutic target to adjust anesthetic-sensitive GABAARs.
Collapse
Affiliation(s)
- Thuy N Vien
- From the *Department of Neuroscience, Tufts University School of Medicine, Sackler School of Graduate Biomedical Sciences, Boston, Massachusetts; and †Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts
| | | | | |
Collapse
|
81
|
Abstract
The development of biomaterials designed for specific applications is an important objective in personalized medicine. While the breadth and prominence of biomaterials have increased exponentially over the past decades, critical challenges remain to be addressed, particularly in the development of biomaterials that exhibit highly specific functions. These functional properties are often encoded within the molecular structure of the component molecules. Proteins, as a consequence of their structural specificity, represent useful substrates for the construction of functional biomaterials through rational design. This chapter provides an in-depth survey of biomaterials constructed from coiled-coils, one of the best-understood protein structural motifs. We discuss the utility of this structurally diverse and functionally tunable class of proteins for the creation of novel biomaterials. This discussion illustrates the progress that has been made in the development of coiled-coil biomaterials by showcasing studies that bridge the gap between the academic science and potential technological impact.
Collapse
Affiliation(s)
- David A.D. Parry
- Institute of Fundamental Sciences and Riddet Institute, Massey University, Palmerston North, New Zealand
| | - John M. Squire
- Muscle Contraction Group, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
82
|
Xu X, Shangguan Y, Lu S, Wang W, Du C, Xiao F, Hu Y, Luo J, Wang L, He C, Yang Y, Zhang Y, Lu X, Yang Q, Wang X. Tubulin β-III modulates seizure activity in epilepsy. J Pathol 2017; 242:297-308. [PMID: 28378416 DOI: 10.1002/path.4903] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 03/14/2017] [Accepted: 03/27/2017] [Indexed: 11/09/2022]
Abstract
Tubulin β-III (TUBB3) is the most dynamic β-tubulin isoform expressed in neurons, and is highly expressed in the central nervous system. However, the relationship between TUBB3 and epileptic seizures has not been thoroughly investigated. The aims of this study were to investigate the expression of TUBB3 in patients with temporal lobe epilepsy and two different rat models of chronic epilepsy, and to determine the specific roles of TUBB3 in epilepsy. TUBB3 expression was upregulated in human and rat epileptic tissue. Moreover, TUBB3 expression was associated with inhibitory GABAergic neurons and the inhibitory postsynaptic scaffold protein gephyrin. TUBB3 downregulation attenuated the behavioural phenotypes of epileptic seizures during the pilocarpine-induced chronic phase of epileptic seizures and the pentylenetetrazole kindling process, whereas TUBB3 overexpression had the opposite effect. Whole-cell clamp recordings and western blotting revealed that the amplitude of GABA-A receptor-mediated miniature inhibitory postsynaptic currents and the surface expression of the GABA-A receptor were increased in rats in which TUBB3 expression was downregulated. Importantly, TUBB3 interacted with GABA-A receptor-associated protein, which is known to be involved in GABA-A receptor trafficking. These results indicate that TUBB3 plays a critical role in the regulation of epileptic seizures via GABA-A receptor trafficking, suggesting a molecular mechanism for new therapeutic strategies. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Xin Xu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Yafei Shangguan
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Shanshan Lu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Wei Wang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Chao Du
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Fei Xiao
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Yida Hu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Jing Luo
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Liang Wang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Changlong He
- Institute of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing, PR China
| | - Yong Yang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Yanke Zhang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Xi Lu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Qin Yang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China
| | - Xuefeng Wang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, PR China.,Centre of Epilepsy, Beijing Institute for Brain Disorders, Beijing, PR China
| |
Collapse
|
83
|
