51
|
Agata A, Nomura T. Thermal Adaptations in Animals: Genes, Development, and Evolution. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1461:253-265. [PMID: 39289287 DOI: 10.1007/978-981-97-4584-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Thermal adaptation to environmental temperature is a driving force in animal evolution. This chapter presents thermal adaptation in ectotherms and endotherms from the perspective of developmental biology. In ectotherms, there are known examples of temperature influencing morphological characteristics, such as seasonal color change, melanization, and sex determination. Furthermore, the timing of embryonic development also varies with environmental temperature. This review will introduce the cellular and molecular mechanisms underlying temperature-dependent embryogenesis. The evolution of thermal adaptation in endotherms is also important for survival in cold climates. Recent genome-wide studies have revealed adaptive mutations in the genomes of extant humans as well as extinct species such as woolly mammoths and Neanderthals. These studies have shown that single-nucleotide polymorphisms in physiologically related genes (e.g., CPT1A, LRP5, THATA, PRKG1, and FADS1-3) allow humans to live in cold climates. At the end of this chapter, we present the remaining questions in terms of genetic assimilation, heat shock protein Hsp90, and embryonic development.
Collapse
Affiliation(s)
- Ako Agata
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tadashi Nomura
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
- Applied Biology, Kyoto Institute of Technology, Kyoto, Japan.
| |
Collapse
|
52
|
Frank SA. Robustness and complexity. Cell Syst 2023; 14:1015-1020. [PMID: 38128480 DOI: 10.1016/j.cels.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/19/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023]
Abstract
When a system robustly corrects component-level errors, the direct pressure on component performance declines. Components become less reliable, maintain more genetic variability, or drift neutrally, creating new forms of complexity. Examples include the hourglass pattern of biological development and the hourglass architecture for robustly complex systems in engineering.
Collapse
Affiliation(s)
- Steven A Frank
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697-2525, USA.
| |
Collapse
|
53
|
Raju A, Xue B, Leibler S. A theoretical perspective on Waddington's genetic assimilation experiments. Proc Natl Acad Sci U S A 2023; 120:e2309760120. [PMID: 38091287 PMCID: PMC10743363 DOI: 10.1073/pnas.2309760120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Genetic assimilation is the process by which a phenotype that is initially induced by an environmental stimulus becomes stably inherited in the absence of the stimulus after a few generations of selection. While the concept has attracted much debate after being introduced by C. H. Waddington 70 y ago, there have been few experiments to quantitatively characterize the phenomenon. Here, we revisit and organize the results of Waddington's original experiments and follow-up studies that attempted to replicate his results. We then present a theoretical model to illustrate the process of genetic assimilation and highlight several aspects that we think require further quantitative studies, including the gradual increase of penetrance, the statistics of delay in assimilation, and the frequency of unviability during selection. Our model captures Waddington's picture of developmental paths in a canalized landscape using a stochastic dynamical system with alternative trajectories that can be controlled by either external signals or internal variables. It also reconciles two descriptions of the phenomenon-Waddington's, expressed in terms of an individual organism's developmental paths, and that of Bateman in terms of the population distribution crossing a hypothetical threshold. Our results provide theoretical insight into the concepts of canalization, phenotypic plasticity, and genetic assimilation.
Collapse
Affiliation(s)
- Archishman Raju
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore560065, India
| | - BingKan Xue
- Department of Physics and Institute for Fundamental Theory, University of Florida, Gainesville, FL32611
| | - Stanislas Leibler
- The Simons Center for Systems Biology, School of Natural Sciences, Institute for Advanced Study, Princeton, NJ08540
- Laboratory of Living Matter, The Rockefeller University, New York, NY01065
| |
Collapse
|
54
|
Li M, Chen DS, Junker IP, Szorenyi F, Chen GH, Berger AJ, Comeault AA, Matute DR, Ding Y. Ancestral neural circuits potentiate the origin of a female sexual behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570174. [PMID: 38106147 PMCID: PMC10723342 DOI: 10.1101/2023.12.05.570174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Courtship interactions are remarkably diverse in form and complexity among species. How neural circuits evolve to encode new behaviors that are functionally integrated into these dynamic social interactions is unknown. Here we report a recently originated female sexual behavior in the island endemic Drosophila species D. santomea, where females signal receptivity to male courtship songs by spreading their wings, which in turn promotes prolonged songs in courting males. Copulation success depends on this female signal and correlates with males' ability to adjust his singing in such a social feedback loop. Functional comparison of sexual circuitry across species suggests that a pair of descending neurons, which integrates male song stimuli and female internal state to control a conserved female abdominal behavior, drives wing spreading in D. santomea. This co-option occurred through the refinement of a pre-existing, plastic circuit that can be optogenetically activated in an outgroup species. Combined, our results show that the ancestral potential of a socially-tuned key circuit node to engage the wing motor program facilitates the expression of a new female behavior in appropriate sensory and motivational contexts. More broadly, our work provides insights into the evolution of social behaviors, particularly female behaviors, and the underlying neural mechanisms.
Collapse
Affiliation(s)
- Minhao Li
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Dawn S Chen
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian P Junker
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Fabianna Szorenyi
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Guan Hao Chen
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Arnold J Berger
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Aaron A Comeault
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
- Current address: School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | - Daniel R Matute
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Yun Ding
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
55
|
Fasel C, Chiapperino L. Between the genotype and the phenotype lies the microbiome: symbiosis and the making of 'postgenomic' knowledge. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2023; 45:43. [PMID: 38055153 PMCID: PMC10700207 DOI: 10.1007/s40656-023-00599-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/29/2023] [Indexed: 12/07/2023]
Abstract
Emphatic claims of a "microbiome revolution" aside, the study of the gut microbiota and its role in organismal development and evolution is a central feature of so-called postgenomics; namely, a conceptual and/or practical turn in contemporary life sciences, which departs from genetic determinism and reductionism to explore holism, emergentism and complexity in biological knowledge-production. This paper analyses the making of postgenomic knowledge about developmental symbiosis in Drosophila melanogaster by a specific group of microbiome scientists. Drawing from both practical philosophy of science and Science and Technology Studies, the paper documents epistemological questions of artefactuality and representativeness of model organisms as they emerge in the day-to-day labour producing and being produced by the "microbiome revolution." Specifically, the paper builds on all the written and editorial exchanges involved in the troubled publication of a research paper studying the symbiotic role of the microbiota in the flies' development. These written materials permit us to delimit the network of justifications, evidence, standards of knowledge-production, trust in the tools and research designs that make up the conditions of possibility of a postgenomic fact. More than reframing the organism as a radically novel multiplicity of reactive genomes, we conclude, doing postgenomic research on the microbiota and symbiosis means producing a story that deviates from the scripts embedded into the sociotechnical experimental systems of post-Human Genome Project life sciences.
Collapse
Affiliation(s)
- Cécile Fasel
- STS Lab, Institute of Social Sciences, Faculty of Social and Political Sciences, University of Lausanne, 1015, Lausanne, Switzerland.
| | - Luca Chiapperino
- STS Lab, Institute of Social Sciences, Faculty of Social and Political Sciences, University of Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
56
|
de March CA, Ma N, Billesbølle CB, Tewari J, del Torrent CL, van der Velden WJC, Ojiro I, Takayama I, Faust B, Li L, Vaidehi N, Manglik A, Matsunami H. Engineered odorant receptors illuminate structural principles of odor discrimination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.16.567230. [PMID: 38014344 PMCID: PMC10680712 DOI: 10.1101/2023.11.16.567230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
A central challenge in olfaction is understanding how the olfactory system detects and distinguishes odorants with diverse physicochemical properties and molecular configurations. Vertebrate animals perceive odors via G protein-coupled odorant receptors (ORs). In humans, ~400 ORs enable the sense of smell. The OR family is composed of two major classes: Class I ORs are tuned to carboxylic acids while Class II ORs, representing the vast majority of the human repertoire, respond to a wide variety of odorants. How ORs recognize chemically diverse odorants remains poorly understood. A fundamental bottleneck is the inability to visualize odorant binding to ORs. Here, we uncover fundamental molecular properties of odorant-OR interactions by employing engineered ORs crafted using a consensus protein design strategy. Because such consensus ORs (consORs) are derived from the 17 major subfamilies of human ORs, they provide a template for modeling individual native ORs with high sequence and structural homology. The biochemical tractability of consORs enabled four cryoEM structures of distinct consORs with unique ligand recognition properties. The structure of a Class I consOR, consOR51, showed high structural similarity to the native human receptor OR51E2 and yielded a homology model of a related member of the human OR51 family with high predictive power. Structures of three Class II consORs revealed distinct modes of odorant-binding and activation mechanisms between Class I and Class II ORs. Thus, the structures of consORs lay the groundwork for understanding molecular recognition of odorants by the OR superfamily.
Collapse
Affiliation(s)
- Claire A. de March
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
- Institut de Chimie des Substances Naturelles, UPR2301 CNRS, Université Paris-Saclay, Gifsur- Yvette, 91190, France
| | - Ning Ma
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | | | - Jeevan Tewari
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Claudia Llinas del Torrent
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Universitat Autònoma Barcelona, 08193 Bellaterra, Barcelona, Spain; Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Wijnand J. C. van der Velden
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Ichie Ojiro
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Ikumi Takayama
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Bryan Faust
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Linus Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Aashish Manglik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Universitat Autònoma Barcelona, 08193 Bellaterra, Barcelona, Spain; Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
- Department of Neurobiology, Duke Institute for Brain Sciences, Duke University, Durham, NC, USA
| |
Collapse
|
57
|
Jordan DJ, Miska EA. Canalisation and plasticity on the developmental manifold of Caenorhabditis elegans. Mol Syst Biol 2023; 19:e11835. [PMID: 37850520 PMCID: PMC10632735 DOI: 10.15252/msb.202311835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023] Open
Abstract
How do the same mechanisms that faithfully regenerate complex developmental programmes in spite of environmental and genetic perturbations also allow responsiveness to environmental signals, adaptation and genetic evolution? Using the nematode Caenorhabditis elegans as a model, we explore the phenotypic space of growth and development in various genetic and environmental contexts. Our data are growth curves and developmental parameters obtained by automated microscopy. Using these, we show that among the traits that make up the developmental space, correlations within a particular context are predictive of correlations among different contexts. Furthermore, we find that the developmental variability of this animal can be captured on a relatively low-dimensional phenotypic manifold and that on this manifold, genetic and environmental contributions to plasticity can be deconvolved independently. Our perspective offers a new way of understanding the relationship between robustness and flexibility in complex systems, suggesting that projection and concentration of dimension can naturally align these forces as complementary rather than competing.
