51
|
Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 2009. [DOI: 10.1038/nrm2728 order by 1#] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
52
|
|
53
|
|
54
|
|
55
|
|
56
|
|
57
|
|
58
|
|
59
|
|
60
|
|
61
|
|
62
|
|
63
|
|
64
|
Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 2009. [DOI: 10.1038/nrm2728 and 5410=5410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
65
|
|
66
|
|
67
|
|
68
|
|
69
|
Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 2009. [DOI: 10.1038/nrm2728 and 2456=4508-- pete] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
70
|
|
71
|
|
72
|
Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 2009. [DOI: 10.1038/nrm2728 order by 1-- mykv] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
73
|
|
74
|
Abstract
Membrane trafficking between organelles by vesiculotubular carriers is fundamental to the existence of eukaryotic cells. Central in ensuring that cargoes are delivered to their correct destinations are the Rab GTPases, a large family of small GTPases that control membrane identity and vesicle budding, uncoating, motility and fusion through the recruitment of effector proteins, such as sorting adaptors, tethering factors, kinases, phosphatases and motors. Crosstalk between multiple Rab GTPases through shared effectors, or through effectors that recruit selective Rab activators, ensures the spatiotemporal regulation of vesicle traffic. Functional impairments of Rab pathways are associated with diseases, such as immunodeficiencies, cancer and neurological disorders.
Collapse
|
75
|
|
76
|
Alvim Kamei CL, Boruc J, Vandepoele K, Van den Daele H, Maes S, Russinova E, Inzé D, De Veylder L. The PRA1 gene family in Arabidopsis. PLANT PHYSIOLOGY 2008; 147:1735-49. [PMID: 18583532 PMCID: PMC2492607 DOI: 10.1104/pp.108.122226] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 06/25/2008] [Indexed: 05/18/2023]
Abstract
Prenylated Rab acceptor 1 (PRA1) domain proteins are small transmembrane proteins that regulate vesicle trafficking as receptors of Rab GTPases and the vacuolar soluble N-ethylmaleimide-sensitive factor attachment receptor protein VAMP2. However, little is known about PRA1 family members in plants. Sequence analysis revealed that higher plants, compared with animals and primitive plants, possess an expanded family of PRA1 domain-containing proteins. The Arabidopsis (Arabidopsis thaliana) PRA1 (AtPRA1) proteins were found to homodimerize and heterodimerize in a manner corresponding to their phylogenetic distribution. Different AtPRA1 family members displayed distinct expression patterns, with a preference for vascular cells and expanding or developing tissues. AtPRA1 genes were significantly coexpressed with Rab GTPases and genes encoding vesicle transport proteins, suggesting an involvement in the vesicle trafficking process similar to that of their animal counterparts. Correspondingly, AtPRA1 proteins were localized in the endoplasmic reticulum, Golgi apparatus, and endosomes/prevacuolar compartments, hinting at a function in both secretory and endocytic intracellular trafficking pathways. Taken together, our data reveal a high functional diversity of AtPRA1 proteins, probably dealing with the various demands of the complex trafficking system.
Collapse
Affiliation(s)
- Claire Lessa Alvim Kamei
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Abstract
Key to the pathogenesis of intracellular pathogens is their ability to manipulate host cell processes, permitting the establishment of an intracellular replicative niche. In turn, the host cell deploys defence mechanisms that limit intracellular infection. The bacterial pathogen Legionella pneumophila, the aetiological agent of Legionnaire's Disease, has evolved virulence mechanisms that allow it to replicate within protozoa, its natural host. Many of these tactics also enable L. pneumophila's survival and replication inside macrophages within a membrane-bound compartment known as the Legionella-containing vacuole. One of the virulence factors indispensable for L. pneumophila's intracellular survival is a type IV secretion system, which translocates a large repertoire of bacterial effectors into the host cell. These effectors modulate multiple host cell processes and in particular, redirect trafficking of the L. pneumophila phagosome and mediate its conversion into an ER-derived organelle competent for intracellular bacterial replication. In this review, we discuss how L. pneumophila manipulates host cells, as well as host cell processes that either facilitate or impede its intracellular survival.