Li Y, Liu Y, Ma R, Xu Y, Zhang Y, Li B, An Y, Shi L. A G-Quadruplex Hydrogel via Multicomponent Self-Assembly: Formation and Zero-Order Controlled Release. ACS APPLIED MATERIALS & INTERFACES 2017; 9:13056-13067. [PMID: 28357860 DOI: 10.1021/acsami.7b00957] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Stimuli-sensitive hydrogels are ideal candidates for biomedical and bioengineering purposes, although applications of hydrogels may be limited, due in part to the limited choice of suitable materials for constructing hydrogels, the complexity in the synthesis of the source materials, and the undesired fast-then-slow drug-release behaviors of usual hydrogels. Herein, we describe the fabrication of a new supramolecular guanosine (G)-quadruplex hydrogel by multicomponent self-assembly of endogenous guanosine (G), 2-formylboronic acid (2-FPBA), and tris(2-aminoethyl)amine (TAEA) in the presence of KCl in an easy and convenient way. The features of the G-quadruplex hydrogel include (1) versatility and commercial availability of building blocks with different functions, (2) dynamic iminoboronate bonds with pH and glucose responsiveness, and (3) zero-order drug-release behavior because of the superficial peel-off of the hydrogel in response to stimuli. The structure, morphology, and properties of the G-quadruplex hydrogel were well-characterized, and satisfactory zero-order drug release was successfully achieved. This kind of supramolecular G-quadruplex hydrogels may find applications in biological fields.
Collapse
Affiliation(s)
| | | | | | - Yanling Xu
- Department of Biological Pharmacy, College of Basic Science, Tianjin Agricultural University , Tianjin 300384, China
| | - Yunliang Zhang
- Endocrinology Department, Baoding First Central Hospital , Baoding 071000, Hebei, China
| | - Baoxin Li
- Endocrinology Department, Baoding First Central Hospital , Baoding 071000, Hebei, China
| | | | | |
Collapse
|
84
|
Wang B, Kundu M. Canonical and noncanonical functions of ULK/Atg1. Curr Opin Cell Biol 2017; 45:47-54. [PMID: 28292700 DOI: 10.1016/j.ceb.2017.02.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/09/2017] [Accepted: 02/17/2017] [Indexed: 02/07/2023]
Abstract
Mammalian Unc-51-like kinases 1 and 2 (ULK1 and ULK2) belong to the ULK/Atg1 family of serine/threonine kinases, which are conserved from yeast to mammals. Although ULK/Atg1 is best known for regulating flux through the autophagy pathway, it has evolutionarily conserved noncanonical functions in protein trafficking that are essential for maintaining cellular homeostasis. As a direct target of energy- and nutrient-sensing kinases, ULK/Atg1 is positioned to regulate the distribution and use of cellular resources in response to metabolic cues. In this review, we provide an overview of the molecular mechanisms through which ULK/Atg1 carries out its canonical and noncanonical functions and the signaling pathways that link its function to metabolism. We also highlight potential contributions of ULK/Atg1 in human diseases, including cancer and neurodegeneration.
Collapse
Affiliation(s)
- Bo Wang
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States
| | - Mondira Kundu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States.
| |
Collapse
|
85
|
Ryabovol VV, Minibayeva FV. Molecular Mechanisms of Autophagy in Plants: Role of ATG8 Proteins in Formation and Functioning of Autophagosomes. BIOCHEMISTRY (MOSCOW) 2017; 81:348-63. [PMID: 27293092 DOI: 10.1134/s0006297916040052] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Autophagy is an efficient way of degradation and removal of unwanted or damaged intracellular components in plant cells. It plays an important role in recycling of intracellular structures (during starvation, removal of cell components formed during plant development or damaged by various stress factors) and in programmed cell death. Morphologically, autophagy is characterized by the formation of double-membrane vesicles called autophagosomes, which are essential for the isolation and degradation of cytoplasmic components. Among autophagic (ATG) proteins, ATG8 from the ubiquitin-like protein family plays a key role in autophagosome formation. ATG8 is also involved in selective autophagy, fusion of autophagosome with the vacuole, and some other intracellular processes not associated with autophagy. In contrast to yeasts that carry a single ATG8 gene, plants have multigene ATG8 families. The reason for such great ATG8 diversity in plants remains unclear. It is also unknown whether all members of the ATG8 family are involved in the formation and functioning of autophagosomes. To answer these questions, the identification of the structure and the possible functions of plant proteins from ATG8 family is required. In this review, we analyze the structures of ATG8 proteins from plants and their homologs from yeast and animal cells, interactions of ATG8 proteins with functional ligands, and involvement of ATG8 proteins in different metabolic processes in eukaryotes.
