51
|
Pontigo S, Ribera A, Gianfreda L, de la Luz Mora M, Nikolic M, Cartes P. Silicon in vascular plants: uptake, transport and its influence on mineral stress under acidic conditions. PLANTA 2015; 242:23-37. [PMID: 26007688 DOI: 10.1007/s00425-015-2333-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/15/2015] [Indexed: 05/07/2023]
Abstract
So far, considerable advances have been achieved in understanding the mechanisms of Si uptake and transport in vascular plants. This review presents a comprehensive update about this issue, but also provides the new insights into the role of Si against mineral stresses that occur in acid soils. Such information could be helpful to understand both the differential Si uptake ability as well as the benefits of this mineral element on plants grown under acidic conditions. Silicon (Si) has been widely recognized as a beneficial element for many plant species, especially under stress conditions. In the last few years, great efforts have been made to elucidate the mechanisms involved in uptake and transport of Si by vascular plants and recently, different Si transporters have been identified. Several researches indicate that Si can alleviate various mineral stresses in plants growing under acidic conditions, including aluminium (Al) and manganese (Mn) toxicities as well as phosphorus (P) deficiency all of which are highly detrimental to crop production. This review presents recent findings concerning the influence of uptake and transport of Si on mineral stress under acidic conditions because a knowledge of this interaction provides the basis for understanding the role of Si in mitigating mineral stress in acid soils. Currently, only four Si transporters have been identified and there is little information concerning the response of Si transporters under stress conditions. More investigations are therefore needed to establish whether there is a relationship between Si transporters and the benefits of Si to plants subjected to mineral stress. Evidence presented suggests that Si supply and its subsequent accumulation in plant tissues could be exploited as a strategy to improve crop productivity on acid soils.
Collapse
Affiliation(s)
- Sofía Pontigo
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Casilla 54-D, Temuco, Chile
| | | | | | | | | | | |
Collapse
|
52
|
Ma JF, Yamaji N. A cooperative system of silicon transport in plants. TRENDS IN PLANT SCIENCE 2015; 20:435-42. [PMID: 25983205 DOI: 10.1016/j.tplants.2015.04.007] [Citation(s) in RCA: 255] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/01/2015] [Accepted: 04/15/2015] [Indexed: 05/04/2023]
Abstract
The high accumulation of silicon (Si) protects plants from biotic and abiotic stresses. Two different types of Si transporter [Low Silicon 1 (Lsi1) and 2 (Lsi2)] involved in the uptake and distribution of Si have been identified. Lsi1, a Si permeable channel, belongs to the Nod26-like major intrinsic protein (NIP) III subgroup of the aquaporin membrane protein family with a distinct selectivity, whereas Lsi2, an efflux Si transporter, belongs to an uncharacterized anion transporter family. These transporters are localized to the plasma membrane, but, in different plant species, show different expression patterns and tissue or cellular localizations that are associated with different levels of Si accumulation. A recent mathematical modeling study revealed that cooperation of Lsi1 and Lsi2, which show a polarized localization, is required for the efficient transport of Si in rice.
Collapse
Affiliation(s)
- Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki 710-0046, Japan.
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki 710-0046, Japan
| |
Collapse
|
53
|
Shrestha RP, Hildebrand M. Evidence for a regulatory role of diatom silicon transporters in cellular silicon responses. EUKARYOTIC CELL 2015; 14:29-40. [PMID: 25380754 PMCID: PMC4279021 DOI: 10.1128/ec.00209-14] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/03/2014] [Indexed: 01/19/2023]
Abstract
The utilization of silicon by diatoms has both global and small-scale implications, from oceanic primary productivity to nanotechnological applications of their silica cell walls. The sensing and transport of silicic acid are key aspects of understanding diatom silicon utilization. At low silicic acid concentrations (<30 μM), transport mainly occurs through silicic acid transport proteins (SITs), and at higher concentrations it occurs through diffusion. Previous analyses of the SITs were done either in heterologous systems or without a distinction between individual SITs. In the present study, we examined individual SITs in Thalassiosira pseudonana in terms of transcript and protein abundance in response to different silicic acid regimes and examined knockdown lines to evaluate the role of the SITs in transport, silica incorporation, and lipid accumulation resulting from silicon starvation. SIT1 and SIT2 were localized in the plasma membrane, and protein levels were generally inversely correlated with cellular silicon needs, with a distinct response being found when the two SITs were compared. We developed highly effective approaches for RNA interference and antisense knockdowns, the first such approaches developed for a centric diatom. SIT knockdown differentially affected the uptake of silicon and the incorporation of silicic acid and resulted in the induction of lipid accumulation under silicon starvation conditions far earlier than in the wild-type cells, suggesting that the cells were artificially sensing silicon limitation. The data suggest that the transport role of the SITs is relatively minor under conditions with sufficient silicic acid. Their primary role is to sense silicic acid levels to evaluate whether the cell can proceed with its cell wall formation and division processes.
Collapse
Affiliation(s)
- Roshan P Shrestha
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Mark Hildebrand
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
54
|
Jugdaohsingh R, Pedro LD, Watson A, Powell JJ. Silicon and boron differ in their localization and loading in bone. Bone Rep 2014; 1:9-15. [PMID: 26665155 PMCID: PMC4643752 DOI: 10.1016/j.bonr.2014.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 10/17/2014] [Indexed: 11/19/2022] Open
Abstract
Silicon and boron share many similarities, both chemically and biochemically, including having similar effects on bone, although their mechanisms of action are not known. Here we compared the loading of silicon and boron into bone, their localization and how they are influenced by age (growth & development), to obtain further clues as to the biological effects of these elements and, especially, to see if they behave the same or not. Bone samples were obtained from two different studies where female Sprague Dawley rats had been maintained on a normal maintenance diet for up to 43 weeks. Total bone elemental levels were determined by ICP-OES following microwave assisted acid digestion. Silicon and boron levels in the decalcified bones (i.e. the collagen fraction) were also investigated. Silicon and boron showed marked differences in loading and in their localization in bone. Highest silicon and lowest boron concentrations were found in the under-mineralized bone of younger rats and lowest silicon and highest boron concentrations were found in the fully mineralized bone of the adult rat. Overall, however total bone silicon content increased with age, as did boron content, the latter mirroring the increase in calcium (mineral) content of bone. However, whereas silicon showed equal distribution in the collagen and mineral fractions of bone, boron was exclusively localized in the mineral fraction. These findings confirm the reported association between silicon and collagen, especially at the early stages of bone mineralization, and show that boron is associated with the bone mineral but not connective tissues. These data suggest that silicon and boron have different biological roles and that one is unlikely, therefore, to substitute for the other, or at least boron would not substitute for Si in the connective tissues. Finally, we noted that silicon levels in the mineral fraction varied greatly between the two studies, suggesting that one or more nutritional factor(s) may influence the loading of Si into the mineral fraction of bone. This and the nature of the interaction between Si and collagen deserve further attention. Boron and silicon show marked differences in bone loading. Boron is exclusively found in the mineral fraction of bone. Silicon is distributed equally in the mineral and collagen fractions. Data suggest boron and silicon have different biological effects on bone. Silicon loading into bone mineral may be influenced by nutritional factors.