Collapse
Affiliation(s)
- Sunny Shin
- Section of Microbial Pathogenesis, Yale University School of Medicine, 295 Congress Avenue, Room 345, New Haven, CT 06536, USA.
| | | |
Collapse
|
78
|
|
79
|
Machner MP, Isberg RR. A bifunctional bacterial protein links GDI displacement to Rab1 activation. Science 2007; 318:974-7. [PMID: 17947549 DOI: 10.1126/science.1149121] [Citation(s) in RCA: 223] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Rab guanosine triphosphatases (GTPases) regulate vesicle trafficking in eukaryotic cells by reversibly associating with lipid membranes. Inactive Rab GTPases are maintained in the cytosol by binding to GDP-dissociation inhibitor (GDI). It is believed that specialized proteins are required to displace GDI from Rab GTPases before Rab activation by guanosine diphosphate-guanosine 5'-triphosphate (GDP-GTP) exchange factors (GEFs). Here, we found that SidM from Legionella pneumophila could act as both GEF and GDI-displacement factor (GDF) for Rab1. Rab1 released from GDI was inserted into liposomal membranes and was used as a substrate for SidM-mediated nucleotide exchange. During host cell infection, recruitment of Rab1 to Legionella-containing vacuoles depended on the GDF activity of SidM. Thus, GDF and GEF activity can be promoted by a single protein, and GDF activity can coordinate Rab1 recruitment from the GDI-bound pool.
Collapse
Affiliation(s)
- Matthias P Machner
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | |
Collapse
|
80
|
Cai H, Reinisch K, Ferro-Novick S. Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev Cell 2007; 12:671-82. [PMID: 17488620 DOI: 10.1016/j.devcel.2007.04.005] [Citation(s) in RCA: 523] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tethering factors have been shown to interact with Rabs and SNAREs and, more recently, with coat proteins. Coat proteins are required for cargo selection and membrane deformation to bud a transport vesicle from a donor compartment. It was once thought that a vesicle must uncoat before it recognizes its target membrane. However, recent findings have revealed a role for the coat in directing a vesicle to its correct intracellular destination. In this review we will discuss the literature that links coat proteins to vesicle targeting events.
Collapse
Affiliation(s)
- Huaqing Cai
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06519, USA
| | | | | |
Collapse
|
81
|
Yang J, Guo SY, Pan FY, Geng HX, Gong Y, Lou D, Shu YQ, Li CJ. Prokaryotic expression and polyclonal antibody preparation of a novel Rab-like protein mRabL5. Protein Expr Purif 2007; 53:1-8. [PMID: 17251037 DOI: 10.1016/j.pep.2006.10.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 09/23/2006] [Accepted: 10/02/2006] [Indexed: 11/26/2022]
Abstract
Rab GTPases, which belong to the Ras superfamily, represent a group of small molecular weight GTP binding proteins that are involved in various steps along the exocytic and endocytic pathways. We first identified mRabL5 (GenBank Accession No. NP_080349), a novel Mus musculus Rab-like protein, present as a Golgi-associated protein. Here we presented the results of the cloning, prokaryotic expression, purification, and polyclonal antibody production of the novel Rab-like protein. In order to obtain a specific antibody against mRabL5, we prepared two GST fusion proteins, full-length mRabL5 GST fusion protein and mRabL5 C terminus GST fusion protein, to immunize rabbits. Western blot analysis showed that both antibodies prepared against full length of mRabL5 and its C terminus, respectively, can recognize mRabL5 protein. Immunofluorescence of mRabL5 in NIH3T3 cells using the two antibodies showed its perinuclear clustering distribution pattern. The polyclonal antibodies preparation against mRabL5 provided a good tool for us to study the functional involvement of mRabL5.