Collapse
Affiliation(s)
- V V Ryabovol
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, Kazan, 420111, Russia
| | | |
Collapse
|
86
|
Niu T, Li J, Wang J, Ma JZ, Li MD. Identification of Novel Signal Transduction, Immune Function, and Oxidative Stress Genes and Pathways by Topiramate for Treatment of Methamphetamine Dependence Based on Secondary Outcomes. Front Psychiatry 2017; 8:271. [PMID: 29321746 PMCID: PMC5733474 DOI: 10.3389/fpsyt.2017.00271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 11/20/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Topiramate (TPM) is suggested to be a promising medication for treatment of methamphetamine (METH) dependence, but the molecular basis remains to be elucidated. METHODS Among 140 METH-dependent participants randomly assigned to receive either TPM (N = 69) or placebo (N = 71) in a previously conducted randomized controlled trial, 50 TPM- and 49 placebo-treated participants had a total 212 RNA samples available at baseline, week 8, and week 12 time points. Following our primary analysis of gene expression data, we reanalyzed the microarray expression data based on a latent class analysis of binary secondary outcomes during weeks 1-12 that provided a classification of 21 responders and 31 non-responders with consistent responses at both time points. RESULTS Based on secondary outcomes, 1,381, 576, 905, and 711 differentially expressed genes at nominal P values < 0.05 were identified in responders versus non-responders for week 8 TPM, week 8 placebo, week 12 TPM, and week 12 placebo groups, respectively. Among 1,381 genes identified in week 8 TPM responders, 359 genes were identified in both week 8 and week 12 TPM groups, of which 300 genes were exclusively detected in TPM responders. Of them, 32 genes had nominal P values < 5 × 10-3 at either week 8 or week 12 and false discovery rates < 0.15 at both time points with consistent directions of gene expression changes, which include GABARAPL1, GPR155, and IL15RA in GABA receptor signaling that represent direct targets for TPM. Analyses of these 300 genes revealed 7 enriched pathways belonging to neuronal function/synaptic plasticity, signal transduction, inflammation/immune function, and oxidative stress response categories. No pathways were enriched for 72 genes exclusively detected in both week 8 and week 12 placebo groups. CONCLUSION This secondary analysis study of gene expression data from a TPM clinical trial not only yielded consistent results with those of primary analysis but also identified additional new genes and pathways on TPM response to METH addiction.
Collapse
Affiliation(s)
- Tianhua Niu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.,Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Jingjing Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Ju Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.,School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Jennie Z Ma
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.,Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China.,Institute of Neuroimmune Pharmacology, Seton Hall University, South Orange, NJ, United States
| |
Collapse
|
87
|
Weiergräber OH, Schwarten M, Strodel B, Willbold D. Investigating Structure and Dynamics of Atg8 Family Proteins. Methods Enzymol 2016; 587:115-142. [PMID: 28253952 DOI: 10.1016/bs.mie.2016.09.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Atg8 family members were the first autophagy-related proteins to be investigated in structural detail and continue to be among the best-understood molecules of the pathway. In this review, we will first provide a concise outline of the major methods that are being applied for structural characterization of these proteins and the complexes they are involved in. This includes a discussion of the strengths and limitations associated with each method, along with guidelines for successful adoption to a specific problem. Subsequently, we will present examples illustrating the application of these techniques, with a particular focus on the complementarity of information they provide.
