51
|
Adaptive Resonance Theory: How a brain learns to consciously attend, learn, and recognize a changing world. Neural Netw 2013; 37:1-47. [PMID: 23149242 DOI: 10.1016/j.neunet.2012.09.017] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 08/24/2012] [Accepted: 09/24/2012] [Indexed: 11/17/2022]
|
52
|
Clarkson C, Herrero-Turrión MJ, Merchán MA. Cortical Auditory Deafferentation Induces Long-Term Plasticity in the Inferior Colliculus of Adult Rats: Microarray and qPCR Analysis. Front Neural Circuits 2012; 6:86. [PMID: 23233834 PMCID: PMC3516126 DOI: 10.3389/fncir.2012.00086] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 10/29/2012] [Indexed: 12/14/2022] Open
Abstract
The cortico-collicular pathway is a bilateral excitatory projection from the cortex to the inferior colliculus (IC). It is asymmetric and predominantly ipsilateral. Using microarrays and RT-qPCR we analyzed changes in gene expression in the IC after unilateral lesions of the auditory cortex, comparing the ICs ipsi- and contralateral to the lesioned side. At 15 days after surgery there were mainly changes in gene expression in the IC ipsilateral to the lesion. Regulation primarily involved inflammatory cascade genes, suggesting a direct effect of degeneration rather than a neuronal plastic reorganization. Ninety days after the cortical lesion the ipsilateral IC showed a significant up-regulation of genes involved in apoptosis and axonal regeneration combined with a down-regulation of genes involved in neurotransmission, synaptic growth, and gap junction assembly. In contrast, the contralateral IC at 90 days post-lesion showed an up-regulation in genes primarily related to neurotransmission, cell proliferation, and synaptic growth. There was also a down-regulation in autophagy and neuroprotection genes. These findings suggest that the reorganization in the IC after descending pathway deafferentation is a long-term process involving extensive changes in gene expression regulation. Regulated genes are involved in many different neuronal functions, and the number and gene rearrangement profile seems to depend on the density of loss of the auditory cortical inputs.
Collapse
Affiliation(s)
- Cheryl Clarkson
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca Salamanca, Spain
| | | | | |
Collapse
|
53
|
Miyakawa A, Gibboni R, Bao S. Repeated exposure to a tone transiently alters spectral tuning bandwidth of neurons in the central nucleus of inferior colliculus in juvenile rats. Neuroscience 2012; 230:114-20. [PMID: 23168325 DOI: 10.1016/j.neuroscience.2012.10.068] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 10/06/2012] [Accepted: 10/23/2012] [Indexed: 11/26/2022]
Abstract
Early acoustic experience changes tonal frequency tuning in the inferior colliculus (IC) and the primary auditory cortex. The contributions of IC plasticity to cortical frequency map reorganization are not entirely clear. While most cortical plasticity studies exposed animals to pulsed tones, studies of IC plasticity used either noise or a continuous tone. Here we compared the effects of repeated exposure to single-frequency tone pips on cortical and IC frequency representations in juvenile rats. We found that while tone exposure caused a long-lasting increase in cortical representations of the exposure frequency, changes to IC neurons were limited to a transient narrowing of tuning bandwidth. These results suggest that previously documented cortical frequency map reorganization does not depend on similar changes in the subcortical auditory nuclei.
Collapse
Affiliation(s)
- A Miyakawa
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
54
|
Localization of Bilateral Auditory Hallucinations and Correlation to Imaging in Posterior Circulation Stroke. Neurologist 2012; 18:418-22. [DOI: 10.1097/nrl.0b013e3182761d19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
55
|
Mei HX, Cheng L, Tang J, Fu ZY, Jen PHS, Chen QC. Modulation of amplitude sensitivity by bilateral collicular interaction among different frequency laminae. Neurosci Lett 2012; 517:13-7. [PMID: 22507237 DOI: 10.1016/j.neulet.2012.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/28/2012] [Accepted: 04/02/2012] [Indexed: 11/15/2022]
Abstract
In the ascending auditory pathway, the commissure of the inferior colliculus (IC) interconnects the two ICs and may therefore mediate bilateral collicular interaction during sound processing. In this study, we show that electrically stimulates one IC produces facilitation or suppression of acoustically evoked response of neurons in the other IC. The facilitated IC neurons (14%) are located in bilateral corresponding frequency laminae while the suppressed IC neurons (86%) are widespreadly located in bilateral different frequency laminae. Whereas induced facilitation increases the dynamic range but decreases the slope of the rate-amplitude function of modulated IC neurons, induced suppression produces the opposite effect. As a result, bilateral collicular facilitation increases the sensitivity of modulated IC neurons to a wider range of sound amplitude while bilateral collicular suppression improves the sensitivity of modulated IC neurons to minor change in sound amplitude over a narrower range of sound amplitude. The degree of suppression is significantly greater for suppressed IC neurons located in bilateral corresponding frequency laminae than in non-corresponding frequency laminae. We suggest that bilateral collicular interaction through the commissure of the IC may play a role in modulation of amplitude sensitivity and in shaping the binaural property of IC neurons.