Collapse
Affiliation(s)
- Ravin Jugdaohsingh
- MRC Human Nutrition Research, Elsie Widdowson Laboratory, Cambridge, United Kingdom
- Corresponding author at: MRC Human Nutrition Research, Elsie Widdowson Laboratory, Fulbourn Road, Cambridge CB1 9NL, UK. Fax: + 44 1223 437515.
| | - Liliana D. Pedro
- MRC Human Nutrition Research, Elsie Widdowson Laboratory, Cambridge, United Kingdom
| | - Abigail Watson
- MRC Human Nutrition Research, Elsie Widdowson Laboratory, Cambridge, United Kingdom
- School of Sport and Exercise Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Jonathan J. Powell
- MRC Human Nutrition Research, Elsie Widdowson Laboratory, Cambridge, United Kingdom
| |
Collapse
|
55
|
Palenik B. Molecular mechanisms by which marine phytoplankton respond to their dynamic chemical environment. ANNUAL REVIEW OF MARINE SCIENCE 2014; 7:325-340. [PMID: 25195866 DOI: 10.1146/annurev-marine-010814-015639] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Marine scientists have long been interested in the interactions of marine phytoplankton with their chemical environments. Nutrient availability clearly controls carbon fixation on a global scale, but the interactions between phytoplankton and nutrients are complex and include both short-term responses (seconds to minutes) and longer-term evolutionary adaptations. This review outlines how genomics and functional genomics approaches are providing a better understanding of these complex interactions, especially for cyanobacteria and diatoms, for which the genome sequences of multiple model organisms are available. Transporters and related genes are emerging as the most likely candidates for biomarkers in stress-specific studies, but other genes are also possible candidates. One surprise has been the important role of horizontal gene transfer in mediating chemical-biological interactions.
Collapse
Affiliation(s)
- Brian Palenik
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0202;
| |
Collapse
|
56
|
Chao JT, Biggs MJP, Pandit AS. Diatoms: a biotemplating approach to fabricating drug delivery reservoirs. Expert Opin Drug Deliv 2014; 11:1687-95. [PMID: 25146231 DOI: 10.1517/17425247.2014.935336] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Biotemplating is a rapidly expanding subfield that utilizes nature-inspired systems and structures to create novel functional materials, and it is through these methods that the limitations of current engineering practices may be advanced. The diatom is an exceptional template for drug delivery applications, owing largely to its highly-ordered pores, large surface area, species-specific architecture, and flexibility for surface modifications. Diatoms have been studied in a wide range of biomedical applications and their potential as the next frontier of drug delivery has yet to be fully exploited. In this editorial, the authors aim to review the use of diatoms in the delivery of poorly water-soluble drugs as reported in the literature, discuss the progress and advancements that have been made thus far, identify the shortcomings and limitations in the field, and, lastly, present their expert opinion and convey the future outlook on biotemplating approaches for drug delivery.
Collapse
Affiliation(s)
- Joshua T Chao
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland , Biosciences Building, Corrib Village, Dangan, Galway , Ireland +353 91 49 5833 ; +353 91 49 5585 ;
| | | | | |
Collapse
|
57
|
Renzi M, Roselli L, Giovani A, Focardi SE, Basset A. Early warning tools for ecotoxicity assessment based on Phaeodactylum tricornutum. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:1055-1072. [PMID: 24838657 DOI: 10.1007/s10646-014-1249-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/25/2014] [Indexed: 06/03/2023]
Abstract
Phaeodactylum tricornutum was exposed to various toxic substances (zinc, copper or dodecylbenzenesulfonic acid sodium salt) in accordance with the AlgalToxkit(®) protocol based on the UNI EN ISO 10253 method in order to quantitatively compare the responses obtained by traditional growth-rate inhibition tests with morphological (biovolume) and physiological (chlorophyll-a, phaeophytin ratio) endpoints. A novel approach is proposed for detecting early and sub-lethal effects based on biovolume quantification using confocal microscopy coupled with an image analysis system. The results showed that effects on both biovolume and the photosynthetic complex are sensitive and powerful early warning tools for evaluating sub-lethal effects of exposure. Specifically, biovolume showed significant sensitive and early responses for the tested surfactant. Qualitatively, we also observed structural anomalies and effects on natural auto-fluorescence in exposed cells that also represent potentially useful tools for ecotoxicological studies.
Collapse
Affiliation(s)
- Monia Renzi
- Department of Biological and Environmental Sciences and Technologies, University of the Salento, SP Lecce-Monteroni, 73100, Lecce, Italy,
| | | | | | | | | |
Collapse
|
58
|
Preari M, Spinde K, Lazic J, Brunner E, Demadis KD. Bioinspired Insights into Silicic Acid Stabilization Mechanisms: The Dominant Role of Polyethylene Glycol-Induced Hydrogen Bonding. J Am Chem Soc 2014; 136:4236-44. [DOI: 10.1021/ja411822s] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Melina Preari
- Crystal
Engineering, Growth and Design Laboratory, Department of Chemistry, University of Crete, Voutes Campus, Heraklion, Crete, GR-71003, Greece
| | - Katrin Spinde
- Fachrichtung
Chemie und Lebensmittelchemie, Bioanalytische Chemie, Technische Universität Dresden, 01062 Dresden, Germany
| | - Joëlle Lazic
- Fachrichtung
Chemie und Lebensmittelchemie, Bioanalytische Chemie, Technische Universität Dresden, 01062 Dresden, Germany
| | - Eike Brunner
- Fachrichtung
Chemie und Lebensmittelchemie, Bioanalytische Chemie, Technische Universität Dresden, 01062 Dresden, Germany
| | - Konstantinos D. Demadis
- Crystal
Engineering, Growth and Design Laboratory, Department of Chemistry, University of Crete, Voutes Campus, Heraklion, Crete, GR-71003, Greece
| |
Collapse
|
59
|
Lechner CC, Becker CFW. A sequence-function analysis of the silica precipitating silaffin R5 peptide. J Pept Sci 2014; 20:152-8. [DOI: 10.1002/psc.2577] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 09/30/2013] [Indexed: 11/05/2022]
Affiliation(s)
- Carolin C. Lechner
- University of Vienna; Department of Chemistry, Institute of Biological Chemistry; Währinger Straße 38 1090 Vienna Austria
| | - Christian F. W. Becker
- University of Vienna; Department of Chemistry, Institute of Biological Chemistry; Währinger Straße 38 1090 Vienna Austria
| |
Collapse
|
60
|
Pruksa S, Siripinyanond A, Powell JJ, Jugdaohsingh R. Silicon balance in human volunteers; a pilot study to establish the variance in silicon excretion versus intake. Nutr Metab (Lond) 2014; 11:4. [PMID: 24405738 PMCID: PMC3912935 DOI: 10.1186/1743-7075-11-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 12/27/2013] [Indexed: 11/10/2022] Open
Abstract
Background Accumulating evidence suggests a role for silicon in optimal connective tissue health. Further proof of its importance/essentiality may be provided by studies involving imposed depletion followed by 29Si challenge to estimate metabolic balance. Prior to conducting these expensive studies, we first established the variance of estimating normal Si excretion versus intake using a single oral dose of typical dietary Si, orthosilicic acid. Methods Healthy volunteers were recruited from Loei Rajabhat University, separated into two matched groups (three males and three females/group) and maintained on a standardized diet for the three study days. One group ingested 500 ml water containing orthosilicic acid (28.9 mg Si) and the other group received 500 ml water alone, all on a fasted stomach. Blood samples and total urine and faeces were collected over the 48 h post-dose period and 24 h before-hand (baseline) and analysed for silicon by inductively coupled plasma optical emission spectrometry. Results Serum Si analysis confirmed the ready absorption of silicon from the orthosilicic acid solution. Mean total urinary and faecal Si excretions over the 24 h post-dose period accounted for 57 ± 9.5% and 39 ± 9.4% of the ingested dose, respectively. Thus in total 96.3 ± 5.8% of the ingested dose was recovered in faecal plus urinary excretions over the 24 h post-dose period. Conclusions We report that in healthy subjects (presumably in Si balance), the ingestion of a soluble dose of dietary Si results in the same quantity (within analytical error) being excreted within 24 h. It is currently not known if this all originated from the dose solution or if there was some exchange with the body Si pool but, given the low variance in these silicon balance data, isotopic studies are now merited.
