51
|
Yamada K, Ono M, Perkins ND, Rocha S, Lamond AI. Identification and functional characterization of FMN2, a regulator of the cyclin-dependent kinase inhibitor p21. Mol Cell 2013; 49:922-33. [PMID: 23375502 PMCID: PMC3594747 DOI: 10.1016/j.molcel.2012.12.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 10/17/2012] [Accepted: 12/26/2012] [Indexed: 01/06/2023]
Abstract
The ARF tumor suppressor is a central component of the cellular defense against oncogene activation in mammals. p14ARF activates p53 by binding and inhibiting HDM2, resulting, inter alia, in increased transcription and expression of the cyclin-dependent kinase inhibitor p21 and consequent cell-cycle arrest. We analyzed the effect of p14ARF induction on nucleolar protein dynamics using SILAC mass spectrometry and have identified the human Formin-2 (FMN2) protein as a component of the p14ARF tumor suppressor pathway. We show that FMN2 is increased upon p14ARF induction at both the mRNA and the protein level via a NF-κB-dependent mechanism that is independent of p53. FMN2 enhances expression of the cell-cycle inhibitor p21 by preventing its degradation. FMN2 is also induced by activation of other oncogenes, hypoxia, and DNA damage. These results identify FMN2 as a crucial component in the regulation of p21 and consequent oncogene/stress-induced cell-cycle arrest in human cells.
Collapse
Affiliation(s)
- Kayo Yamada
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, UK
| | | | | | | | | |
Collapse
|
52
|
Dreidax D, Gogolin S, Schroeder C, Muth D, Brueckner LM, Hess EM, Zapatka M, Theißen J, Fischer M, Ehemann V, Schwab M, Savelyeva L, Westermann F. Low p14ARF expression in neuroblastoma cells is associated with repressed histone mark status, and enforced expression induces growth arrest and apoptosis. Hum Mol Genet 2013; 22:1735-45. [PMID: 23343716 DOI: 10.1093/hmg/ddt020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The TP53 tumor suppressor pathway is abrogated by TP53 mutations in the majority of human cancers. Increased levels of wild-type TP53 in aggressive neuroblastomas appear paradox but are tolerated by tumor cells due to co-activation of the TP53 ubiquitin ligase, MDM2. The role of the MDM2 antagonist, p14(ARF), in controlling the TP53-MDM2 balance in neuroblastoma is unresolved. In the present study, we show that conditional p14(ARF) expression substantially suppresses viability, clonogenicity and anchorage-independent growth in p14(ARF)-deficient or MYCN-amplified neuroblastoma cell lines. Furthermore, ectopic 14(ARF) expression induced accumulation of cells in the G1 phase and apoptosis, which was paralleled by accumulation of TP53 and its targets. Comparative genomic hybridization analysis of 193 primary neuroblastomas detected one homozygous deletion of CDKN2A (encoding both p14(ARF) and p16(INK4A)) and heterozygous loss of CDKN2A in 22% of tumors. Co-expression analysis of p14(ARF) and its transactivator, E2F1, in a set of 68 primary tumors revealed only a weak correlation, suggesting that further regulatory mechanisms govern p14(ARF) expression in neuroblastomas. Intriguingly, analyses utilizing chromatin immunoprecipitation revealed different histone mark-defined epigenetic activity states of p14(ARF) in neuroblastoma cell lines that correlated with endogenous p14(ARF) expression but not with episomal p14(ARF) promoter reporter activity, indicating that the native chromatin context serves to epigenetically repress p14(ARF) in neuroblastoma cells. Collectively, the data pinpoint p14(ARF) as a critical factor for efficient TP53 response in neuroblastoma cells and assign p14(ARF) as a neuroblastoma suppressor candidate that is impaired by genomic loss and epigenetic repression.
Collapse
Affiliation(s)
- Daniel Dreidax
- Division of Tumor Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Vivo M, Ranieri M, Sansone F, Santoriello C, Calogero RA, Calabrò V, Pollice A, La Mantia G. Mimicking p14ARF phosphorylation influences its ability to restrain cell proliferation. PLoS One 2013; 8:e53631. [PMID: 23308265 PMCID: PMC3538741 DOI: 10.1371/journal.pone.0053631] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 12/03/2012] [Indexed: 11/29/2022] Open
Abstract
The INK4a/ARF locus on the short arm of chromosome 9 is one of the most frequently altered loci in human cancer. It is generally accepted that ARF is involved in oncogenic checkpoint pathways by sensitizing incipient cancer cells to undergo growth arrest or apoptosis through both p53-dependent and independent pathways. While intensive studies have been focused on ARF activation at the transcriptional level, only recently mechanisms governing ARF turnover have been identified. Here, we show for the first time that p14ARF is a PKC target. Prediction analysis showed many potential phosphorylation sites in PKC consensus sequences within ARF protein, and, among them, the threonine at position 8 was the most conserved. Substitution of this threonine influences both ARF stability and localization. Furthermore, a phosphomimetic ARF mutation reduces the ability to arrest cell growth although the ability to bind MDM2 and stabilize p53 result unaffected. Thus we propose that phosphorylation of ARF in both immortalized and tumor cell lines could be a mechanism to escape ARF surveillance following proliferative and oncogenic stress.
Collapse
Affiliation(s)
- Maria Vivo
- Department of Structural and Functional Biology, University of Naples “Federico II”, Naples, Italy
- * E-mail: (MV); (GLM)
| | - Michela Ranieri
- Department of Structural and Functional Biology, University of Naples “Federico II”, Naples, Italy
| | - Federica Sansone
- Department of Structural and Functional Biology, University of Naples “Federico II”, Naples, Italy
| | - Cristina Santoriello
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | | | - Viola Calabrò
- Department of Structural and Functional Biology, University of Naples “Federico II”, Naples, Italy
| | - Alessandra Pollice
- Department of Structural and Functional Biology, University of Naples “Federico II”, Naples, Italy
| | - Girolama La Mantia
- Department of Structural and Functional Biology, University of Naples “Federico II”, Naples, Italy
- * E-mail: (MV); (GLM)
| |
Collapse
|
54
|
Shi D, Gu W. Dual Roles of MDM2 in the Regulation of p53: Ubiquitination Dependent and Ubiquitination Independent Mechanisms of MDM2 Repression of p53 Activity. Genes Cancer 2012; 3:240-8. [PMID: 23150757 DOI: 10.1177/1947601912455199] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MDM2 oncogenic protein is the principal cellular antagonist of the p53 tumor suppresser gene. p53 activity needs exquisite control to elicit appropriate responses to differential cellular stress conditions. p53 becomes stabilized and active upon various types of stresses. However, too much p53 is not beneficial to cells and causes lethality. At the steady state, p53 activity needs to be leashed for cell survival. Early studies suggested that the MDM2 oncoprotein negatively regulates p53 activity through the induction of p53 protein degradation. MDM2 serves as an E3 ubiquitin ligase of p53; it catalyzes polyubiquitination and subsequently induces proteasome degradation to downregulate p53 protein level. However, the mechanism by which MDM2 represses p53 is not a single mode. Emerging evidence reveals another cellular location of MDM2-p53 interaction. MDM2 is recruited to chromatin, specifically the p53 responsive promoter regions, in a p53 dependent manner. MDM2 is proposed to directly inhibit p53 transactivity at chromatin. This article provides an overview of the mechanism by which p53 is repressed by MDM2 in both ubiquitination dependent and ubiquitination independent pathways.
Collapse
Affiliation(s)
- Dingding Shi
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | | |
Collapse
|
55
|
Holmberg Olausson K, Nistér M, Lindström MS. p53 -Dependent and -Independent Nucleolar Stress Responses. Cells 2012; 1:774-98. [PMID: 24710530 PMCID: PMC3901145 DOI: 10.3390/cells1040774] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 09/28/2012] [Accepted: 10/01/2012] [Indexed: 12/27/2022] Open
Abstract
The nucleolus has emerged as a cellular stress sensor and key regulator of p53-dependent and -independent stress responses. A variety of abnormal metabolic conditions, cytotoxic compounds, and physical insults induce alterations in nucleolar structure and function, a situation known as nucleolar or ribosomal stress. Ribosomal proteins, including RPL11 and RPL5, become increasingly bound to the p53 regulatory protein MDM2 following nucleolar stress. Ribosomal protein binding to MDM2 blocks its E3 ligase function leading to stabilization and activation of p53. In this review we focus on a number of novel regulators of the RPL5/RPL11-MDM2-p53 complex including PICT1 (GLTSCR2), MYBBP1A, PML and NEDD8. p53-independent pathways mediating the nucleolar stress response are also emerging and in particular the negative control that RPL11 exerts on Myc oncoprotein is of importance, given the role of Myc as a master regulator of ribosome biogenesis. We also briefly discuss the potential of chemotherapeutic drugs that specifically target RNA polymerase I to induce nucleolar stress.