Collapse
Affiliation(s)
- Jie Yang
- Jiangsu Key Laboratory for Molecular & Medical Biotechnology, Life Science College, Nanjing Normal University, Nanjing 210097, China
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Poteryaev D, Fares H, Bowerman B, Spang A. Caenorhabditis elegans SAND-1 is essential for RAB-7 function in endosomal traffic. EMBO J 2007; 26:301-12. [PMID: 17203072 PMCID: PMC1783445 DOI: 10.1038/sj.emboj.7601498] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Accepted: 11/16/2006] [Indexed: 11/08/2022] Open
Abstract
The small rab-GTPase RAB-7 acts in endosome and endosome to lysosome traffic. We identified SAND-1 as a protein required for RAB-7 function based on similarities between SAND-1 and RAB-7 RNAi phenotypes. Although the initial uptake of yolk protein in oocytes, or of soluble secreted (ss) GFP in coelomocytes, appeared normal, further transport along the endocytic traffic route was delayed in the absence of SAND-1 function, and yolk proteins failed to reach yolk granules efficiently. Moreover, in coelomocytes, ssGFP and BSA-Texas-Red were endocytosed but not transported to lysosomes. We show that SAND-1 is essential for RAB-7 function at the transition from early to late endosomes, but not for RAB-7 function at lysosomes.
Collapse
Affiliation(s)
- Dmitry Poteryaev
- Biozentrum, University of Basel, Klingelbergstrasse, Basel, Switzerland
| | - Hanna Fares
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Bruce Bowerman
- Institute of Molecular Biology, University of Oregon, Eugene, OR, USA
| | - Anne Spang
- Biozentrum, University of Basel, Klingelbergstrasse, Basel, Switzerland
- Department of Biochemistry, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland. Tel.: +41 61 267 2380; Fax: +41 61 267 2148; E-mail:
| |
Collapse
|
83
|
Kondo H, Shirakawa R, Higashi T, Kawato M, Fukuda M, Kita T, Horiuchi H. Constitutive GDP/GTP exchange and secretion-dependent GTP hydrolysis activity for Rab27 in platelets. J Biol Chem 2006; 281:28657-65. [PMID: 16880209 DOI: 10.1074/jbc.m603227200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We have previously demonstrated that Rab27 regulates dense granule secretion in platelets. Here, we analyzed the activation status of Rab27 using the thin layer chromatography method analyzing nucleotides bound to immunoprecipitated Rab27 and the pull-down method quantifying Rab27 bound to the GTP-Rab27-binding domain (synaptotagmin-like protein (Slp)-homology domain) of its specific effector, Slac2-b. We found that Rab27 was predominantly present in the GTP-bound form in unstimulated platelets due to constitutive GDP/GTP exchange activity. The GTP-bound Rab27 level drastically decreased due to enhanced GTP hydrolysis activity upon granule secretion. In permeabilized platelets, increase of Ca(2+) concentration induced dense granule secretion with concomitant decrease of GTP-Rab27, whereas in non-hydrolyzable GTP analogue GppNHp (beta-gamma-imidoguanosine 5'-triphosphate)-loaded permeabilized platelets, the GTP (GppNHp)-Rab27 level did not decrease upon the Ca(2+)-induced secretion. These data suggested that GTP hydrolysis of Rab27 was not necessary for inducing the secretion. Taken together, Rab27 is maintained in the active status in unstimulated platelets, which could function to keep dense granules in a preparative status for secretion.
Collapse
Affiliation(s)
- Hirokazu Kondo
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
84
|
Abstract
The human genome encodes approximately 70 Rab GTPases that localize to the surfaces of distinct membrane compartments. To investigate the mechanism of Rab localization, chimeras containing heterologous Rab hypervariable domains were generated, and their ability to bind seven Rab effectors was quantified. Two chimeras could bind effectors for two distinctly localized Rabs; a Rab5/9 hybrid bound both Rab5 and Rab9 effectors, and a Rab1/9 hybrid bound to certain Rab1 and Rab9 effectors. These unusual chimeras permitted a test of the importance of effector binding for Rab localization. In both cases, changing the cellular concentration of a key Rab9 effector, which is called tail-interacting protein of 47 kD, moved a fraction of the proteins from their parental Rab localization to that of Rab9. Thus, relative concentrations of certain competing effectors could determine a chimera's localization. These data confirm the importance of effector interactions for Rab9 localization, and support a model in which effector proteins rely on Rabs as much as Rabs rely on effectors to achieve their correct steady state localizations.