Collapse
Affiliation(s)
| | | | | | - Ravin Jugdaohsingh
- MRC Human Nutrition Research, Elsie Widdowson Laboratory, Fulbourn Road, Cambridge CB1 9NL, UK.
| |
Collapse
|
61
|
Du C, Liang JR, Chen DD, Xu B, Zhuo WH, Gao YH, Chen CP, Bowler C, Zhang W. iTRAQ-based proteomic analysis of the metabolism mechanism associated with silicon response in the marine diatom Thalassiosira pseudonana. J Proteome Res 2014; 13:720-34. [PMID: 24372006 DOI: 10.1021/pr400803w] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Silicon is a critical element for diatom growth; however our understanding of the molecular mechanisms involved in intracellular silicon responses are limited. In this study, an iTRAQ-LC-MS/MS quantitative proteomic approach was coupled with an established synchrony technique to reveal the global metabolic silicon-response in the model diatom Thalassiosira pseudonana subject to silicon starvation and readdition. Four samples, which corresponded to the time of silicon starvation, girdle band synthesis, valve formation, and right after daughter cell separation (0, 1, 5, 7 h), were collected for the proteomic analysis. The results indicated that a total of 1,831 proteins, representing 16% of the predicted proteins encoded by the T. pseudonana genome, could be identified. Of the identified proteins, 165 were defined as being differentially expressed proteins, and these proteins could be linked to multiple biochemical pathways. In particular, a number of proteins related to silicon transport, cell wall synthesis, and cell-cycle progress could be identified. In addition, other proteins that are potentially involved in amino acid synthesis, protein metabolism, and energy generation may have roles in the cellular response to silicon. Our findings provide a range of valuable information that will be of use for further studies of this important physiological response that is unique to diatoms.
Collapse
Affiliation(s)
- Chao Du
- School of Life Sciences, Xiamen University , Xiamen 361005, China
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Annenkov VV, Basharina TN, Danilovtseva EN, Grachev MA. Putative silicon transport vesicles in the cytoplasm of the diatom Synedra acus during surge uptake of silicon. PROTOPLASMA 2013; 250:1147-1155. [PMID: 23525742 DOI: 10.1007/s00709-013-0495-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 03/11/2013] [Indexed: 06/02/2023]
Abstract
We studied the growth of the araphid pennate diatom Synedra acus subsp. radians (Kützing) Skabichevskii using a fluorescent dye N(1),N(3)-dimethyl-N(1)-(7-nitro-2,1,3-benzoxadiazol-4-yl)propane-1,3-diamine (NBD-N2), which stains growing siliceous frustules but does not stain other subcellular organelles. We used a clonal culture of S. acus that was synchronized by silicon starvation. Epifluorescence microscopy was performed in two different ways with cells stained by the addition of silicic acid and the dye. Individual cells immobilized on glass were observed during the first 15-20 min following the replenishment of silicic acid after silicon starvation. Alternatively, we examined cells of a batch culture at time intervals during 36 h after the replenishment of silicic acid using fluorescence and confocal microscopy. The addition of silicic acid and NBD-N2 resulted in the rapid (1-2 min) formation of several dozen green fluorescent submicrometer particles (GFSPs) in the cytoplasm, which was accompanied by the accumulation of fluorescent silica inside silica deposition vesicles (SDVs) along their full length. In 5-15 min, GFSPs disappeared from the cytoplasm. Mature siliceous valves were formed within the SDVs during the subsequent 14-16 h. In the next 8-10 h, GFSPs appeared again in the cytoplasm of daughter cells. The data obtained confirm observations about the two-stage mechanism of silicon assimilation, which includes rapid silicon uptake (surge uptake) followed by slow silica deposition. It is likely that the observed GFSPs are silicon transport vesicles, which were first proposed by Schmid and Schulz in (Protoplasma 100:267-288, 1979).
Collapse
Affiliation(s)
- Vadim V Annenkov
- Limnological Institute, Siberian Branch of Russian Academy of Sciences, 3, Ulan-Batorskaya St, P.O. Box 278, Irkutsk, 664033, Russia,
| | | | | | | |
Collapse
|
63
|
Annenkov VV, Kozlov AS, Danilovtseva EN, Basharina TN, Petrov AK. Dissection of the frustules of the diatom Synedra acus under the action of picosecond impulses of submillimeter laser irradiation. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2013; 42:587-90. [PMID: 23709009 DOI: 10.1007/s00249-013-0913-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/23/2013] [Accepted: 05/10/2013] [Indexed: 11/24/2022]
Abstract
Diatom algae realize highly intriguing processes of biosynthesis of siliceous structures in living cells under moderate conditions. Investigation of diatom physiology is complicated by frustule (siliceous exoskeleton). Frustules consist of valves and girdle bands which are adhered to each other by means of organic substances. Removal of the frustule from the lipid membrane of diatom cells would open new possibilities for study of silicon metabolism in diatoms. We found that submillimeter laser irradiation produced by a free-electron laser causes splitting of diatom frustules without destruction of cell content. This finding opens the way to direct study of diatom cell membrane and to isolation of cell organelles, including silica deposition vesicles. We suppose that the dissection action of the submillimeter irradiation results from unusual ultrasonic waves produced by the short (30-100 ps) but high-power (1 MW) terahertz laser impulses at 5.6 MHz frequency.
Collapse
Affiliation(s)
- Vadim V Annenkov
- Limnological Institute of Siberian Branch of Russian Academy of Sciences, 3, Ulan-Batorskaya St., P.O. Box 278, Irkutsk 664033, Russia.
| | | | | | | | | |
Collapse
|
64
|
André R, Natalio F, Tahir MN, Berger R, Tremel W. Self-cleaning antimicrobial surfaces by bio-enabled growth of SnO2 coatings on glass. NANOSCALE 2013; 5:3447-3456. [PMID: 23475228 DOI: 10.1039/c3nr00007a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Conventional vapor-deposition techniques for coatings require sophisticated equipment and/or high-temperature resistant substrates. Therefore bio-inspired techniques for the fabrication of inorganic coatings have been developed in recent years. Inspired by the biology behind the formation of the intricate skeletons of diatoms orchestrated by a class of cationic polyamines (silaffins) we have used surface-bound spermine, a naturally occurring polyamine, to promote the fast deposition of homogeneous, thin and transparent biomimetic SnO2 coatings on glass surfaces. The bio-enabled SnO2 film is highly photoactive, i.e. it generates superoxide radicals (O2˙(-)) upon sunlight exposure resulting in a strong degradation of organic contaminants and a strong antimicrobial activity. Upon illumination the biomimetic SnO2 coating exhibits a switchable amphiphilic behavior, which - in combination with its photoactivity - creates a self-cleaning surface. The intrinsic self-cleaning properties could lead to the development of new protective, antifouling coatings on various substrates.