Collapse
Affiliation(s)
- O H Weiergräber
- Institute of Complex Systems, ICS-6 (Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - M Schwarten
- Institute of Complex Systems, ICS-6 (Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - B Strodel
- Institute of Complex Systems, ICS-6 (Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - D Willbold
- Institute of Complex Systems, ICS-6 (Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany; Institut für Physikalische Biologie und BMFZ, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
88
|
Calvo DJ, Beltrán González AN. Dynamic Regulation of the GABAA Receptor Function by Redox Mechanisms. Mol Pharmacol 2016; 90:326-33. [PMID: 27439531 DOI: 10.1124/mol.116.105205] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 07/14/2016] [Indexed: 12/20/2022] Open
Abstract
Oxidizing and reducing agents, which are currently involved in cell metabolism and signaling pathways, can regulate fast inhibitory neurotransmission mediated by GABA receptors in the nervous system. A number of in vitro studies have shown that diverse redox compounds, including redox metabolites and reactive oxygen and nitrogen species, modulate phasic and tonic responses mediated by neuronal GABAA receptors through both presynaptic and postsynaptic mechanisms. We review experimental data showing that many redox agents, which are normally present in neurons and glia or are endogenously generated in these cells under physiologic states or during oxidative stress (e.g., hydrogen peroxide, superoxide and hydroxyl radicals, nitric oxide, ascorbic acid, and glutathione), induce potentiating or inhibiting actions on different native and recombinant GABAA receptor subtypes. Based on these results, it is thought that redox signaling might represent a homeostatic mechanism that regulates the function of synaptic and extrasynaptic GABAA receptors in physiologic and pathologic conditions.
Collapse
Affiliation(s)
- Daniel J Calvo
- Laboratorio de Neurobiología Celular y Molecular, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ¨Dr. Héctor N. Torres¨ (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina (D.J.C., A.N.B.G.)
| | - Andrea N Beltrán González
- Laboratorio de Neurobiología Celular y Molecular, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ¨Dr. Héctor N. Torres¨ (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina (D.J.C., A.N.B.G.)
| |
Collapse
|
89
|
White spot syndrome virus entry is dependent on multiple endocytic routes and strongly facilitated by Cq-GABARAP in a CME-dependent manner. Sci Rep 2016; 6:28694. [PMID: 27385304 PMCID: PMC4935888 DOI: 10.1038/srep28694] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/08/2016] [Indexed: 12/13/2022] Open
Abstract
White spot syndrome virus (WSSV) is a lethal pathogen of shrimp and many other crustaceans, including crayfish. However, the molecular mechanism underlying its cellular entry remains elusive due to the lack of shrimp cell lines for viral propagation. Crayfish hematopoietic tissue (Hpt) cell culture was recently established as a good model for WSSV infection study. Here, we showed that multiple endocytic routes, including clathrin-mediated endocytosis (CME), macropinocytosis and caveolae-mediated endocytosis, were indispensably employed for the viral entry into Hpt cell of the crayfish Cherax quadricarinatus. Intriguingly, cellular autophagic activity was positively correlated with efficient viral entry, in which a key autophagy-related protein, γ-aminobutyric acid receptor-associated protein (Cq-GABARAP), that not only localized but also co-localized with WSSV on the Hpt cell membrane, strongly facilitated WSSV entry by binding to the viral envelope VP28 in a CME-dependent manner that was negatively regulated by Cq-Rac1. Furthermore, cytoskeletal components, including Cq-β-tubulin and Cq-β-actin, bound to both recombinant rCq-GABARAP and WSSV envelope proteins, which likely led to viral entry promotion via cooperation with rCq-GABARAP. Even under conditions that promoted viral entry, rCq-GABARAP significantly reduced viral replication at an early stage of infection, which was probably caused by the formation of WSSV aggregates in the cytoplasm.