Collapse
Affiliation(s)
- Dikran Aivazian
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
85
|
Sivars U, Aivazian D, Pfeffer S. Purification and properties of Yip3/PRA1 as a Rab GDI displacement factor. Methods Enzymol 2006; 403:348-56. [PMID: 16473601 DOI: 10.1016/s0076-6879(05)03030-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Prenylated Rab proteins exist in the cytosol bound to guanine dissociation inhibitor (GDI). These dimeric complexes contain all of the information needed for accurate membrane delivery. We have shown that membranes contain a proteinaceous activity that is required for Rab delivery, and we named that activity GDI displacement factor (GDF). Biochemical analysis revealed that GDF activity was membrane associated and had a mass of approximately 25 kDa. We therefore used a candidate gene approach and were able to show that pure Yip3/PRA1 protein displays GDF activity. In this chapter, we review key aspects of GDF analysis: our assay and the method by which we purify Yip3/PRA1 in active form.
Collapse
|
86
|
Geng J, Shin ME, Gilbert PM, Collins RN, Burd CG. Saccharomyces cerevisiae Rab-GDI displacement factor ortholog Yip3p forms distinct complexes with the Ypt1 Rab GTPase and the reticulon Rtn1p. EUKARYOTIC CELL 2005; 4:1166-74. [PMID: 16002643 PMCID: PMC1168965 DOI: 10.1128/ec.4.7.1166-1174.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Accepted: 05/03/2005] [Indexed: 11/20/2022]
Abstract
Rab GTPases are crucial regulators of organelle biogenesis, maintenance, and transport. Multiple Rabs are expressed in all cells, and each is localized to a distinct set of organelles, but little is known regarding the mechanisms by which Rabs are targeted to their resident organelles. Integral membrane proteins have been postulated to serve as receptors that recruit Rabs from the cytosol in a complex with the Rab chaperone, GDI, to facilitate the dissociation of Rab and GDI, hence facilitating loading of Rabs on membranes. We show here that the yeast (Saccharomyces cerevisiae) Golgi Rab GTPase Ypt1p can be copurified with the integral membrane protein Yip3p from detergent cell extracts. In addition, a member of the highly conserved reticulon protein family, Rtn1p, is also associated with Yip3p in vivo. However, Ypt1p did not copurify with Rtn1p, indicating that Yip3p is a component of at least two different protein complexes. Yip3p and Rtn1p are only partially colocalized in cells, with Yip3p localized predominantly to the Golgi and secondarily to the endoplasmic reticulum, whereas Rtn1p is localized predominantly to the endoplasmic reticulum and secondarily to the Golgi. Surprisingly, the intracellular localization of Rabs was not perturbed in yip3Delta or rtn1Delta mutants, suggesting that these proteins do not play a role in targeting Rabs to intracellular membranes. These data indicate that Yip3p may have multiple functions and that its interaction with Rabs is not critical for their recruitment to organelle membranes.
Collapse
Affiliation(s)
- Jinming Geng
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, 421 Curie Blvd. BRB 2/3 Room 1010, Philadelphia, PA 19104-6058, USA
| | | | | | | | | |
Collapse
|
87
|
Parashuraman S, Mukhopadhyay A. Assay and Functional Properties of SopE in the Recruitment of Rab5 on Salmonella‐Containing Phagosomes. Methods Enzymol 2005; 403:295-309. [PMID: 16473596 DOI: 10.1016/s0076-6879(05)03025-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
We investigated the mechanism by which Salmonella inhibits transport to lysosomes to survive in macrophages. We have purified the Salmonella-containing phagosomes from macrophages and determined the presence of different endocytic Rab proteins on the phagosomes. Our results have shown that live Salmonella-containing phagosomes recruit more Rab5 than dead Salmonella-containing phagosomes. Recruitment of Rab5 on live Salmonella-containing phagosomes depends on the presence of viable bacteria in the phagosomes. Subsequently, we identified an effector molecule of Salmonella, SopE, which specifically binds Rab5. Moreover, SopE is found to be a specific nucleotide exchange factor for Rab5 and thereby retains Rab5 in an active conformation. Activated Rab5 on Salmonella-containing phagosomes promotes fusion with early endosomes and thus avoids transport to the lysosomes.