Collapse
Affiliation(s)
- Rute André
- Institute of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, D-55099 Mainz, Germany
| | | | | | | | | |
Collapse
|
65
|
Marron AO, Alston MJ, Heavens D, Akam M, Caccamo M, Holland PWH, Walker G. A family of diatom-like silicon transporters in the siliceous loricate choanoflagellates. Proc Biol Sci 2013; 280:20122543. [PMID: 23407828 PMCID: PMC3574361 DOI: 10.1098/rspb.2012.2543] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 01/17/2013] [Indexed: 11/12/2022] Open
Abstract
Biosilicification is widespread across the eukaryotes and requires concentration of silicon in intracellular vesicles. Knowledge of the molecular mechanisms underlying this process remains limited, with unrelated silicon-transporting proteins found in the eukaryotic clades previously studied. Here, we report the identification of silicon transporter (SIT)-type genes from the siliceous loricate choanoflagellates Stephanoeca diplocostata and Diaphanoeca grandis. Until now, the SIT gene family has been identified only in diatoms and other siliceous stramenopiles, which are distantly related to choanoflagellates among the eukaryotes. This is the first evidence of similarity between SITs from different eukaryotic supergroups. Phylogenetic analysis indicates that choanoflagellate and stramenopile SITs form distinct monophyletic groups. The absence of putative SIT genes in any other eukaryotic groups, including non-siliceous choanoflagellates, leads us to propose that SIT genes underwent a lateral gene transfer event between stramenopiles and loricate choanoflagellates. We suggest that the incorporation of a foreign SIT gene into the stramenopile or choanoflagellate genome resulted in a major metabolic change: the acquisition of biomineralized silica structures. This hypothesis implies that biosilicification has evolved multiple times independently in the eukaryotes, and paves the way for a better understanding of the biochemical basis of silicon transport through identification of conserved sequence motifs.
Collapse
Affiliation(s)
- Alan O Marron
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK.
| | | | | | | | | | | | | |
Collapse
|
66
|
Jeffryes C, Rosenberger J, Rorrer GL. Fed-batch cultivation and bioprocess modeling of Cyclotella sp. for enhanced fatty acid production by controlled silicon limitation. ALGAL RES 2013. [DOI: 10.1016/j.algal.2012.11.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
67
|
Taylor AR, Brownlee C, Wheeler GL. Proton channels in algae: reasons to be excited. TRENDS IN PLANT SCIENCE 2012; 17:675-84. [PMID: 22819465 DOI: 10.1016/j.tplants.2012.06.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 06/14/2012] [Accepted: 06/18/2012] [Indexed: 05/08/2023]
Abstract
A fundamental requirement of all eukaryotes is the ability to translocate protons across membranes. This is critical in bioenergetics, for compartmentalized metabolism, and to regulate intracellular pH (pH(i)) within a range that is compatible with cellular metabolism. Plants, animals, and algae utilize specialized transport machinery for membrane energization and pH homeostasis that reflects the prevailing ionic conditions in which they evolved. The recent characterization of H(+)-permeable channels in marine and freshwater algae has led to the discovery of novel functions for these transport proteins in both cellular pH homeostasis and sensory biology. Here we review the potential implications for understanding the origins and evolution of membrane excitability and the phytoplankton-based marine ecosystem responses to ocean acidification.
Collapse
Affiliation(s)
- Alison R Taylor
- Department of Biology and Marine Biology, University of North Carolina Wilmington, 601 South College Road, Wilmington, NC 28409, USA.
| | | | | |
Collapse
|
68
|
Grégoire C, Rémus-Borel W, Vivancos J, Labbé C, Belzile F, Bélanger RR. Discovery of a multigene family of aquaporin silicon transporters in the primitive plant Equisetum arvense. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:320-30. [PMID: 22712876 DOI: 10.1111/j.1365-313x.2012.05082.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plants benefit greatly from silicon (Si) absorption provided that they contain Si transporters. The latter have recently been identified in the roots of some higher plants known to accumulate high concentrations of Si, and all share a high level of sequence identity. In this study, we searched for transporters in the primitive vascular plant Equisetum arvense (horsetail), which is a valuable but neglected model plant for the study of Si absorption, as it has one of the highest Si concentrations in the plant kingdom. Our initial attempts to identify Si transporters based on sequence homology with transporters from higher plants proved unsuccessful, suggesting a divergent structure or property in horsetail transporters. Subsequently, through sequencing of the horsetail root transcriptome and a search using amino acid sequences conserved in plant aquaporins, we were able to identify a multigene family of aquaporin Si transporters. Comparison of known functional domains and phylogenetic analysis of sequences revealed that the horsetail proteins belong to a different group than higher-plant Si transporters. In particular, the newly identified proteins contain a STAR pore as opposed to the GSGR pore common to all previously identified Si transporters. In order to determine its functionality, the proteins were heterologously expressed in both Xenopus oocytes and Arabidopsis, and the results showed that the horsetail proteins are extremely efficient a transporting Si. These findings offer new insights into the elusive properties of Si and its absorption by plants.
Collapse
Affiliation(s)
- Caroline Grégoire
- Département de Phytologie-Faculté des Sciences de l'Agriculture et de l'Alimentation, Centre de Recherche en Horticulture, Université Laval, Pavillon Paul-Comtois, Québec City, QC G1V 0A6, Canada
| | | | | | | | | | | |
Collapse
|
69
|
Zhang D, Wang Y, Cai J, Pan J, Jiang X, Jiang Y. Bio-manufacturing technology based on diatom micro- and nanostructure. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11434-012-5410-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
70
|
Shrestha RP, Tesson B, Norden-Krichmar T, Federowicz S, Hildebrand M, Allen AE. Whole transcriptome analysis of the silicon response of the diatom Thalassiosira pseudonana. BMC Genomics 2012; 13:499. [PMID: 22994549 PMCID: PMC3478156 DOI: 10.1186/1471-2164-13-499] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 09/14/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Silicon plays important biological roles, but the mechanisms of cellular responses to silicon are poorly understood. We report the first analysis of cell cycle arrest and recovery from silicon starvation in the diatom Thalassiosira pseudonana using whole genome microarrays. RESULTS Three known responses to silicon were examined, 1) silicified cell wall synthesis, 2) recovery from silicon starvation, and 3) co-regulation with silicon transporter (SIT) genes. In terms of diatom cell wall formation, thus far only cell surface proteins and proteins tightly associated with silica have been characterized. Our analysis has identified new genes potentially involved in silica formation, and other genes potentially involved in signaling, trafficking, protein degradation, glycosylation and transport, which provides a larger-scale picture of the processes involved. During silicon starvation, an overrepresentation of transcription and translation related genes were up-regulated, indicating that T. pseudonana is poised to rapidly recover from silicon starvation and resume cell cycle progression upon silicon replenishment. This is in contrast to other types of limitation, and provides the first molecular data explaining the well-established environmental response of diatoms to grow as blooms and to out-compete other classes of microalgae for growth. Comparison of our data with a previous diatom cell cycle analysis indicates that assignment of the cell cycle specific stage of particular cyclins and cyclin dependent kinases should be re-evaluated. Finally, genes co-varying in expression with the SITs enabled identification of a new class of diatom-specific proteins containing a unique domain, and a putative silicon efflux protein. CONCLUSIONS Analysis of the T. pseudonana microarray data has provided a wealth of new genes to investigate previously uncharacterized cellular phenomenon related to silicon metabolism, silicon's interaction with cellular components, and environmental responses to silicon.
