51
|
Di Maria F, Lodola F, Zucchetti E, Benfenati F, Lanzani G. The evolution of artificial light actuators in living systems: from planar to nanostructured interfaces. Chem Soc Rev 2018; 47:4757-4780. [PMID: 29663003 DOI: 10.1039/c7cs00860k] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Artificially enhancing light sensitivity in living cells allows control of neuronal paths or vital functions avoiding the wiring associated with the use of stimulation electrodes. Many possible strategies can be adopted for reaching this goal, including the direct photoexcitation of biological matter, the genetic modification of cells or the use of opto-bio interfaces. In this review we describe different light actuators based on both inorganic and organic semiconductors, from planar abiotic/biotic interfaces to nanoparticles, that allow transduction of a light signal into a signal which in turn affects the biological activity of the hosting system. In particular, we will focus on the application of thiophene-based materials which, thanks to their unique chemical-physical properties, geometrical adaptability, great biocompatibility and stability, have allowed the development of a new generation of fully organic light actuators for in vivo applications.
Collapse
|
52
|
Vibrational coherence transfer in the ultrafast intersystem crossing of a diplatinum complex in solution. Proc Natl Acad Sci U S A 2018; 115:E6396-E6403. [PMID: 29941568 DOI: 10.1073/pnas.1719899115] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We investigate the ultrafast transient absorption response of tetrakis(μ-pyrophosphito)diplatinate(II), [Pt2(μ-P2O5H2)4]4- [hereafter abbreviated Pt(pop)], in acetonitrile upon excitation of its lowest singlet 1A2u state. Compared with previously reported solvents [van der Veen RM, Cannizzo A, van Mourik F, Vlček A, Jr, Chergui M (2011) J Am Chem Soc 133:305-315], a significant shortening of the intersystem crossing (ISC) time (<1 ps) from the lowest singlet to the lowest triplet state is found, allowing for a transfer of vibrational coherence, observed in the course of an ISC in a polyatomic molecule in solution. Density functional theory (DFT) quantum mechanical/molecular mechanical (QM/MM) simulations of Pt(pop) in acetonitrile and ethanol show that high-lying, mostly triplet, states are strongly mixed and shifted to lower energies due to interactions with the solvent, providing an intermediate state (or manifold of states) for the ISC. This suggests that the larger the solvation energies of the intermediate state(s), the shorter the ISC time. Because the latter is smaller than the pure dephasing time of the vibrational wave packet, coherence is conserved during the spin transition. These results underscore the crucial role of the solvent in directing pathways of intramolecular energy flow.
Collapse
|
53
|
El-Tahawy MMT, Nenov A, Weingart O, Olivucci M, Garavelli M. Relationship between Excited State Lifetime and Isomerization Quantum Yield in Animal Rhodopsins: Beyond the One-Dimensional Landau-Zener Model. J Phys Chem Lett 2018; 9:3315-3322. [PMID: 29791163 PMCID: PMC6650607 DOI: 10.1021/acs.jpclett.8b01062] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We show that the speed of the chromophore photoisomerization of animal rhodopsins is not a relevant control knob for their light sensitivity. This result is at odds with the momentum-driven tunnelling rationale (i.e., assuming a one-dimensional Landau-Zener model for the decay: Zener, C. Non-Adiabatic Crossing of Energy Levels. Proc. R. Soc. London, Ser. A 1932, 137 (833), 696-702) holding that a faster nuclear motion through the conical intersection translates into a higher quantum yield and, thus, light sensitivity. Instead, a model based on the phase-matching of specific excited state vibrational modes should be considered. Using extensive semiclassical hybrid quantum mechanics/molecular mechanics trajectory computations to simulate the photoisomerization of three animal rhodopsin models (visual rhodopsin, squid rhodopsin and human melanopsin), we also demonstrate that phase-matching between three different modes (the reactive carbon and hydrogen twisting coordinates and the bond length alternation mode) is required to achieve high quantum yields. In fact, such "phase-matching" mechanism explains the computational results and provides a tool for the prediction of the photoisomerization outcome in retinal proteins.
Collapse
Affiliation(s)
- Mohsen M. T. El-Tahawy
- Dipartimento di Chimica Industriale “Toso Montanari″, Università degli Studi di Bologna, Viale del Risorgimento, 4I -40136 Bologna, Italy
- Chemistry Department, Faculty of Science, Damanhour University, Damanhour 22511, Egypt
| | - Artur Nenov
- Dipartimento di Chimica Industriale “Toso Montanari″, Università degli Studi di Bologna, Viale del Risorgimento, 4I -40136 Bologna, Italy
| | - Oliver Weingart
- Institut für Theoretische Chemie und Computerchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Massimo Olivucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, I-53100 Siena, Italy
- Chemistry Department, Bowling Green State University, Bowling Green, OH 43403
- Corresponding Author; (M.O.): ; Phone: +39 051 20 9 9476. Fax: +39 051 20 9 9456 (M.G.)
| | - Marco Garavelli
- Dipartimento di Chimica Industriale “Toso Montanari″, Università degli Studi di Bologna, Viale del Risorgimento, 4I -40136 Bologna, Italy
- Corresponding Author; (M.O.): ; Phone: +39 051 20 9 9476. Fax: +39 051 20 9 9456 (M.G.)
| |
Collapse
|
54
|
Nogly P, Weinert T, James D, Carbajo S, Ozerov D, Furrer A, Gashi D, Borin V, Skopintsev P, Jaeger K, Nass K, Båth P, Bosman R, Koglin J, Seaberg M, Lane T, Kekilli D, Brünle S, Tanaka T, Wu W, Milne C, White T, Barty A, Weierstall U, Panneels V, Nango E, Iwata S, Hunter M, Schapiro I, Schertler G, Neutze R, Standfuss J. Retinal isomerization in bacteriorhodopsin captured by a femtosecond x-ray laser. Science 2018; 361:science.aat0094. [PMID: 29903883 DOI: 10.1126/science.aat0094] [Citation(s) in RCA: 251] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/29/2018] [Indexed: 12/23/2022]
Abstract
Ultrafast isomerization of retinal is the primary step in photoresponsive biological functions including vision in humans and ion transport across bacterial membranes. We used an x-ray laser to study the subpicosecond structural dynamics of retinal isomerization in the light-driven proton pump bacteriorhodopsin. A series of structural snapshots with near-atomic spatial resolution and temporal resolution in the femtosecond regime show how the excited all-trans retinal samples conformational states within the protein binding pocket before passing through a twisted geometry and emerging in the 13-cis conformation. Our findings suggest ultrafast collective motions of aspartic acid residues and functional water molecules in the proximity of the retinal Schiff base as a key facet of this stereoselective and efficient photochemical reaction.