Collapse
|
88
|
Kotzer AM, Brandizzi F, Neumann U, Paris N, Moore I, Hawes C. AtRabF2b (Ara7) acts on the vacuolar trafficking pathway in tobacco leaf epidermal cells. J Cell Sci 2004; 117:6377-89. [PMID: 15561767 DOI: 10.1242/jcs.01564] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Rab GTPases are universal key regulators of intracellular secretory trafficking events. In particular, Rab 5 homologues have been implicated in endocytic events and in the vacuolar pathway. In this study, we investigate the location and function of a member of this family, AtRabF2b (Ara7) in tobacco (Nicotiana tabacum) leaf epidermal cells using a live cell imaging approach. Fluorescent-tagged AtRabF2b[wt] localized to the prevacuolar compartment and Golgi apparatus, as determined by coexpression studies with fluorescent markers for these compartments. Mutations that impair AtRabF2b function also alter the subcellular location of the GTPase. In addition, coexpression studies of the protein with the vacuole-targeted aleurain-green fluorescent protein (GFP) and rescue experiments with wild-type AtRabF2b indicate that the dominant-negative mutant of AtRabF2b causes the vacuolar marker to be secreted to the apoplast. Our results indicate a clear role of AtRabF2b in the vacuolar trafficking pathway.
Collapse
Affiliation(s)
- Amanda M Kotzer
- Research School of Biological and Molecular Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | | | | | | | | | | |
Collapse
|
89
|
Pfeffer S, Aivazian D. Targeting Rab GTPases to distinct membrane compartments. Nat Rev Mol Cell Biol 2004; 5:886-96. [PMID: 15520808 DOI: 10.1038/nrm1500] [Citation(s) in RCA: 366] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Rab GTPases are key to membrane-trafficking events in eukaryotic cells, and human cells contain more than 60 Rab proteins that are localized to distinct compartments. The recent determination of the structure of a monoprenylated Rab GTPase bound to GDP-dissociation inhibitor provides new molecular details that are relevant to models of Rab delivery. The further discovery of an integral membrane protein that can dissociate prenylated Rab proteins from GDP-dissociation inhibitor gives new insights into the mechanisms of Rab localization.
Collapse
Affiliation(s)
- Suzanne Pfeffer
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305-5307, USA.
| | | |
Collapse
|
90
|
Abstract
The remarkable degree of specificity with which Rab GTPases recognise distinct subsets of intracellular membranes forms the basis of their ability to act as key cellular regulators, determining the recruitment of downstream effectors to the right membrane at the right time. The molecular mechanisms controlling Rab localisation, however, have proved tricky issues to address. It is becoming increasingly apparent that multiple factors contribute to the specificity of Rab localisation and the close coordination of membrane targeting with Rab activation. With important new insights into the mode of action of the general Rab regulators REP and RabGDI, as well as the demonstration that novel factors such as Yip3/Pra1 act as GDI displacement factors and that signals within Rab proteins contribute to targeting specificity, a better understanding of the concepts governing Rab recruitment and function is now beginning to emerge. The diversity of cellular processes regulated by Rab family members is made possible, not only by the wide range of effectors they recruit, but also by the different mechanisms regulating their own targeting and activation.
Collapse
Affiliation(s)
- Miguel C Seabra
- Cell and Molecular Biology Section, Division of Biomedical Sciences, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK.