Collapse
Affiliation(s)
- Karl Holmberg Olausson
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska R8:05, Karolinska University Hospital in Solna, SE-17176, Stockholm, Sweden.
| | - Monica Nistér
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska R8:05, Karolinska University Hospital in Solna, SE-17176, Stockholm, Sweden.
| | - Mikael S Lindström
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska R8:05, Karolinska University Hospital in Solna, SE-17176, Stockholm, Sweden.
| |
Collapse
|
56
|
Li Z, Hou J, Sun L, Wen T, Wang L, Zhao X, Xie Q, Zhang SQ. NMI mediates transcription-independent ARF regulation in response to cellular stresses. Mol Biol Cell 2012; 23:4635-46. [PMID: 23034180 PMCID: PMC3510024 DOI: 10.1091/mbc.e12-04-0304] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
ETOC: NMI is a novel ARF-interacting protein identified in a yeast two-hybrid screen. NMI inhibits ULF-induced ubiquitin degradation of ARF protein. It mediates transcription-independent ARF regulation and is required for the stabilization and up-regulation of ARF in response to cellular stresses. The ARF tumor suppressor is a product of the INK4a/ARF locus, which is frequently mutated in human cancer. The expression of ARF is up-regulated in response to certain types of DNA damage, oncogene activation, and interferon stimuli. Through interaction with the p53 negative regulator MDM2, ARF controls a well-described p53/MDM2-dependent checkpoint. However, the mechanism of ARF induction is poorly understood. Using a yeast two-hybrid screen, we identify a novel ARF-interacting protein, N-Myc and STATs interactor (NMI). Previously, NMI was known to be a c-Myc–interacting protein. Here we demonstrate that through competitive binding to the ARF ubiquitin E3 ligase (ubiquitin ligase for ARF [ULF]), NMI protects ARF from ULF-mediated ubiquitin degradation. In response to cellular stresses, NMI is induced, and a fraction of NMI is translocated to the nucleus to stabilize ARF. Thus our work reveals a novel NMI-mediated, transcription-independent ARF induction pathway in response to cellular stresses.
Collapse
Affiliation(s)
- Zengpeng Li
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Lessard F, Stefanovsky V, Tremblay MG, Moss T. The cellular abundance of the essential transcription termination factor TTF-I regulates ribosome biogenesis and is determined by MDM2 ubiquitinylation. Nucleic Acids Res 2012; 40:5357-67. [PMID: 22383580 PMCID: PMC3384320 DOI: 10.1093/nar/gks198] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The ARF tumour suppressor stabilizes p53 by negatively regulating the E3 ubiquitin ligase MDM2 to promote cell cycle arrest and cell death. However, ARF is also able to arrest cell proliferation by inhibiting ribosome biogenesis. In greater part this is achieved by targeting the transcription termination factor I (TTF-I) for nucleolar export, leading to an inhibition of both ribosomal RNA synthesis and processing. We now show that in the absence of ARF, TTF-I is ubiquitinylated by MDM2. MDM2 interacts directly with TTF-I and regulates its cellular abundance by targeting it for degradation by the proteasome. Enhanced TTF-I levels inhibit ribosome biogenesis by suppressing ribosomal RNA synthesis and processing, strongly suggesting that exact TTF-I levels are critical for efficient ribosome biogenesis. We further show that concomitant with its ability to displace TTF-I from the nucleolus, ARF inhibits MDM2 ubiquitinylation of TTF-I by competitively binding to a site overlapping the MDM2 interaction site. Thus, both the sub-nuclear localization and the abundance of TTF-I are key regulators of ribosome biogenesis.
Collapse
Affiliation(s)
- Frédéric Lessard
- Cancer Research Centre and Department of Molecular Biology, Medical Biochemistry and Pathology of Laval University, CHUQ Research Centre, Pavillon St Patrick, 9 rue McMahon, Québec, G1R 3S3 Québec, Canada
| | | | | | | |
Collapse
|
58
|
Boddapati N, Anbarasu K, Suryaraja R, Tendulkar AV, Mahalingam S. Subcellular distribution of the human putative nucleolar GTPase GNL1 is regulated by a novel arginine/lysine-rich domain and a GTP binding domain in a cell cycle-dependent manner. J Mol Biol 2012; 416:346-66. [PMID: 22244851 DOI: 10.1016/j.jmb.2011.12.066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 12/21/2011] [Accepted: 12/30/2011] [Indexed: 12/17/2022]
Abstract
GNL1, a putative nucleolar GTPase, belongs to the MMR1-HSR1 family of large GTPases that are emerging as crucial coordinators of signaling cascades in different cellular compartments. Members of this family share very closely related G-domains, but the signals and pathways regulating their subcellular localization with respect to cell growth remain unknown. To understand the nuclear transport mechanism of GNL1, we have identified a novel arginine/lysine-rich nucleolar localization signal in the NH(2)-terminus that is shown to translocate GNL1 and a heterologous protein to the nucleus/nucleolus in a pathway that is independent of importin-α and importin-β. In addition, the present investigation provided evidence that GNL1 localized to the nucleus and the nucleolus only in G2 stage, in contrast to its cytoplasmic localization in the G1 and S phases of the cell cycle. Using heterokaryon assay, we have demonstrated that GNL1 shuttles between the nucleus and the cytoplasm and that the motif between amino acids 201 and 225 is essential for its export from the nucleus by a signal-mediated CRM1-independent pathway. Alanine-scanning mutagenesis of conserved residues within G-domains suggests that the G2 motif is critical for guanine nucleotide triphosphate (GTP) binding of GNL1 and further showed that nucleolar retention of GNL1 is regulated by a GTP-gating-mediated mechanism. Expression of wild-type GNL1 promotes G2/M transition, in contrast to the G-domain mutant (G2m), which fails to localize to the nucleolus. These data suggest that nucleolar translocation during G2 phase may be critical for faster M-phase transition during cell proliferation. Replacement of conserved residues within the G5 motif alters the stability of GNL1 without changing GTP binding activity. Finally, our data suggest that ongoing transcription is essential for the efficient localization of GNL1 to the nucleolus. Overall, the results reported here demonstrate that multiple mechanisms are involved in the translocation of GNL1 to the nucleolus in a cell cycle-dependent manner to regulate cell growth and proliferation.
Collapse
Affiliation(s)
- Neelima Boddapati
- Laboratory of Molecular Virology and Cell Biology, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600 036, India
| | | | | | | | | |
Collapse
|
59
|
Abstract
The tumour suppressor ARF (alternative reading frame) is one of the most important oncogenic stress sensors. ARF provides an 'oncogenic checkpoint' function through both p53-dependent and p53-independent mechanisms. In the present study, we demonstrate a novel p53-independent interaction between p14(ARF) and the adenovirus oncoprotein E1A. p14(ARF) inhibits E1A transcriptional function and promotes ubiquitination-dependent degradation of E1A. p14(ARF) overexpression relocalizes E1A into the nucleolus and inhibits E1A-induced cellular DNA replication independent of p53. Knockdown of endogenous p14(ARF) increases E1A transactivation. In addition, E1A can competitively inhibit ARF-Mdm2 (murine double minute 2) complex formation. These results identify a novel binding partner of p14(ARF) and reveal a mutually inhibitory interaction between p14(ARF) and E1A. We speculate that the ARF-E1A interaction may represent an additional host defence mechanism to limit viral replication. Alternatively, the interaction may allow adenovirus to sense the functional state of p53 in host cells, and fine-tune its own replication activity to prevent the triggering of a detrimental host response.
Collapse
|
60
|
Colombo E, Alcalay M, Pelicci PG. Nucleophosmin and its complex network: a possible therapeutic target in hematological diseases. Oncogene 2011; 30:2595-609. [PMID: 21278791 DOI: 10.1038/onc.2010.646] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nucleophosmin (NPM, also known as B23, numatrin or NO38) is a ubiquitously expressed phosphoprotein belonging to the nucleoplasmin family of chaperones. NPM is mainly localized in the nucleolus where it exerts many of its functions, but a proportion of the protein continuously shuttles between the nucleus and the cytoplasm. A growing number of cellular proteins have been described as physical interactors of NPM, and consequently, NPM is thought to have a relevant role in diverse cellular functions, including ribosome biogenesis, centrosome duplication, DNA repair and response to stress. NPM has been implicated in the pathogenesis of several human malignancies and intriguingly, it has been described both as an activating oncogene and a tumor suppressor, depending on cell type and protein levels. In fact, increased NPM expression is associated with different types of solid tumors whereas an impairment of NPM function is characteristic of a subgroup of hematolologic malignancies. A large body of experimental evidence links the deregulation of specific NPM functions to cellular transformation, yet the molecular mechanisms through which NPM contributes to tumorigenesis remain elusive. In this review, we have summarized current knowledge concerning NPM functions, and attempted to interpret its multifaceted and sometimes apparently contradictory activities in the context of both normal cellular homeostasis and neoplastic transformation.
Collapse
Affiliation(s)
- E Colombo
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy.
| | | | | |
Collapse
|
61
|
Solodushko V, Alvarez DF, Viator R, Messerall T, Fouty B. Heterogeneous activation of p19Arf in pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2011; 300:L642-7. [PMID: 21216978 DOI: 10.1152/ajplung.00117.2010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
p19(ARF) is a tumor suppressor that leads to cell cycle arrest or apoptosis by stabilizing p53. p19(ARF) is not critical for cell cycle regulation under normal conditions, but loss of p19(ARF) is seen in many human cancers, and a murine p19(Arf) knockout model leads to malignant proliferation and tumor formation; its role in controlling nonmalignant proliferation is less defined. To examine this question, pulmonary artery smooth muscle cells (PASMC) were expanded in culture from a transgenic mouse in which the coding sequence of the p19(Arf) gene was replaced with a cDNA encoding green fluorescent protein (GFP), leaving the promoter intact. During the first 10 days in culture, wild-type, heterozygous, and knockout PASMC grew similarly, but, by day 14, p19(Arf)-deficient PASMC proliferated faster than p19(Arf) heterozygous or wild-type cells; reexpression of p19(Arf) prevented the increased proliferation. This time course correlated with activation of the p19(Arf) promoter, as indicated by the appearance of GFP positivity in p19(Arf)-deficient PASMC. By day 42, ∼80% of p19(Arf)-deficient cells were GFP-positive. When GFP-positive, p19(Arf)-deficient cells were sorted and subcultured separately, they remained GFP-positive, indicating that once cells had activated the p19(Arf) promoter, the promoter remained active in those and all subsequent daughter cells. In contrast, GFP-negative p19(Arf)-deficient cells gave rise to a combination of GFP-positive and -negative daughter cells over time. These results suggest that a subpopulation of PASMC are resistant to the signals that activate the p19(Arf) promoter, an event that would normally target these cells for arrest or cell death.