Collapse
Affiliation(s)
- David J Jordan
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - Eric A Miska
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| |
Collapse
|
58
|
Dorrity MW, Saunders LM, Duran M, Srivatsan SR, Barkan E, Jackson DL, Sattler SM, Ewing B, Queitsch C, Shendure J, Raible DW, Kimelman D, Trapnell C. Proteostasis governs differential temperature sensitivity across embryonic cell types. Cell 2023; 186:5015-5027.e12. [PMID: 37949057 PMCID: PMC11178971 DOI: 10.1016/j.cell.2023.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 05/29/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
Embryonic development is remarkably robust, but temperature stress can degrade its ability to generate animals with invariant anatomy. Phenotypes associated with environmental stress suggest that some cell types are more sensitive to stress than others, but the basis of this sensitivity is unknown. Here, we characterize hundreds of individual zebrafish embryos under temperature stress using whole-animal single-cell RNA sequencing (RNA-seq) to identify cell types and molecular programs driving phenotypic variability. We find that temperature perturbs the normal proportions and gene expression programs of numerous cell types and also introduces asynchrony in developmental timing. The notochord is particularly sensitive to temperature, which we map to a specialized cell type: sheath cells. These cells accumulate misfolded protein at elevated temperature, leading to a cascading structural failure of the notochord and anatomic defects. Our study demonstrates that whole-animal single-cell RNA-seq can identify mechanisms for developmental robustness and pinpoint cell types that constitute key failure points.
Collapse
Affiliation(s)
- Michael W Dorrity
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Structural and Computational Biology, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| | - Lauren M Saunders
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Madeleine Duran
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Sanjay R Srivatsan
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Eliza Barkan
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Dana L Jackson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Sydney M Sattler
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Brent Ewing
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - David W Raible
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - David Kimelman
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
59
|
Jakobson CM, Aguilar-Rodríguez J, Jarosz DF. Hsp90 shapes adaptation by controlling the fitness consequences of regulatory variation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564848. [PMID: 37961536 PMCID: PMC10634948 DOI: 10.1101/2023.10.30.564848] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The essential stress-responsive chaperone Hsp90 impacts development and adaptation from microbes to humans. Yet despite evidence of its role in evolution, pathogenesis, and oncogenic transformation, the molecular mechanisms by which Hsp90 alters the consequences of mutations remain vigorously debated. Here we exploit the power of nucleotide-resolution genetic mapping in Saccharomyces cerevisiae to uncover more than 1,000 natural variant-to-phenotype associations governed by this molecular chaperone. Strikingly, Hsp90 more frequently modified the phenotypic effects of cis-regulatory variation than variants that altered protein sequence. Moreover, these interactions made the largest contribution to Hsp90-dependent heredity. Nearly all interacting variants-both regulatory and protein-coding-fell within clients of Hsp90 or targets of its direct binding partners. Hsp90 activity affected mutations in evolutionarily young genes, segmental deletions, and heterozygotes, highlighting its influence on variation central to evolutionary novelty. Reconciling the diverse epistatic effects of this chaperone, synthetic transcriptional regulation and reconstructions of natural alleles by genome editing revealed a central role for Hsp90 in regulating the fundamental relationship between activity and phenotype. Our findings establish that non-coding variation is a core driver of Hsp90's influence on heredity, offering a mechanistic explanation for the chaperone's strong effects on evolution and development across species.
Collapse
Affiliation(s)
- Christopher M. Jakobson
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- These authors contributed equally
| | - José Aguilar-Rodríguez
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
- These authors contributed equally
| | - Daniel F. Jarosz
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
60
|
Riley CL, Oostra V, Plaistow SJ. Does the definition of a novel environment affect the ability to detect cryptic genetic variation? J Evol Biol 2023; 36:1618-1629. [PMID: 37897127 DOI: 10.1111/jeb.14238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/09/2023] [Accepted: 08/29/2023] [Indexed: 10/29/2023]
Abstract
Anthropogenic change exposes populations to environments that have been rare or entirely absent from their evolutionary past. Such novel environments are hypothesized to release cryptic genetic variation, a hidden store of variance that can fuel evolution. However, support for this hypothesis is mixed. One possible reason is a lack of clarity in what is meant by 'novel environment', an umbrella term encompassing conditions with potentially contrasting effects on the exposure or concealment of cryptic variation. Here, we use a meta-analysis approach to investigate changes in the total genetic variance of multivariate traits in ancestral versus novel environments. To determine whether the definition of a novel environment could explain the mixed support for a release of cryptic genetic variation, we compared absolute novel environments, those not represented in a population's evolutionary past, to extreme novel environments, those involving frequency or magnitude changes to environments present in a population's ancestry. Despite sufficient statistical power, we detected no broad-scale pattern of increased genetic variance in novel environments, and finding the type of novel environment did not explain any significant variation in effect sizes. When effect sizes were partitioned by experimental design, we found increased genetic variation in studies based on broad-sense measures of variance, and decreased variation in narrow-sense studies, in support of previous research. Therefore, the source of genetic variance, not the definition of a novel environment, was key to understanding environment-dependant genetic variation, highlighting non-additive genetic variance as an important component of cryptic genetic variation and avenue for future research.
Collapse
Affiliation(s)
- Camille L Riley
- Department of Evolution, Ecology, and Behaviour, IVES, University of Liverpool, Liverpool, UK
| | - Vicencio Oostra
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Stewart J Plaistow
- Department of Evolution, Ecology, and Behaviour, IVES, University of Liverpool, Liverpool, UK
| |
Collapse
|
61
|
Guna A, Page KR, Replogle JM, Esantsi TK, Wang ML, Weissman JS, Voorhees RM. A dual sgRNA library design to probe genetic modifiers using genome-wide CRISPRi screens. BMC Genomics 2023; 24:651. [PMID: 37904134 PMCID: PMC10614335 DOI: 10.1186/s12864-023-09754-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/19/2023] [Indexed: 11/01/2023] Open
Abstract
Mapping genetic interactions is essential for determining gene function and defining novel biological pathways. We report a simple to use CRISPR interference (CRISPRi) based platform, compatible with Fluorescence Activated Cell Sorting (FACS)-based reporter screens, to query epistatic relationships at scale. This is enabled by a flexible dual-sgRNA library design that allows for the simultaneous delivery and selection of a fixed sgRNA and a second randomized guide, comprised of a genome-wide library, with a single transduction. We use this approach to identify epistatic relationships for a defined biological pathway, showing both increased sensitivity and specificity than traditional growth screening approaches.
Collapse
Affiliation(s)
- Alina Guna
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave, Pasadena, CA, 91125, USA
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Katharine R Page
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave, Pasadena, CA, 91125, USA
| | - Joseph M Replogle
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, 94158, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Theodore K Esantsi
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Maxine L Wang
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave, Pasadena, CA, 91125, USA
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Jonathan S Weissman
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Rebecca M Voorhees
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave, Pasadena, CA, 91125, USA.
- Howard Hughes Medical Institute Freeman Hrabowski Scholar, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
62
|
Wu C, Wagner ND, Moyle AB, Feng A, Sharma N, Stubbs SH, Donahue C, Davey RA, Gross ML, Leung DW, Amarasinghe GK. Disruption of Ebola NP 0VP35 Inclusion Body-like Structures reduce Viral Infection. J Mol Biol 2023; 435:168241. [PMID: 37598728 PMCID: PMC11312838 DOI: 10.1016/j.jmb.2023.168241] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023]
Abstract
Viral inclusion bodies (IBs) are potential sites of viral replication and assembly. How viral IBs form remains poorly defined. Here we describe a combined biophysical and cellular approach to identify the components necessary for IB formation during Ebola virus (EBOV) infection. We find that the eNP0VP35 complex containing Ebola nucleoprotein (eNP) and viral protein 35 (eVP35), the functional equivalents of nucleoprotein (N) and phosphoprotein (P) in non-segmented negative strand viruses (NNSVs), phase separates to form inclusion bodies. Phase separation of eNP0VP35 is reversible and modulated by ionic strength. The multivalency of eVP35, and not eNP, is also critical for phase separation. Furthermore, overexpression of an eVP35 peptide disrupts eNP0VP35 complex formation, leading to reduced frequency of IB formation and limited viral infection. Together, our results show that upon EBOV infection, the eNP0VP35 complex forms the minimum unit to drive IB formation and viral replication.
Collapse
Affiliation(s)
- Chao Wu
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| | - Nicole D Wagner
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA; Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Austin B Moyle
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | - Annie Feng
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Nitin Sharma
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Sarah H Stubbs
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Callie Donahue
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Robert A Davey
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | - Daisy W Leung
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
63
|
Abstract
Understanding the factors that shape viral evolution is critical for developing effective antiviral strategies, accurately predicting viral evolution, and preventing pandemics. One fundamental determinant of viral evolution is the interplay between viral protein biophysics and the host machineries that regulate protein folding and quality control. Most adaptive mutations in viruses are biophysically deleterious, resulting in a viral protein product with folding defects. In cells, protein folding is assisted by a dynamic system of chaperones and quality control processes known as the proteostasis network. Host proteostasis networks can determine the fates of viral proteins with biophysical defects, either by assisting with folding or by targeting them for degradation. In this review, we discuss and analyze new discoveries revealing that host proteostasis factors can profoundly shape the sequence space accessible to evolving viral proteins. We also discuss the many opportunities for research progress proffered by the proteostasis perspective on viral evolution and adaptation.