Collapse
|
90
|
Pham TTH, van der Gucht J, Mieke Kleijn J, Cohen Stuart MA. Reversible polypeptide hydrogels from asymmetric telechelics with temperature-dependent and Ni(2+)-dependent connectors. SOFT MATTER 2016; 12:4979-4984. [PMID: 27152875 DOI: 10.1039/c6sm00218h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
An asymmetric ('hybrid') triblock polypeptide TR4H with two different, orthogonally self-assembling end blocks has been constructed by conjugating a long (37 kDa) random coil block (R4) with a triple helix former T = (Pro-Gly-Pro)9 at the N terminus, and a histidine hexamer ('Histag', H) at the C terminus. This molecule can form trimers at room temperature by assembly of the T blocks, which can in turn assemble upon addition of Ni(2+), by association of Ni complexes involving the H block. This results in reversible hydrogels with dual responsiveness. We have studied mechanical properties of these gels, and compared them to gels formed by the symmetric triblock TR8T which is equivalent to a dimer of TR4H, but can only form triple helix-based networks. We find that there is an optimum mole ratio for Ni(2+) with respect to the polypeptide of about 1; gels are weaker at both lower and higher Ni(2+) dose. At the optimum dose, the high-frequency storage modulus is in between the value expected for nickel-induced dimerization and trimerization of the H blocks. We also find that the gels relax on time scales of about 50 s, which is two orders of magnitude faster than for TR8T gels, implying that relaxation is dominated by the dynamics of the Ni(2+) complex.
Collapse
Affiliation(s)
- Thao T H Pham
- Physical Chemistry and Soft Matter, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
91
|
Salah FS, Ebbinghaus M, Muley VY, Zhou Z, Al-Saadi KRD, Pacyna-Gengelbach M, O'Sullivan GA, Betz H, König R, Wang ZQ, Bräuer R, Petersen I. Tumor suppression in mice lacking GABARAP, an Atg8/LC3 family member implicated in autophagy, is associated with alterations in cytokine secretion and cell death. Cell Death Dis 2016; 7:e2205. [PMID: 27124579 PMCID: PMC4855672 DOI: 10.1038/cddis.2016.93] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 03/11/2016] [Accepted: 03/15/2016] [Indexed: 01/04/2023]
Abstract
GABARAP belongs to an evolutionary highly conserved gene family that has a fundamental role in autophagy. There is ample evidence for a crosstalk between autophagy and apoptosis as well as the immune response. However, the molecular details for these interactions are not fully characterized. Here, we report that the ablation of murine GABARAP, a member of the Atg8/LC3 family that is central to autophagosome formation, suppresses the incidence of tumor formation mediated by the carcinogen DMBA and results in an enhancement of the immune response through increased secretion of IL-1β, IL-6, IL-2 and IFN-γ from stimulated macrophages and lymphocytes. In contrast, TGF-β1 was significantly reduced in the serum of these knockout mice. Further, DMBA treatment of these GABARAP knockout mice reduced the cellularity of the spleen and the growth of mammary glands through the induction of apoptosis. Gene expression profiling of mammary glands revealed significantly elevated levels of Xaf1, an apoptotic inducer and tumor-suppressor gene, in knockout mice. Furthermore, DMBA treatment triggered the upregulation of pro-apoptotic (Bid, Apaf1, Bax), cell death (Tnfrsf10b, Ripk1) and cell cycle inhibitor (Cdkn1a, Cdkn2c) genes in the mammary glands. Finally, tumor growth of B16 melanoma cells after subcutaneous inoculation was inhibited in GABARAP-deficient mice. Together, these data provide strong evidence for the involvement of GABARAP in tumorigenesis in vivo by delaying cell death and its associated immune-related response.