Collapse
Affiliation(s)
- Victor Solodushko
- Center for Lung Biology and Department of Pharmacology, University of South Alabama School of Medicine, Mobile, Alabama 36688, USA
| | | | | | | | | |
Collapse
|
62
|
Llanos S, Serrano M. Depletion of ribosomal protein L37 occurs in response to DNA damage and activates p53 through the L11/MDM2 pathway. Cell Cycle 2010; 9:4005-12. [PMID: 20935493 DOI: 10.4161/cc.9.19.13299] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Perturbation of ribosomal biogenesis has recently emerged as a relevant p53-activating pathway. This pathway can be initiated by depletion of certain ribosomal proteins, which is followed by the binding and inhibition of MDM2 by a different subset of ribosomal proteins that includes L11. Here, we report that depletion of L37 leads to cell cycle arrest in a L11- and p53-dependent manner. DNA damage can initiate ribosomal stress, although little is known about the mechanisms involved. We have found that some genotoxic insults, namely, UV light and cisplatin, lead to proteasomal degradation of L37 in the nucleoplasm and to the ensuing L11-dependent stabilization of p53. Moreover, ectopic L37 overexpression can attenuate the DNA damage response mediated by p53. These results support the concept that DNA damage-induced proteasomal degradation of L37 constitutes a mechanistic link between DNA damage and the ribosomal stress pathway, and is a relevant contributing signaling pathway for the activation of p53 in response to DNA damage.
Collapse
Affiliation(s)
- Susana Llanos
- Tumor Suppression Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain.
| | | |
Collapse
|
63
|
Shcherbik N, Pestov DG. Ubiquitin and ubiquitin-like proteins in the nucleolus: multitasking tools for a ribosome factory. Genes Cancer 2010; 1:681-689. [PMID: 21113400 DOI: 10.1177/1947601910381382] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Synthesis of new ribosomes is an essential process upregulated during cell growth and proliferation. Here, we review our current understanding of the role that ubiquitin and ubiquitin-like proteins (UBLs) play in ribosome biogenesis, with a focus on mammalian cells. One important function of the nuclear ubiquitin-proteasome system is to control the supply of ribosomal proteins for the assembly of new ribosomal subunits in the nucleolus. Mutations in ribosomal proteins or ribosome assembly factors, stress, and many anticancer drugs have been shown to disrupt normal ribosome biogenesis, triggering a p53-dependent response. We discuss how p53 can be activated by the aberrant ribosome formation, centering on the current models of the interaction between ribosomal proteins released from the nucleolus and the ubiquitin ligase Mdm2. Recent studies also revealed multiple ubiquitin- and UBL-conjugated forms of nucleolar proteins with largely unknown functions, indicating that many new details about the role of these modifications in the nucleolus await to be discovered.
Collapse
Affiliation(s)
- Natalia Shcherbik
- Department of Cell Biology, University of Medicine and Dentistry of New Jersey, Stratford, NJ 08084
| | | |
Collapse
|
64
|
Chen D, Yoon JB, Gu W. Reactivating the ARF-p53 axis in AML cells by targeting ULF. Cell Cycle 2010; 9:2946-51. [PMID: 20699639 DOI: 10.4161/cc.9.15.12355] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The tumor suppressor ARF plays an essential role in the cellular response to oncogenic stress mainly through activation of p53. Nucleophosmin (NPM), a multifunctional protein, forms a stable protein complex with ARF in the nucleolus and protects ARF from the proteasome-mediated degradation. Notably, NPM is mutated in about one third of acute myeloid leukaemia (AML) patients and these mutations lead to aberrant cytoplasmic dislocation of nucleophosmin (NPM-c). Cytoplasmic NPM mutants lose their abilities to retain ARF in the nucleolus and fail to stabilize ARF. Thus, activation of the ARF-p53 axis is significantly compromised in these AML cells. We have recently identified the ubiquitin ligase of ARF (ULF) as a key factor that controls ARF turnover in human cells. Here, we found that the steady levels of both ARF and p53 are very low in human acute myeloid leukaemia OCI-AML3 cells expressing cytoplamsic dislocated nucleophosmin (NPM-c). As expected, ARF is very unstable and rapidly degraded by proteasome. Nevertheless, ULF knockdown stabilizes ARF and reactivates p53 responses in these AML cells. These results further demonstrate that ULF is a bona fide E3 ligase for ARF and also suggest that ULF is an important target for activating the ARF-p53 axis in human AML cells.
Collapse
Affiliation(s)
- Delin Chen
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | | | | |
Collapse
|
65
|
Ozenne P, Eymin B, Brambilla E, Gazzeri S. The ARF tumor suppressor: Structure, functions and status in cancer. Int J Cancer 2010; 127:2239-47. [DOI: 10.1002/ijc.25511] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
66
|
Lessard F, Morin F, Ivanchuk S, Langlois F, Stefanovsky V, Rutka J, Moss T. The ARF Tumor Suppressor Controls Ribosome Biogenesis by Regulating the RNA Polymerase I Transcription Factor TTF-I. Mol Cell 2010; 38:539-50. [DOI: 10.1016/j.molcel.2010.03.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 02/24/2010] [Accepted: 03/25/2010] [Indexed: 11/29/2022]
|
67
|
Abstract
The tumor suppressor p53 is a multifunctional, highly regulated, and promoter-specific transcriptional factor that is uniquely sensitive to DNA damage and cellular stress signaling. The mechanisms by which p53 directs a damaged cell down either a cell growth arrest or an apoptotic pathway remain poorly understood. Evidence suggests that the in vivo functions of p53 seem to balance the cell-fate choice with the type and severity of damage that occurs. The concept of antirepression, or inhibition of factors that normally keep p53 at bay, may help explain the physiological mechanisms for p53 activation. These factors also provide novel chemotherapeutic targets for the reactivation of p53 in tumors harboring a wild-type copy of the gene.
Collapse
|
68
|
Kumari G, Singhal P, Suryaraja R, Mahalingam S. Functional Interaction of the Ras Effector RASSF5 with the Tyrosine Kinase Lck: Critical Role in Nucleocytoplasmic Transport and Cell Cycle Regulation. J Mol Biol 2010; 397:89-109. [DOI: 10.1016/j.jmb.2010.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 12/28/2009] [Accepted: 01/05/2010] [Indexed: 10/20/2022]
|
69
|
Xirodimas DP, Scheffner M. Ubiquitin Family Members in the Regulation of the Tumor Suppressor p53. Subcell Biochem 2010; 54:116-135. [PMID: 21222278 DOI: 10.1007/978-1-4419-6676-6_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
It is commonly assumed that the p53 tumor suppressor pathway is deregulated in most if not all human cancers. Thus, the past two decades have witnessed intense efforts to identify and characterize the growth-suppressive properties of p53 as well as the proteins and mechanisms involved in regulating p53 activity. In retrospect, it may therefore not be surprising that p53 was one of the very first mammalian proteins that were identified as physiologically relevant substrate proteins of the ubiquitin-proteasome system. Since then, plenty of evidence has been accumulated that p53 is in part controlled by canonical (i.e., resulting in proteasome-mediated degradation) and noncanonical (i.e., nonproteolytic) ubiquitination and by modification with the ubiquitin family members SUMO-1 and NED 8. In this chapter, we will largely neglect the plethora of mechanisms that have been reported to be involved in the regulation of p53 ubiquitination but will focus on the enzymes and components of the respective conjugation systems that have been implicated in p53 modification and how the respective modifications (ubiquitin, SUMO-1, NED 8) may impinge on p53 activity.