Collapse
Affiliation(s)
- Jimin Yoon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Jessica E Patrick
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - C Brandon Ogbunugafor
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Matthew D Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
64
|
Li L, Li S, Luo J, Chen T, Xi Q, Zhang Y, Sun J. The difference of intestinal microbiota composition between Lantang and Landrace newborn piglets. BMC Vet Res 2023; 19:174. [PMID: 37759242 PMCID: PMC10523759 DOI: 10.1186/s12917-023-03642-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/12/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND The early development of intestinal microbiota plays a fundamental role in host health and development. To investigate the difference in the intestinal microbial composition between Lantang and Landrace newborn piglets, we amplified and sequenced the V3-V4 region of 16 S rRNA gene in jejunal microbiota of Lantang and landrace newborn. RESULTS The findings revealed that the dominant phyla in the jejunum of Lantang piglets were Firmicutes, Actinobacteria and Bacteroidetes, while the dominant phyla of Landrace is Proteobacteria and Fusobacteria. Specifically, Corynebacterium_1, Lactobacillus, Rothia, Granulicatella, Corynebacteriales_unclassified, Corynebacterium, Globicatella and Actinomycetales_unclassified were found to be the dominant genera of Lantang group, while Clostridium_sensu_stricto_1, Escherichia-Shigella, Actinobacillus and Bifidobacterium were the dominant genera of Landrace. Based on the functional prediction of bacteria, we found that bacterial communities from Lantang samples had a significantly greater abundance pathways of fatty acid synthesis, protein synthesis, DNA replication, recombination, repair and material transport across membranes, while the carrier protein of pathogenic bacteria was more abundant in Landrace samples. CONCLUSIONS Overall, there was a tremendous difference in the early intestinal flora composition between Landang and Landrace piglets, which was related to the breed characteristics and may be one of the reasons affecting the growth characteristics. However, more further extensive studies should be included to reveal the underlying relationship between early intestinal flora composition in different breeds and pig growth characteristics.
Collapse
Affiliation(s)
- Ling Li
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Shuai Li
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Junyi Luo
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Ting Chen
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Qianyun Xi
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yongliang Zhang
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| | - Jiajie Sun
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
65
|
Takano S, Vila JCC, Miyazaki R, Sánchez Á, Bajić D. The Architecture of Metabolic Networks Constrains the Evolution of Microbial Resource Hierarchies. Mol Biol Evol 2023; 40:msad187. [PMID: 37619982 PMCID: PMC10476156 DOI: 10.1093/molbev/msad187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/18/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023] Open
Abstract
Microbial strategies for resource use are an essential determinant of their fitness in complex habitats. When facing environments with multiple nutrients, microbes often use them sequentially according to a preference hierarchy, resulting in well-known patterns of diauxic growth. In theory, the evolutionary diversification of metabolic hierarchies could represent a mechanism supporting coexistence and biodiversity by enabling temporal segregation of niches. Despite this ecologically critical role, the extent to which substrate preference hierarchies can evolve and diversify remains largely unexplored. Here, we used genome-scale metabolic modeling to systematically explore the evolution of metabolic hierarchies across a vast space of metabolic network genotypes. We find that only a limited number of metabolic hierarchies can readily evolve, corresponding to the most commonly observed hierarchies in genome-derived models. We further show how the evolution of novel hierarchies is constrained by the architecture of central metabolism, which determines both the propensity to change ranks between pairs of substrates and the effect of specific reactions on hierarchy evolution. Our analysis sheds light on the genetic and mechanistic determinants of microbial metabolic hierarchies, opening new research avenues to understand their evolution, evolvability, and ecology.
Collapse
Affiliation(s)
- Sotaro Takano
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Microbial Sciences Institute, Yale University, New Haven, CT, USA
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Jean C C Vila
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Microbial Sciences Institute, Yale University, New Haven, CT, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Ryo Miyazaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), AIST, Tokyo, Japan
| | - Álvaro Sánchez
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Microbial Sciences Institute, Yale University, New Haven, CT, USA
- Department of Microbial Biotechnology, CNB-CSIC, Campus de Cantoblanco, Madrid, Spain
| | - Djordje Bajić
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Microbial Sciences Institute, Yale University, New Haven, CT, USA
- Section of Industrial Microbiology, Department of Biotechnology, Technical University Delft, Delft, The Netherlands
| |
Collapse
|
66
|
Kovuri P, Yadav A, Sinha H. Role of genetic architecture in phenotypic plasticity. Trends Genet 2023; 39:703-714. [PMID: 37173192 DOI: 10.1016/j.tig.2023.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023]
Abstract
Phenotypic plasticity, the ability of an organism to display different phenotypes across environments, is widespread in nature. Plasticity aids survival in novel environments. Herein, we review studies from yeast that allow us to start uncovering the genetic architecture of phenotypic plasticity. Genetic variants and their interactions impact the phenotype in different environments, and distinct environments modulate the impact of genetic variants and their interactions on the phenotype. Because of this, certain hidden genetic variation is expressed in specific genetic and environmental backgrounds. A better understanding of the genetic mechanisms of phenotypic plasticity will help to determine short- and long-term responses to selection and how wide variation in disease manifestation occurs in human populations.
Collapse
Affiliation(s)
- Purnima Kovuri
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India; Centre for Integrative Biology and Systems mEdicine (IBSE), IIT Madras, Chennai, India; Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai, India
| | - Anupama Yadav
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Himanshu Sinha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India; Centre for Integrative Biology and Systems mEdicine (IBSE), IIT Madras, Chennai, India; Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai, India.
| |
Collapse
|
67
|
Alseekh S, Karakas E, Zhu F, Wijesingha Ahchige M, Fernie AR. Plant biochemical genetics in the multiomics era. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4293-4307. [PMID: 37170864 PMCID: PMC10433942 DOI: 10.1093/jxb/erad177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/09/2023] [Indexed: 05/13/2023]
Abstract
Our understanding of plant biology has been revolutionized by modern genetics and biochemistry. However, biochemical genetics can be traced back to the foundation of Mendelian genetics; indeed, one of Mendel's milestone discoveries of seven characteristics of pea plants later came to be ascribed to a mutation in a starch branching enzyme. Here, we review both current and historical strategies for the elucidation of plant metabolic pathways and the genes that encode their component enzymes and regulators. We use this historical review to discuss a range of classical genetic phenomena including epistasis, canalization, and heterosis as viewed through the lens of contemporary high-throughput data obtained via the array of approaches currently adopted in multiomics studies.
Collapse
Affiliation(s)
- Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Esra Karakas
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Feng Zhu
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070 Wuhan, China
| | | | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| |
Collapse
|
68
|
Guna A, Page KR, Replogle JM, Esantsi TK, Wang ML, Weissman JS, Voorhees RM. A dual sgRNA library design to probe genetic modifiers using genome-wide CRISPRi screens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.22.525086. [PMID: 36711738 PMCID: PMC9882262 DOI: 10.1101/2023.01.22.525086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Mapping genetic interactions is essential for determining gene function and defining novel biological pathways. We report a simple to use CRISPR interference (CRISPRi) based platform, compatible with Fluorescence Activated Cell Sorting (FACS)-based reporter screens, to query epistatic relationships at scale. This is enabled by a flexible dual-sgRNA library design that allows for the simultaneous delivery and selection of a fixed sgRNA and a second randomized guide, comprised of a genome-wide library, with a single transduction. We use this approach to identify epistatic relationships for a defined biological pathway, showing both increased sensitivity and specificity than traditional growth screening approaches.
Collapse
Affiliation(s)
- Alina Guna
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Katharine R Page
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
| | - Joseph M Replogle
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94158, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Theodore K Esantsi
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Maxine L Wang
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Jonathan S Weissman
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA,02142, USA
| | - Rebecca M Voorhees
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
| |
Collapse
|
69
|
Sun YH, Wu YL, Liao BY. Phenotypic heterogeneity in human genetic diseases: ultrasensitivity-mediated threshold effects as a unifying molecular mechanism. J Biomed Sci 2023; 30:58. [PMID: 37525275 PMCID: PMC10388531 DOI: 10.1186/s12929-023-00959-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023] Open
Abstract
Phenotypic heterogeneity is very common in genetic systems and in human diseases and has important consequences for disease diagnosis and treatment. In addition to the many genetic and non-genetic (e.g., epigenetic, environmental) factors reported to account for part of the heterogeneity, we stress the importance of stochastic fluctuation and regulatory network topology in contributing to phenotypic heterogeneity. We argue that a threshold effect is a unifying principle to explain the phenomenon; that ultrasensitivity is the molecular mechanism for this threshold effect; and discuss the three conditions for phenotypic heterogeneity to occur. We suggest that threshold effects occur not only at the cellular level, but also at the organ level. We stress the importance of context-dependence and its relationship to pleiotropy and edgetic mutations. Based on this model, we provide practical strategies to study human genetic diseases. By understanding the network mechanism for ultrasensitivity and identifying the critical factor, we may manipulate the weak spot to gently nudge the system from an ultrasensitive state to a stable non-disease state. Our analysis provides a new insight into the prevention and treatment of genetic diseases.
Collapse
Affiliation(s)
- Y Henry Sun
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Zhunan, Miaoli, Taiwan.
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
| | - Yueh-Lin Wu
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Zhunan, Miaoli, Taiwan
- Division of Nephrology, Department of Internal Medicine, Wei-Gong Memorial Hospital, Miaoli, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
| | - Ben-Yang Liao
- Institute of Population Health Sciences, National Health Research Institute, Zhunan, Miaoli, Taiwan
| |
Collapse
|
70
|
Neves-da-Rocha J, Santos-Saboya MJ, Lopes MER, Rossi A, Martinez-Rossi NM. Insights and Perspectives on the Role of Proteostasis and Heat Shock Proteins in Fungal Infections. Microorganisms 2023; 11:1878. [PMID: 37630438 PMCID: PMC10456932 DOI: 10.3390/microorganisms11081878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 08/27/2023] Open
Abstract
Fungi are a diverse group of eukaryotic organisms that infect humans, animals, and plants. To successfully colonize their hosts, pathogenic fungi must continuously adapt to the host's unique environment, e.g., changes in temperature, pH, and nutrient availability. Appropriate protein folding, assembly, and degradation are essential for maintaining cellular homeostasis and survival under stressful conditions. Therefore, the regulation of proteostasis is crucial for fungal pathogenesis. The heat shock response (HSR) is one of the most important cellular mechanisms for maintaining proteostasis. It is activated by various stresses and regulates the activity of heat shock proteins (HSPs). As molecular chaperones, HSPs participate in the proteostatic network to control cellular protein levels by affecting their conformation, location, and degradation. In recent years, a growing body of evidence has highlighted the crucial yet understudied role of stress response circuits in fungal infections. This review explores the role of protein homeostasis and HSPs in fungal pathogenicity, including their contributions to virulence and host-pathogen interactions, as well as the concerted effects between HSPs and the main proteostasis circuits in the cell. Furthermore, we discuss perspectives in the field and the potential for targeting the components of these circuits to develop novel antifungal therapies.