Collapse
Affiliation(s)
- Przemyslaw Nogly
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Tobias Weinert
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland.,Photon Science Division-Swiss Light Source, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Daniel James
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Sergio Carbajo
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Dmitry Ozerov
- Science IT, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Antonia Furrer
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Dardan Gashi
- SwissFEL, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Veniamin Borin
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Petr Skopintsev
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Kathrin Jaeger
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Karol Nass
- SwissFEL, Paul Scherrer Institut, 5232 Villigen, Switzerland.,Photon Science Division-Swiss Light Source, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Petra Båth
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE- 40530 Gothenburg, Sweden
| | - Robert Bosman
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE- 40530 Gothenburg, Sweden
| | - Jason Koglin
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Matthew Seaberg
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Thomas Lane
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Demet Kekilli
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Steffen Brünle
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Tomoyuki Tanaka
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan.,Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe- cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Wenting Wu
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | | | - Thomas White
- Center for Free-Electron Laser Science (CFEL), DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Anton Barty
- Center for Free-Electron Laser Science (CFEL), DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Uwe Weierstall
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Valerie Panneels
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Eriko Nango
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan.,Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe- cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - So Iwata
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan.,Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe- cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mark Hunter
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Gebhard Schertler
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland.,Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE- 40530 Gothenburg, Sweden
| | - Jörg Standfuss
- Division of Biology and Chemistry-Laboratory for Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland.
| |
Collapse
|
55
|
Li YT, Tian Y, Tian H, Tu T, Gou GY, Wang Q, Qiao YC, Yang Y, Ren TL. A Review on Bacteriorhodopsin-Based Bioelectronic Devices. SENSORS (BASEL, SWITZERLAND) 2018; 18:E1368. [PMID: 29702621 PMCID: PMC5982678 DOI: 10.3390/s18051368] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/06/2018] [Accepted: 04/18/2018] [Indexed: 11/24/2022]
Abstract
Bacteriorhodopsin protein extracted from Halobacterium salinarum is widely used in many biohybrid electronic devices and forms a research subject known as bioelectronics, which merges biology with electronic technique. The specific molecule structure and components of bR lead to its unique photocycle characteristic, which consists of several intermediates (bR, K, L, M, N, and O) and results in proton pump function. In this review, working principles and properties of bacteriorhodopsin are briefly introduced, as well as bR layer preparation method. After that, different bR-based devices divided into photochemical and photoelectric applications are shown. Finally, outlook and conclusions are drawn to inspire new design of high-performance bR-based biohybrid electronic devices.
Collapse
Affiliation(s)
- Yu-Tao Li
- Institute of Microelectronics, Tsinghua University, Beijing 100084, China.
- Tsinghua National Laboratory for Information Science and Technology (TNList), Tsinghua University, Beijing 100084, China.
| | - Ye Tian
- Institute of Microelectronics, Tsinghua University, Beijing 100084, China.
- Tsinghua National Laboratory for Information Science and Technology (TNList), Tsinghua University, Beijing 100084, China.
| | - He Tian
- Institute of Microelectronics, Tsinghua University, Beijing 100084, China.
- Tsinghua National Laboratory for Information Science and Technology (TNList), Tsinghua University, Beijing 100084, China.
| | - Tao Tu
- Institute of Microelectronics, Tsinghua University, Beijing 100084, China.
- Tsinghua National Laboratory for Information Science and Technology (TNList), Tsinghua University, Beijing 100084, China.
| | - Guang-Yang Gou
- Institute of Microelectronics, Tsinghua University, Beijing 100084, China.
- Tsinghua National Laboratory for Information Science and Technology (TNList), Tsinghua University, Beijing 100084, China.
| | - Qian Wang
- Institute of Microelectronics, Tsinghua University, Beijing 100084, China.
- Tsinghua National Laboratory for Information Science and Technology (TNList), Tsinghua University, Beijing 100084, China.
| | - Yan-Cong Qiao
- Institute of Microelectronics, Tsinghua University, Beijing 100084, China.
- Tsinghua National Laboratory for Information Science and Technology (TNList), Tsinghua University, Beijing 100084, China.
| | - Yi Yang
- Institute of Microelectronics, Tsinghua University, Beijing 100084, China.
- Tsinghua National Laboratory for Information Science and Technology (TNList), Tsinghua University, Beijing 100084, China.
| | - Tian-Ling Ren
- Institute of Microelectronics, Tsinghua University, Beijing 100084, China.
- Tsinghua National Laboratory for Information Science and Technology (TNList), Tsinghua University, Beijing 100084, China.
| |
Collapse
|
56
|
Domratcheva T, Schlichting I. Spiers Memorial Lecture. Introductory lecture: the impact of structure on photoinduced processes in nucleic acids and proteins. Faraday Discuss 2018; 207:9-26. [PMID: 29583144 DOI: 10.1039/c8fd00058a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Light is an important environmental variable and most organisms have evolved means to sense, exploit or avoid it and to repair detrimental effects on their genome. In general, light absorption is the task of specific chromophores, however other biomolecules such as oligonucleotides also do so which can result in undesired outcomes such as mutations and cancer. Given the biological importance of light-induced processes and applications for imaging, optogenetics, photodynamic therapy or photovoltaics, there is a great interest in understanding the detailed molecular mechanisms of photoinduced processes in proteins and nucleic acids. The processes are typically characterized by time-resolved spectroscopic approaches or computation, inferring structural information on transient species from stable ground state structures. Recently, however, structure determination of excited states or other short-lived species has become possible with the advent of X-ray free-electron lasers. This review gives an overview of the impact of structure on the understanding of photoinduced processes in macromolecules, focusing on systems presented at this Faraday Discussion meeting.
Collapse
Affiliation(s)
- Tatiana Domratcheva
- Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany.
| | - Ilme Schlichting
- Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany.
| |
Collapse
|
57
|
Baker LA, Marchetti B, Karsili TNV, Stavros VG, Ashfold MNR. Photoprotection: extending lessons learned from studying natural sunscreens to the design of artificial sunscreen constituents. Chem Soc Rev 2018; 46:3770-3791. [PMID: 28580469 DOI: 10.1039/c7cs00102a] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Evolution has ensured that plants and animals have developed effective protection mechanisms against the potentially harmful effects of incident ultraviolet radiation (UVR). Tanning is one such mechanism in humans, but tanning only occurs post-exposure to UVR. Hence, there is ever growing use of commercial sunscreens to pre-empt overexposure to UVR. Key requirements for any chemical filter molecule used in such a photoprotective capacity include a large absorption cross-section in the UV-A and UV-B spectral regions and the availability of one or more mechanisms whereby the absorbed photon energy can be dissipated without loss of the molecular integrity of the chemical filter. Here we summarise recent experimental (mostly ultrafast pump-probe spectroscopy studies) and computational progress towards unravelling various excited state decay mechanisms that afford the necessary photostability in chemical filters found in nature and those used in commercial sunscreens. We also outline ways in which a better understanding of the photophysics and photochemistry of sunscreen molecules selected by nature could aid the design of new and improved commercial sunscreen formulations.
Collapse
Affiliation(s)
- Lewis A Baker
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Barbara Marchetti
- Department of Chemistry, University of Pennsylvania, Philadelphia, USA
| | | | - Vasilios G Stavros
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Michael N R Ashfold
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| |
Collapse
|
58
|
Knudsen JL, Kluge A, Bochenkova AV, Kiefer HV, Andersen LH. The UV-visible action-absorption spectrum of all-trans and 11-cis protonated Schiff base retinal in the gas phase. Phys Chem Chem Phys 2018; 20:7190-7194. [PMID: 29480305 DOI: 10.1039/c7cp07512j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The UV-visible absorption of retinal in its protonated Schiff-base form is studied in the gas phase. In particular, transitions to highly-excited electronic states, Sn, in the all-trans and 11-cis forms are considered, and several new states are discovered. Their positions and strengths are compared to state of the art quantum calculations. The location of these states are particularly important when new fs pump-probe experiments are designed to investigate the fast excited-state dynamics of retinal chromophores.
Collapse
|
59
|
González-Navarrete P, Andrés J, Safont VS. A bonding evolution analysis for the thermal Claisen rearrangement: an experimental and theoretical exercise for testing the electron density flow. Phys Chem Chem Phys 2018; 20:535-541. [DOI: 10.1039/c7cp07557j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The BET analysis brings about the natural appearance of curly arrows representing thus the electronic flow in molecular rearrangements.