| | | |
Collapse
|
91
|
Gandhi PN, Gibson RM, Tong X, Miyoshi J, Takai Y, Konieczkowski M, Sedor JR, Wilson-Delfosse AL. An activating mutant of Rac1 that fails to interact with Rho GDP-dissociation inhibitor stimulates membrane ruffling in mammalian cells. Biochem J 2004; 378:409-19. [PMID: 14629200 PMCID: PMC1223982 DOI: 10.1042/bj20030979] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2003] [Revised: 11/11/2003] [Accepted: 11/21/2003] [Indexed: 11/17/2022]
Abstract
Rac1, a member of the Rho family of small GTP-binding proteins, is involved in the regulation of the actin cytoskeleton via activation of lamellipodia and membrane ruffle formation. RhoGDI (Rho-family-specific GDP-dissociation inhibitor) forms a complex with Rho proteins in the cytosol of mammalian cells. It not only regulates guanine nucleotide binding to Rho proteins, but may also function as a molecular shuttle to carry Rho proteins from an inactive cytosolic pool to the membrane for activation. These studies tested if RhoGDI is necessary for the translocation of Rac1 from the cytosol to the plasma membrane for the formation of membrane ruffles. We describe a novel mutant of Rac1, R66E (Arg66-->Glu), that fails to bind RhoGDI. This RhoGDI-binding-defective mutation is combined with a Rac1-activating mutation G12V, resulting in a double-mutant [Rac1(G12V/R66E)] that fails to interact with RhoGDI in COS-7 cells, but remains constitutively activated. This double mutant stimulates membrane ruffling to a similar extent as that observed after epidermal growth factor treatment of non-transfected cells. To confirm that Rac1 can signal ruffle formation in the absence of interaction with RhoGDI, Rac1(G12V) was overexpressed in cultured mesangial cells derived from a RhoGDI knockout mouse. Rac1-mediated membrane ruffling was indistinguishable between the RhoGDI(-/-) and RhoGDI(+/+) cell lines. In both the COS-7 and cultured mesangial cells, Rac1(G12V) and Rac1(G12V/R66E) co-localize with membrane ruffles. These findings suggest that interaction with RhoGDI is not essential in the mechanism by which Rac1 translocates to the plasma membrane to stimulate ruffle formation.
Collapse
Affiliation(s)
- Payal N Gandhi
- Department of Pharmacology, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Gutierrez MG, Munafó DB, Berón W, Colombo MI. Rab7 is required for the normal progression of the autophagic pathway in mammalian cells. J Cell Sci 2004; 117:2687-97. [PMID: 15138286 DOI: 10.1242/jcs.01114] [Citation(s) in RCA: 522] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Autophagy is a normal degradative pathway that involves the sequestration of cytoplasmic components and organelles in a vacuole called an autophagosome that finally fuses with the lysosome. Rab7 is a member of the Rab family involved in transport to late endosomes and in the biogenesis of the perinuclear lysosome compartment. To assess the role of Rab7 in autophagy we stably transfected CHO cells with wild-type pEGFP-Rab7, and the mutants T22N (GDP form) and Q67L (GTP form). Autophagy was induced by amino acid starvation and the autophagic vacuoles were labeled with monodansylcadaverine. By fluorescence microscopy we observed that Rab7wt and the active mutant Rab7Q67L were associated with ring-shaped vesicles labeled with monodansylcadaverine indicating that these Rab proteins associate with the membrane of autophagic vesicles. As expected, in cells transfected with the negative mutant Rab7T22N the protein was diffusely distributed in the cytosol. However, upon induction of autophagy by amino acid starvation or by rapamycin treatment this mutant clearly decorated the monodansylcadaverine-labeled vesicles. Furthermore, a marked increase in the size of the monodansylcadaverine-labeled vacuoles induced by starvation was observed by overexpression of the inactive mutant T22N. Similarly, there was an increase in the size of vesicles labeled with LC3, a protein that specifically localizes on the autophagosomal membrane. Taken together the results indicate that a functional Rab7 is important for the normal progression of autophagy.
Collapse
Affiliation(s)
- Maximiliano G Gutierrez
- Laboratorio de Biología Celular y Molecular-Instituto de Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo-CONICET, Mendoza 5500, Argentina
| | | | | | | |
Collapse
|
93
|
|
94
|
Affiliation(s)
- Ruth N Collins
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
95
|
Bartz R, Benzing C, Ullrich O. Reconstitution of vesicular transport to Rab11-positive recycling endosomes in vitro. Biochem Biophys Res Commun 2003; 312:663-9. [PMID: 14680816 DOI: 10.1016/j.bbrc.2003.10.172] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2003] [Indexed: 11/21/2022]
Abstract
Rab GTPases are key regulators of vesicular protein transport in both the endocytic and exocytic pathways. In endocytosis and recycling, Rab11 plays a role in receptor recycling to plasma membrane via the pericentriolar recycling compartment. However, little is known about the molecular requirements and partners that promote transport through Rab11-positive recycling endosomes. Here, we report a novel approach to reconstitute transport to immunoabsorbed recycling endosomes in vitro. We show that transport is temperature-, energy-, and time-dependent and requires the presence of Rab proteins, as it is inhibited by the Rab-interacting protein Rab GDP-dissociation inhibitor that removes Rab proteins from the membrane. Cytochalasin D, a drug that blocks actin polymerization, inhibits the in vitro assay, suggesting that transport to recycling endosomes depends on an intact actin cytoskeleton. Using an affinity chromatography approach we show the identification of Rab11-interacting proteins including actin that stimulate transport to recycling endosomes in vitro.