Collapse
Affiliation(s)
- Hui-Xian Mei
- School of Life Sciences & Hubei Key Lab of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China
| | | | | | | | | | | |
Collapse
|
56
|
Tang J, Yang W, Suga N. Modulation of thalamic auditory neurons by the primary auditory cortex. J Neurophysiol 2012; 108:935-42. [PMID: 22552191 DOI: 10.1152/jn.00251.2012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The central auditory system consists of the lemniscal and nonlemniscal pathways or systems, which are anatomically and physiologically different from each other. In the thalamus, the ventral division of the medial geniculate body (MGBv) belongs to the lemniscal system, whereas its medial (MGBm) and dorsal (MGBd) divisions belong to the nonlemniscal system. Lemniscal neurons are sharply frequency-tuned and provide highly frequency-specific information to the primary auditory cortex (AI), whereas nonlemniscal neurons are generally broadly frequency-tuned and project widely to cortical auditory areas including AI. These two systems are presumably different not only in auditory signal processing, but also in eliciting cortical plastic changes. Electric stimulation of narrowly frequency-tuned MGBv neurons evokes the shift of the frequency-tuning curves of AI neurons toward the tuning curves of the stimulated MGBv neurons (tone-specific plasticity). In contrast, electric stimulation of broadly frequency-tuned MGBm neurons augments the auditory responses of AI neurons and broadens their frequency-tuning curves (nonspecific plasticity). In our current studies, we found that electric stimulation of AI evoked tone-specific plastic changes of the MGBv neurons, whereas it degraded the frequency tuning of MGBm neurons by inhibiting their auditory responses. AI apparently modulates the lemniscal and nonlemniscal thalamic neurons in quite different ways. High MGBm activity presumably makes AI neurons less favorable for fine auditory signal processing, whereas high MGBv activity makes AI neurons more suitable for fine processing of specific auditory signals and reduces MGBm activity.
Collapse
Affiliation(s)
- Jie Tang
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA
| | | | | |
Collapse
|
57
|
Suga N. Tuning shifts of the auditory system by corticocortical and corticofugal projections and conditioning. Neurosci Biobehav Rev 2012; 36:969-88. [PMID: 22155273 PMCID: PMC3265669 DOI: 10.1016/j.neubiorev.2011.11.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/19/2011] [Accepted: 11/21/2011] [Indexed: 11/21/2022]
Abstract
The central auditory system consists of the lemniscal and nonlemniscal systems. The thalamic lemniscal and nonlemniscal auditory nuclei are different from each other in response properties and neural connectivities. The cortical auditory areas receiving the projections from these thalamic nuclei interact with each other through corticocortical projections and project down to the subcortical auditory nuclei. This corticofugal (descending) system forms multiple feedback loops with the ascending system. The corticocortical and corticofugal projections modulate auditory signal processing and play an essential role in the plasticity of the auditory system. Focal electric stimulation - comparable to repetitive tonal stimulation - of the lemniscal system evokes three major types of changes in the physiological properties, such as the tuning to specific values of acoustic parameters of cortical and subcortical auditory neurons through different combinations of facilitation and inhibition. For such changes, a neuromodulator, acetylcholine, plays an essential role. Electric stimulation of the nonlemniscal system evokes changes in the lemniscal system that is different from those evoked by the lemniscal stimulation. Auditory signals ascending from the lemniscal and nonlemniscal thalamic nuclei to the cortical auditory areas appear to be selected or adjusted by a "differential" gating mechanism. Conditioning for associative learning and pseudo-conditioning for nonassociative learning respectively elicit tone-specific and nonspecific plastic changes. The lemniscal, corticofugal and cholinergic systems are involved in eliciting the former, but not the latter. The current article reviews the recent progress in the research of corticocortical and corticofugal modulations of the auditory system and its plasticity elicited by conditioning and pseudo-conditioning.