Collapse
Affiliation(s)
- João Neves-da-Rocha
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (M.J.S.-S.); (M.E.R.L.); (A.R.)
| | | | | | | | - Nilce M. Martinez-Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (M.J.S.-S.); (M.E.R.L.); (A.R.)
| |
Collapse
|
71
|
Patel D, Amiji H, Shropshire W, Condic N, Lermi NO, Sabha Y, John B, Hanson B, Karras GI. Ethanol Drives Evolution of Hsp90-Dependent Robustness by Redundancy in Yeast Domestication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.21.547572. [PMID: 37745611 PMCID: PMC10516021 DOI: 10.1101/2023.07.21.547572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Protein folding promotes and constrains adaptive evolution. We uncover this surprising duality in the role the protein-folding chaperone Hsp90 plays in mediating the interplay between proteome and the genome which acts to maintain the integrity of yeast metabolism in the face of proteotoxic stressors in anthropic niches. Of great industrial relevance, ethanol concentrations generated by fermentation in the making of beer and bread disrupt critical Hsp90-dependent nodes of metabolism and exert strong selective pressure for increased copy number of key genes encoding components of these nodes, yielding the classical genetic signatures of beer and bread domestication. This work establishes a mechanism of adaptive canalization in an ecology of major economic significance and highlights Hsp90-contingent variation as an important source of phantom heritability in complex traits.
Collapse
|
72
|
Acevedo S, Stewart AJ. Eco-evolutionary trade-offs in the dynamics of prion strain competition. Proc Biol Sci 2023; 290:20230905. [PMID: 37403499 PMCID: PMC10320356 DOI: 10.1098/rspb.2023.0905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/07/2023] [Indexed: 07/06/2023] Open
Abstract
Prion and prion-like molecules are a type of self-replicating aggregate protein that have been implicated in a variety of neurodegenerative diseases. Over recent decades, the molecular dynamics of prions have been characterized both empirically and through mathematical models, providing insights into the epidemiology of prion diseases and the impact of prions on the evolution of cellular processes. At the same time, a variety of evidence indicates that prions are themselves capable of a form of evolution, in which changes to their structure that impact their rate of growth or fragmentation are replicated, making such changes subject to natural selection. Here we study the role of such selection in shaping the characteristics of prions under the nucleated polymerization model (NPM). We show that fragmentation rates evolve to an evolutionary stable value which balances rapid reproduction of PrPSc aggregates with the need to produce stable polymers. We further show that this evolved fragmentation rate differs in general from the rate that optimizes transmission between cells. We find that under the NPM, prions that are both evolutionary stable and optimized for transmission have a characteristic length of three times the critical length below which they become unstable. Finally, we study the dynamics of inter-cellular competition between strains, and show that the eco-evolutionary trade-off between intra- and inter-cellular competition favours coexistence.
Collapse
Affiliation(s)
- Saul Acevedo
- Department of Biology, University of Houston, Houston, TX, USA
| | - Alexander J. Stewart
- School of Mathematics and Statistics, University of St Andrews, St Andrews KY16 9SS, UK
| |
Collapse
|
73
|
Zillig KW, FitzGerald AM, Lusardi RA, Cocherell DE, Fangue NA. Intraspecific variation among Chinook Salmon populations indicates physiological adaptation to local environmental conditions. CONSERVATION PHYSIOLOGY 2023; 11:coad044. [PMID: 37346267 PMCID: PMC10281501 DOI: 10.1093/conphys/coad044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/26/2023] [Accepted: 06/06/2023] [Indexed: 06/23/2023]
Abstract
Understanding interpopulation variation is important to predicting species responses to climate change. Recent research has revealed interpopulation variation among several species of Pacific salmonids; however, the environmental drivers of population differences remain elusive. We tested for local adaptation and countergradient variation by assessing interpopulation variation among six populations of fall-run Chinook Salmon from the western United States. Juvenile fish were reared at three temperatures (11, 16 and 20°C), and five physiological metrics were measured (routine and maximum metabolic rate, aerobic scope, growth rate and critical thermal maximum). We then tested associations between these physiological metrics and 15 environmental characteristics (e.g. rearing temperature, latitude, migration distance, etc.). Statistical associations between the five physiological metrics and 15 environmental characteristics supported our hypotheses of local adaptation. Notably, latitude was a poor predictor of population physiology. Instead, our results demonstrate that populations from warmer habitats exhibit higher thermal tolerance (i.e. critical thermal maxima), faster growth when warm acclimated and greater aerobic capacity at high temperatures. Additionally, populations with longer migrations exhibit higher metabolic capacity. However, overall metabolic capacity declined with warm acclimation, indicating that future climate change may reduce metabolic capacity, negatively affecting long-migrating populations. Linking physiological traits to environmental characteristics enables flexible, population-specific management of disparate populations in response to local conditions.
Collapse
Affiliation(s)
- Kenneth W Zillig
- Department of Wildlife, Fish and Conservation Biology, University of California, Davis, CA 95616, USA
| | - Alyssa M FitzGerald
- Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Santa Cruz, CA 95060, USA
| | - Robert A Lusardi
- Department of Wildlife, Fish and Conservation Biology, University of California, Davis, CA 95616, USA
- Center for Watershed Sciences, University of California, Davis, CA 95616, USA
| | - Dennis E Cocherell
- Department of Wildlife, Fish and Conservation Biology, University of California, Davis, CA 95616, USA
| | - Nann A Fangue
- Corresponding author: One Shields Avenue, Davis, CA 95616, USA. Tel: +1 (530) 752-4997.
| |
Collapse
|
74
|
Jiang P, Kreitman M, Reinitz J. The effect of mutational robustness on the evolvability of multicellular organisms and eukaryotic cells. J Evol Biol 2023; 36:906-924. [PMID: 37256290 PMCID: PMC10315174 DOI: 10.1111/jeb.14180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/29/2023] [Accepted: 04/18/2023] [Indexed: 06/01/2023]
Abstract
Canalization involves mutational robustness, the lack of phenotypic change as a result of genetic mutations. Given the large divergence in phenotype across species, understanding the relationship between high robustness and evolvability has been of interest to both theorists and experimentalists. Although canalization was originally proposed in the context of multicellular organisms, the effect of multicellularity and other classes of hierarchical organization on evolvability has not been considered by theoreticians. We address this issue using a Boolean population model with explicit representation of an environment in which individuals with explicit genotype and a hierarchical phenotype representing multicellularity evolve. Robustness is described by a single real number between zero and one which emerges from the genotype-phenotype map. We find that high robustness is favoured in constant environments, and lower robustness is favoured after environmental change. Multicellularity and hierarchical organization severely constrain robustness: peak evolvability occurs at an absolute level of robustness of about 0.99 compared with values of about 0.5 in a classical neutral network model. These constraints result in a sharp peak of evolvability in which the maximum is set by the fact that the fixation of adaptive mutations becomes more improbable as robustness decreases. When robustness is put under genetic control, robustness levels leading to maximum evolvability are selected for, but maximal relative fitness appears to require recombination.
Collapse
Affiliation(s)
- Pengyao Jiang
- Department of Ecology & Evolution, University of Chicago, Chicago, Illinois, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Martin Kreitman
- Department of Ecology & Evolution, University of Chicago, Chicago, Illinois, USA
- Institute for Genomics & Systems Biology, Chicago, Illinois, USA
| | - John Reinitz
- Department of Ecology & Evolution, University of Chicago, Chicago, Illinois, USA
- Institute for Genomics & Systems Biology, Chicago, Illinois, USA
- Department of Statistics, University of Chicago, Chicago, Illinois, USA
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
75
|
Duan C, Li K, Pan X, Wei Z, Xiao L. Hsp90 is a potential risk factor for ovarian cancer prognosis: an evidence of a Chinese clinical center. BMC Cancer 2023; 23:489. [PMID: 37259027 DOI: 10.1186/s12885-023-10929-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 05/07/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND The potential treatment effects of heat shock protein 90 (Hsp90) inhibitors in ovarian cancer (OC) are controversial. This research aims to investigate the relationship between the level of Hsp90 in peripheral blood and the prognosis of OC patients, as well as the clinicopathological indicators. MATERIALS AND METHODS We retrospectively collected the clinicopathological indicators of OC patients who were admitted to the Department of Obstetrics and Gynecology of the First Affiliated Hospital of Anhui Medical University from 2017 to 2022. Hsp90 level in patient blood was detected by enzyme-linked immunosorbent assay, and the correlation between Hsp90 level and OC prognosis was systematically investigated. Kaplan-Meier method was used to draw the survival curve, and the average survival time and survival rate were calculated. The log-rank test and Cox model were used for univariate survival analysis, and the Cox proportional hazards model was applied for multivariate survival analysis. Based on the TCGA dataset of OC obtained by cBioPortal, Pearson's correlation coefficients between Hsp90 level values and other mRNA expression values were calculated to further conduct bioinformatics analysis. GSEA and GSVA analysis were also conducted for gene functional enrichment. The expression of Hsp90 in OC tissues were evaluated and compared by Immunohistochemical staining. RESULTS According to the established screening criteria, 106 patients were selected. The enzyme-linked immunosorbent assay results showed that 50.94% OC patients with abnormal Hsp90 level. According to the outcome of Kaplan-Meier curves, the results revealed that the abnormal level of Hsp90 was suggested to poor prognosis (P = 0.001) of OC patients. Furthermore, the result of multivariate Cox proportional hazards regression model analysis also predicted that abnormal Hsp90 level (HR = 2.838, 95%CI = 1.139-7.069, P = 0.025) was linked to poor prognosis, which could be an independent prognostic factor for the prognosis of OC patients. Moreover, top 100 genes screened by Pearson's value associated with Hsp90, indicating that Hsp90 participated in the regulation of ATF5 target genes, PRAGC1A target genes and BANP target genes and also enriched in the metabolic processes of cell response to DNA damage stimulus, response to heat and protein folding. CONCLUSION Hsp90 level is positively associated with OC mortality and is a potential prognostic indicator of OC.