Collapse
Affiliation(s)
- F S Salah
- Institute of Pathology, University Hospital - Friedrich Schiller University Jena, Ziegelmühlenweg 1, Jena D-07743, Germany.,Iraqi Centre for Cancer and Medical Genetics Research, Al-Mustansiriya University, Baghdad, Iraq
| | - M Ebbinghaus
- Institute of Physiology 1, University Hospital - Friedrich Schiller University Jena, Teichgraben 8, Jena D-07743, Germany
| | - V Y Muley
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstrasse 11, Jena D-07745, Germany.,Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Erlanger Allee 101, Jena D-07747, Germany
| | - Z Zhou
- Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, Jena D-07745, Germany
| | - K R D Al-Saadi
- Iraqi Centre for Cancer and Medical Genetics Research, Al-Mustansiriya University, Baghdad, Iraq
| | - M Pacyna-Gengelbach
- Institute of Pathology, University Medicine Berlin, Campus Charité Mitte, Berlin D-10098, Germany
| | - G A O'Sullivan
- Department of Neurochemistry, Max-Planck Institute for Brain Research, Deutschordenstrasse 46, Frankfurt D-60528, Germany
| | - H Betz
- Department of Neurochemistry, Max-Planck Institute for Brain Research, Deutschordenstrasse 46, Frankfurt D-60528, Germany.,Max-Planck Institute for Medical Research, Jahnstrasse 29, Heidelberg D-69120, Germany
| | - R König
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstrasse 11, Jena D-07745, Germany.,Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Erlanger Allee 101, Jena D-07747, Germany
| | - Z-Q Wang
- Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, Jena D-07745, Germany.,Faculty of Biology and Pharmacy, Friedrich Schiller University Jena, Bachstrasse 18k, Jena D-07743, Germany
| | - R Bräuer
- Institute of Pathology, University Hospital - Friedrich Schiller University Jena, Ziegelmühlenweg 1, Jena D-07743, Germany
| | - I Petersen
- Institute of Pathology, University Hospital - Friedrich Schiller University Jena, Ziegelmühlenweg 1, Jena D-07743, Germany
| |
Collapse
|
92
|
Nakamura T, Arima-Yoshida F, Sakaue F, Nasu-Nishimura Y, Takeda Y, Matsuura K, Akshoomoff N, Mattson SN, Grossfeld PD, Manabe T, Akiyama T. PX-RICS-deficient mice mimic autism spectrum disorder in Jacobsen syndrome through impaired GABAA receptor trafficking. Nat Commun 2016; 7:10861. [PMID: 26979507 PMCID: PMC4799364 DOI: 10.1038/ncomms10861] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/27/2016] [Indexed: 11/09/2022] Open
Abstract
Jacobsen syndrome (JBS) is a rare congenital disorder caused by a terminal deletion of the long arm of chromosome 11. A subset of patients exhibit social behavioural problems that meet the diagnostic criteria for autism spectrum disorder (ASD); however, the underlying molecular pathogenesis remains poorly understood. PX-RICS is located in the chromosomal region commonly deleted in JBS patients with autistic-like behaviour. Here we report that PX-RICS-deficient mice exhibit ASD-like social behaviours and ASD-related comorbidities. PX-RICS-deficient neurons show reduced surface γ-aminobutyric acid type A receptor (GABAAR) levels and impaired GABAAR-mediated synaptic transmission. PX-RICS, GABARAP and 14-3-3ζ/θ form an adaptor complex that interconnects GABAAR and dynein/dynactin, thereby facilitating GABAAR surface expression. ASD-like behavioural abnormalities in PX-RICS-deficient mice are ameliorated by enhancing inhibitory synaptic transmission with a GABAAR agonist. Our findings demonstrate a critical role of PX-RICS in cognition and suggest a causal link between PX-RICS deletion and ASD-like behaviour in JBS patients.