Collapse
Affiliation(s)
- Roshan Prakash Shrestha
- Scripps Institution of Oceanography, University of California, San Diego, California 92037, USA
| | | | | | | | | | | |
Collapse
|
71
|
Integrated simulation with experimentation is a powerful tool for understanding diatom valve morphogenesis. Biosystems 2012; 109:450-9. [DOI: 10.1016/j.biosystems.2012.05.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/31/2012] [Accepted: 05/31/2012] [Indexed: 11/19/2022]
|
72
|
Yi J, Jang HS, Lee JS, Park WI. Bioinspired morphogenesis of highly intricate and symmetric silica nanostructures. NANO LETTERS 2012; 12:3743-3748. [PMID: 22738666 DOI: 10.1021/nl301568y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Biosilification is of interest due to its capability to produce a highly intricate structure under environmentally friendly conditions. Despite the considerable effort that has been devoted toward biomimetic silification, the synthesis of highly complex silica structures, as found in the structures of diatom cell walls, is still in its infancy. Here, we report the bioinspired fabrication of well-organized and symmetric silica nanostructured networks, involving phase separation and silicic acid polymerization processes, in analogy to the morphogenesis of diatom cell walls. Our approach exploits self-assembled silica spheres as a self-source of the silicic acids as well as scaffolds that, interplayed with droplets of ammonium hexafluorosilicate, direct the site-specific silification. Moreover, we have achieved multiple morphological evolutions with subtle changes in the process, which demonstrates exquisite levels of control over silica morphogenesis.
Collapse
Affiliation(s)
- Jaeseok Yi
- Division of Materials Science Engineering, Hanyang University, Seoul 133-791, Korea
| | | | | | | |
Collapse
|
73
|
Curnow P, Senior L, Knight MJ, Thamatrakoln K, Hildebrand M, Booth PJ. Expression, purification, and reconstitution of a diatom silicon transporter. Biochemistry 2012; 51:3776-85. [PMID: 22530967 DOI: 10.1021/bi3000484] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis and manipulation of silicon materials on the nanoscale are core themes in nanotechnology research. Inspiration is increasingly being taken from the natural world because the biological mineralization of silicon results in precisely controlled, complex silica structures with dimensions from the millimeter to the nanometer. One fascinating example of silicon biomineralization occurs in the diatoms, unicellular algae that sheath themselves in an ornate silica-based cell wall. To harvest silicon from the environment, diatoms have developed a unique family of integral membrane proteins that bind to a soluble form of silica, silicic acid, and transport it across the cell membrane to the cell interior. These are the first proteins shown to directly interact with silicon, but the current understanding of these specific silicon transport proteins is limited by the lack of in vitro studies of structure and function. We report here the recombinant expression, purification, and reconstitution of a silicon transporter from the model diatom Thalassiosira pseudonana. After using GFP fusions to optimize expression and purification protocols, a His(10)-tagged construct was expressed in Saccharomyces cerevisiae, solubilized in the detergent Fos-choline-12, and purified by affinity chromatography. Size-exclusion chromatography and particle sizing by dynamic light scattering showed that the protein was purified as a homotetramer, although nonspecific oligomerization occurred at high protein concentrations. Circular dichroism measurements confirmed sequence-based predictions that silicon transporters are α-helical membrane proteins. Silicic acid transport could be established in reconstituted proteoliposomes, and silicon uptake was found to be dependent upon an applied sodium gradient. Transport data across different substrate concentrations were best fit to the sigmoidal Hill equation, with a K(0.5) of 19.4 ± 1.3 μM and a cooperativity coefficient of 1.6. Sodium binding was noncooperative with a K(m)(app) of 1.7 ± 1.0 mM, suggesting a transport silicic acid:Na(+) stoichiometry of 2:1. These results provide the basis for a full understanding of both silicon transport in the diatom and protein-silicon interactions in general.
Collapse
Affiliation(s)
- Paul Curnow
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| | | | | | | | | | | |
Collapse
|
74
|
Belton DJ, Deschaume O, Perry CC. An overview of the fundamentals of the chemistry of silica with relevance to biosilicification and technological advances. FEBS J 2012; 279:1710-20. [PMID: 22333209 DOI: 10.1111/j.1742-4658.2012.08531.x] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biomineral formation is widespread in nature, and occurs in bacteria, single-celled protists, plants, invertebrates, and vertebrates. Minerals formed in the biological environment often show unusual physical properties (e.g. strength, degree of hydration) and often have structures that exhibit order on many length scales. Biosilica, found in single-celled organisms through to higher plants and primitive animals (sponges), is formed from an environment that is undersaturated with respect to silicon, and under conditions of approximately neutral pH and relatively low temperatures of 4-40 °C compared to those used industrially. Formation of the mineral may occur intracellularly or extracellularly, and specific biochemical locations for mineral deposition that include lipids, proteins and carbohydrates are known. In most cases, the formation of the mineral phase is linked to cellular processes, an understanding of which could lead to the design of new materials for biomedical, optical and other applications. In this contribution, we describe the aqueous chemistry of silica, from uncondensed monomers through to colloidal particles and 3D structures, that is relevant to the environment from which the biomineral forms. We then describe the chemistry of silica formation from alkoxides such as tetraethoxysilane, as this and other silanes have been used to study the chemistry of silica formation using silicatein, and such precursors are often used in the preparation of silicas for technological applications. The focus of this article is on the methods, experimental and computational, by which the process of silica formation can be studied, with an emphasis on speciation.
Collapse
Affiliation(s)
- David J Belton
- Biomolecular and Materials Interface Research Laboratory, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | | | | |
Collapse
|
75
|
Transport routes of metalloids into and out of the cell: A review of the current knowledge. Chem Biol Interact 2012; 197:47-57. [DOI: 10.1016/j.cbi.2012.02.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 01/27/2012] [Accepted: 02/14/2012] [Indexed: 11/20/2022]
|
76
|
Demadis KD, Tsistraki A, Popa A, Ilia G, Visa A. Promiscuous stabilisation behaviour of silicic acid by cationic macromolecules: the case of phosphonium-grafted dicationic ethylene oxide bolaamphiphiles. RSC Adv 2012. [DOI: 10.1039/c1ra00448d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
77
|
Lechner CC, Becker CFW. Exploring the effect of native and artificial peptide modifications on silaffin induced silica precipitation. Chem Sci 2012. [DOI: 10.1039/c2sc20687k] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
78
|
Patwardhan SV. Biomimetic and bioinspired silica: recent developments and applications. Chem Commun (Camb) 2011; 47:7567-82. [PMID: 21479320 DOI: 10.1039/c0cc05648k] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In a previous review of biological and bioinspired silica formation (S. V. Patwardhan et al., Chem. Commun., 2005, 1113 [ref. 1]), we have identified and discussed the roles that organic molecules (additives) play in silica formation in vitro. Tremendous progress has been made in this field since and this review attempts to capture, with selected examples from the literature, the key advances in synthesising and controlling properties of silica-based materials using bioinspired approaches, i.e. conditions of near-neutral pH, all aqueous environments and room temperature. One important reason to investigate biosilicifying systems is to be able to develop novel materials and/or technologies suitable for a wide range of applications. Therefore, this review will also focus on applications arising from research on biological and bioinspired silica. A range of applications such as in the areas of sensors, coatings, hybrid materials, catalysis and biocatalysis and drug delivery have started appearing. Furthermore, scale-up of this technology suitable for large-scale manufacturing has proven the potential of biologically inspired synthesis.