Collapse
Affiliation(s)
- Cancan Duan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, 218Th Jixi Road, Hefei, 230022, P.R. China
| | - KuoKuo Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, 218Th Jixi Road, Hefei, 230022, P.R. China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
| | - Xiaohua Pan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, 218Th Jixi Road, Hefei, 230022, P.R. China
| | - Zhaolian Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, 218Th Jixi Road, Hefei, 230022, P.R. China.
| | - Lan Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, 218Th Jixi Road, Hefei, 230022, P.R. China.
| |
Collapse
|
76
|
Hung PH, Liao CW, Ko FH, Tsai HK, Leu JY. Differential Hsp90-dependent gene expression is strain-specific and common among yeast strains. iScience 2023; 26:106635. [PMID: 37138775 PMCID: PMC10149407 DOI: 10.1016/j.isci.2023.106635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 02/21/2023] [Accepted: 04/05/2023] [Indexed: 05/05/2023] Open
Abstract
Enhanced phenotypic diversity increases a population's likelihood of surviving catastrophic conditions. Hsp90, an essential molecular chaperone and a central network hub in eukaryotes, has been observed to suppress or enhance the effects of genetic variation on phenotypic diversity in response to environmental cues. Because many Hsp90-interacting genes are involved in signaling transduction pathways and transcriptional regulation, we tested how common Hsp90-dependent differential gene expression is in natural populations. Many genes exhibited Hsp90-dependent strain-specific differential expression in five diverse yeast strains. We further identified transcription factors (TFs) potentially contributing to variable expression. We found that on Hsp90 inhibition or environmental stress, activities or abundances of Hsp90-dependent TFs varied among strains, resulting in differential strain-specific expression of their target genes, which consequently led to phenotypic diversity. We provide evidence that individual strains can readily display specific Hsp90-dependent gene expression, suggesting that the evolutionary impacts of Hsp90 are widespread in nature.
Collapse
Affiliation(s)
- Po-Hsiang Hung
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 115, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
- Institute of Information Science, Academia Sinica, Taipei 115, Taiwan
| | - Chia-Wei Liao
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Fu-Hsuan Ko
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Huai-Kuang Tsai
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 115, Taiwan
- Institute of Information Science, Academia Sinica, Taipei 115, Taiwan
- Corresponding author
| | - Jun-Yi Leu
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 115, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
- Corresponding author
| |
Collapse
|
77
|
Yoosefzadeh Najafabadi M, Hesami M, Rajcan I. Unveiling the Mysteries of Non-Mendelian Heredity in Plant Breeding. PLANTS (BASEL, SWITZERLAND) 2023; 12:1956. [PMID: 37653871 PMCID: PMC10221147 DOI: 10.3390/plants12101956] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 07/30/2023]
Abstract
Mendelian heredity is the cornerstone of plant breeding and has been used to develop new varieties of plants since the 19th century. However, there are several breeding cases, such as cytoplasmic inheritance, methylation, epigenetics, hybrid vigor, and loss of heterozygosity (LOH), where Mendelian heredity is not applicable, known as non-Mendelian heredity. This type of inheritance can be influenced by several factors besides the genetic architecture of the plant and its breeding potential. Therefore, exploring various non-Mendelian heredity mechanisms, their prevalence in plants, and the implications for plant breeding is of paramount importance to accelerate the pace of crop improvement. In this review, we examine the current understanding of non-Mendelian heredity in plants, including the mechanisms, inheritance patterns, and applications in plant breeding, provide an overview of the various forms of non-Mendelian inheritance (including epigenetic inheritance, cytoplasmic inheritance, hybrid vigor, and LOH), explore insight into the implications of non-Mendelian heredity in plant breeding, and the potential it holds for future research.
Collapse
Affiliation(s)
| | | | - Istvan Rajcan
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.Y.N.); (M.H.)
| |
Collapse
|
78
|
Melkikh AV. Mutations, sex, and genetic diversity: New arguments for partially directed evolution. Biosystems 2023; 229:104928. [PMID: 37172758 DOI: 10.1016/j.biosystems.2023.104928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/18/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
A review of the theories of the existence of sexes, genetic diversity, and the distribution of mutations among organisms shows that all these concepts are not a product of random evolution and cannot be explained within the framework of Darwinism. Most mutations are the result of the genome acting on itself. This is an organized process that is implemented very differently in different species, in different places in the genome. Because of the fact that it is not random, this process must be directed and regulated, albeit with complex and not fully understood laws. This means that an additional reason must be included in order to model such mutations during evolution. The assumption of directionality must not only be explicitly included in evolutionary theory but must also occupy a central place in it. In this study an updated model of partially directed evolution is constructed, which is capable of qualitatively explaining the indicated features of evolution. Experiments are described that can confirm or disprove the proposed model.
Collapse
|
79
|
Wijesingha Ahchige M, Fernie AR, Alseekh S. PANTOTHENATE KINASE4, LOSS OF GDU2, and TRANSPOSON PROTEIN1 affect the canalization of tomato fruit metabolism. PLANT PHYSIOLOGY 2023; 192:442-468. [PMID: 36794426 PMCID: PMC10152668 DOI: 10.1093/plphys/kiad093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 05/03/2023]
Abstract
Most studies investigating quantitative traits focus on mean levels per genotype rather than the variation between different individuals of one genotype or the variation elicited by different environments. Consequently, the genes that govern this effect are not well understood. The concept, named canalization, which describes a lack of variation, is well known in the context of developmental processes but is poorly studied for quantitative traits such as metabolism. In this study, we selected 8 putative candidate genes from previously identified canalized metabolic quantitative trait loci and created genome-edited tomato (Solanum lycopersicum) mutants of these genes for experimental validation. Most lines showed wild-type morphology, except for an ARF-like protein mutant showing aberrant phenotypes in the form of scarred fruit cuticles. In greenhouse trials with different irrigation conditions, whole-plant traits showed a general increase of their level toward the more optimal irrigation conditions, whereas most metabolic traits showed an increase toward the other end of the gradient. Mutants of a PANTOTHENATE KINASE 4, the AIRP ubiquitin gene LOSS OF GDU2, and TRANSPOSON PROTEIN 1 grown under these conditions showed an overall improved plant performance. Additional effects, on both target and other metabolites in tomato fruits, regarding the mean level at specific conditions and, ergo, the cross-environment coefficient of variation, were observed. However, variation between individuals remained unaffected. In conclusion, this study supports the idea of distinct sets of genes regulating different types of variation.
Collapse
Affiliation(s)
- Micha Wijesingha Ahchige
- Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Alisdair R Fernie
- Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
- Center of Plant Systems Biology and Biotechnology, Ruski Blvd. 139, Plovdiv 4000, Bulgaria
| | - Saleh Alseekh
- Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
- Center of Plant Systems Biology and Biotechnology, Ruski Blvd. 139, Plovdiv 4000, Bulgaria
| |
Collapse
|
80
|
Ang RML, Chen SAA, Kern AF, Xie Y, Fraser HB. Widespread epistasis among beneficial genetic variants revealed by high-throughput genome editing. CELL GENOMICS 2023; 3:100260. [PMID: 37082144 PMCID: PMC10112194 DOI: 10.1016/j.xgen.2023.100260] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/27/2022] [Accepted: 01/06/2023] [Indexed: 04/22/2023]
Abstract
The phenotypic effect of any genetic variant can be altered by variation at other genomic loci. Known as epistasis, these genetic interactions shape the genotype-phenotype map of every species, yet their origins remain poorly understood. To investigate this, we employed high-throughput genome editing to measure the fitness effects of 1,826 naturally polymorphic variants in four strains of Saccharomyces cerevisiae. About 31% of variants affect fitness, of which 24% have strain-specific fitness effects indicative of epistasis. We found that beneficial variants are more likely to exhibit genetic interactions and that these interactions can be mediated by specific traits such as flocculation ability. This work suggests that adaptive evolution will often involve trade-offs where a variant is only beneficial in some genetic backgrounds, potentially explaining why many beneficial variants remain polymorphic. In sum, we provide a framework to understand the factors influencing epistasis with single-nucleotide resolution, revealing widespread epistasis among beneficial variants.
Collapse
Affiliation(s)
- Roy Moh Lik Ang
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Shi-An A. Chen
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Alexander F. Kern
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Yihua Xie
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Hunter B. Fraser
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
81
|
Zhang H, Zhang Q, Tu J, You Q, Wang L. Dual function of protein phosphatase 5 (PPP5C): An emerging therapeutic target for drug discovery. Eur J Med Chem 2023; 254:115350. [PMID: 37054560 DOI: 10.1016/j.ejmech.2023.115350] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 04/15/2023]
Abstract
Phosphorylation of proteins is reversibly controlled by the kinases and phosphatases in many posttranslational regulation patterns. Protein phosphatase 5 (PPP5C) is a serine/threonine protein phosphatase showing dual function by simultaneously exerting dephosphorylation and co-chaperone functions. Due to this special role, PPP5C was found to participate in many signal transductions related to various diseases. Abnormal expression of PPP5C results in cancers, obesity, and Alzheimer's disease, making it a potential drug target. However, the design of small molecules targeting PPP5C is struggling due to its special monomeric enzyme form and low basal activity by a self-inhibition mechanism. Through realizing the PPP5C's dual function as phosphatase and co-chaperone, more and more small molecules were found to regulate PPP5C with a different mechanism. This review aims to provide insights into PPP5C's dual function from structure to function, which could provide efficient design strategies for small molecules targeting PPP5C as therapeutic candidates.