Collapse
Affiliation(s)
| | - Juan Andrés
- Departamento de Química Física y Analítica
- Universitat Jaume I
- Castelló de la Plana
- Spain
| | - V. Sixte Safont
- Departamento de Química Física y Analítica
- Universitat Jaume I
- Castelló de la Plana
- Spain
| |
Collapse
|
60
|
Li Y, Ma Y, Yang Y, Shi W, Lan R, Guo Q. Effects of different substituents of methyl 5-R-salicylates on the excited state intramolecular proton transfer process. Phys Chem Chem Phys 2018; 20:4208-4215. [DOI: 10.1039/c7cp06987a] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The proton transfer reaction in methyl 5-R-salicylate is found to be highly sensitive to the presence of specific substituents in resonance with the hydroxyl group, leading to different fluorescence behaviors of methyl 5-R-salicylate with different substituents.
Collapse
Affiliation(s)
- Yongqing Li
- Department of Physics, Liaoning University
- Shenyang 110036
- China
- Lvyuan Institute of Energy & Environmental Science and Technology, Liaoning University
- Shenyang
| | - Yanzhen Ma
- Department of Physics, Liaoning University
- Shenyang 110036
- China
| | - Yunfan Yang
- Department of Physics, Liaoning University
- Shenyang 110036
- China
| | - Wei Shi
- Department of Physics, Liaoning University
- Shenyang 110036
- China
| | - Ruifang Lan
- Department of Physics, Liaoning University
- Shenyang 110036
- China
| | - Qiang Guo
- Department of Physics, Liaoning University
- Shenyang 110036
- China
- Lvyuan Institute of Energy & Environmental Science and Technology, Liaoning University
- Shenyang
| |
Collapse
|
61
|
Guo Y, Wolff FE, Schapiro I, Elstner M, Marazzi M. Different hydrogen bonding environments of the retinal protonated Schiff base control the photoisomerization in channelrhodopsin-2. Phys Chem Chem Phys 2018; 20:27501-27509. [DOI: 10.1039/c8cp05210g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The first event of the channelrhodopsin-2 (ChR2) photocycle, i.e. trans-to-cis photoisomerization, is studied by means of quantum mechanics/molecular mechanics, taking into account the flexible retinal environment in the ground state.
Collapse
Affiliation(s)
- Yanan Guo
- Department of Theoretical Chemical Biology
- Institute of Physical Chemistry
- Karlsruhe Institute of Technology
- 76131 Karlsruhe
- Germany
| | - Franziska E. Wolff
- Department of Theoretical Chemical Biology
- Institute of Physical Chemistry
- Karlsruhe Institute of Technology
- 76131 Karlsruhe
- Germany
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics Research
- Institute of Chemistry
- Hebrew University of Jerusalem
- Jerusalem
- Israel
| | - Marcus Elstner
- Department of Theoretical Chemical Biology
- Institute of Physical Chemistry
- Karlsruhe Institute of Technology
- 76131 Karlsruhe
- Germany
| | - Marco Marazzi
- Department of Theoretical Chemical Biology
- Institute of Physical Chemistry
- Karlsruhe Institute of Technology
- 76131 Karlsruhe
- Germany
| |
Collapse
|
62
|
Liu Y, Tang Z, Wang Y, Tian J, Fei X, Cao F, Li G. Theoretical study of excited-state proton transfer of 2,7-diazaindole·(H 2O) 2 cluster via hydrogen bonding dynamics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 187:163-167. [PMID: 28686917 DOI: 10.1016/j.saa.2017.06.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 06/10/2017] [Accepted: 06/30/2017] [Indexed: 06/07/2023]
Abstract
A new chromophore, 2,7-diazaindole (2,7-DAI), has been designed to surpass the limitation of 7-azaindole (7AI). It exhibits remarkable water catalyzed proton-transfer properties. Excited-state proton transfer (ESPT) has been investigated based on the time-dependent density functional theory method. The calculated vertical excitation energies in the S0 and S1 states agree well with the experimental values. Proton transfer couples with hydrogen-bonding dynamics between the 2,7-diazaindole and the surrounding water molecules. Hydrogen bond strengthening has been testified in the S1 state based on a comparison of primary bond lengths and hydrogen bond energy that is involved in the intermolecular hydrogen bond between the S0 and S1 states. Frontier molecular further suggest that the electron density changes between the ground and excited states serve as basic driving forces for proton transfer. We determined the potential-energy curves of the S0 and S1 states to characterize the ESPT process. This work explains that the ESPT process for 2,7-DAI·(H2O)2 clusters at the molecular level, and highlights the importance of hydrogen bonding in ESPT.
Collapse
Affiliation(s)
- Yuan Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Zhe Tang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xu Fei
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Fang Cao
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - GuangYue Li
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China.
| |
Collapse
|
63
|
Femtosecond time-resolved observation of butterfly vibration in electronically excited o-fluorophenol. Sci Rep 2017; 7:15362. [PMID: 29127301 PMCID: PMC5681578 DOI: 10.1038/s41598-017-14483-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/11/2017] [Indexed: 11/24/2022] Open
Abstract
The butterfly vibration during the hydrogen tunneling process in electronically excited o-fluorophenol has been visualized in real time by femtosecond time-resolved ion yield spectroscopy coupled with time-resolved photoelectron imaging technique. A coherent superposition of out-of-plane C–F butterfly motions is prepared in the first excited electronic state (S1). As the C–F bond vibrates with respect to the aromatic ring, the nuclear geometry varies periodically, leading to the corresponding variation in the photoionization channel. By virtue of the more favorable ionization probability from the nonplanar minimum via resonance with the Rydberg states, the evolution of the vibrational wave packet is manifested as a superimposed beat in the parent-ion transient. Moreover, time-resolved photoelectron spectra offer a direct mapping of the oscillating butterfly vibration between the planar geometry and nonplanar minimum. The beats for the photoelectron peaks originating from the planar geometry are out of phase with those from the nonplanar minimum. Our results provide a physically intuitive and complete picture of the oscillatory flow of energy responsible for the coherent vibrational motion on the excited state surface.
Collapse
|
64
|
Bao D, Wang M, Yang C, Yang Y, Ma X. Concerted Mechanisms of Excited-State Proton Intramolecular Transfer for Bis-2,4-(2-benzoxazolyl)-hydroquinone and Its Derivatives. J Phys Chem A 2017; 121:8217-8226. [PMID: 28994587 DOI: 10.1021/acs.jpca.7b07753] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The concerted mechanisms of excited state intramolecular proton transfer (ESIPT) of bis-2,4-(2-benzoxazolyl)-hydroquinone (BBHQ') and its derivatives (BBHQ'- and DHBO') have been investigated using the density functional theory (DFT) and the time-dependent density functional theory (TDDFT). The calculated absorption and emission spectra of BBHQ' and its derivatives are in good agreement with the experimental results. The calculated bond lengths, bond angles, and IR vibrational spectra linked with hydrogen bond of molecular BBHQ' in the S0 and S1 states demonstrate that the hydrogen bond is strengthened in the S1 state. Compared to BBHQ', BBHQ'- has a weak change of hydrogen bond between the S1 and S0 states. The calculation results show that there are three stable structures of BBHQ' in the S1 state. We find that the structure corresponding to the 481 nm fluorescence spectrum corresponds to BBHQ'-A rather than BBHQ'--K (Tetrahedron Lett., 2016, 57, 3518). The calculated frontier molecular orbitals (MOs) indicate the nature of the charge distribution and the trend of proton transfer of BBHQ'-A. The constructed potential energy surfaces of BBHQ' and DBHO' further elucidate the proposed mechanism that one-proton or two-proton transfer can happen (stepwise or synchronous) in the S1 states. The proposed ESIPT mechanism can provide a good explanation of the phenomenon of fluorescence quenching of BBHQ' and its derivatives. Finally, the weak interaction types are discriminated through the reduced density gradient (RDG) analyses of BBHQ' and BBHQ'-.