Collapse
Affiliation(s)
- Dimitris P Xirodimas
- Division of Gene Expression and Regulation, The Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | | |
Collapse
|
70
|
Bloethner S, Scherer D, Drechsel M, Hemminki K, Kumar R. Malignant Melanoma–a Genetic Overview. ACTAS DERMO-SIFILIOGRAFICAS 2009. [DOI: 10.1016/s0001-7310(09)73167-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
71
|
Kumari G, Mahalingam S. Extracellular signal-regulated kinase 2 (ERK-2) mediated phosphorylation regulates nucleo-cytoplasmic shuttling and cell growth control of Ras-associated tumor suppressor protein, RASSF2. Exp Cell Res 2009; 315:2775-90. [PMID: 19555684 DOI: 10.1016/j.yexcr.2009.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 06/16/2009] [Accepted: 06/16/2009] [Indexed: 11/18/2022]
Abstract
Ras GTPase controls the normal cell growth through binding with an array of effector molecules, such as Raf and PI3-kinase in a GTP-dependent manner. RASSF2, a member of the Ras association domain family, is known to be involved in the suppression of cell growth and is frequently down-regulated in various tumor tissues by promoter hypermethylation. In the present study, we demonstrate that RASSF2 shuttles between nucleus and cytoplasm by a signal-mediated process and its export from the nucleus is sensitive to leptomycin B. Amino acids between 240 to 260 in the C-terminus of RASSF2 harbor a functional nuclear export signal (NES), which is necessary and sufficient for efficient export of RASSF2 from the nucleus. Substitution of conserved Ile254, Val257 and Leu259 within the minimal NES impaired RASSF2 export from the nucleus. In addition, wild type but not the nuclear export defective RASSF2 mutant interacts with export receptor, CRM-1 and exported from the nucleus. Surprisingly, we observed nucleolar localization for the nuclear export defective mutant suggesting the possibility that RASSF2 may localize in different cellular compartments transiently in a cell cycle dependent manner and the observed nuclear localization for wild type protein may be due to faster export kinetics from the nucleolus. Furthermore, our data suggest that RASSF2 is specifically phosphorylated by MAPK/ERK-2 and the inhibitors of MAPK pathway impair the phosphorylation and subsequently block the export of RASSF2 from the nucleus. These data clearly suggest that ERK-2 mediated phosphorylation plays an important role in regulating the nucleo-cytoplasmic shuttling of RASSF2. Interestingly, nuclear import defective mutant of RASSF2 failed to induce cell cycle arrest at G1/S phase and apoptosis suggesting that RASSF2 regulates cell growth in a nuclear localization dependent manner. Collectively, these data provided evidence for the first time that MAPK/ERK-2 mediated phosphorylation regulates nucleo-cytoplasmic transport and cell growth arrest activity of RASSF2. Taken together, the present study suggests that active transport between nucleus and cytoplasm may constitute an important regulatory mechanism for RASSF2 function.
Collapse
Affiliation(s)
- Gita Kumari
- Laboratory of Molecular Virology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500076, India
| | | |
Collapse
|
72
|
Van Maerken T, Vandesompele J, Rihani A, De Paepe A, Speleman F. Escape from p53-mediated tumor surveillance in neuroblastoma: switching off the p14(ARF)-MDM2-p53 axis. Cell Death Differ 2009; 16:1563-72. [PMID: 19779493 DOI: 10.1038/cdd.2009.138] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A primary failsafe program against unrestrained proliferation and oncogenesis is provided by the p53 tumor suppressor protein, inactivation of which is considered as a hallmark of cancer. Intriguingly, mutations of the TP53 gene are rarely encountered in neuroblastoma tumors, suggesting that alternative p53-inactivating lesions account for escape from p53 control in this childhood malignancy. Several recent studies have shed light on the mechanisms by which neuroblastoma cells circumvent the p53-driven antitumor barrier. We review here these mechanisms for evasion of p53-mediated growth control and conclude that deregulation of the p14(ARF)-MDM2-p53 axis seems to be the principal mode of p53 inactivation in neuroblastoma, opening new perspectives for targeted therapeutic intervention.
Collapse
Affiliation(s)
- T Van Maerken
- Center for Medical Genetics, Ghent University Hospital, Ghent B-9000, Belgium.
| | | | | | | | | |
Collapse
|
73
|
Abstract
The multifunctional nucleolar proteins, nucleophosmin (NPM) and the tumor suppressor ARF, have been assigned numerous roles in diverse cellular processes impacting cellular proliferation, tumorigenesis and apoptosis. In addition, both proteins have been linked to the oncogenic function of c-Myc, a transcription factor that drives the majority of human cancers. Both proteins are induced by oncogenic c-Myc, but have opposing outcomes. Whereas loss of ARF accelerates c-Myc-induced tumorigenesis, NPM overexpression enhances c-Myc transformation. Accordingly, ARF expression is lost in many tumors, while NPM expression is elevated. Previously, we demonstrated that ARF interacts directly with c-Myc, leading to inhibition of its transforming activity while enhancing its apoptotic activity, independently of p53. We have recently shown that NPM also binds directly to c-Myc, but with opposite effects compared to ARF. NPM dramatically enhances the oncogenic activity of c-Myc, independently of ARF and p53. In tumor cells, the ARF-p53 pathway is often inactivated while NPM is elevated. However, when NPM and ARF are both expressed with oncogenic c-Myc the outcome of the interactions becomes more complex, since NPM and ARF also interact directly and NPM controls ARF localization. In this report we demonstrate that in the presence of ARF, NPM overexpression dramatically inhibits c-Myc-induced p53-independent apoptosis, while enhancing proliferation and transformation. We find that NPM sequesters ARF in nucleoli, blocking the relocalization of ARF to the nucleoplasm caused by activation of c-Myc. Therefore, the fate of a cell to undergo apoptosis or become transformed is dependent on this complex interacting network of oncogenic and tumor suppressor proteins.
Collapse
Affiliation(s)
- Zhaoliang Li
- Department of Cell and Developmental Biology, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
74
|
Aguirre-Hernández J, Milne BS, Queen C, O'Brien PCM, Hoather T, Haugland S, Ferguson-Smith MA, Dobson JM, Sargan DR. Disruption of chromosome 11 in canine fibrosarcomas highlights an unusual variability of CDKN2B in dogs. BMC Vet Res 2009; 5:27. [PMID: 19643034 PMCID: PMC2732616 DOI: 10.1186/1746-6148-5-27] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 07/31/2009] [Indexed: 01/07/2023] Open
Abstract
Background In dogs in the western world neoplasia constitutes the most frequently diagnosed cause of death. Although there appear to be similarities between canine and human cancers, rather little is known about the cytogenetic and molecular alterations in canine tumours. Different dog breeds are susceptible to different types of cancer, but the genetic basis of the great majority of these predispositions has yet to be discovered. In some retriever breeds there is a high incidence of soft tissue sarcomas and we have previously reported alterations of chromosomes 11 and 30 in two poorly differentiated fibrosarcomas. Here we extend our observations and present a case report on detail rearrangements on chromosome 11 as well as genetic variations in a tumour suppressor gene in normal dogs. Results BAC hybridisations on metaphases of two fibrosarcomas showed complex rearrangements on chromosome 11, and loss of parts of this chromosome. Microsatellite markers on a paired tumour and blood DNA pointed to loss of heterozygosity on chromosome 11 in the CDKN2B-CDKN2A tumour suppressor gene cluster region. PCR and sequencing revealed the homozygous loss of coding sequences for these genes, except for exon 1β of CDKN2A, which codes for the N-terminus of p14ARF. For CDKN2B exon 1, two alleles were observed in DNA from blood; one of them identical to the sequence in the dog reference genome and containing 4 copies of a 12 bp repeat found only in the canine gene amongst all species so far sequenced; the other allele was shorter due to a missing copy of the repeat. Sequencing of this exon in 141 dogs from 18 different breeds revealed a polymorphic region involving a GGC triplet repeat and a GGGGACGGCGGC repeat. Seven alleles were recorded and sixteen of the eighteen breeds showed heterozygosity. Conclusion Complex chromosome rearrangements were observed on chromosome 11 in two Labrador retriever fibrosarcomas. The chromosome alterations were reflected in the loss of sequences corresponding to two tumour suppressor genes involved in cell-cycle progression. Sequencing of CDKN2B across many different breeds revealed a widespread polymorphism within the first exon of the gene, immediately before the ankyrin coding sequences.
Collapse
|
75
|
Dominguez-Brauer C, Chen YJ, Brauer PM, Pimkina J, Raychaudhuri P. ARF stimulates XPC to trigger nucleotide excision repair by regulating the repressor complex of E2F4. EMBO Rep 2009; 10:1036-42. [PMID: 19644500 DOI: 10.1038/embor.2009.139] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 05/19/2009] [Accepted: 05/20/2009] [Indexed: 12/17/2022] Open
Abstract
The tumour suppressor ARF (alternative reading frame), which is mutated or silenced in various tumours, has a crucial role in tumour surveillance to suppress unwarranted cell growth and proliferation. ARF has also been linked to the DNA-damage-induced response of p53 because of its ability to inhibit murine double minute 2 (MDM2). Here, however, we provide genetic evidence for a role of ARF in nucleotide excision repair (NER) that is independent of p53. Cells lacking ARF are deficient in NER. Expression of ARF restores the repair activity, which coincides with increased expression of the damaged-DNA recognition protein xeroderma pigmentosum, complementation group C (XPC). We provide evidence that, by disrupting the interaction between E2F transcription factor 4 (E2F4) and DRTF polypeptide 1 (DP1), ARF reduces the interaction of the E2F4-p130 repressor complex with the promoter of XPC to ensure high-level expression of XPC. Together, our results point to an important 'care-taker'-type tumour-suppression function for ARF in NER through the increased expression of XPC.
Collapse
Affiliation(s)
- Carmen Dominguez-Brauer
- Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, M/C 669, 900 S. Ashland Avenue, Chicago, Illinois 60607, USA
| | | | | | | | | |
Collapse
|
76
|
Abstract
The traditional view of p53 activation includes three steps-p53 stabilization, DNA binding, and transcriptional activation. However, recent studies indicate that each step of p53 activation is more complex than originally anticipated. Moreover, both genetic studies in mice and in vitro studies with purified components suggest that the classical model may not be sufficient to explain all aspects of p53 activation in vivo. To reconcile these differences, we propose that antirepression, the release of p53 from repression by factors such as Mdm2 and MdmX, is a key step in the physiological activation of p53.