Collapse
Affiliation(s)
- Tsutomu Nakamura
- Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Fumiko Arima-Yoshida
- Division of Neuronal Network, Department of Basic Medical Sciences, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Fumika Sakaue
- Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yukiko Nasu-Nishimura
- Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yasuko Takeda
- Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Ken Matsuura
- Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Natacha Akshoomoff
- Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Sarah N Mattson
- Department of Psychology, San Diego State University, San Diego, California 92120, USA
| | - Paul D Grossfeld
- Department of Pediatrics, School of Medicine, University of California, San Diego, San Diego, California 92123, USA
| | - Toshiya Manabe
- Division of Neuronal Network, Department of Basic Medical Sciences, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Tetsu Akiyama
- Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
93
|
Singhal R, Gupta K. A Review: Tailor-made Hydrogel Structures (Classifications and Synthesis Parameters). POLYMER-PLASTICS TECHNOLOGY AND ENGINEERING 2016; 55:54-70. [DOI: 10.1080/03602559.2015.1050520] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
94
|
Fu YL, Wang YJ, Mu TW. Proteostasis Maintenance of Cys-Loop Receptors. ION CHANNELS AS THERAPEUTIC TARGETS, PART A 2016; 103:1-23. [DOI: 10.1016/bs.apcsb.2015.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
95
|
Plic-1, a new target in repressing epileptic seizure by regulation of GABAAR function in patients and a rat model of epilepsy. Clin Sci (Lond) 2015; 129:1207-23. [PMID: 26415648 DOI: 10.1042/cs20150202] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 09/25/2015] [Indexed: 12/27/2022]
Abstract
Plic-1 regulates GABAAR expression at synaptic sites during epileptic seizure. Plic-1 prolongs the seizure latency and reduces the seizure severity in epileptic rats. Plic-1 affects the inhibitory function by changing the mIPSCs and evoked IPSCs of the phasic GABA-ergic synaptic current.
Collapse
|
96
|
Zhang X, Dong C, Huang W, Wang H, Wang L, Ding D, Zhou H, Long J, Wang T, Yang Z. Rational design of a photo-responsive UVR8-derived protein and a self-assembling peptide-protein conjugate for responsive hydrogel formation. NANOSCALE 2015; 7:16666-70. [PMID: 26400471 DOI: 10.1039/c5nr05213k] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Responsive hydrogels hold great potential in controllable drug delivery, regenerative medicine, sensing, etc. We introduced in this study the first example of a photo-responsive protein for hydrogel formation. Based on the first example of the crystal structure of a photo-responsive protein, Arabidopsis thaliana protein UVR8, we designed and expressed its derived protein UVR8-1 with a hexa-peptide WRESAI. We also prepared supramolecular nanofibers with a TIP-1 protein at their surface. The simple mixing of these two components resulted in rapid hydrogel formation through the specific interactions between the protein TIP-1 and the peptide WRESAI. Since the protein could show a reversible dimer-monomer transformation, the resulting gels also showed a reversible gel-sol phase transition which was controlled by photo-irradiation. The photo-controllable gel-sol phase transition could be applied for protein delivery and cell separation.
Collapse
Affiliation(s)
- Xiaoli Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences and Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Heuser T, Weyandt E, Walther A. Biocatalytic Feedback‐Driven Temporal Programming of Self‐Regulating Peptide Hydrogels. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505013] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Thomas Heuser
- DWI—Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52056 Aachen (Germany) http://www.dwi.rwth‐aachen.de
| | - Elisabeth Weyandt
- DWI—Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52056 Aachen (Germany) http://www.dwi.rwth‐aachen.de
| | - Andreas Walther
- DWI—Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52056 Aachen (Germany) http://www.dwi.rwth‐aachen.de
| |
Collapse
|
98
|
Li C, Rowland MJ, Shao Y, Cao T, Chen C, Jia H, Zhou X, Yang Z, Scherman OA, Liu D. Responsive Double Network Hydrogels of Interpenetrating DNA and CB[8] Host-Guest Supramolecular Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:3298-3304. [PMID: 25899855 DOI: 10.1002/adma.201501102] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 03/30/2015] [Indexed: 06/04/2023]
Abstract
A supramolecular double network hydrogel is presented by physical interpenetration of DNA and cucurbit[8]uril networks. In addition to exhibiting an increase in strength and thermal stability, the double network hydrogel possesses excellent properties such as stretchability, ductility, shear-thinning, and thixotropy. Moreover, it is enzymatically responsive to both nuclease and cellulase, as well as small molecules, showing great potential as a new soft material scaffold.