Collapse
Affiliation(s)
- Dongshuai Bao
- School of Physics and Optoelectronics Engineering, Ludong University , Yantai 264025, China
| | - Meishan Wang
- School of Physics and Optoelectronics Engineering, Ludong University , Yantai 264025, China
| | - Chuanlu Yang
- School of Physics and Optoelectronics Engineering, Ludong University , Yantai 264025, China
| | - Yunfan Yang
- State Key Lab of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Xiaoguang Ma
- School of Physics and Optoelectronics Engineering, Ludong University , Yantai 264025, China
| |
Collapse
|
65
|
Paul K, Sengupta P, Ark ED, Tu H, Zhao Y, Boppart SA. Coherent control of an opsin in living brain tissue. NATURE PHYSICS 2017; 13:1111-1116. [PMID: 29983725 PMCID: PMC6029863 DOI: 10.1038/nphys4257] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 08/15/2017] [Indexed: 05/20/2023]
Abstract
Retinal-based opsins are light-sensitive proteins. The photoisomerization reaction of these proteins has been studied outside cellular environments using ultrashort tailored light pulses1-5. However, how living cell functions can be modulated via opsins by modifying fundamental nonlinear optical properties of light interacting with the retinal chromophore has remained largely unexplored. We report the use of chirped ultrashort near-infrared pulses to modulate light-evoked ionic current from Channelrhodopsin-2 (ChR2) in brain tissue, and consequently the firing pattern of neurons, by manipulating the phase of the spectral components of the light. These results confirm that quantum coherence of the retinal-based protein system, even in a living neuron, can influence its current output, and open up the possibilities of using designer-tailored pulses for controlling molecular dynamics of opsins in living tissue to selectively enhance or suppress neuronal function for adaptive feedback-loop applications in the future.
Collapse
Affiliation(s)
- Kush Paul
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Parijat Sengupta
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Eugene D Ark
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Haohua Tu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Youbo Zhao
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Stephen A Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
66
|
Mao Z, Carroll EC, Kim PW, Cramer SP, Larsen DS. Ultrafast Charge-Transfer Dynamics in the Iron-Sulfur Complex of Rhodobacter capsulatus Ferredoxin VI. J Phys Chem Lett 2017; 8:4498-4503. [PMID: 28872878 PMCID: PMC7187928 DOI: 10.1021/acs.jpclett.7b02026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Iron-sulfur proteins play essential roles in various biological processes. Their electronic structure and vibrational dynamics are key to their rich chemistry but nontrivial to unravel. Here, the first ultrafast transient absorption and impulsive coherent vibrational spectroscopic (ICVS) studies on 2Fe-2S clusters in Rhodobacter capsulatus ferreodoxin VI are characterized. Photoexcitation initiated populations on multiple excited electronic states that evolve into each other in a long-lived charge-transfer state. This suggests a potential light-induced electron-transfer pathway as well as the possibility of using iron-sulfur proteins as photosensitizers for light-dependent enzymes. A tyrosine chain near the active site suggests potential hole-transfer pathways and affirms this electron-transfer pathway. The ICVS data revealed vibrational bands at 417 and 484 cm-1, with the latter attributed to an excited-state mode. The temperature dependence of the ICVS modes suggests that the temperature effect on protein structure or conformational heterogeneities needs to be considered during cryogenic temperature studies.
Collapse
Affiliation(s)
- Ziliang Mao
- Department of Chemistry, University of California Davis, One Shields Avenue, Davis, California 95616, United States
| | - Elizabeth C. Carroll
- Department of Chemistry, University of California Davis, One Shields Avenue, Davis, California 95616, United States
| | - Peter W. Kim
- Department of Chemistry, University of California Davis, One Shields Avenue, Davis, California 95616, United States
| | - Stephen P. Cramer
- Department of Chemistry, University of California Davis, One Shields Avenue, Davis, California 95616, United States
- Corresponding Authors: &
| | - Delmar S. Larsen
- Department of Chemistry, University of California Davis, One Shields Avenue, Davis, California 95616, United States
- Corresponding Authors: &
| |
Collapse
|
67
|
Few-cycle pulse generation from noncollinear optical parametric amplifier with static dispersion compensation. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
68
|
Conservation of vibrational coherence in ultrafast electronic relaxation: The case of diplatinum complexes in solution. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.02.071] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
69
|
Hashimoto S, Yabushita A, Iwakura I. Transient process spectroscopy for the direct observation of inter-molecular photo-dissociation. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:054901. [PMID: 28580369 PMCID: PMC5433884 DOI: 10.1063/1.4983639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/04/2017] [Indexed: 06/07/2023]
Abstract
Transient process spectroscopy has previously been thought to be applicable only to the analysis of intra-molecular processes. Two metal ion bridges used in the present work have allowed us to visualize real-time variations of the molecular vibration frequencies during photo-disproportionation inside bimolecule aggregates, which directly shows transient inter-molecular reactions.
Collapse
Affiliation(s)
- Sena Hashimoto
- Department of Applied Chemistry, Graduate School of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Yokohama 221-8686, Japan
| | | | | |
Collapse
|
70
|
Hashimoto S, Yabushita A, Iwakura I. Real-time observation of interfragment vibration and charge transfer within the TCNQF4 dimer. Chem Phys 2017. [DOI: 10.1016/j.chemphys.2017.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
71
|
Ikeda T, Tanimura Y. Probing photoisomerization processes by means of multi-dimensional electronic spectroscopy: The multi-state quantum hierarchical Fokker-Planck equation approach. J Chem Phys 2017; 147:014102. [DOI: 10.1063/1.4989537] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Tatsushi Ikeda
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yoshitaka Tanimura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
72
|
Hung CC, Chen XR, Ko YK, Kobayashi T, Yang CS, Yabushita A. Schiff Base Proton Acceptor Assists Photoisomerization of Retinal Chromophores in Bacteriorhodopsin. Biophys J 2017. [PMID: 28636908 DOI: 10.1016/j.bpj.2017.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
In this study, we investigated the ultrafast dynamics of bacteriorhodopsins (BRs) from Haloquadratum walsbyi (HwBR) and Haloarcula marismortui (HmBRI and HmBRII). First, the ultrafast dynamics were studied for three HwBR samples: wild-type, D93N mutation, and D104N mutation. The residues of the D93 and D104 mutants correspond to the control by the Schiff base proton acceptor and donor of the proton translocation subchannels. Measurements indicated that the negative charge from the Schiff base proton acceptor residue D93 interacts with the ultrafast and substantial change of the electrostatic potential associated with chromophore isomerization. By contrast, the Schiff base proton donor assists the restructuring of the chromophore cavity hydrogen-bond network during the thermalization of the vibrational hot state. Second, the ultrafast dynamics of the wild-types of HwBR, HmBRI, and HmBRII were compared. Measurements demonstrated that the hydrogen-bond network in the extracellular region in HwBR and HmBRII slows the photoisomerization of retinal chromophores, and the negatively charged helices on the cytoplasmic side of HwBR and HmBRII accelerate the thermalization of the vibrational hot state of retinal chromophores. The similarity of the correlation spectra of the wild-type HmBRI and D104N mutant of HwBR indicates that inactivation of the Schiff base proton donor induces a positive charge on the helices of the cytoplasmic side.