Collapse
Affiliation(s)
- Jan-Philipp Kruse
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA
| | | |
Collapse
|
77
|
di Tommaso A, Hagen J, Tompkins V, Muniz V, Dudakovic A, Kitzis A, Ladeveze V, Quelle DE. Residues in the alternative reading frame tumor suppressor that influence its stability and p53-independent activities. Exp Cell Res 2009; 315:1326-35. [PMID: 19331830 DOI: 10.1016/j.yexcr.2009.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 01/19/2009] [Accepted: 01/20/2009] [Indexed: 02/02/2023]
Abstract
The Alternative Reading Frame (ARF) protein suppresses tumorigenesis through p53-dependent and p53-independent pathways. Most of ARF's anti-proliferative activity is conferred by sequences in its first exon. Previous work showed specific amino acid changes occurred in that region during primate evolution, so we programmed those changes into human p14ARF to assay their functional impact. Two human p14ARF residues (Ala(14) and Thr(31)) were found to destabilize the protein while two others (Val(24) and Ala(41)) promoted more efficient p53 stabilization and activation. Despite those effects, all modified p14ARF forms displayed robust p53-dependent anti-proliferative activity demonstrating there are no significant biological differences in p53-mediated growth suppression associated with simian versus human p14ARF residues. In contrast, p53-independent p14ARF function was considerably altered by several residue changes. Val(24) was required for p53-independent growth suppression whereas multiple residues (Val(24), Thr(31), Ala(41) and His(60)) enabled p14ARF to block or reverse the inherent chromosomal instability of p53-null MEFs. Together, these data pinpoint specific residues outside of established p14ARF functional domains that influence its expression and signaling activities. Most intriguingly, this work reveals a novel and direct role for p14ARF in the p53-independent maintenance of genomic stability.
Collapse
Affiliation(s)
- Anne di Tommaso
- Pole Biologie Sante, UMR 6187 CNRS, Pathologies Moléculaire de l'Adressage et de la Signalisation, Université de Poitiers, Poitiers, France
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Liu Z, Oh SM, Okada M, Liu X, Cheng D, Peng J, Brat DJ, Sun SY, Zhou W, Gu W, Ye K. Human BRE1 is an E3 ubiquitin ligase for Ebp1 tumor suppressor. Mol Biol Cell 2008; 20:757-68. [PMID: 19037095 DOI: 10.1091/mbc.e08-09-0983] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human Bre1, an E3 ligase for H2B monoubiquitination, binds p53 and enhances activator-dependent transcription. Ebp1, an ErbB3 receptor-binding protein, inhibits cell proliferation and acts as a tumor suppressor. Here, we show that hBre1 acts as an E3 ubiquitin ligase for Ebp1 tumor suppressor and promotes its polyubiquitination and degradation. Ebp1 is polyubiquitinated in cancer cells, which is regulated by its phosphorylation. We identified hBre1 acting as an E3 ligase for Ebp1 and increasing its polyubiquitination. Depletion of hBre1 blocks Ebp1's polyubiquitination and elevates its protein level, preventing cancer proliferation. hBre1 binds Ebp1 and suppresses its repressive effect on E2F-1. Moreover, Ebp1 protein level is substantially diminished in human cancers. It is robustly phosphorylated and localized in the nucleus of primary gliomas, correlating with hBre1 subcellular residency. Thus, hBre1 inhibits Ebp1's tumor suppressive activity through mediating its polyubiquitination and degradation.
Collapse
Affiliation(s)
- Zhixue Liu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Sivakolundu SG, Nourse A, Moshiach S, Bothner B, Ashley C, Satumba J, Lahti J, Kriwacki RW. Intrinsically unstructured domains of Arf and Hdm2 form bimolecular oligomeric structures in vitro and in vivo. J Mol Biol 2008; 384:240-54. [PMID: 18809412 DOI: 10.1016/j.jmb.2008.09.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 09/04/2008] [Accepted: 09/10/2008] [Indexed: 12/31/2022]
Abstract
Arf, Hdm2, and p53 regulate the tumor-suppressor pathway that is most frequently disrupted in human cancer. In the absence of tumorigenic stress, Hdm2 actively attenuates p53-dependent cell cycle arrest and apoptosis by mediating ubiquitination-dependent degradation of p53. Mitogenic stress activates Arf, which indirectly activates p53 by binding to and nullifying the anti-p53 activities of Hdm2. Small conserved domains within Arf and Hdm2 mediate their direct interaction. Individually, these domains are intrinsically unstructured and, when combined in vitro, cofold into bimolecular oligomeric structures that resemble amyloid fibrils in some features. Detailed structural characterization of Hdm2/Arf complexes has previously been hampered by their heterogeneity and large size. Here, we report that a nine-residue fragment of the N-terminus of mouse Arf (termed "A1-mini") cofolds specifically with the Arf-binding domain of Hdm2 to form bimolecular oligomers. We characterized these unprecedented structures using analytical ultracentrifugation and NMR spectroscopy, providing insights into their structural organization. The A1-mini peptide not only binds specifically to Hdm2 in vitro but also recapitulates the nucleolar localization features of full-length Arf in cells. Furthermore, larger fragments of Arf that contain the A1-mini segment have previously been shown to activate p53 in mouse and human cells. Our studies provide the first insights into the molecular basis through which Arf nullifies the p53-inhibiting activity of Hdm2, indirectly activating the tumor-suppressor function of p53 in mammalian cells.
Collapse
Affiliation(s)
- Sivashankar G Sivakolundu
- Department of Structural Biology, St. Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Changes in p19Arf localization accompany apoptotic crisis during pre-B-cell transformation by Abelson murine leukemia virus. J Virol 2008; 82:8383-91. [PMID: 18579612 DOI: 10.1128/jvi.00348-08] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Transformation by Abelson murine leukemia virus (Ab-MLV) is a multistep process in which growth-stimulatory signals from the v-Abl oncoprotein and growth-suppressive signals from the p19(Arf)-p53 tumor suppressor pathway oppose each other and influence the outcome of infection. The process involves a proliferative phase during which highly viable primary transformants expand, followed by a period of marked apoptosis (called "crisis") that is dependent on the presence of p19(Arf) and p53; rare cells that survive this phase emerge as fully transformed and malignant. To understand the way in which v-Abl expression affects p19(Arf) expression, we examined changes in expression of Arf during all stages of Ab-MLV transformation process. As is consistent with the ability of v-Abl to stimulate Myc, a transcription factor known to induce p19(Arf), Myc and Arf are induced soon after infection and p19(Arf) is expressed. At these early time points, the infected cells remain highly viable. The onset of crisis is marked by an increase in p19(Arf) expression and a change in localization of the protein from the nucleoplasm to the nucleolus. These data together suggest that the localization and expression levels of p19(Arf) modulate the effects of the protein during oncogenesis and reveal that the p19(Arf)-mediated response is subject to multiple layers of regulation that influence its function during Ab-MLV-mediated transformation.
Collapse
|
81
|
Hogan C, Hutchison C, Marcar L, Milne D, Saville M, Goodlad J, Kernohan N, Meek D. Elevated levels of oncogenic protein kinase Pim-1 induce the p53 pathway in cultured cells and correlate with increased Mdm2 in mantle cell lymphoma. J Biol Chem 2008; 283:18012-23. [PMID: 18467333 DOI: 10.1074/jbc.m709695200] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Mutation of the p53 gene is a common event during tumor pathogenesis. Other mechanisms, such as mdm2 amplification, provide alternative routes through which dysfunction of the p53 pathway is promoted. Here, we address the hypothesis that elevated expression of pim oncogenes might suppress p53 by regulating Mdm2. At a physiological level, we show that endogenous Pim-1 and Pim-2 interact with endogenous Mdm2. Additionally, the Pim kinases phosphorylate Mdm2 in vitro and in cultured cells at Ser(166) and Ser(186), two previously identified targets of other signaling pathways, including Akt. Surprisingly, at high levels of Pim expression, as would occur in tumors, active, but not inactive, Pim-1 or Pim-2 blocks the degradation of both p53 and Mdm2 in a manner that is independent of Mdm2 phosphorylation, leading to increased p53 levels and, proportionately, p53-dependent transactivation. Additionally, Pim-1 induces endogenous ARF, p53, Mdm2, and p21 in primary murine embryo fibroblasts and stimulates senescence-associated beta-galactosidase levels, consistent with the induction of senescence. Immunohistochemical analysis of a cohort of 33 human mantle cell lymphomas shows that elevated expression of Pim-1 occurs in 42% of cases, with elevated Pim-2 occurring in 9% of cases, all of which also express Pim-1. Notably, elevated Pim-1 correlates with elevated Mdm2 in MCL with a p value of 0.003. Taken together, our data are consistent with the idea that Pim normally interacts with the p53 pathway but, when expressed at pathological levels, behaves as a classic dominant oncogene that stimulates a protective response through induction of the p53 pathway.