Collapse
Affiliation(s)
- Nobuo Suga
- Department of Biology, Washington University, One Brookings Drive, St. Louis, MO 63130, USA.
| |
Collapse
|
58
|
Abstract
The mouse sensory neocortex is reported to lack several hallmark features of topographic organization such as ocular dominance and orientation columns in primary visual cortex or fine-scale tonotopy in primary auditory cortex (AI). Here, we re-examined the question of auditory functional topography by aligning ultra-dense receptive field maps from the auditory cortex and thalamus of the mouse in vivo with the neural circuitry contained in the auditory thalamocortical slice in vitro. We observed precisely organized tonotopic maps of best frequency (BF) in the middle layers of AI and the anterior auditory field as well as in the ventral and medial divisions of the medial geniculate body (MGBv and MGBm, respectively). Tracer injections into distinct zones of the BF map in AI retrogradely labeled topographically organized MGBv projections and weaker, mixed projections from MGBm. Stimulating MGBv along the tonotopic axis in the slice produced an orderly shift of voltage-sensitive dye (VSD) signals along the AI tonotopic axis, demonstrating topography in the mouse thalamocortical circuit that is preserved in the slice. However, compared with BF maps of neuronal spiking activity, the topographic order of subthreshold VSD maps was reduced in layer IV and even further degraded in layer II/III. Therefore, the precision of AI topography varies according to the source and layer of the mapping signal. Our findings further bridge the gap between in vivo and in vitro approaches for the detailed cellular study of auditory thalamocortical circuit organization and plasticity in the genetically tractable mouse model.
Collapse
|
59
|
Corticofugal modulation of initial neural processing of sound information from the ipsilateral ear in the mouse. PLoS One 2010; 5:e14038. [PMID: 21124980 PMCID: PMC2987806 DOI: 10.1371/journal.pone.0014038] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2010] [Accepted: 10/30/2010] [Indexed: 12/04/2022] Open
Abstract
Background Cortical neurons implement a high frequency-specific modulation of subcortical nuclei that includes the cochlear nucleus. Anatomical studies show that corticofugal fibers terminating in the auditory thalamus and midbrain are mostly ipsilateral. Differently, corticofugal fibers terminating in the cochlear nucleus are bilateral, which fits to the needs of binaural hearing that improves hearing quality. This leads to our hypothesis that corticofugal modulation of initial neural processing of sound information from the contralateral and ipsilateral ears could be equivalent or coordinated at the first sound processing level. Methodology/Principal Findings With the focal electrical stimulation of the auditory cortex and single unit recording, this study examined corticofugal modulation of the ipsilateral cochlear nucleus. The same methods and procedures as described in our previous study of corticofugal modulation of contralateral cochlear nucleus were employed simply for comparison. We found that focal electrical stimulation of cortical neurons induced substantial changes in the response magnitude, response latency and receptive field of ipsilateral cochlear nucleus neurons. Cortical stimulation facilitated auditory response and shortened the response latency of physiologically matched neurons whereas it inhibited auditory response and lengthened the response latency of unmatched neurons. Finally, cortical stimulation shifted the best frequencies of cochlear neurons towards those of stimulated cortical neurons. Conclusion Our data suggest that cortical neurons enable a high frequency-specific remodelling of sound information processing in the ipsilateral cochlear nucleus in the same manner as that in the contralateral cochlear nucleus.