Collapse
Affiliation(s)
- Chih-Chang Hung
- Department of Electrophysics, National Chiao-Tung University, Hsinchu, Taiwan
| | - Xiao-Ru Chen
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Ying-Kuan Ko
- Department of Electrophysics, National Chiao-Tung University, Hsinchu, Taiwan
| | - Takayoshi Kobayashi
- Brain Science Inspired Life Support Research Center, The University of Electro-Communications, Tokyo, Japan; Research Center for Water Frontier Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Chii-Shen Yang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan.
| | - Atsushi Yabushita
- Department of Electrophysics, National Chiao-Tung University, Hsinchu, Taiwan; Faculty of Engineering, Kanagawa University, Yokohama, Japan.
| |
Collapse
|
73
|
Kamiya M, Hayashi S. Photoactivation Intermediates of a G-Protein Coupled Receptor Rhodopsin Investigated by a Hybrid Molecular Simulation. J Phys Chem B 2017; 121:3842-3852. [PMID: 28240904 DOI: 10.1021/acs.jpcb.6b13050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rhodopsin is a G-protein coupled receptor functioning as a photoreceptor for vision through photoactivation of a covalently bound ligand of a retinal protonated Schiff base chromophore. Despite the availability of structural information on the inactivated and activated forms of the receptor, the transition processes initiated by the photoabsorption have not been well understood. Here we theoretically examined the photoactivation processes by means of molecular dynamics (MD) simulations and ab initio quantum mechanical/molecular mechanical (QM/MM) free energy geometry optimizations which enabled accurate geometry determination of the ligand molecule in ample statistical conformational samples of the protein. Structures of the intermediate states of the activation process, blue-shifted intermediate and Lumi, as well as the dark state first generated by MD simulations and then refined by the QM/MM free energy geometry optimizations were characterized by large displacement of the β-ionone ring of retinal along with change in the hydrogen bond of the protonated Schiff base. The ab initio calculations of vibrational and electronic spectroscopic properties of those states well reproduced the experimental observations and successfully identified the molecular origins underlying the spectroscopic features. The structural evolution in the formation of the intermediates provides a molecular insight into the efficient activation processes of the receptor.
Collapse
Affiliation(s)
- Motoshi Kamiya
- Department of Chemistry, Graduate School of Science, Kyoto University , Kyoto 606-8502, Japan
| | - Shigehiko Hayashi
- Department of Chemistry, Graduate School of Science, Kyoto University , Kyoto 606-8502, Japan
| |
Collapse
|
74
|
Smitienko OA, Nekrasova OV, Kudriavtsev AV, Yakovleva MA, Shelaev IV, Gostev FE, Dolgikh DA, Kolchugina IB, Nadtochenko VA, Kirpichnikov MP, Feldman TB, Ostrovsky MA. Femtosecond and picosecond dynamics of recombinant bacteriorhodopsin primary reactions compared to the native protein in trimeric and monomeric forms. BIOCHEMISTRY (MOSCOW) 2017; 82:490-500. [DOI: 10.1134/s0006297917040113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
75
|
Self-Referenced Spectral Interferometry for Femtosecond Pulse Characterization. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7040407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
76
|
The Investigation of Excited-State Intramolecular Proton Transfer Mechanism of 2-Acetylindan-1, 3-Dion: The Solvation Effect. J CLUST SCI 2017. [DOI: 10.1007/s10876-017-1209-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
77
|
Carbery WP, Verma A, Turner DB. Spin-Orbit Coupling Drives Femtosecond Nonadiabatic Dynamics in a Transition Metal Compound. J Phys Chem Lett 2017; 8:1315-1322. [PMID: 28266859 DOI: 10.1021/acs.jpclett.7b00130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Transient absorption measurements conducted using broadband, 6 fs laser pulses reveal unexpected femtosecond dynamics in the [IrBr6]2- model system. Vibrational spectra and the X-ray crystal structure indicate that these dynamics are not induced by a Jahn-Teller distortion, a type of conical intersection typically associated with the spectral features of transition metal compounds. Two-dimensional electronic spectra of [IrBr6]2- contain 23 cross peaks, which necessarily arise from spin-orbit coupling. Real-valued 2D spectra support a spectroscopic basis where strong nonadiabatic coupling, ascribed to multiple conical intersections, mediates rapid energy relaxation to the lowest-energy excited state. Subsequent analysis gives rise to a more generalized description of a conical intersection as a degeneracy between two adiabatic states having the same total angular momentum.
Collapse
Affiliation(s)
- William P Carbery
- Department of Chemistry, New York University , 100 Washington Square East, New York, New York 10003, United States
| | - Archana Verma
- Department of Chemistry, New York University , 100 Washington Square East, New York, New York 10003, United States
| | - Daniel B Turner
- Department of Chemistry, New York University , 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
78
|
Hutchison CD, van Thor JJ. Populations and coherence in femtosecond time resolved X-ray crystallography of the photoactive yellow protein. INT REV PHYS CHEM 2017. [DOI: 10.1080/0144235x.2017.1276726] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Jasper J. van Thor
- Molecular Biophysics, Imperial College London, South Kensington Campus, London, UK
| |
Collapse
|
79
|
Liu Z, Wang Q, Ding J, Cavaletto SM, Pfeifer T, Hu B. Observation and quantification of the quantum dynamics of a strong-field excited multi-level system. Sci Rep 2017; 7:39993. [PMID: 28051167 PMCID: PMC5209658 DOI: 10.1038/srep39993] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/30/2016] [Indexed: 11/29/2022] Open
Abstract
The quantum dynamics of a V-type three-level system, whose two resonances are first excited by a weak probe pulse and subsequently modified by another strong one, is studied. The quantum dynamics of the multi-level system is closely related to the absorption spectrum of the transmitted probe pulse and its modification manifests itself as a modulation of the absorption line shape. Applying the dipole-control model, the modulation induced by the second strong pulse to the system’s dynamics is quantified by eight intensity-dependent parameters, describing the self and inter-state contributions. The present study opens the route to control the quantum dynamics of multi-level systems and to quantify the quantum-control process.
Collapse
Affiliation(s)
- Zuoye Liu
- School of Nuclear Science and Technology, Lanzhou University, 730000, China
| | - Quanjun Wang
- School of Nuclear Science and Technology, Lanzhou University, 730000, China
| | - Jingjie Ding
- School of Nuclear Science and Technology, Lanzhou University, 730000, China
| | | | - Thomas Pfeifer
- Max-Planck-Institut für Kernphysik, Heidelberg, 69117, Germany
| | - Bitao Hu
- School of Nuclear Science and Technology, Lanzhou University, 730000, China
| |
Collapse
|
80
|
Liu X, Zhao J, Zheng Y. Insight into the excited-state double proton transfer mechanisms of doxorubicin in acetonitrile solvent. RSC Adv 2017. [DOI: 10.1039/c7ra08945g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Doxorubicin (DXR) is theoretically investigated with an aim to explore the excited-state intramolecular double proton transfer (ESIDPT) mechanism regarding stepwise versus synchronous double proton transfer.