Collapse
Affiliation(s)
- Chuang Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Matthew J Rowland
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Yu Shao
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Tianyang Cao
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Chun Chen
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Haoyang Jia
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xu Zhou
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zhongqiang Yang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Oren A Scherman
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Dongsheng Liu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
99
|
Functions of kinesin superfamily proteins in neuroreceptor trafficking. BIOMED RESEARCH INTERNATIONAL 2015; 2015:639301. [PMID: 26075252 PMCID: PMC4449888 DOI: 10.1155/2015/639301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/22/2015] [Accepted: 04/27/2015] [Indexed: 11/18/2022]
Abstract
Synaptic plasticity is widely regarded as the cellular basis of learning and memory. Understanding the molecular mechanism of synaptic plasticity has been one of center pieces of neuroscience research for more than three decades. It has been well known that the trafficking of α-amino-3-hydroxy-5-methylisoxazoloe-4-propionic acid- (AMPA-) type, N-methyl-D-aspartate- (NMDA-) type glutamate receptors to and from synapses is a key molecular event underlying many forms of synaptic plasticity. Kainate receptors are another type of glutamate receptors playing important roles in synaptic transmission. In addition, GABA receptors also play important roles in modulating the synaptic plasticity. Kinesin superfamily proteins (also known as KIFs) transport various cargos in both anterograde and retrograde directions through the interaction with different adaptor proteins. Recent studies indicate that KIFs regulate the trafficking of NMDA receptors, AMPA receptors, kainate receptors, and GABA receptors and thus play important roles in neuronal activity. Here we review the essential functions of KIFs in the trafficking of neuroreceptor and synaptic plasticity.
Collapse
|
100
|
Wang P, Sun X, Wang N, Tan DX, Ma F. Melatonin enhances the occurrence of autophagy induced by oxidative stress in Arabidopsis seedlings. J Pineal Res 2015; 58:479-89. [PMID: 25788022 DOI: 10.1111/jpi.12233] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 03/16/2015] [Indexed: 12/24/2022]
Abstract
The beneficial effect that melatonin has against mitochondrial dysfunctioning seems to be linked to mitophagy. Roles for melatonin have been demonstrated in promoting health and preventing disease, as well as activating the process of autophagy in general. However, no reports have been made about how the application of melatonin regulates that process when plants are exposed to oxidative stress. We investigated the influence of different concentrations of melatonin (0.0, 0.5, 5.0, 10.0, or 50.0 μm) on autophagy under methyl viologen (MV)-induced oxidative stress. Arabidopsis seedlings that were pretreated with 5 or 10 μm melatonin underwent relatively strong induction of autophagy, as evidenced by the number of monodansylcadaverine (MDC)-stained autophagosomes in root samples. Pretreatment with 10 μm melatonin also alleviated MV-induced photo-oxidation damage and significantly reduced the accumulation of oxidized proteins. Those responses might have been due to the strong upregulation of genes that involved in AtATG8-PE conjugation pathway, which enhanced the capacity for autophagy. Histochemical staining revealed that both O2-· and H2 O2 were highly accumulated upon MV exposure, although the response did not differ significantly between control and melatonin-pretreated seedlings. By contrast, exogenous melatonin upregulated the expression of two genes for H2 O2 -scavenging enzymes, that is, AtAPX1 and AtCATs. The activation of autophagy by melatonin without an alteration in ROS production may be part of a survival mechanism that is enhanced by melatonin after cellular damage. Therefore, it represents a second level of defense to remove damaged proteins when antioxidant activities are compromised.
Collapse
Affiliation(s)
- Ping Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | | | | | | | | |
Collapse
|