Collapse
Affiliation(s)
- Hengheng Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiaqi Tu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
82
|
Sabarís G, Fitz‐James MH, Cavalli G. Epigenetic inheritance in adaptive evolution. Ann N Y Acad Sci 2023. [DOI: 10.1111/nyas.14992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Affiliation(s)
- Gonzalo Sabarís
- Institute of Human Genetics, CNRS Montpellier France
- University of Montpellier Montpellier France
| | - Maximilian H. Fitz‐James
- Institute of Human Genetics, CNRS Montpellier France
- University of Montpellier Montpellier France
| | - Giacomo Cavalli
- Institute of Human Genetics, CNRS Montpellier France
- University of Montpellier Montpellier France
| |
Collapse
|
83
|
Sonowal R, Swimm AI, Cingolani F, Parulekar N, Cleverley TL, Sahoo A, Ranawade A, Chaudhuri D, Mocarski ES, Koehler H, Nitsche K, Mesiano S, Kalman D. A microbiota and dietary metabolite integrates DNA repair and cell death to regulate embryo viability and aneuploidy during aging. SCIENCE ADVANCES 2023; 9:eade8653. [PMID: 36827370 PMCID: PMC9956122 DOI: 10.1126/sciadv.ade8653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
During aging, environmental stressors and mutations along with reduced DNA repair cause germ cell aneuploidy and genome instability, which limits fertility and embryo development. Benevolent commensal microbiota and dietary plants secrete indoles, which improve healthspan and reproductive success, suggesting regulation of germ cell quality. We show that indoles prevent aneuploidy and promote DNA repair and embryo viability, which depends on age and genotoxic stress levels and affects embryo quality across generations. In young animals or with low doses of radiation, indoles promote DNA repair and embryo viability; however, in older animals or with high doses of radiation, indoles promote death of the embryo. These studies reveal a previously unknown quality control mechanism by which indole integrates DNA repair and cell death responses to preclude germ cell aneuploidy and ensure transgenerational genome integrity. Such regulation affects healthy aging, reproductive senescence, cancer, and the evolution of genetic diversity in invertebrates and vertebrates.
Collapse
Affiliation(s)
- Robert Sonowal
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Alyson I. Swimm
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Francesca Cingolani
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Noyonika Parulekar
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Tesia L. Cleverley
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Immunology and Molecular Pathogenesis Graduate Program, Emory University, Atlanta, GA, USA
| | - Anusmita Sahoo
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ayush Ranawade
- Department of Biology, Northeastern University, Boston, MA, USA
| | - Debalina Chaudhuri
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Edward S. Mocarski
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Heather Koehler
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Karolina Nitsche
- Mouse Transgenic and Gene Targeting Core, Emory University, Atlanta, GA, USA
| | - Sam Mesiano
- Department of Reproductive Biology, Case Western Reserve University and Department of Obstetrics and Gynecology, University Hospitals of Cleveland, Cleveland, OH, USA
| | - Daniel Kalman
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
84
|
Taguchi H, Koike-Takeshita A. In vivo client proteins of the chaperonin GroEL-GroES provide insight into the role of chaperones in protein evolution. Front Mol Biosci 2023; 10:1091677. [PMID: 36845542 PMCID: PMC9950496 DOI: 10.3389/fmolb.2023.1091677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
Protein folding is often hampered by intermolecular protein aggregation, which can be prevented by a variety of chaperones in the cell. Bacterial chaperonin GroEL is a ring-shaped chaperone that forms complexes with its cochaperonin GroES, creating central cavities to accommodate client proteins (also referred as substrate proteins) for folding. GroEL and GroES (GroE) are the only indispensable chaperones for bacterial viability, except for some species of Mollicutes such as Ureaplasma. To understand the role of chaperonins in the cell, one important goal of GroEL research is to identify a group of obligate GroEL/GroES clients. Recent advances revealed hundreds of in vivo GroE interactors and obligate chaperonin-dependent clients. This review summarizes the progress on the in vivo GroE client repertoire and its features, mainly for Escherichia coli GroE. Finally, we discuss the implications of the GroE clients for the chaperone-mediated buffering of protein folding and their influences on protein evolution.
Collapse
Affiliation(s)
- Hideki Taguchi
- Cell Biology Center, Tokyo Institute of Technology, Yokohama, Japan,*Correspondence: Hideki Taguchi,
| | - Ayumi Koike-Takeshita
- Department of Applied Bioscience, Kanagawa Institute of Technology, Atsugi, Kanagawa, Japan
| |
Collapse
|
85
|
Lemus T, Mason GA, Bubb KL, Alexandre CM, Queitsch C, Cuperus JT. AGO1 and HSP90 buffer different genetic variants in Arabidopsis thaliana. Genetics 2023; 223:iyac163. [PMID: 36303325 PMCID: PMC9910400 DOI: 10.1093/genetics/iyac163] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/18/2022] [Indexed: 11/14/2022] Open
Abstract
Argonaute 1 (AGO1), the principal protein component of microRNA-mediated regulation, plays a key role in plant growth and development. AGO1 physically interacts with the chaperone HSP90, which buffers cryptic genetic variation in plants and animals. We sought to determine whether genetic perturbation of AGO1 in Arabidopsis thaliana would also reveal cryptic genetic variation, and if so, whether AGO1-dependent loci overlap with those dependent on HSP90. To address these questions, we introgressed a hypomorphic mutant allele of AGO1 into a set of mapping lines derived from the commonly used Arabidopsis strains Col-0 and Ler. Although we identified several cases in which AGO1 buffered genetic variation, none of the AGO1-dependent loci overlapped with those buffered by HSP90 for the traits assayed. We focused on 1 buffered locus where AGO1 perturbation uncoupled the traits days to flowering and rosette leaf number, which are otherwise closely correlated. Using a bulk segregant approach, we identified a nonfunctional Ler hua2 mutant allele as the causal AGO1-buffered polymorphism. Introduction of a nonfunctional hua2 allele into a Col-0 ago1 mutant background recapitulated the Ler-dependent ago1 phenotype, implying that coupling of these traits involves different molecular players in these closely related strains. Taken together, our findings demonstrate that even though AGO1 and HSP90 buffer genetic variation in the same traits, these robustness regulators interact epistatically with different genetic loci, suggesting that higher-order epistasis is uncommon. Plain Language Summary Argonaute 1 (AGO1), a key player in plant development, interacts with the chaperone HSP90, which buffers environmental and genetic variation. We found that AGO1 buffers environmental and genetic variation in the same traits; however, AGO1-dependent and HSP90-dependent loci do not overlap. Detailed analysis of a buffered locus found that a nonfunctional HUA2 allele decouples days to flowering and rosette leaf number in an AGO1-dependent manner, suggesting that the AGO1-dependent buffering acts at the network level.
Collapse
Affiliation(s)
- Tzitziki Lemus
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | - Grace Alex Mason
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | - Kerry L Bubb
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | | | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | - Josh T Cuperus
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
86
|
van Oosten-Hawle P. Organismal Roles of Hsp90. Biomolecules 2023; 13:biom13020251. [PMID: 36830620 PMCID: PMC9952938 DOI: 10.3390/biom13020251] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Heat shock protein 90 (Hsp90) is a highly conserved molecular chaperone that assists in the maturation of many client proteins involved in cellular signal transduction. As a regulator of cellular signaling processes, it is vital for the maintenance of cellular proteostasis and adaptation to environmental stresses. Emerging research shows that Hsp90 function in an organism goes well beyond intracellular proteostasis. In metazoans, Hsp90, as an environmentally responsive chaperone, is involved in inter-tissue stress signaling responses that coordinate and safeguard cell nonautonomous proteostasis and organismal health. In this way, Hsp90 has the capacity to influence evolution and aging, and effect behavioral responses to facilitate tissue-defense systems that ensure organismal survival. In this review, I summarize the literature on the organismal roles of Hsp90 uncovered in multicellular organisms, from plants to invertebrates and mammals.
Collapse
Affiliation(s)
- Patricija van Oosten-Hawle
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
87
|
Dietary Methionine Level Impacts the Growth, Nutrient Metabolism, Antioxidant Capacity and Immunity of the Chinese Mitten Crab ( Eriocheir sinensis) under Chronic Heat Stress. Antioxidants (Basel) 2023; 12:antiox12010209. [PMID: 36671071 PMCID: PMC9854807 DOI: 10.3390/antiox12010209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
This study examined whether diets with high dietary methionine levels could alleviate chronic heat stress in Chinese mitten crab Eriocheir sinensis. Crabs were fed three dietary methionine levels of 0.49%, 1.29% and 2.09% for six weeks. The analyzed methionine concentration of diets was 0.48%, 1.05% and 1.72%, respectively. Crabs were fed three different supplemental concentrations of dietary methionine at 24 °C and 30 °C, respectively. The trial was divided into six groups with five replicates in each group, and 40 juvenile crabs (initial average weight 0.71 ± 0.01 g) in each replicate. During the trial, crabs were fed twice daily (the diet of 4% of the body weight was delivered daily). The effects of dietary methionine level on nutrient metabolism, antioxidant capacity, apoptosis factors and immunity were evaluated at a normal water temperature of 24 °C and high temperature of 30 °C. Feed conversion ratio decreased under chronic heat stress. Chronic heat stress increased weight gain, specific growth rate, molting frequency, and protein efficiency ratio. The survival of crabs decreased under chronic heat stress, whereas a high level of dietary methionine significantly improved survival. Chronic heat stress induced lipid accumulation and protein content reduction. The high-methionine diet decreased lipid in the body and hepatopancreas, but increased protein in the body, muscle and hepatopancreas under chronic heat stress. Simultaneously, the high dietary methionine levels mitigated oxidative stress by reducing lipid peroxidation, restoring the antioxidant enzyme system, decreasing apoptosis and activating immune function under chronic heat stress. This study suggests that supplementing 1.72% dietary methionine could alleviate the adverse effects of a high water temperature in E. sinensis farming.