Collapse
Affiliation(s)
- Xiaoyan Liu
- School of Physics
- Shandong University
- Jinan 250100
- China
| | - Jinfeng Zhao
- School of Physics
- Shandong University
- Jinan 250100
- China
| | - Yujun Zheng
- School of Physics
- Shandong University
- Jinan 250100
- China
| |
Collapse
|
81
|
Kumpulainen T, Lang B, Rosspeintner A, Vauthey E. Ultrafast Elementary Photochemical Processes of Organic Molecules in Liquid Solution. Chem Rev 2016; 117:10826-10939. [DOI: 10.1021/acs.chemrev.6b00491] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tatu Kumpulainen
- Department of Physical Chemistry,
Sciences II, University of Geneva, 30 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - Bernhard Lang
- Department of Physical Chemistry,
Sciences II, University of Geneva, 30 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - Arnulf Rosspeintner
- Department of Physical Chemistry,
Sciences II, University of Geneva, 30 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - Eric Vauthey
- Department of Physical Chemistry,
Sciences II, University of Geneva, 30 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
82
|
Surface-Enhanced Impulsive Coherent Vibrational Spectroscopy. Sci Rep 2016; 6:36471. [PMID: 27812020 PMCID: PMC5095601 DOI: 10.1038/srep36471] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/14/2016] [Indexed: 12/28/2022] Open
Abstract
Surface-enhanced Raman spectroscopy (SERS) has attracted a lot of attention in molecular sensing because of the remarkable ability of plasmonic metal nanostructures to enhance the weak Raman scattering process. On the other hand, coherent vibrational spectroscopy triggered by impulsive excitation using ultrafast laser pulses provides complete information about the temporal evolution of molecular vibrations, allowing dynamical processes in molecular systems to be followed in "real time". Here, we combine these two concepts and demonstrate surface-enhanced impulsive vibrational spectroscopy. The vibrational modes of the ground and excited states of poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), spin-coated on a substrate covered with monodisperse silver nanoparticles, are impulsively excited with a sub-10 fs pump pulse and characterized with a delayed broad-band probe pulse. The maximum enhancement in the spectrally and temporally resolved vibrational signatures averaged over the whole sample is about 4.6, while the real-time information about the instantaneous vibrational amplitude together with the initial vibrational phase is preserved. The phase is essential to determine the vibrational contributions from the ground and excited states.
Collapse
|
83
|
Feldman TB, Smitienko OA, Shelaev IV, Gostev FE, Nekrasova OV, Dolgikh DA, Nadtochenko VA, Kirpichnikov MP, Ostrovsky MA. Femtosecond spectroscopic study of photochromic reactions of bacteriorhodopsin and visual rhodopsin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2016; 164:296-305. [PMID: 27723489 DOI: 10.1016/j.jphotobiol.2016.09.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 11/16/2022]
Abstract
Photochromic ultrafast reactions of bacteriorhodopsin (H. salinarum) and bovine rhodopsin were conducted with a femtosecond two-pump probe pulse setup with the time resolution of 20-25fs. The dynamics of the forward and reverse photochemical reactions for both retinal-containing proteins was compared. It is demonstrated that when retinal-containing proteins are excited by femtosecond pulses, dynamics pattern of the vibrational coherent wave packets in the course of the reaction is different for bacteriorhodopsin and visual rhodopsin. As shown in these studies, the low-frequencies that form a wave packets experimentally observed in the dynamics of primary products formation as a result of retinal photoisomerization have different intensities and are clearer for bovine rhodopsin. Photo-reversible reactions for both retinal proteins were performed from the stage of the relatively stable photointermediates that appear within 3-5ps after the light pulse impact. It is demonstrated that the efficiency of the reverse phototransition K-form→bacteriorhodopsin is almost five-fold higher than that of the Batho-intermediate→visual rhodopsin phototransition. The results obtained indicate that in the course of evolution the intramolecular mechanism of the chromophore-protein interaction in visual rhodopsin becomes more perfect and specific. The decrease in the probability of the reverse chromophore photoisomerization (all-trans→11-cis retinal) in primary photo-induced rhodopsin products causes an increase in the efficiency of the photoreception process.
Collapse
Affiliation(s)
- Tatiana B Feldman
- Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119334, Russia.
| | - Olga A Smitienko
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119334, Russia
| | - Ivan V Shelaev
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119991, Russia
| | - Fedor E Gostev
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119991, Russia
| | - Oksana V Nekrasova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st. 16/10, Moscow 117997, Russia
| | - Dmitriy A Dolgikh
- Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st. 16/10, Moscow 117997, Russia
| | - Victor A Nadtochenko
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119334, Russia; Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119991, Russia; Institute of Problems of Chemical Physics, Russian Academy of Sciences, Academician Semenov avenue 1, Chernogolovka, Moscow region 142432, Russia
| | - Mikhail P Kirpichnikov
- Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st. 16/10, Moscow 117997, Russia
| | - Mikhail A Ostrovsky
- Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119334, Russia
| |
Collapse
|
84
|
Cross-Correlation Frequency-Resolved Optical Gating for Test-Pulse Characterization Using a Self-Diffraction Signal of a Reference Pulse. APPLIED SCIENCES-BASEL 2016. [DOI: 10.3390/app6110315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
85
|
Iyer ESS, Misra R, Maity A, Liubashevski O, Sudo Y, Sheves M, Ruhman S. Temperature Independence of Ultrafast Photoisomerization in Thermophilic Rhodopsin: Assessment versus Other Microbial Proton Pumps. J Am Chem Soc 2016; 138:12401-7. [DOI: 10.1021/jacs.6b05002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Ramprasad Misra
- Department
of Organic Chemistry, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Arnab Maity
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Oleg Liubashevski
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Yuki Sudo
- Division
of Pharmaceutical sciences, Okayama University, Kita-Ku, Okayama 700-0082, Japan
| | - Mordechai Sheves
- Department
of Organic Chemistry, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sanford Ruhman
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| |
Collapse
|
86
|
Gueye M, Nillon J, Crégut O, Léonard J. Broadband UV-Vis vibrational coherence spectrometer based on a hollow fiber compressor. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:093109. [PMID: 27782548 DOI: 10.1063/1.4962699] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We describe a broadband transient absorption (TA) spectrometer devised to excite and probe, in the blue to UV range, vibrational coherence dynamics in organic molecules in condensed phase. A 800-nm Ti:Sa amplifier and a hollow fiber compressor are used to generate a 6-fs short pulse at 1 kHz. Broadband sum frequency generation with the fundamental pulse is implemented to produce a 400-nm, 8-fs Fourier limited short pulse. A UV-Vis white-light supercontinuum is implemented as a probe with intensity self-referencing to achieve a shot-noise-limited sensitivity. Rapid scanning of the pump-probe delay is shown very efficient in suppressing the noise resulting from low-frequency pump intensity fluctuations. Using either of the 800-nm or 400-nm broadband pulses as the pump for TA spectroscopy of organic molecules in solution, we resolve oscillatory signals down to the 320 nm probing wavelength with a 3200 cm-1 FWHM bandwidth. Their Fourier transformation reveals the corresponding molecular vibrational spectra. Finally, we demonstrate the use of this setup as a vibrational coherence spectrometer for the investigation of the vibrational dynamics accompanying the sub-ps C=C photoisomerization of a retinal-like molecular switch through a conical intersection.
Collapse
Affiliation(s)
- Moussa Gueye
- Institut de Physique et Chimie des Matériaux de Strasbourg & Labex NIE, Université de Strasbourg, CNRS UMR 7504, 23 rue du Loess, Strasbourg 67034, France
| | - Julien Nillon
- Institut de Physique et Chimie des Matériaux de Strasbourg & Labex NIE, Université de Strasbourg, CNRS UMR 7504, 23 rue du Loess, Strasbourg 67034, France
| | - Olivier Crégut
- Institut de Physique et Chimie des Matériaux de Strasbourg & Labex NIE, Université de Strasbourg, CNRS UMR 7504, 23 rue du Loess, Strasbourg 67034, France
| | - Jérémie Léonard
- Institut de Physique et Chimie des Matériaux de Strasbourg & Labex NIE, Université de Strasbourg, CNRS UMR 7504, 23 rue du Loess, Strasbourg 67034, France
| |
Collapse
|
87
|
Zhao J, Yang Y. Excited state proton transfer coupled with twisted intermolecular charge transfer for N,N-dimethylanilino-1,3-diketone in high polar acetonitrile solvent. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.05.029] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
88
|
Chiang HK, Chu LK. Wavelength-dependent photocycle activity of xanthorhodopsin in the visible region. Biochem Biophys Rep 2016; 7:347-352. [PMID: 28955925 PMCID: PMC5613640 DOI: 10.1016/j.bbrep.2016.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/10/2016] [Accepted: 07/12/2016] [Indexed: 12/02/2022] Open
Abstract
Xanthorhodopsin (xR) is a dual-chromophore proton-pump photosynthetic protein comprising one retinal Schiff base and one light-harvesting antenna salinixanthin (SX). The excitation wavelength-dependent transient population of the intermediate M demonstrates that the excitation of the retinal at 570 nm leads to the highest photocycle activity and the excitations of SX at 460 and 430 nm reduce the activity to ca. 37% relatively, suggesting an energy transfer pathway from the S2 state of the SX to the S1 state of the retinal and a quick internal vibrational relaxation in the S2 state of SX prior to the energy transfer from SX to retinal. Energy transfer efficiency from the salinixanthin (SX) to the retinal is ca. 37%. Energy transfer efficiency is not dependent on wavelength at 486–430 nm. Energy transfer from the S2 state of SX to the S2 state of retinal is less accessible.