Collapse
Affiliation(s)
- Siddharth V Patwardhan
- Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow G1 1XJ, UK.
| |
Collapse
|
79
|
Cox EJ. Morphology, Cell Wall, Cytology, Ultrastructure and Morphogenetic Studies. THE DIATOM WORLD 2011. [DOI: 10.1007/978-94-007-1327-7_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
80
|
|
81
|
Santhiya D, Burghard Z, Greiner C, Jeurgens LPH, Subkowski T, Bill J. Bioinspired deposition of TiO2 thin films induced by hydrophobins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:6494-6502. [PMID: 20121159 DOI: 10.1021/la9039557] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The deposition of ceramic thin films from aqueous solutions at low temperature using biopolymers as templates has attracted much attention due to economic and environmental benefits. Titanium dioxide is one of the most attractive functional materials and shows a wide range of applications across vastly different areas because of its unique chemical, optical, and electrical properties. In the present work, we deposited smooth, nanocrystalline titania thin films by an aqueous deposition method on surface active and amphipathic proteins of fungal origin called hydrophobins. Initially, the hydrophobin molecules were self-assembled on a silicon substrate and characterized by angle-resolved X-ray photoelectron spectroscopy (AR-XPS), atomic force microscopy (AFM) and surface potential measurements. Thin films of titanium dioxide were deposited on the surface of hydrophobin self-assembled monolayers from aqueous titanium(IV) bis(ammonium lactate) dihydroxide solution at near-ambient conditions. The microstructure of the as-deposited films was analyzed by AFM, scanning and transmission electron microscopy, which revealed the presence of nanocrystals. The titania films were also characterized using AR-XPS and Fourier transform infrared spectroscopic (FTIR) techniques. Appropriate mechanisms involved in film deposition are suggested. Additionally, nanoindentation tests on as deposited titania films showed their high resistance against mechanical stress.
Collapse
Affiliation(s)
- D Santhiya
- Institute for Materials Science, University of Stuttgart, Germany.
| | | | | | | | | | | |
Collapse
|
82
|
Separation of the up-regulated genes under nitrogen starvation from Phaeodactylum tricornutum by suppression subtractive hy-bridization technology. YI CHUAN = HEREDITAS 2009; 31:865-70. [DOI: 10.3724/sp.j.1005.2009.00865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
83
|
Demadis KD, Pachis K, Ketsetzi A, Stathoulopoulou A. Bioinspired control of colloidal silica in vitro by dual polymeric assemblies of zwitterionic phosphomethylated chitosan and polycations or polyanions. Adv Colloid Interface Sci 2009; 151:33-48. [PMID: 19691946 DOI: 10.1016/j.cis.2009.07.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 07/15/2009] [Accepted: 07/16/2009] [Indexed: 10/20/2022]
Abstract
This paper focuses on the effects of biological and synthetic polymers on the formation of amorphous silica. A concise review of relevant literature related to biosilicification is presented. The importance of synergies between polyelectrolytes on the inhibition of silicic acid condensation is discussed. A specific example of a zwitterionic polymer phosphonomethylated chitosan (PCH) is further analyzed for its inhibitory activity. Specifically, the ability of PCH to retard silicic acid condensation at circumneutral pH in aqueous supersaturated solutions is explored. It was discovered that in short-term studies (0-8 h) the inhibitory activity is PCH dosage-independent, but for longer condensation times (>24 h) there is a clear increase in inhibition upon PCH dosage increase. Soluble silicic acid levels reach 300 ppm after 24 h in the presence of 160 ppm PCH. Furthermore, the effects of either purely cationic (polyethyleneimine, PEI) or purely anionic (carboxymethylinulin, CMI) polyelectrolytes on the inhibitory activity of PCH is systematically studied. It was found that the action of inhibitor blends is not cumulative. PCH/PEI blends stabilize the same level of silicic acid as PCH alone in both short-term (8 h) and long-term (72 h) experiments. PCH/CMI combinations on the other hand can only achieve short-term inhibition of silicic acid polymerization, but fail to extend this over the first 8 h. PCH and its combinations with PEI or CMI affect silica particle morphology, studied by SEM. Spherical particles and their aggregates, irregularly shaped particles and porous structures are obtained depending on additive or additive blend. It was demonstrated by FT-IR that PCH is trapped in the colloidal silica matrix.
Collapse
|
84
|
Sapriel G, Quinet M, Heijde M, Jourdren L, Tanty V, Luo G, Le Crom S, Lopez PJ. Genome-wide transcriptome analyses of silicon metabolism in Phaeodactylum tricornutum reveal the multilevel regulation of silicic acid transporters. PLoS One 2009; 4:e7458. [PMID: 19829693 PMCID: PMC2758714 DOI: 10.1371/journal.pone.0007458] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 09/21/2009] [Indexed: 12/26/2022] Open
Abstract
Background Diatoms are largely responsible for production of biogenic silica in the global ocean. However, in surface seawater, Si(OH)4 can be a major limiting factor for diatom productivity. Analyzing at the global scale the genes networks involved in Si transport and metabolism is critical in order to elucidate Si biomineralization, and to understand diatoms contribution to biogeochemical cycles. Methodology/Principal Findings Using whole genome expression analyses we evaluated the transcriptional response to Si availability for the model species Phaeodactylum tricornutum. Among the differentially regulated genes we found genes involved in glutamine-nitrogen pathways, encoding putative extracellular matrix components, or involved in iron regulation. Some of these compounds may be good candidates for intracellular intermediates involved in silicic acid storage and/or intracellular transport, which are very important processes that remain mysterious in diatoms. Expression analyses and localization studies gave the first picture of the spatial distribution of a silicic acid transporter in a diatom model species, and support the existence of transcriptional and post-transcriptional regulations. Conclusions/Significance Our global analyses revealed that about one fourth of the differentially expressed genes are organized in clusters, underlying a possible evolution of P. tricornutum genome, and perhaps other pennate diatoms, toward a better optimization of its response to variable environmental stimuli. High fitness and adaptation of diatoms to various Si levels in marine environments might arise in part by global regulations from gene (expression level) to genomic (organization in clusters, dosage compensation by gene duplication), and by post-transcriptional regulation and spatial distribution of SIT proteins.