Collapse
|
88
|
Lu GA, Zhang J, Zhao Y, Chen Q, Lin P, Tang T, Tang Z, Wen H, Liufu Z, Wu CI. Canalization of Phenotypes-When the Transcriptome is Constantly but Weakly Perturbed. Mol Biol Evol 2023; 40:msad005. [PMID: 36617265 PMCID: PMC9866258 DOI: 10.1093/molbev/msad005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/09/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Recent studies have increasingly pointed to microRNAs (miRNAs) as the agent of gene regulatory network (GRN) stabilization as well as developmental canalization against constant but small environmental perturbations. To analyze mild perturbations, we construct a Dicer-1 knockdown line (dcr-1 KD) in Drosophila that modestly reduces all miRNAs by, on average, ∼20%. The defining characteristic of stabilizers is that, when their capacity is compromised, GRNs do not change their short-term behaviors. Indeed, even with such broad reductions across all miRNAs, the changes in the transcriptome are very modest during development in stable environment. By comparison, broad knockdowns of other regulatory genes (esp. transcription factors) by the same method should lead to drastic changes in the GRNs. The consequence of destabilization may thus be in long-term development as postulated by the theory of canalization. Flies with modest miRNA reductions may gradually deviate from the developmental norm, resulting in late-stage failures such as shortened longevity. In the optimal culture condition, the survival to adulthood is indeed normal in the dcr-1 KD line but, importantly, adult longevity is reduced by ∼90%. When flies are stressed by high temperature, dcr-1 KD induces lethality earlier in late pupation and, as the perturbations are shifted earlier, the affected stages are shifted correspondingly. Hence, in late stages of development with deviations piling up, GRN would be increasingly in need of stabilization. In conclusion, miRNAs appear to be a solution to weak but constant environmental perturbations.
Collapse
Affiliation(s)
- Guang-An Lu
- State Key Laboratory of Biocontrol, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, China
| | - Jinning Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, China
| | - Yixin Zhao
- State Key Laboratory of Biocontrol, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, China
| | - Qingjian Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, China
| | - Pei Lin
- State Key Laboratory of Biocontrol, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, China
| | - Tian Tang
- State Key Laboratory of Biocontrol, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, China
| | - Zhixiong Tang
- State Key Laboratory of Biocontrol, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, China
| | - Haijun Wen
- State Key Laboratory of Biocontrol, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, China
| | - Zhongqi Liufu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, China
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
89
|
Lo LK, R R, Tewes LJ, Milutinović B, Müller C, Kurtz J. Immune Stimulation via Wounding Alters Chemical Profiles of Adult Tribolium castaneum. J Chem Ecol 2023; 49:46-58. [PMID: 36539674 PMCID: PMC9941273 DOI: 10.1007/s10886-022-01395-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
Group-living individuals experience immense risk of disease transmission and parasite infection. In social and in some non-social insects, disease control with immunomodulation arises not only via individual immune defenses, but also via infochemicals such as contact cues and (defensive) volatiles to mount a group-level immunity. However, little is known about whether activation of the immune system elicits changes in chemical phenotypes, which may mediate these responses. We here asked whether individual immune experience resulting from wounding or injection of heat-killed Bacillus thuringiensis (priming) leads to changes in the chemical profiles of female and male adult red flour beetles, Tribolium castaneum, which are non-social but gregarious. We analyzed insect extracts using GC-FID to study the chemical composition of (1) cuticular hydrocarbons (CHCs) as candidates for the transfer of immunity-related information between individuals via contact, and (2) stink gland secretions, with analysis of benzoquinones as main active compounds regulating 'external immunity'. Despite a pronounced sexual dimorphism in CHC profiles, wounding stimulation led to similar profile changes in males and females with increases in the proportion of methyl-branched alkanes compared to naïve beetles. While changes in the overall secretion profiles were less pronounced, absolute amounts of benzoquinones were transiently elevated in wounded compared to naïve females. Responses to priming were insignificant in CHCs and secretions. We suggest that changes in different infochemicals after wounding may mediate immune status signaling in the context of both internal and external immune responses in groups of this non-social insect, thus showing parallels to social immunity.
Collapse
Affiliation(s)
- Lai Ka Lo
- grid.5949.10000 0001 2172 9288Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, 48149 Münster, Germany
| | - Reshma R
- grid.5949.10000 0001 2172 9288Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, 48149 Münster, Germany
| | - Lisa Johanna Tewes
- grid.7491.b0000 0001 0944 9128Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Barbara Milutinović
- grid.5949.10000 0001 2172 9288Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, 48149 Münster, Germany
| | - Caroline Müller
- grid.7491.b0000 0001 0944 9128Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, 48149, Münster, Germany.
| |
Collapse
|
90
|
Developmental phenomics suggests that H3K4 monomethylation confers multi-level phenotypic robustness. Cell Rep 2022; 41:111832. [PMID: 36516782 PMCID: PMC9764455 DOI: 10.1016/j.celrep.2022.111832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/29/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
How histone modifications affect animal development remains difficult to ascertain. Despite the prevalence of histone 3 lysine 4 monomethylation (H3K4me1) on enhancers, hypomethylation appears to have minor effects on phenotype and viability. Here, we genetically reduce H3K4me1 deposition in Drosophila melanogaster and find that hypomethylation reduces transcription factor enrichment in nuclear microenvironments, disrupts gene expression, and reduces phenotypic robustness. Using a developmental phenomics approach, we find changes in morphology, metabolism, behavior, and offspring production. However, many phenotypic changes are only detected when hypomethylated flies develop outside of standard laboratory environments or with specific genetic backgrounds. Therefore, quantitative phenomics measurements can unravel how pleiotropic modulators of gene expression affect developmental robustness under conditions resembling the natural environments of a species.
Collapse
|
91
|
Ng ETH, Kinjo AR. Computational modelling of plasticity-led evolution. Biophys Rev 2022; 14:1359-1367. [PMID: 36659990 PMCID: PMC9842839 DOI: 10.1007/s12551-022-01018-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2022] Open
Abstract
Plasticity-led evolution is a form of evolution where a change in the environment induces novel traits via phenotypic plasticity, after which the novel traits are genetically accommodated over generations under the novel environment. This mode of evolution is expected to resolve the problem of gradualism (i.e., evolution by the slow accumulation of mutations that induce phenotypic variation) implied by the Modern Evolutionary Synthesis, in the face of a large environmental change. While experimental works are essential for validating that plasticity-led evolution indeed happened, we need computational models to gain insight into its underlying mechanisms and make qualitative predictions. Such computational models should include the developmental process and gene-environment interactions in addition to genetics and natural selection. We point out that gene regulatory network models can incorporate all the above notions. In this review, we highlight results from computational modelling of gene regulatory networks that consolidate the criteria of plasticity-led evolution. Since gene regulatory networks are mathematically equivalent to artificial recurrent neural networks, we also discuss their analogies and discrepancies, which may help further understand the mechanisms underlying plasticity-led evolution.
Collapse
Affiliation(s)
- Eden Tian Hwa Ng
- Department of Mathematics, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410 Brunei Darussalam
| | - Akira R. Kinjo
- Department of Mathematics, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410 Brunei Darussalam
| |
Collapse
|
92
|
Iyengar BR, Wagner A. Bacterial Hsp90 predominantly buffers but does not potentiate the phenotypic effects of deleterious mutations during fluorescent protein evolution. Genetics 2022; 222:iyac154. [PMID: 36227141 PMCID: PMC9713429 DOI: 10.1093/genetics/iyac154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/26/2022] [Indexed: 12/13/2022] Open
Abstract
Chaperones facilitate the folding of other ("client") proteins and can thus affect the adaptive evolution of these clients. Specifically, chaperones affect the phenotype of proteins via two opposing mechanisms. On the one hand, they can buffer the effects of mutations in proteins and thus help preserve an ancestral, premutation phenotype. On the other hand, they can potentiate the effects of mutations and thus enhance the phenotypic changes caused by a mutation. We study that how the bacterial Hsp90 chaperone (HtpG) affects the evolution of green fluorescent protein. To this end, we performed directed evolution of green fluorescent protein under low and high cellular concentrations of Hsp90. Specifically, we evolved green fluorescent protein under both stabilizing selection for its ancestral (green) phenotype and directional selection toward a new (cyan) phenotype. While Hsp90 did only affect the rate of adaptive evolution transiently, it did affect the phenotypic effects of mutations that occurred during adaptive evolution. Specifically, Hsp90 allowed strongly deleterious mutations to accumulate in evolving populations by buffering their effects. Our observations show that the role of a chaperone for adaptive evolution depends on the organism and the trait being studied.
Collapse
Affiliation(s)
- Bharat Ravi Iyengar
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, 1015 Lausanne, Switzerland
- Institute for Evolution and Biodiversity, Westfalian Wilhelms—University of Münster, 48149 Münster, Germany
| | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, 1015 Lausanne, Switzerland
- The Santa Fe Institute, Santa Fe, NM 87501, USA
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, 7600 Stellenbosch, South Africa
| |
Collapse
|
93
|
Posadas-García YS, Espinosa-Soto C. Early effects of gene duplication on the robustness and phenotypic variability of gene regulatory networks. BMC Bioinformatics 2022; 23:509. [DOI: 10.1186/s12859-022-05067-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
Abstract
Background
Research on gene duplication is abundant and comes from a wide range of approaches, from high-throughput analyses and experimental evolution to bioinformatics and theoretical models. Notwithstanding, a consensus is still lacking regarding evolutionary mechanisms involved in evolution through gene duplication as well as the conditions that affect them. We argue that a better understanding of evolution through gene duplication requires considering explicitly that genes do not act in isolation. It demands studying how the perturbation that gene duplication implies percolates through the web of gene interactions. Due to evolution’s contingent nature, the paths that lead to the final fate of duplicates must depend strongly on the early stages of gene duplication, before gene copies have accumulated distinctive changes.
Methods
Here we use a widely-known model of gene regulatory networks to study how gene duplication affects network behavior in early stages. Such networks comprise sets of genes that cross-regulate. They organize gene activity creating the gene expression patterns that give cells their phenotypic properties. We focus on how duplication affects two evolutionarily relevant properties of gene regulatory networks: mitigation of the effect of new mutations and access to new phenotypic variants through mutation.
Results
Among other observations, we find that those networks that are better at maintaining the original phenotype after duplication are usually also better at buffering the effect of single interaction mutations and that duplication tends to enhance further this ability. Moreover, the effect of mutations after duplication depends on both the kind of mutation and genes involved in it. We also found that those phenotypes that had easier access through mutation before duplication had higher chances of remaining accessible through new mutations after duplication.