Collapse
|
89
|
How was the proton transfer process in bis-3, 6-(2- benzoxazolyl)-pyrocatechol, single or double proton transfer? Sci Rep 2016; 6:25568. [PMID: 27157994 PMCID: PMC4860645 DOI: 10.1038/srep25568] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 04/19/2016] [Indexed: 11/17/2022] Open
Abstract
A theoretical analysis of proton transfer process for the symmetric systems with two intramolecular hydrogen bonds, bis-3,6-(2-benzoxazolyl)-pyrocatechol(BBPC) in hexane solvent, has been researched. In this study, we utilized ωB97X-D/ 6-311 + g (d,p) and B3LYP/6-31 + G(d) two procedures calculating the foremost bond length and bond angle, respectively. Our calculations demonstrate the two intramolecular hydrogen bonds were strengthened in S1 state, thus the proton transfer reaction can be facilitated. Furthermore, the calculated IR vibrational spectra confirmed hydrogen bonds were enhanced in S1 state. We found three local minima A B and C from the potential energy surfaces (PESs) on the S1 state, and the energy of B point and C point are identical. A new ESIPT mechanism has been proposed that was not equal to the previous conclusions. The new ESIPT mechanism elucidates that single proton transfer more likely occurs in the symmetric BBPC molecule in comparison with the double proton transfer reaction. And the frontier molecular orbitals(MOs) further illustrate the trend of ESIPT reaction.
Collapse
|
90
|
Grabarek D, Walczak E, Andruniów T. Assessing the Accuracy of Various Ab Initio Methods for Geometries and Excitation Energies of Retinal Chromophore Minimal Model by Comparison with CASPT3 Results. J Chem Theory Comput 2016; 12:2346-56. [DOI: 10.1021/acs.jctc.6b00108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dawid Grabarek
- Advanced Materials Engineering
and Modelling Group, Wroclaw University of Technology, Wyb. Wyspianskiego
27, 50-370 Wroclaw, Poland
| | - Elżbieta Walczak
- Advanced Materials Engineering
and Modelling Group, Wroclaw University of Technology, Wyb. Wyspianskiego
27, 50-370 Wroclaw, Poland
| | - Tadeusz Andruniów
- Advanced Materials Engineering
and Modelling Group, Wroclaw University of Technology, Wyb. Wyspianskiego
27, 50-370 Wroclaw, Poland
| |
Collapse
|
91
|
Zhao J, Chen J, Liu J, Hoffmann MR. Competitive excited-state single or double proton transfer mechanisms for bis-2,5-(2-benzoxazolyl)-hydroquinone and its derivatives. Phys Chem Chem Phys 2016; 17:11990-9. [PMID: 25872615 DOI: 10.1039/c4cp05651e] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The excited state intramolecular proton transfer (ESIPT) mechanisms of 2-(2-hydroxyphenyl)benzoxazole (HBO), bis-2,5-(2-benzoxazolyl)-hydroquinone (BBHQ) and 2,5-bis(5'-tert-butyl-benzoxazol-2'-yl)hydroquinone (DHBO) have been investigated using time-dependent density functional theory (TDDFT). The calculated vertical excitation energies based on the TDDFT method reproduced the experimental absorption and emission spectra well. Three kinds of stable structures were found on the S1 state potential energy surface (PES). A new ESIPT mechanism that differs from the one proposed previously (Mordzinski et al., Chem. Phys. Lett., 1983, 101, 291. and Lim et al., J. Am. Chem. Soc., 2006, 128, 14542.) is proposed. The new mechanism includes the possibility of simultaneous double proton transfer, or successive single transfers, in addition to the accepted single proton transfer mechanism. Hydrogen bond strengthening in the excited state was based on primary bond lengths, angles, IR vibrational spectra and hydrogen bond energy. Intramolecular charge transfer based on the frontier molecular orbitals (MOs) also supports the proposed mechanism of the ESIPT reaction. To further elucidate the proposed mechanism, reduced dimensionality PESs of the S0 and S1 states were constructed by keeping the O-H distance fixed at a series of values. The potential barrier heights among the local minima on the S1 surface imply competitive single and double proton transfer branches in the mechanism. Based on the new ESIPT mechanism, the observed fluorescence quenching can be satisfactorily explained.
Collapse
Affiliation(s)
- Jinfeng Zhao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China.
| | | | | | | |
Collapse
|
92
|
Brazard J, Bizimana LA, Gellen T, Carbery WP, Turner DB. Experimental Detection of Branching at a Conical Intersection in a Highly Fluorescent Molecule. J Phys Chem Lett 2016; 7:14-9. [PMID: 26647278 DOI: 10.1021/acs.jpclett.5b02476] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Conical intersections are molecular configurations at which adiabatic potential-energy surfaces touch. They are predicted to be ubiquitous, yet condensed-phase experiments have focused on the few systems with clear spectroscopic signatures of negligible fluorescence, high photoactivity, or femtosecond electronic kinetics. Although rare, these signatures have become diagnostic for conical intersections. Here we detect a coherent surface-crossing event nearly two picoseconds after optical excitation in a highly fluorescent molecule that has no photoactivity and nanosecond electronic kinetics. Time-frequency analysis of high-sensitivity measurements acquired using sub-8 fs pulses reveals phase shifts of the signal due to branching of the wavepacket through a conical intersection. The time-frequency analysis methodology demonstrated here on a model compound will enable studies of conical intersections in molecules that do not exhibit their diagnostic signatures. Improving the ability to detect conical intersections will enrich the understanding of their mechanistic role in molecular photochemistry.
Collapse
Affiliation(s)
- Johanna Brazard
- Department of Chemistry, New York University , 100 Washington Square East, New York, New York 10003, United States
| | - Laurie A Bizimana
- Department of Chemistry, New York University , 100 Washington Square East, New York, New York 10003, United States
| | - Tobias Gellen
- Department of Chemistry, New York University , 100 Washington Square East, New York, New York 10003, United States
| | - William P Carbery
- Department of Chemistry, New York University , 100 Washington Square East, New York, New York 10003, United States
| | - Daniel B Turner
- Department of Chemistry, New York University , 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
93
|
Li C, Yang Y, Ma C, Liu Y. Effect of amino group on the excited-state intramolecular proton transfer (ESIPT) mechanisms of 2-(2′-hydroxyphenyl)benzoxazole and its amino derivatives. RSC Adv 2016. [DOI: 10.1039/c5ra23261a] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The electronic density redistributes and it migrates in opposite directions for HBO when compared to those of 5A-HBO and 6A-HBO. The amino group in the HBO framework can change the behavior of the intramolecular hydrogen bonds.