Collapse
Affiliation(s)
- Carol Hogan
- Biomedical Research Centre, Division of Pathology and Neuroscience, Maternal and Child Health Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Yogev O, Saadon K, Anzi S, Inoue K, Shaulian E. DNA damage-dependent translocation of B23 and p19 ARF is regulated by the Jun N-terminal kinase pathway. Cancer Res 2008; 68:1398-406. [PMID: 18316603 DOI: 10.1158/0008-5472.can-07-2865] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The dynamic behavior of the nucleolus plays a role in the detection of and response to DNA damage of cells. Two nucleolar proteins, p14(ARF)/p19(ARF) and B23, were shown to translocate out of the nucleolus after exposure of cells to DNA-damaging agents. This translocation affects multiple cellular functions, such as DNA repair, proliferation, and survival. In this study, we identify a pathway and scrutinize the mechanisms leading to the translocation of these proteins after exposure of cells to DNA-damaging agents. We show that redistribution of B23 and p19(ARF) after the exposure to genotoxic stress occurs preferentially when the c-Jun-NH(2)-kinase (JNK) pathway is activated and is inhibited when the JNK pathway is impaired. The stress-induced translocation of alternative reading frame (ARF) is JNK dependent and mediated by two activator proteins, c-Jun and JunB. Thr(91) and Thr(93) of c-Jun are required for the translocation, but the transcriptional activity of c-Jun is dispensable. Instead, c-Jun interacts with B23 in a dose-dependent manner. c-Jun itself is excluded from the nucleolus in a JNK-dependent manner. Hence, we suggest that c-Jun translocates B23 and ARF from the nucleolus after JNK activation by means of protein interactions. In senescent cells, JNK activity and c-Jun levels are reduced concomitantly with ARF nucleolar accumulation, and UV radiation does not cause the translocation of ARF.
Collapse
Affiliation(s)
- Orli Yogev
- Department of Experimental Medicine and Cancer Research, Hebrew University Medical School, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
83
|
Huang Y, Wu M, Li HY. Tumor Suppressor ARF Promotes Non-classic Proteasome-independent Polyubiquitination of COMMD1. J Biol Chem 2008; 283:11453-60. [DOI: 10.1074/jbc.m708544200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
84
|
Abstract
The ARF tumor suppressor is a crucial component of the cellular response to hyperproliferative signals, including oncogene activation, and functions by inducing a p53-dependent cell growth arrest and apoptosis program. It has recently been reported that the ARF mRNA can produce a smARF isoform that lacks the NH(2)-terminal region required for p53 activation. Overexpression of this isoform can induce autophagy, a cellular process characterized by the formation of cytoplasmic vesicles and the digestion of cellular content, independently of p53. However, the level of this isoform is extremely low in cells, and it remains unclear whether the predominant form of ARF, the full-length protein, is able to activate autophagy. Here, we show that full-length ARF can induce autophagy in 293T cells where p53 is inactivated by viral proteins, and, notably, expression of the NH(2)-terminal region alone, which is required for nucleolar localization, is sufficient for autophagy activation, independently of p53. Given the reported ability of p53 to induce autophagy, we also investigated the role of p53 in ARF-mediated autophagy induction. We found that full-length ARF expression induces p53 activation and promotes autophagy in a p53-positive cell line, and that ARF-mediated autophagy can be abrogated, at least in part, by RNAi-mediated knockdown of p53 in this cellular context. Thus, our findings modify the current view regarding the mechanism of autophagy induction by ARF and suggest an important role for autophagy in tumor suppression via full-length ARF in both p53-dependent and p53-independent manners, depending on cellular context.
Collapse
Affiliation(s)
- Wassim M Abida
- Institute for Cancer Genetics and Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
85
|
hAda3 degradation by papillomavirus type 16 E6 correlates with abrogation of the p14ARF-p53 pathway and efficient immortalization of human mammary epithelial cells. J Virol 2008; 82:3912-20. [PMID: 18256148 DOI: 10.1128/jvi.02466-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Two activities of human papillomavirus type 16 E6 (HPV16 E6) are proposed to contribute to the efficient immortalization of human epithelial cells: the degradation of p53 protein and the induction of telomerase. However, the requirement for p53 inactivation has been debated. Another E6 target is the hAda3 protein, a p53 coactivator and a component of histone acetyltransferase complexes. We have previously described the role of hAda3 and p53 acetylation in p14ARF-induced human mammary epithelial cell (MEC) senescence (P. Sekaric, V. A. Shamanin, J. Luo, and E. J. Androphy, Oncogene 26:6261-6268, 2007). In this study, we analyzed a set of HPV16 E6 mutants for the ability to induce hAda3 degradation. E6 mutants that degrade hAda3 but not p53 could abrogate p14ARF-induced growth arrest despite the presence of normal levels of p53 and efficiently immortalized MECs. However, two E6 mutants that previously were reported to immortalize MECs with low efficiency were found to be defective for both p53 and hAda3 degradation. We found that these immortal MECs select for reduced p53 protein levels through a proteasome-dependent mechanism. The findings strongly imply that the inactivation of the p14ARF-p53 pathway, either by the E6-mediated degradation of p53 or hAda3 or by cellular adaptation, is required for MEC immortalization.
Collapse
|
86
|
Moulin S, Llanos S, Kim SH, Peters G. Binding to nucleophosmin determines the localization of human and chicken ARF but not its impact on p53. Oncogene 2007; 27:2382-9. [PMID: 17968318 DOI: 10.1038/sj.onc.1210887] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The ARF tumour suppressor gene encodes a small highly basic protein whose known functions are largely determined by the amino acids encoded within the first exon. In mammals, the protein incorporates additional residues specified by an alternative reading frame in the second exon of INK4a, but this arrangement does not apply to the chicken homologue. In exploring the intracellular localization of chicken p7(ARF), we found that while the FLAG- and HA-tagged versions localize in the nucleolus, in line with mammalian ARF, the GFP-tagged version is excluded from the nucleolus. Here we show that irrespective of the source or composition of the ARF fusion proteins, versions that accumulate in the nucleolus share the ability to bind to nucleophosmin (NPM). Depletion of NPM with siRNA results in the re-location and destabilization of nucleolar forms of ARF but has little effect on the location or stability of a nucleoplasmic form of ARF. Importantly, knockdown of endogenous NPM does not impair the ability of ARF to bind to MDM2 and stabilize p53. These findings support the view that nucleolar localization determines the stability of ARF but not its primary function.
Collapse
Affiliation(s)
- S Moulin
- Cancer Research UK, London Research Institute, London, UK
| | | | | | | |
Collapse
|
87
|
Chang DLF, Qiu W, Ying H, Zhang Y, Chen CY, Xiao ZXJ. ARF promotes accumulation of retinoblastoma protein through inhibition of MDM2. Oncogene 2007; 26:4627-34. [PMID: 17297463 DOI: 10.1038/sj.onc.1210254] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The INK4a/ARF locus, encoding two tumor suppressor proteins, p16(INK4a) and p14(ARF) (ARF), plays key roles in many cellular processes including cell proliferation, apoptosis, cellular senescence and differentiation. Inactivation of INK4a/ARF is one of the most frequent events during human cancer development. Although p16(INK4a) is a critical component in retinoblastoma protein (Rb)-mediated growth regulatory pathway, p14(ARF) plays a pivotal role in the activation of p53 upon oncogenic stress signals. A body of evidence indicates that ARF also possesses growth suppression functions independent of p53, the mechanism of which is not well understood. We have recently shown that MDM2 interacts with Rb and promotes proteasome-dependent Rb degradation. In this study, we show that ARF disrupts MDM2-Rb interaction resulting in Rb accumulation. Wild-type ARF, but not ARF mutant defective in MDM2 interaction, stabilizes Rb and inhibits colony foci formation independent of p53. In addition, ablation of Rb impairs ARF function in growth suppression. Thus, this study demonstrates that ARF plays a direct role in regulation of Rb and suggests that inactivation of ARF may lead to defects in both p53 and Rb pathways in human cancer development.
Collapse
Affiliation(s)
- D L F Chang
- Graduate Program in Molecular Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | |
Collapse
|
88
|
Karni-Schmidt O, Friedler A, Zupnick A, McKinney K, Mattia M, Beckerman R, Bouvet P, Sheetz M, Fersht A, Prives C. Energy-dependent nucleolar localization of p53 in vitro requires two discrete regions within the p53 carboxyl terminus. Oncogene 2007; 26:3878-91. [PMID: 17237827 DOI: 10.1038/sj.onc.1210162] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The p53 tumor suppressor is a nucleocytoplasmic shuttling protein that is found predominantly in the nucleus of cells. In addition to mutation, abnormal p53 cellular localization is one of the mechanisms that inactivate p53 function. To further understand features of p53 that contribute to the regulation of its trafficking within the cell, we analysed the subnuclear localization of wild-type and mutant p53 in human cells that were either permeabilized with detergent or treated with the proteasome inhibitor MG132. We, here, show that either endogenously expressed or exogenously added p53 protein localizes to the nucleolus in detergent-permeabilized cells in a concentration- and ATP hydrolysis-dependent manner. Two discrete regions within the carboxyl terminus of p53 are essential for nucleolar localization in permeabilized cells. Similarly, localization of p53 to the nucleolus after proteasome inhibition in unpermeabilized cells requires sequences within the carboxyl terminus of p53. Interestingly, genotoxic stress markedly decreases the association of p53 with the nucleolus, and phosphorylation of p53 at S392, a site that is modified by such stress, partially impairs its nucleolar localization. The possible significance of these findings is discussed.
Collapse
Affiliation(s)
- O Karni-Schmidt
- Department of Biological Sciences, Columbia University, New York, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Ho O, Green WR. Alternative translational products and cryptic T cell epitopes: expecting the unexpected. THE JOURNAL OF IMMUNOLOGY 2007; 177:8283-9. [PMID: 17142722 DOI: 10.4049/jimmunol.177.12.8283] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although CD8 T cell epitopes have been studied extensively, often overlooked are unconventional cryptic epitopes generated from nontraditional sources of peptides/proteins and/or mechanisms of translation. In this review, we discuss alternative reading frame epitopes, both mechanistically and also in terms of their physiologic importance in the induction of antiviral and antitumor CTL responses. Issues of the influence of cryptic translational products on foreign and self-Ag diversity, thymic selection, and the T cell repertoire; disease pathogenesis; and approaches to vaccine design are discussed in context of the potentially large impact of unconventional epitopes on T cell immunity.