Conclusion
Our results support that gene duplication often mitigates the impact of new mutations and that this effect is not merely due to changes in the number of genes. The work that we put forward helps to identify conditions under which gene duplication may enhance evolvability and robustness to mutations.
Collapse
|
94
|
González B, Cullen PJ. Regulation of Cdc42 protein turnover modulates the filamentous growth MAPK pathway. J Cell Biol 2022; 221:213675. [PMID: 36350310 PMCID: PMC9811999 DOI: 10.1083/jcb.202112100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/25/2022] [Accepted: 09/19/2022] [Indexed: 11/11/2022] Open
Abstract
Rho GTPases are central regulators of cell polarity and signaling. How Rho GTPases are directed to function in certain settings remains unclear. Here, we show the protein levels of the yeast Rho GTPase Cdc42p are regulated, which impacts a subset of its biological functions. Specifically, the active conformation of Cdc42p was ubiquitinated by the NEDD4 ubiquitin ligase Rsp5p and HSP40/HSP70 chaperones and turned over in the proteasome. A GTP-locked (Q61L) turnover-defective (TD) version, Cdc42pQ61L+TD, hyperactivated the MAPK pathway that regulates filamentous growth (fMAPK). Cdc42pQ61L+TD did not influence the activity of the mating pathway, which shares components with the fMAPK pathway. The fMAPK pathway adaptor, Bem4p, stabilized Cdc42p levels, which resulted in elevated fMAPK pathway signaling. Our results identify Cdc42p turnover regulation as being critical for the regulation of a MAPK pathway. The control of Rho GTPase levels by stabilization and turnover may be a general feature of signaling pathway regulation, which can result in the execution of a specific developmental program.
Collapse
Affiliation(s)
- Beatriz González
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY
| | - Paul J. Cullen
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY,Correspondence to Paul J. Cullen:
| |
Collapse
|
95
|
Lessons Learned from Two Decades of Modeling the Heat-Shock Response. Biomolecules 2022; 12:biom12111645. [DOI: 10.3390/biom12111645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
The Heat Shock Response (HSR) is a highly conserved genetic system charged with protecting the proteome in a wide range of organisms and species. Experiments since the early 1980s have elucidated key elements in these pathways and revealed a canonical mode of regulation, which relies on a titration feedback. This system has been subject to substantial modeling work, addressing questions about resilience, design and control. The compact core regulatory circuit, as well as its apparent conservation, make this system an ideal ‘hydrogen atom’ model for the regulation of stress response. Here we take a broad view of the models of the HSR, focusing on the different questions asked and the approaches taken. After 20 years of modeling work, we ask what lessons had been learned that would have been hard to discover without mathematical models. We find that while existing models lay strong foundations, many important questions that can benefit from quantitative modeling are still awaiting investigation.
Collapse
|
96
|
Mishra SJ, Reynolds TS, Merfeld T, Balch M, Peng S, Deng J, Matts R, Blagg BSJ. Structure–Activity Relationship Study of Tertiary Alcohol Hsp90α-Selective Inhibitors with Novel Binding Mode. ACS Med Chem Lett 2022; 13:1870-1878. [DOI: 10.1021/acsmedchemlett.2c00327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Sanket J. Mishra
- Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, Indiana 46556, United States
| | - Tyelor S. Reynolds
- Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, Indiana 46556, United States
| | - Taylor Merfeld
- Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, Indiana 46556, United States
| | - Maurie Balch
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246C Noble Research Center, Stillwater, Oklahoma 74078, United States
| | - Shuxia Peng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246C Noble Research Center, Stillwater, Oklahoma 74078, United States
| | - Junpeng Deng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246C Noble Research Center, Stillwater, Oklahoma 74078, United States
| | - Robert Matts
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246C Noble Research Center, Stillwater, Oklahoma 74078, United States
| | - Brian S. J. Blagg
- Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, Indiana 46556, United States
| |
Collapse
|
97
|
Persson K, Stenberg S, Tamás MJ, Warringer J. Adaptation of the yeast gene knockout collection is near-perfectly predicted by fitness and diminishing return epistasis. G3 (BETHESDA, MD.) 2022; 12:6694849. [PMID: 36083011 PMCID: PMC9635671 DOI: 10.1093/g3journal/jkac240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/29/2022] [Indexed: 05/31/2023]
Abstract
Adaptive evolution of clonally dividing cells and microbes is the ultimate cause of cancer and infectious diseases. The possibility of constraining the adaptation of cell populations, by inhibiting proteins enhancing the evolvability, has therefore attracted interest. However, our current understanding of how genes influence adaptation kinetics is limited, partly because accurately measuring adaptation for many cell populations is challenging. We used a high-throughput adaptive laboratory evolution platform to track the adaptation of >18,000 cell populations corresponding to single-gene deletion strains in the haploid yeast deletion collection. We report that the preadaptation fitness of gene knockouts near-perfectly (R2= 0.91) predicts their adaptation to arsenic, leaving at the most a marginal role for dedicated evolvability gene functions. We tracked the adaptation of another >23,000 gene knockout populations to a diverse range of selection pressures and generalized the almost perfect (R2=0.72-0.98) capacity of preadaptation fitness to predict adaptation. We also reconstructed mutations in FPS1, ASK10, and ARR3, which together account for almost all arsenic adaptation in wild-type cells, in gene deletions covering a broad fitness range and show that the predictability of arsenic adaptation can be understood as a by global epistasis, where excluding arsenic is more beneficial to arsenic unfit cells. The paucity of genes with a meaningful evolvability effect on adaptation diminishes the prospects of developing adjuvant drugs aiming to slow antimicrobial and chemotherapy resistance.
Collapse
Affiliation(s)
- Karl Persson
- Corresponding author: Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden.
| | - Simon Stenberg
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Markus J Tamás
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Jonas Warringer
- Corresponding author: Department of Chemistry and Molecular Biology, University of Gothenburg, PO Box 462, 40530 Gothenburg, Sweden.
| |
Collapse
|
98
|
Otaki JM, Sakauchi K, Taira W. The second decade of the blue butterfly in Fukushima: Untangling the ecological field effects after the Fukushima nuclear accident. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:1539-1550. [PMID: 35475314 DOI: 10.1002/ieam.4624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/24/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Many field observations of the biological effects of the Fukushima nuclear accident have been reported in the first decade after the accident. A series of observational and experimental studies have demonstrated causal adverse effects on the pale grass blue butterfly even at the low-level radiation exposure in the "field," contrary to the dosimetric view that insects are generally tolerant of radiation exposure. However, it has been demonstrated that the pale grass blue butterfly is tolerant of high oral doses of anthropogenic radioactive cesium (137 Cs) under "laboratory" conditions. This field-laboratory paradox can be explained by ecological field effects; for example, radiation stress in the field causes physiological and biochemical changes in the host plant, which then trophically affects butterfly larvae. The second decade of butterfly-based Fukushima research will be devoted to demonstrating how such adverse field effects occur. Changes in the host plant's nutritional contents likely affect butterfly physiology. The host plant may also upregulate secondary metabolites that affect herbivorous insects. The plant may be affected by changes in endophytic soil microbes in radioactively contaminated areas. If demonstrated, these results will reveal that the delicate ecological balances among the butterfly, its host plant, and soil microbes have been affected by radioactive pollution in Fukushima, which has important implications for environmental policies and human health. Integr Environ Assess Manag 2022;18:1539-1550. © SETAC.
Collapse
Affiliation(s)
- Joji M Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Ko Sakauchi
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Wataru Taira
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa, Japan
- Research Planning Office, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
99
|
Abstract
Heat-shock proteins (HSPs), or stress proteins, are abundant and highly conserved, present in all organisms and in all cells. Selected HSPs, also known as chaperones, play crucial roles in folding and unfolding of proteins, assembly of multiprotein complexes, transport and sorting of proteins into correct subcellular compartments, cell-cycle control and signaling, and protection of cells against stress and apoptosis. More recently, HSPs have been shown to be key players in immune responses: during antigen presentation as well as cross-priming, they chaperone and transfer antigenic peptides to class I and class II molecules of the major histocompatibility complexes. In addition, extracellular HSPs can stimulate and cause maturation of professional antigen-presenting cells of the immune system, such as macrophages and dendritic cells. They also chaperone several toll-like receptors, which play a central role in innate immune responses. HSPs constitute a large family of proteins that are often classified based on their molecular weight as Hsp10, Hsp40, Hsp60, Hsp70, Hsp90, etc. This unit contains a table that lists common HSPs and summarizes their characteristics including (a) name, (b) subcellular localization, (c) known function, (d) chromosome assignment, (e) brief comments, and (f) references. © 2022 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Adam T Hagymasi
- Department of Immunology and Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Joseph P Dempsey
- Department of Immunology and Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Pramod K Srivastava
- Department of Immunology and Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, Connecticut
| |
Collapse
|
100
|
Levis NA, McKay DJ, Pfennig DW. Disentangling the developmental origins of a novel phenotype: enhancement versus reversal of environmentally induced gene expression. Proc Biol Sci 2022; 289:20221764. [PMID: 36285495 PMCID: PMC9597403 DOI: 10.1098/rspb.2022.1764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/03/2022] [Indexed: 11/12/2022] Open
Abstract
Increasing evidence suggests that many novel traits might have originated via plasticity-led evolution (PLE). Yet, little is known of the developmental processes that underpin PLE, especially in its early stages. One such process is 'phenotypic accommodation', which occurs when, in response to a change in the environment, an organism experiences adjustments across variable parts of its phenotype that improve its fitness. Here, we asked if environmentally induced changes in gene expression are enhanced or reversed during phenotypic accommodation of a novel, complex phenotype in spadefoot toad tadpoles (Spea multiplicata). More genes than expected were affected by both the environment and phenotypic accommodation in the liver and brain. However, although phenotypic accommodation primarily reversed environmentally induced changes in gene expression in liver tissue, it enhanced these changes in brain tissue. Thus, depending on the tissue, phenotypic accommodation may either minimize functional disruption via reversal of gene expression patterns or promote novelty via enhancement of existing expression patterns. Our study thereby provides insights into the developmental origins of a novel phenotype and the incipient stages of PLE.
Collapse
Affiliation(s)
- Nicholas A. Levis
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Daniel J. McKay
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - David W. Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|