Collapse
Affiliation(s)
- Chaozheng Li
- College of Physics and Electronic Engineer
- Henan Normal University
- Xinxiang 453007
- China
| | - Yonggang Yang
- College of Physics and Electronic Engineer
- Henan Normal University
- Xinxiang 453007
- China
| | - Chi Ma
- College of Physics and Electronic Engineer
- Henan Normal University
- Xinxiang 453007
- China
| | - Yufang Liu
- College of Physics and Electronic Engineer
- Henan Normal University
- Xinxiang 453007
- China
| |
Collapse
|
94
|
Borgwardt M, Wilke M, Kiyan IY, Aziz EF. Ultrafast excited states dynamics of [Ru(bpy)3]2+ dissolved in ionic liquids. Phys Chem Chem Phys 2016; 18:28893-28900. [DOI: 10.1039/c6cp05655e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In this work, we demonstrate the potential of room-temperature ionic liquids as solvents to investigate the excited states dynamics of [Ru(bpy)3]2+ by means of time-resolved photoelectron spectroscopy.
Collapse
Affiliation(s)
- Mario Borgwardt
- Joint Laboratory for Ultrafast Dynamics in Solutions and at Interfaces (JULiq)
- Institute of Methods for Material Development
- Helmholtz-Zentrum Berlin
- D-12489 Berlin
- Germany
| | - Martin Wilke
- Joint Laboratory for Ultrafast Dynamics in Solutions and at Interfaces (JULiq)
- Institute of Methods for Material Development
- Helmholtz-Zentrum Berlin
- D-12489 Berlin
- Germany
| | - Igor Yu. Kiyan
- Joint Laboratory for Ultrafast Dynamics in Solutions and at Interfaces (JULiq)
- Institute of Methods for Material Development
- Helmholtz-Zentrum Berlin
- D-12489 Berlin
- Germany
| | - Emad F. Aziz
- Joint Laboratory for Ultrafast Dynamics in Solutions and at Interfaces (JULiq)
- Institute of Methods for Material Development
- Helmholtz-Zentrum Berlin
- D-12489 Berlin
- Germany
| |
Collapse
|
95
|
Xue B, Yabushita A, Kobayashi T. Ultrafast dynamics of uracil and thymine studied using a sub-10 fs deep ultraviolet laser. Phys Chem Chem Phys 2016; 18:17044-53. [DOI: 10.1039/c5cp07861j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single 9.6 fs deep ultraviolet pulses with a spectral range of 255–290 nm are generated by a chirped-pulse four-wave mixing technique for use as pump and probe pulses.
Collapse
Affiliation(s)
- Bing Xue
- Advanced Ultrafast Laser Research Centre and Department of Engineering Science
- Faculty of Informatics and Engineering
- University of Electro-Communications
- Chofu
- Japan
| | - Atsushi Yabushita
- Department of Electrophysics
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
| | - Takayoshi Kobayashi
- Advanced Ultrafast Laser Research Centre and Department of Engineering Science
- Faculty of Informatics and Engineering
- University of Electro-Communications
- Chofu
- Japan
| |
Collapse
|
96
|
Ding L, Chung LW, Morokuma K. Excited-State Proton Transfer Controls Irreversibility of Photoisomerization in Mononuclear Ruthenium(II) Monoaquo Complexes: A DFT Study. J Chem Theory Comput 2015; 10:668-75. [PMID: 26580044 DOI: 10.1021/ct400982r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The detailed DFT investigation clears the working mechanism of the irreversible photoisomerization of trans-[Ru(tpy)(pynp)(OH2)](2+) (TA) and cis-[Ru(tpy)(pynp)(OH2)](2+) (CA) complexes. Both TA and CA complexes present two types of low lying triplet states, one resulting from a triplet metal-ligand charge-transfer (TMLCT) and the other from a triplet metal-centered d-d transition (TMC). The vertical excitation of the singlet ground state of the complexes leads to a singlet excited state, which undergoes ultrafast decay to the corresponding TMLCT. For TA, this TMLCT transforms with a low barrier to a TMC state. The dissociative nature of the TMC state leads to easy water removal to produce a five-coordinate intermediate that can isomerize via rotation of a pynp ligand and proceed towards the CA product. For CA, however, during this excitation and intersystem crossing process, an excited-state proton transfer (ESPT) occurs and the resultant TMLCT is very much stabilized with a very strong Ru(II)-OH bond; the high barrier from this TMLCT blocks conversion to a TMC state and thus prevents isomerization from the cis to the trans isomer. This high barrier also prevents the possibility of the isomerization process from TA to CA solely on the adiabatic triplet pathway. Instead, crossing points (XMC-CB, XMC-CA) near the minimum of the triplet metal-centered state of the cis isomer provide nonadiabatic decay channels to the ground-state S0--CA, which completes the photoisomerization pathway from TA to CA.
Collapse
Affiliation(s)
- Lina Ding
- Fukui Institute for Fundamental Chemistry, Kyoto University , 34-4 Takano Nishihiraki-cho, Kyoto 606-8103, Japan.,School of Pharmaceutical Sciences, Zhengzhou University , 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Lung Wa Chung
- Fukui Institute for Fundamental Chemistry, Kyoto University , 34-4 Takano Nishihiraki-cho, Kyoto 606-8103, Japan
| | - Keiji Morokuma
- Fukui Institute for Fundamental Chemistry, Kyoto University , 34-4 Takano Nishihiraki-cho, Kyoto 606-8103, Japan
| |
Collapse
|
97
|
Cui Y, Zhao H, Jiang L, Li P, Ding Y, Song P, Xia L. Solvation effect on the excited-state intramolecular proton transfer mechanism of 1-morpholinylmethyl-2-naphthol. COMPUT THEOR CHEM 2015. [DOI: 10.1016/j.comptc.2015.10.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
98
|
Mahyad B, Janfaza S, Hosseini ES. Bio-nano hybrid materials based on bacteriorhodopsin: Potential applications and future strategies. Adv Colloid Interface Sci 2015; 225:194-202. [PMID: 26506028 DOI: 10.1016/j.cis.2015.09.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 09/04/2015] [Accepted: 09/16/2015] [Indexed: 12/13/2022]
Abstract
This review presents an overview of recent progress in the development of bio-nano hybrid materials based on the photoactive protein bacteriorhodopsin (bR). The interfacing of bR with various nanostructures including colloidal nanoparticles (such as quantum dots and Ag NPs) and nanoparticulate thin films (such as TiO2 NPs and ZnO NPs,) has developed novel functional materials. Applications of these materials are comprehensively reviewed in two parts: bioelectronics and solar energy conversion. Finally, some perspectives on possible future strategies in bR-based nanostructured devices are presented.
Collapse
Affiliation(s)
- Baharak Mahyad
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran 14117, Iran
| | - Sajjad Janfaza
- Young Researchers & Elite Club, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran; Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran 14117, Iran.
| | - Elaheh Sadat Hosseini
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran 14117, Iran
| |
Collapse
|
99
|
|
100
|
Bishop MM, Roscioli JD, Ghosh S, Mueller JJ, Shepherd NC, Beck WF. Vibrationally Coherent Preparation of the Transition State for Photoisomerization of the Cyanine Dye Cy5 in Water. J Phys Chem B 2015; 119:6905-15. [DOI: 10.1021/acs.jpcb.5b02391] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael M. Bishop
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| | - Jerome D. Roscioli
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| | - Soumen Ghosh
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| | - Jenny Jo Mueller
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| | - Nolan C. Shepherd
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| | - Warren F. Beck
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| |
Collapse
|