Collapse
Affiliation(s)
- Guillaume Sapriel
- Biomineralization and Morphogenesis Group, CNRS UMR-8186, Ecole Normale Supérieure, Paris, France
| | - Michelle Quinet
- Biomineralization and Morphogenesis Group, CNRS UMR-8186, Ecole Normale Supérieure, Paris, France
| | - Marc Heijde
- Biomineralization and Morphogenesis Group, CNRS UMR-8186, Ecole Normale Supérieure, Paris, France
| | - Laurent Jourdren
- Ecole Normale Supérieure, IFR36, Plate-forme Transcriptome, Paris, France
| | - Véronique Tanty
- Ecole Normale Supérieure, IFR36, Plate-forme Transcriptome, Paris, France
| | - Guangzuo Luo
- Biomineralization and Morphogenesis Group, CNRS UMR-8186, Ecole Normale Supérieure, Paris, France
| | - Stéphane Le Crom
- Ecole Normale Supérieure, IFR36, Plate-forme Transcriptome, Paris, France
| | - Pascal Jean Lopez
- Biomineralization and Morphogenesis Group, CNRS UMR-8186, Ecole Normale Supérieure, Paris, France
- * E-mail:
| |
Collapse
|
85
|
Brunner E, Gröger C, Lutz K, Richthammer P, Spinde K, Sumper M. Analytical studies of silica biomineralization: towards an understanding of silica processing by diatoms. Appl Microbiol Biotechnol 2009; 84:607-16. [DOI: 10.1007/s00253-009-2140-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 07/09/2009] [Accepted: 07/09/2009] [Indexed: 12/01/2022]
|
86
|
Hildebrand M, Kim S, Shi D, Scott K, Subramaniam S. 3D imaging of diatoms with ion-abrasion scanning electron microscopy. J Struct Biol 2009; 166:316-28. [PMID: 19269330 PMCID: PMC2743382 DOI: 10.1016/j.jsb.2009.02.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 02/23/2009] [Accepted: 02/25/2009] [Indexed: 11/22/2022]
Abstract
Ion-abrasion scanning electron microscopy (IASEM) takes advantage of focused ion beams to abrade thin sections from the surface of bulk specimens, coupled with SEM to image the surface of each section, enabling 3D reconstructions of subcellular architecture at approximately 30nm resolution. Here, we report the first application of IASEM for imaging a biomineralizing organism, the marine diatom Thalassiosira pseudonana. Diatoms have highly patterned silica-based cell wall structures that are unique models for the study and application of directed nanomaterials synthesis by biological systems. Our study provides new insights into the architecture and assembly principles of both the "hard" (siliceous) and "soft" (organic) components of the cell. From 3D reconstructions of developmentally synchronized diatoms captured at different stages, we show that both micro- and nanoscale siliceous structures can be visualized at specific stages in their formation. We show that not only are structures visualized in a whole-cell context, but demonstrate that fragile, early-stage structures are visible, and that this can be combined with elemental mapping in the exposed slice. We demonstrate that the 3D architectures of silica structures, and the cellular components that mediate their creation and positioning can be visualized simultaneously, providing new opportunities to study and manipulate mineral nanostructures in a genetically tractable system.
Collapse
Affiliation(s)
- Mark Hildebrand
- Scripps Institution of Oceanography, UCSD, 9500 Gilman Dr., La Jolla, CA 92093, USA.
| | | | | | | | | |
Collapse
|
87
|
Delvigne C, Opfergelt S, Cardinal D, Delvaux B, André L. Distinct silicon and germanium pathways in the soil-plant system: Evidence from banana and horsetail. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jg000899] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- C. Delvigne
- Department of Geology and Mineralogy; Musée Royal de l'Afrique Centrale; Tervuren Belgium
- Department of Earth Sciences and Environment; Université Libre de Bruxelles; Brussels Belgium
| | - S. Opfergelt
- Department of Geology and Mineralogy; Musée Royal de l'Afrique Centrale; Tervuren Belgium
- Soil Science Unit; Université catholique de Louvain; Louvain-la-Neuve Belgium
| | - D. Cardinal
- Department of Geology and Mineralogy; Musée Royal de l'Afrique Centrale; Tervuren Belgium
| | - B. Delvaux
- Soil Science Unit; Université catholique de Louvain; Louvain-la-Neuve Belgium
| | - L. André
- Department of Geology and Mineralogy; Musée Royal de l'Afrique Centrale; Tervuren Belgium
| |
Collapse
|
88
|
Danilovtseva E, Aseyev V, Karesoja M, Annenkov V. Sorption of silicic acid from non-saturated aqueous solution by a complex of zinc ions with poly(vinylamine). Eur Polym J 2009. [DOI: 10.1016/j.eurpolymj.2009.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
89
|
Allison DP, Dufrêne YF, Doktycz MJ, Hildebrand M. Biomineralization at the nanoscale learning from diatoms. Methods Cell Biol 2009; 90:61-86. [PMID: 19195546 DOI: 10.1016/s0091-679x(08)00804-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- David P Allison
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996-0840, USA
| | | | | | | |
Collapse
|
90
|
Thamatrakoln K, Kustka AB. When to say when: can excessive drinking explain silicon uptake in diatoms? Bioessays 2009; 31:322-7. [DOI: 10.1002/bies.200800185] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
91
|
An overview of silica in biology: its chemistry and recent technological advances. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2009; 47:295-313. [PMID: 19198783 DOI: 10.1007/978-3-540-88552-8_13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biomineralisation is widespread in the biological world and occurs in bacteria, single-celled protists, plants, invertebrates and vertebrates. Minerals formed in the biological environment often show unusual physical properties (e.g. strength, degree of hydration) and often have structures that exhibit order on many length scales. Biosilica, found in single cell organisms through to higher plants and primitive animals (sponges), is formed from an environment that is undersaturated with respect to silicon and under conditions of around neutral pH and low temperature, ca. 4-40 degrees C. Formation of the mineral may occur intra- or extra-cellularly, and specific biochemical locations for mineral deposition that include lipids, proteins and carbohydrates are known. In most cases, the formation of the mineral phase is linked to cellular processes, understanding of which could lead to the design of new materials for biomedical, optical and other applications. This Chapter briefly describes the occurrence of silica in biology including known roles for the mineral phase, the chemistry of the material, the associated biomolecules and some recent applications of this knowledge in materials chemistry.The terminology which is used in this and other contributions within this volume is as follows: Si: the chemical symbol for the element and the generic term used when the nature of the specific silicon compound is not known. Si(OH) ( 4 ): orthosilicic acid, the fundamental building block used in the formation of silicas. SiO ( 2 ) x nH ( 2 ) O or SiO ( 2-x ) (OH) ( 2x ) x 2H ( 2 ) O: amorphous, hydrated, polymerised material. Oligomerisation: the formation of dimers and small oligomers from orthosilicic acid by removal of water. For example, 2Si(OH)(4) <--> (HO)(3)Si-O-Si(OH)(3) + H(2)O Polymerisation: the mutual condensation of silicic acid to give molecularly coherent units of increasing size. Organosilicon compound: must contain silicon covalently bonded to carbon within a distinct chemical species Silane: a compound having silicon atom(s) and organic chemical groups often connected through an oxygen linkage; e.g. tetrethoxy or tetramethoxysilane Silanol: hydroxyl group bonded to silicon atom Silicate: a chemically specific ion having negative charge (e.g. [Formula: see text]), term also used to describe salts (e.g. sodium silicate Na(2)SiO(3)) Opal: the term used to describe the gem-stone and often used to describe the type of amorphous silica produced by biological organisms. The two are similar in structure at the molecular level (disordered or amorphous), but at higher levels of structural organisation are distinct from one another.