Collapse
Affiliation(s)
- René Bartz
- Institut für Biochemie, Universität Mainz, Becherweg 30, D-55128 Mainz, Germany
| | | | | |
Collapse
|
96
|
Sivars U, Aivazian D, Pfeffer SR. Yip3 catalyses the dissociation of endosomal Rab-GDI complexes. Nature 2003; 425:856-9. [PMID: 14574414 DOI: 10.1038/nature02057] [Citation(s) in RCA: 249] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2003] [Accepted: 09/08/2003] [Indexed: 11/08/2022]
Abstract
Human cells contain more than 60 small G proteins of the Rab family, which are localized to the surfaces of distinct membrane compartments and regulate transport vesicle formation, motility, docking and fusion. Prenylated Rabs also occur in the cytosol bound to GDI (guanine nucleotide dissociation inhibitor), which binds to Rabs in their inactive state. Prenyl Rab-GDI complexes contain all of the information necessary to direct Rab delivery onto distinct membrane compartments. The late endosomal, prenyl Rab9 binds GDI with very high affinity, which led us to propose that there might be a 'GDI-displacement factor' to catalyse dissociation of Rab-GDI complexes and to enable transfer of Rabs from GDI onto membranes. Indeed, we have previously shown that endosomal membranes contain a proteinaceous factor that can act in this manner. Here we show that the integral membrane protein, Yip3, acts catalytically to dissociate complexes of endosomal Rabs bound to GDI, and to deliver them onto membranes. We propose that the conserved Yip proteins serve as GDI-displacement factors for the targeting of Rab GTPases in eukaryotic cells.
Collapse
Affiliation(s)
- Ulf Sivars
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305-5307, USA
| | | | | |
Collapse
|
97
|
Cans C, Passer BJ, Shalak V, Nancy-Portebois V, Crible V, Amzallag N, Allanic D, Tufino R, Argentini M, Moras D, Fiucci G, Goud B, Mirande M, Amson R, Telerman A. Translationally controlled tumor protein acts as a guanine nucleotide dissociation inhibitor on the translation elongation factor eEF1A. Proc Natl Acad Sci U S A 2003; 100:13892-7. [PMID: 14623968 PMCID: PMC283517 DOI: 10.1073/pnas.2335950100] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recently, we demonstrated that the expression levels of the translationally controlled tumor protein (TCTP) were strongly down-regulated at the mRNA and protein levels during tumor reversion/suppression and by the activation of p53 and Siah-1. To better characterize the function of TCTP, a yeast two-hybrid hunt was performed. Subsequent analysis identified the translation elongation factor, eEF1A, and its guanine nucleotide exchange factor, eEF1Bbeta, as TCTP-interacting partners. In vitro and in vivo studies confirmed that TCTP bound specifically eEF1Bbeta and eEF1A. Additionally, MS analysis also identified eEF1A as a TCTP interactor. Because eEF1A is a GTPase, we investigated the role of TCTP on the nucleotide exchange reaction of eEF1A. Our results show that TCTP preferentially stabilized the GDP form of eEF1A, and, furthermore, impaired the GDP exchange reaction promoted by eEF1Bbeta. These data suggest that TCTP has guanine nucleotide dissociation inhibitor activity, and, moreover, implicate TCTP in the elongation step of protein synthesis.