Collapse
Affiliation(s)
- On Ho
- Department of Microbiology and Immunology, Dartmouth Medical School, One Medical Center Drive, Lebanon, NH 03756, USA
| | | |
Collapse
|
90
|
Kumari G, Singhal PK, Rao MRKS, Mahalingam S. Nuclear transport of Ras-associated tumor suppressor proteins: different transport receptor binding specificities for arginine-rich nuclear targeting signals. J Mol Biol 2007; 367:1294-311. [PMID: 17320110 DOI: 10.1016/j.jmb.2007.01.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 12/28/2006] [Accepted: 01/05/2007] [Indexed: 12/30/2022]
Abstract
Ras proteins regulate a wide range of biological processes by interacting with a variety of effector proteins. In addition to the known role in tumorigensis, the activated form of Ras exhibits growth-inhibitory effects by unknown mechanisms. Several Ras effector proteins identified as mediators of apoptosis and cell-cycle arrest also exhibit properties normally associated with tumor suppressor proteins. Here, we show that Ras effector RASSF5/NORE-1 binds strongly to K-Ras but weakly to both N-Ras and H-Ras. RASSF5 was found to localize both in the nucleus and the nucleolus in contrast to other Ras effector proteins, RASSF1C and RASSF2, which are localized in the nucleus and excluded from nucleolus. A 50 amino acid residue transferable arginine-rich nucleolar localization signal (NoLS) identified in RASSF5 is capable of interacting with importin-beta and transporting the cargo into the nucleolus. Surprisingly, similar arginine-rich signals identified in RASSF1C and RASSF2 interact with importin-alpha and transport the heterologous cytoplasmic proteins to the nucleus. Interestingly, mutation of arginine residues within these nuclear targeting signals prevented interaction of Ras effector proteins with respective transport receptors and abolished their nuclear translocation. These results provide evidence for the first time that arginine-rich signals are able to recognize different nuclear import receptors and transport the RASSF proteins into distinct sub-cellular compartments. In addition, our data suggest that the nuclear localization of RASSF5 is critical for its cell growth control activity. Together, these data suggest that the transport of Ras effector superfamily proteins into the nucleus/nucleolus may play a vital role in modulating Ras-mediated cell proliferation during tumorigenesis.
Collapse
Affiliation(s)
- Gita Kumari
- Laboratory of Molecular Virology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500076, India
| | | | | | | |
Collapse
|
91
|
Kim JS, Lee C, Bonifant CL, Ressom H, Waldman T. Activation of p53-dependent growth suppression in human cells by mutations in PTEN or PIK3CA. Mol Cell Biol 2007; 27:662-77. [PMID: 17060456 PMCID: PMC1800819 DOI: 10.1128/mcb.00537-06] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In an effort to identify genes whose expression is regulated by activated phosphatidylinositol 3-kinase (PI3K) signaling, we performed microarray analysis and subsequent quantitative reverse transcription-PCR on an isogenic set of PTEN gene-targeted human cancer cells. Numerous p53 effectors were upregulated following PTEN deletion, including p21, GDF15, PIG3, NOXA, and PLK2. Stable depletion of p53 led to reversion of the gene expression program. Western blots revealed that p53 was stabilized in HCT116 PTEN(-/-) cells via an Akt1-dependent and p14(ARF)-independent mechanism. Stable depletion of PTEN in untransformed human fibroblasts and epithelial cells also led to upregulation of p53 and senescence-like growth arrest. Simultaneous depletion of p53 rescued this phenotype, enabling PTEN-depleted cells to continue proliferating. Next, we tested whether oncogenic PIK3CA, like inactivated PTEN, could activate p53. Retroviral expression of oncogenic human PIK3CA in MCF10A cells led to activation of p53 and upregulation of p53-regulated genes. Stable depletion of p53 reversed these PIK3CA-induced expression changes and synergized with oncogenic PIK3CA in inducing anchorage-independent growth. Finally, targeted deletion of an endogenous allele of oncogenic, but not wild-type, PIK3CA in a human cancer cell line led to a reduction in p53 levels and a decrease in the expression of p53-regulated genes. These studies demonstrate that activation of PI3K signaling by mutations in PTEN or PIK3CA can lead to activation of p53-mediated growth suppression in human cells, indicating that p53 can function as a brake on phosphatidylinositol (3,4,5)-triphosphate-induced mitogenesis during human cancer pathogenesis.
Collapse
Affiliation(s)
- Jung-Sik Kim
- Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, 3970 Reservoir Road NW, NRB E304, Washington, DC 20057, USA
| | | | | | | | | |
Collapse
|
92
|
Barré B, Vigneron A, Perkins N, Roninson IB, Gamelin E, Coqueret O. The STAT3 oncogene as a predictive marker of drug resistance. Trends Mol Med 2007; 13:4-11. [PMID: 17118707 DOI: 10.1016/j.molmed.2006.11.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 10/16/2006] [Accepted: 11/13/2006] [Indexed: 12/13/2022]
Abstract
Constitutive activation of STAT3 (signal transducer and activator of transcription) has been reported in several primary cancers and tumor cell lines where it induces cell transformation through a combined inhibition of apoptosis and cell-cycle activation. Several studies have suggested that STAT3 prevents cell-cycle arrest and cell death through upregulation of survival proteins and downregulation of tumor suppressors. As a consequence of anti-apoptotic and proliferative lesions, we propose that this oncogenic pathway is also involved in intrinsic drug resistance and that STAT3-expressing tumors are resistant to chemotherapeutic agents. If this hypothesis is correct, the detection of the activated form of this protein should help to define subsets of tumors that fail to respond to chemotherapy. Furthermore, interfering with the STAT3 oncogenic pathway might restore the sensitivity to anticancer drugs.
Collapse
Affiliation(s)
- Benjamin Barré
- School of Life Sciences, Division of Gene Regulation and Expression, Dundee, DD1 5EH, Scotland, UK
| | | | | | | | | | | |
Collapse
|
93
|
Saxena A, Rorie CJ, Dimitrova D, Daniely Y, Borowiec JA. Nucleolin inhibits Hdm2 by multiple pathways leading to p53 stabilization. Oncogene 2006; 25:7274-88. [PMID: 16751805 DOI: 10.1038/sj.onc.1209714] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 04/17/2006] [Accepted: 04/17/2006] [Indexed: 12/27/2022]
Abstract
Nucleolin is a c-Myc-induced gene product with defined roles in ribosomal RNA processing and the inhibition of chromosomal DNA replication following stress. Here we find that changes in nucleolin protein levels in unstressed cells cause parallel changes in the amount of p53 protein. Alterations in p53 levels arise from nucleolin binding to the p53 antagonist Hdm2, resulting in the inhibition of both p53 ubiquitination and Hdm2 auto-ubiquitination. Nucleolin does not alter p53 ubiquitination by human papillomavirus E6, indicating that the effect is specific for Hdm2. Although the inhibition of ligase activity would be expected to stabilize Hdm2, we instead find that nucleolin also reduces Hdm2 protein levels, demonstrating that nucleolin inhibits Hdm2 using multiple mechanisms. Increases in nucleolin levels in unstressed cells led to higher expression of p21(cip1/waf1), a reduced rate of cellular proliferation, and an increase in apoptosis. Thus, nucleolin has a number of properties in common with the tumor suppressor ARF (alternate reading frame). We propose that nucleolin, like ARF, responds to hyperproliferative signals by upregulation of p53 through Hdm2 inhibition.
Collapse
Affiliation(s)
- A Saxena
- Department of Biochemistry and New York University Cancer Institute, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
94
|
Tompkins VS, Hagen J, Frazier AA, Lushnikova T, Fitzgerald MP, di Tommaso A, Ladeveze V, Domann FE, Eischen CM, Quelle DE. A novel nuclear interactor of ARF and MDM2 (NIAM) that maintains chromosomal stability. J Biol Chem 2006; 282:1322-33. [PMID: 17110379 DOI: 10.1074/jbc.m609612200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The ARF tumor suppressor signals through p53 and other poorly defined anti-proliferative pathways to block carcinogenesis. In a search for new regulators of ARF signaling, we discovered a novel nuclear protein that we named NIAM (nuclear interactor of ARF and MDM2) for its ability to bind both ARF and the p53 antagonist MDM2. NIAM protein is normally expressed at low to undetectable levels in cells because of, at least in part, MDM2-mediated ubiquitination and proteasomal degradation. When reintroduced into cells, NIAM activated p53, caused a G1 phase cell cycle arrest, and collaborated with ARF in an additive fashion to suppress proliferation. Notably, NIAM retains growth inhibitory activity in cells lacking ARF and/or p53, and knockdown experiments revealed that it is not essential for ARF-mediated growth inhibition. Thus, NIAM and ARF act in separate anti-proliferative pathways that intersect mechanistically and suppress growth more effectively when jointly activated. Intriguingly, silencing of NIAM accelerated chromosomal instability, and microarray analyses showed reduced NIAM mRNA expression in numerous primary human tumors. This study identifies a novel protein with tumor suppressor-like behaviors and functional links to ARF-MDM2-p53 signaling.