Collapse
|
92
|
Grossman AR. In the Grip of Algal Genomics. TRANSGENIC MICROALGAE AS GREEN CELL FACTORIES 2008; 616:54-76. [DOI: 10.1007/978-0-387-75532-8_6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
93
|
Kroth P. Molecular Biology and the Biotechnological Potential of Diatoms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 616:23-33. [DOI: 10.1007/978-0-387-75532-8_3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
94
|
Affiliation(s)
- Nils Kröger
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400
- School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332-0400; ,
| | - Nicole Poulsen
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400
| |
Collapse
|
95
|
Demadis KD, Ketsetzi A, Pachis K, Ramos VM. Inhibitory Effects of Multicomponent, Phosphonate-Grafted, Zwitterionic Chitosan Biomacromolecules on Silicic Acid Condensation. Biomacromolecules 2008; 9:3288-93. [DOI: 10.1021/bm800872n] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Konstantinos D. Demadis
- Crystal Engineering, Growth and Design Laboratory, Department of Chemistry, University of Crete, Voutes Campus, Heraklion, Crete GR-71003, Greece
| | - Antonia Ketsetzi
- Crystal Engineering, Growth and Design Laboratory, Department of Chemistry, University of Crete, Voutes Campus, Heraklion, Crete GR-71003, Greece
| | - Konstantinos Pachis
- Crystal Engineering, Growth and Design Laboratory, Department of Chemistry, University of Crete, Voutes Campus, Heraklion, Crete GR-71003, Greece
| | - Viviana M. Ramos
- Crystal Engineering, Growth and Design Laboratory, Department of Chemistry, University of Crete, Voutes Campus, Heraklion, Crete GR-71003, Greece
| |
Collapse
|
96
|
Affiliation(s)
- Mark Hildebrand
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0202
| |
Collapse
|
97
|
Jugdaohsingh R, Calomme MR, Robinson K, Nielsen F, Anderson SHC, D'Haese P, Geusens P, Loveridge N, Thompson RPH, Powell JJ. Increased longitudinal growth in rats on a silicon-depleted diet. Bone 2008; 43:596-606. [PMID: 18550464 PMCID: PMC2832730 DOI: 10.1016/j.bone.2008.04.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 04/10/2008] [Accepted: 04/14/2008] [Indexed: 11/23/2022]
Abstract
Silicon-deficiency studies in growing animals in the early 1970s reported stunted growth and profound defects in bone and other connective tissues. However, more recent attempts to replicate these findings have found mild alterations in bone metabolism without any adverse health effects. Thus the biological role of silicon remains unknown. Using a specifically formulated silicon-depleted diet and modern methods for silicon analysis and assessment of skeletal development, we undertook, through international collaboration between silicon researchers, an extensive study of long-term silicon depletion on skeletal development in an animal. 21-day old female Sprague-Dawley rats (n=20) were fed a silicon-depleted diet (3.2 microg Si/g feed) for 26 weeks and their growth and skeletal development were compared with identical rats (n=10) on the same diet but with silicon added as Si(OH)(4) to their drinking water (53.2 microg Si/g water); total silicon intakes were 24 times different. A third group of rats, receiving a standard rodent stock feed (322 microg Si/g feed) and tap water (5 microg Si/g water), served as a reference group for optimal growth. A series of anthropometric and bone quality measures were undertaken during and following the study. Fasting serum silicon concentrations and especially urinary silicon excretion were significantly lower in the silicon-deprived group compared to the supplemented group (P=0.03 and 0.004, respectively). Tibia and soft-tissue silicon contents did not differ between the two groups, but tibia silicon levels were significantly lower compared to the reference group (P<0.0001). Outward adverse health effects were not observed in the silicon-deprived group. However, body lengths from week 18 onwards (P<0.05) and bone lengths at necropsy (P=0.002) were longer in this group. Moreover, these measures correlated inversely with serum silicon concentrations (P=0.02). A reduction in bone growth plate thickness and an apparent increase in chondrocyte density were also observed in the silicon-deprived animals. No other differences were observed between the two groups, except for tibia phosphorus concentrations, which were lower in the silicon-deprived animals (P=0.0003). Thus in this study we were unable to reproduce the profound deficiency state reported in rats and chicks in the early 1970s. Indeed, although silicon intake and circulating fasting serum levels differed between the silicon-deprived and silicon-supplemented animals, tibia and soft-tissue levels did not and may explain the lack of difference in bone quality and bone markers (except serum CTx) between these two groups. Markedly higher tibia silicon levels in the reference group and nutritional differences between the formulated low-Si and reference diets suggest that one or more co-factors may be absent from the low-Si diet that affect silicon incorporation into bone. However, evidence for urinary silicon conservation (to maintain tissue levels), changes in bone/body lengths, bone calcium:phosphorus ratio and differences at the growth plate with silicon deprivation are all novel and deserve further study. These results suggest that rats actively maintain body silicon levels via urinary conservation, but the low circulating serum silicon levels during silicon deficiency result in inhibition of growth plate closure and increased longitudinal growth. Silicon-responsive genes and Si transporters are being investigated in the kidneys of these rats.
Collapse
Affiliation(s)
- Ravin Jugdaohsingh
- MRC Human Nutrition Research, Elsie Widdowson Laboratory, Fulbourn Road, Cambridge CB1 9NL, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Sumper M, Brunner E. Silica biomineralization in diatoms: the model organism Thalassiosira pseudonana. Chembiochem 2008; 9:1187-94. [PMID: 18381716 DOI: 10.1002/cbic.200700764] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
After complete genome sequencing, the diatom Thalassiosira pseudonana has become an attractive model organism for silica biomineralization studies. Recent progress, especially with respect to intracellular silicic acid processing, as well as to the natures of the biomolecules involved in diatom cell wall formation, is described. On the one hand, considerable progress has been made with respect to silicon uptake by special proteins (SITs) from the surrounding water, as well as to the storage and processing of silicon before cell division. On the other hand, the discovery and characterisation of remarkable biomolecules such as silaffins, polyamines and--quite recently--of silacidins in the siliceous cell walls of diatoms strongly impacts the growing field of biomimetic materials synthesis.
Collapse
Affiliation(s)
- Manfred Sumper
- Lehrstuhl Biochemie I, Universität Regensburg, 93040 Regensburg, Germany.
| | | |
Collapse
|
99
|
Petrova DP, Bedoshvili YD, Shelukhina IV, Samukov VV, Korneva ES, Vereshagin AL, Popkova TP, Karpyshev NN, Lebedeva DV, Klimenkov IV, Likhoshway YV, Grachev MA. Detection of the silicic acid transport protein in the freshwater diatom Synedra acus by immunoblotting and immunoelectron microscopy. DOKL BIOCHEM BIOPHYS 2008; 417:295-8. [PMID: 18274442 DOI: 10.1134/s1607672907060014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- D P Petrova
- Limnological Institute, Siberian Division, Russian Academy of Sciences, ul. Ulan-Batorskaya 3, Irkutsk 664033, Russia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
White KN, Ejim AI, Walton RC, Brown AP, Jugdaohsingh R, Powell JJ, McCrohan CR. Avoidance of aluminum toxicity in freshwater snails involves intracellular silicon-aluminum biointeraction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:2189-94. [PMID: 18409657 DOI: 10.1021/es7028608] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Silicon (Si) ameliorates aluminum (Al) toxicity to a range of organisms, but in almost all cases this is due to ex vivo Si-Al interactions forming inert hydroxyaluminosilicates (HAS). We hypothesized a Si-specific intracellular mechanism for Al detoxification in aquatic snails, involving regulation of orthosilicic acid [Si(OH)4]. However, the possibility of ex vivo formation and uptake of soluble HAS could not be ruled out Here we provide unequivocal evidence for Si-Al interaction in vivo, including their intracellular colocalization. In snails preloaded with Si(0H)4, behavioral toxicity in response to subsequent exposure to Al was abolished. Similarly, recovery from Al-induced toxicity was faster when Si(OH)4 was provided, together with rapid loss of Al from the major detoxificatory organ (digestive gland). Temporal separation of Al and Si exposure excluded the possibility of their interaction ex vivo. Elemental mapping using analytical transmission electron microscopy revealed nanometre-scale colocalization of Si and Al within excretory granules in the digestive gland, consistent with recruitment of Si(OH)4, followed by high-affinity Al binding to form particles similarto allophane, an amorphous HAS. Given the environmental abundance of both elements, we anticipate this to be a widespread phenomenon, providing a cellular defense against the profoundly toxic Al(III) ion.
Collapse
Affiliation(s)
- Keith N White
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|