Collapse
Affiliation(s)
- Christophe Cans
- Molecular Engines Laboratories, 20 Rue Bouvier, 75011 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Chen X, Ernst SA, Williams JA. Dominant negative Rab3D mutants reduce GTP-bound endogenous Rab3D in pancreatic acini. J Biol Chem 2003; 278:50053-60. [PMID: 14522985 DOI: 10.1074/jbc.m309910200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two dominant negative mutants of Rab3D, N135I and T36N were recently reported to inhibit the early phase of regulated amylase secretion from mouse pancreatic acini (Chen, X., Edwards, J. A., Logsdon, C. D., Ernst, S. A., and Williams, J. A. (2002) J. Biol. Chem. 277, 18002-18009). Immunocytochemical studies showed that while the wild-type Rab3D localized to zymogen granules, the two dominant negative mutants did not localize to granules and were primarily in the basolateral regions of the cell. The present study, therefore, evaluated the potential mechanisms by which the dominant negative mutants might act. An affinity precipitation assay based on the property of the Rab3 effector Rim1 to interact only with GTP-bound Rab3D was developed. 78.9 +/- 4.5% of total endogenous Rab3D was found in the GTP-bound form. Overexpression of HA-tagged Rab3D, and its Q81L, N135I, and T36N mutants had no effect on the total amount of endogenous Rab3D. However, the dominant negative mutants, T36N and N135I, reduced GTP-bound endogenous Rab3D by 70.0 +/- 3.5% and 72.7 +/- 1.2%, respectively, while the wild-type Rab3D and Q81L mutant had no effect. Triton X-114 phase separation and cell fractionation studies showed that dominant negative Rab3D mutants did not alter isoprenylation or membrane association of endogenous Rab3D. The dominant negative Rab3D did not affect the amount of endogenous Rab3D on purified zymogen granules as assessed by either Western blotting or immunocytochemistry, but reduced the GTP-bound form by 78.6 +/- 3.3%. The two dominant negative Rab3D mutants, therefore, interfere with endogenous Rab3D function by blocking the GDP/GTP exchange but not zymogen granule targeting of endogenous Rab3D.
Collapse
Affiliation(s)
- Xuequn Chen
- Department of Molecular and Integrative Physiology, The University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | |
Collapse
|
99
|
Alory C, Balch WE. Molecular evolution of the Rab-escort-protein/guanine-nucleotide-dissociation-inhibitor superfamily. Mol Biol Cell 2003; 14:3857-67. [PMID: 12972569 PMCID: PMC196578 DOI: 10.1091/e03-04-0227] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Prenylation of Rab GTPases regulating vesicle traffic by Rab geranylgeranyltransferase (RabGGTase) requires a complex formed by the association of newly synthesized Rab proteins with Rab-escort-protein (REP), the choroideremia-gene-product that is mutated in disease, leading to loss of vision. After delivery to the membrane by the REP-Rab complex, subsequent recycling to the cytosol requires the REP-related guanine-nucleotide-dissociation-inhibitor (GDI). Although REP and GDI share common Rab-binding properties, GDI cannot assist in Rab prenylation and REP cannot retrieve Rab proteins from the membranes. We have now isolated REP mutant proteins that are able to partially function as both REP and GDI. These results provide molecular insight into the functional and evolutionary organization of the REP/GDI superfamily.
Collapse
Affiliation(s)
- Christelle Alory
- Departments of Cell and Molecular Biology and The Institute for Childhood and Neglected Diseases, The Scripps Research Institute, La Jolla, California 92130, USA.
| | | |
Collapse
|
100
|
Barrowman J, Wang W, Zhang Y, Ferro-Novick S. The Yip1p.Yif1p complex is required for the fusion competence of endoplasmic reticulum-derived vesicles. J Biol Chem 2003; 278:19878-84. [PMID: 12657649 DOI: 10.1074/jbc.m302406200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here we report that Yip1p and Yif1p, two members of an integral membrane protein complex that bind to the Rab Ypt1p, are required for membrane fusion with the Golgi in vitro. To block fusion, anti-Yip1p or anti-Yif1p antibodies must be added before vesicles bud from the endoplasmic reticulum (ER). These antibodies do not block the packaging of Yip1p, Yif1p, or the soluble NSF attachment protein receptor (SNAREs) into vesicles. We propose that Yip1p and Yif1p perform a critical role in establishing the fusion competence of ER to Golgi vesicles at the time of budding. Consistent with this proposal, we observe that the Yip1p.Yif1p complex binds to the ER to Golgi SNAREs Bos1p and Sec22p, two components of the membrane fusion machinery.
Collapse
Affiliation(s)
- Jemima Barrowman
- Howard Hughes Medical Institute and the Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06519, USA
| | | | | | | |
Collapse
|