Collapse
Affiliation(s)
- Van S Tompkins
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, 52242-1109, USA, and the Laboratoire de Genetique Cellulaire et Moleculaire, UPRES EA2622, Centre Hospitalier Universitaire de Poitiers, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Ayrault O, Andrique L, Larsen CJ, Séité P. [The negative regulation of ribosome biogenesis: a new Arf-dependent pathway controlling cell proliferation?]. Med Sci (Paris) 2006; 22:519-24. [PMID: 16687121 DOI: 10.1051/medsci/2006225519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The nucleolar Arf protein has initially been shown to regulate cell cycle through the so-called Arf-mdm2-p53 pathway. In addition to this well characterized pathway, convergent data published since 2000 indicate that Arf can inhibit cell proliferation in absence of p53, suggesting the existence of a p53-independent pathway. Several partners have recently been described that could participate in an alternative regulatory process. Recent results show that : (1) Arf binds the rDNA promoter to inhibit the transcription of the 47S rRNA precursor and (2) Arf interacts with the nucleophosmin/B23 protein to negatively regulate rRNA maturation, it is assumed that the tumour suppressor may downregulate the cell cycle progression through the control of ribosome biogenesis, thus resulting in completion of cell cycle arrest.
Collapse
Affiliation(s)
- Olivier Ayrault
- EA 3805, Equipe d'Oncologie Moléculaire, Pôle Biologie-Santé, 40, avenue du recteur Pineau, 86022 Poitiers Cedex, France
| | | | | | | |
Collapse
|
96
|
Rizos H, McKenzie HA, Ayub AL, Woodruff S, Becker TM, Scurr LL, Stahl J, Kefford RF. Physical and functional interaction of the p14ARF tumor suppressor with ribosomes. J Biol Chem 2006; 281:38080-8. [PMID: 17035234 DOI: 10.1074/jbc.m609405200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alterations in the p14(ARF) tumor suppressor are frequent in many human cancers and are associated with susceptibility to melanoma, pancreatic cancer, and nervous system tumors. In addition to its p53-regulatory functions, p14(ARF) has been shown to influence ribosome biogenesis and to regulate the endoribonuclease B23, but there remains considerable controversy about its nucleolar role. We sought to clarify the activities of p14(ARF) by studying its interaction with ribosomes. We show that p14(ARF) and B23 interact within the nucleolar 60 S preribosomal particle and that this interaction does not require rRNA. In contrast to previous reports, we found that expression of p14(ARF) does not significantly alter ribosome biogenesis but inhibits polysome formation and protein translation in vivo. These results suggest a ribosome-dependent p14(ARF) pathway that regulates cell growth and thus complements p53-dependent p14(ARF) functions.
Collapse
Affiliation(s)
- Helen Rizos
- Westmead Institute for Cancer Research, University of Sydney at Westmead Millennium Institute, Westmead Hospital, Westmead, New South Wales 2145, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Rao MRKS, Kumari G, Balasundaram D, Sankaranarayanan R, Mahalingam S. A novel lysine-rich domain and GTP binding motifs regulate the nucleolar retention of human guanine nucleotide binding protein, GNL3L. J Mol Biol 2006; 364:637-54. [PMID: 17034816 DOI: 10.1016/j.jmb.2006.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 09/01/2006] [Accepted: 09/01/2006] [Indexed: 01/13/2023]
Abstract
A variety of G-proteins and GTPases are known to be involved in nucleolar function. We describe here a new evolutionarily conserved putative human GTPase, guanine nucleotide binding protein-like 3-like (GNL3L). Genes encoding proteins related to GNL3L are present in bacteria and yeast to metazoa and suggests its critical role in development. Conserved domain search analysis revealed that the GNL3L contains a circularly permuted G-motif described by a G5-G4-G1-G2-G3 pattern similar to the HSR1/MMR1 GTP-binding protein subfamily. Highly conserved and critical residues were identified from a three-dimensional structural model obtained for GNL3L using the crystal structure of an Ylqf GTPase from Bacillus subtilis. We demonstrate here that GNL3L is transported into the nucleolus by a novel lysine-rich nucleolar localization signal (NoLS) residing within 1-50 amino acid residues. NoLS identified here is necessary and sufficient to target the heterologous proteins to the nucleolus. We show for the first time that the lysine-rich targeting signal interacts with the nuclear transport receptor, importin-beta and transports GNL3L into the nucleolus. Interestingly, depletion of intracellular GTP blocks GNL3L accumulation into the nucleolar compartment. Furthermore, mutations within the G-domains alter the GTP binding ability of GNL3L and abrogate wild-type nucleolar retention even in the presence of functional NoLS, suggesting that the efficient nucleolar retention of GNL3L involves activities of both basic NoLS and GTP-binding domains. Collectively, these data suggest that GNL3L is composed of distinct modules, each of which plays a specific role in molecular interactions for its nucleolar retention and subsequent function(s) within the nucleolus.
Collapse
Affiliation(s)
- M R K Subba Rao
- Laboratory of Molecular Virology, Centre for DNA Fingerprinting and Diagnostics, ECIL Road, Nacharam, Hyderabad 500076, India
| | | | | | | | | |
Collapse
|
98
|
Sherr CJ, Bertwistle D, DEN Besten W, Kuo ML, Sugimoto M, Tago K, Williams RT, Zindy F, Roussel MF. p53-Dependent and -independent functions of the Arf tumor suppressor. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2006; 70:129-37. [PMID: 16869746 DOI: 10.1101/sqb.2005.70.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Ink4a-Arf locus encodes two closely wedded tumor suppressor proteins (p16(Ink4a) and p19(Arf)) that inhibit cell proliferation by activating Rb and p53, respectively. With few exceptions, the Arf gene is repressed during mouse embryonic development, thereby helping to limit p53 expression during organogenesis. However, in adult mice, sustained hyperproliferative signals conveyed by somatically activated oncogenes can induce Arf gene expression and trigger a p53 response that eliminates incipient cancer cells. Disruption of this tumor surveillance pathway predisposes to cancer, and inactivation of INK4a- ARF by deletion, silencing, or mutation has been frequently observed in many forms of human cancer. Although it is accepted that much of Arf's tumor-suppressive activity is mediated by p53, more recent genetic evidence has pointed to additional p53- independent functions of Arf, including its ability to inhibit gene expression by a number of other transcription factors. Surprisingly, the enforced expression of Arf in mammalian cells promotes the sumoylation of several Arf-interacting proteins, implying that Arf has an associated catalytic activity. We speculate that transcriptional down-regulation in response to Arf-induced sumoylation may account for Arf's p53-independent functions.
Collapse
Affiliation(s)
- C J Sherr
- Howard Hughes Medical Institute, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Aizu W, Belinsky GS, Flynn C, Noonan EJ, Boes CC, Godman CA, Doshi B, Nambiar PR, Rosenberg DW, Giardina C. Circumvention and reactivation of the p53 oncogene checkpoint in mouse colon tumors. Biochem Pharmacol 2006; 72:981-91. [PMID: 16949053 DOI: 10.1016/j.bcp.2006.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 06/29/2006] [Accepted: 07/17/2006] [Indexed: 01/25/2023]
Abstract
The p53 tumor suppressor protein is sequence-normal in azoxymethane (AOM)-induced mouse colon tumors, making them a good model for human colon cancers that retain a wild type p53 gene. Cellular localization and co-immunoprecipitation experiments using a cell line derived from an AOM-induced colon tumor (AJ02-NM(0) cells) pointed to constitutively expressed Mdm2 as being an important negative regulator of p53 in these cells. Although the Mdm2 inhibitory protein p19/ARF was expressed in AJ02-NM(0) cells, its level of expression was not sufficient for p53 activation. We tested the response of AJ02-NM(0) cells to the recently developed Mdm2 inhibitor, Nutlin-3. Nutlin-3 was found to activate p53 DNA binding in AJ02-NM(0) cells, to a level comparable to doxorubicin and 5-fluorouracil (5-FU). In addition, Nutlin-3 increased expression of the p53 target genes Bax and PERP to a greater extent than doxorubicin or 5-FU, and triggered a G2/M phase arrest in these cells, compared to a G1 arrest triggered by doxorubicin and 5-FU. The differences in the cellular response may be related to differences in the kinetics of p53 activation and/or its post-translational modification status. In an ex vivo experiment, Nutlin-3 was found to activate p53 target gene expression and apoptosis in AOM-induced tumor tissue, but not in normal adjacent mucosa. Our data indicate that Mdm2 inhibitors may be an effective means of selectively targeting colon cancers that retain a sequence-normal p53 gene while sparing normal tissue and that the AOM model is an appropriate model for the preclinical development of these drugs.
Collapse
Affiliation(s)
- Wataru Aizu
- Department of Molecular & Cell Biology, 91 North Eagleville Road, University of Connecticut, Storrs, CT 06269-3125, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Abstract
Mammalian cells that sustain oncogenic insults can invoke defensive programmes that either halt their division or trigger their apoptosis, but these countermeasures must be finely tuned to discriminate between physiological and potentially harmful growth-promoting states. By functioning specifically to oppose abnormally prolonged and sustained proliferative signals produced by activated oncogenes, the ARF tumour suppressor antagonizes functions of MDM2 to induce protective responses that depend on the p53 transcription factor and its many target genes. However, ARF has been reported to physically associate with proteins other than MDM2 and to have p53-independent activities, most of which remain controversial and poorly understood.
Collapse
Affiliation(s)
- Charles J Sherr
- Howard Hughes Medical Institute, St. Jude Children's Research Hospital, 332 North Lauderdale, Memphis, Tennessee 38105, USA.
| |
Collapse
|