Collapse
|
60
|
|
61
|
Reed JL, Qi HX, Zhou Z, Bernard MR, Burish MJ, Bonds AB, Kaas JH. Response properties of neurons in primary somatosensory cortex of owl monkeys reflect widespread spatiotemporal integration. J Neurophysiol 2010; 103:2139-57. [PMID: 20164400 PMCID: PMC2853283 DOI: 10.1152/jn.00709.2009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 02/11/2010] [Indexed: 11/22/2022] Open
Abstract
Receptive fields of neurons in somatosensory area 3b of monkeys are typically described as restricted to part of a single digit or palm pad. However, such neurons are likely involved in integrating stimulus information from across the hand. To evaluate this possibility, we recorded from area 3b neurons in anesthetized owl monkeys with 100-electrode arrays, stimulating two hand locations with electromechanical probes simultaneously or asynchronously. Response magnitudes and latencies of single- and multiunits varied with stimulus conditions, and multiunit responses were similar to single-unit responses. The mean peak firing rate for single neurons stimulated within the preferred location was estimated to be ∼26 spike/s. Simultaneous stimulation with a second probe outside the preferred location slightly decreased peak firing rates to ∼22 spike/s. When the nonpreferred stimulus preceded the preferred stimulus by 10-500 ms, peak firing rates were suppressed with greatest suppression when the nonpreferred stimulus preceded by 30 ms (∼7 spike/s). The mean latency for single neurons stimulated within the preferred location was ∼23 ms, and latency was little affected by simultaneous paired stimulation. However, when the nonpreferred stimulus preceded the preferred stimulus by 10 ms, latencies shortened to ∼16 ms. Response suppression occurred even when stimuli were separated by long distances (nonadjacent digits) or long times (500 ms onset asynchrony). Facilitation, though rare, occurred most often when the stimulus onsets were within 0-30 ms of each other. These findings quantify spatiotemporal interactions and support the hypothesis that area 3b is involved in widespread stimulus integration.
Collapse
Affiliation(s)
- Jamie L Reed
- Dept. of Psychology, Vanderbilt University, 111 21st Ave. S., Nashville, TN 37240, USA.
| | | | | | | | | | | | | |
Collapse
|
62
|
Chandrasekaran B, Hornickel J, Skoe E, Nicol T, Kraus N. Context-dependent encoding in the human auditory brainstem relates to hearing speech in noise: implications for developmental dyslexia. Neuron 2009; 64:311-9. [PMID: 19914180 DOI: 10.1016/j.neuron.2009.10.006] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2009] [Indexed: 11/29/2022]
Abstract
We examined context-dependent encoding of speech in children with and without developmental dyslexia by measuring auditory brainstem responses to a speech syllable presented in a repetitive or variable context. Typically developing children showed enhanced brainstem representation of features related to voice pitch in the repetitive context, relative to the variable context. In contrast, children with developmental dyslexia exhibited impairment in their ability to modify representation in predictable contexts. From a functional perspective, we found that the extent of context-dependent encoding in the auditory brainstem correlated positively with behavioral indices of speech perception in noise. The ability to sharpen representation of repeating elements is crucial to speech perception in noise, since it allows superior "tagging" of voice pitch, an important cue for segregating sound streams in background noise. The disruption of this mechanism contributes to a critical deficit in noise-exclusion, a hallmark symptom in developmental dyslexia.
Collapse
Affiliation(s)
- Bharath Chandrasekaran
- Roxelyn and Richard Pepper Department of Communication Sciences, Northwestern University, Evanston, IL 60208, USA
| | | | | | | | | |
Collapse
|
63
|
Musical experience limits the degradative effects of background noise on the neural processing of sound. J Neurosci 2009; 29:14100-7. [PMID: 19906958 DOI: 10.1523/jneurosci.3256-09.2009] [Citation(s) in RCA: 256] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Musicians have lifelong experience parsing melodies from background harmonies, which can be considered a process analogous to speech perception in noise. To investigate the effect of musical experience on the neural representation of speech-in-noise, we compared subcortical neurophysiological responses to speech in quiet and noise in a group of highly trained musicians and nonmusician controls. Musicians were found to have a more robust subcortical representation of the acoustic stimulus in the presence of noise. Specifically, musicians demonstrated faster neural timing, enhanced representation of speech harmonics, and less degraded response morphology in noise. Neural measures were associated with better behavioral performance on the Hearing in Noise Test (HINT) for which musicians outperformed the nonmusician controls. These findings suggest that musical experience limits the negative effects of competing background noise, thereby providing the first biological evidence for musicians' perceptual advantage for speech-in-noise.
Collapse
|
64
|
Corticocortical interactions between and within three cortical auditory areas specialized for time-domain signal processing. J Neurosci 2009; 29:7230-7. [PMID: 19494145 DOI: 10.1523/jneurosci.0373-09.2009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In auditory cortex of the mustached bat, the FF (F means frequency modulation), dorsal fringe (DF), and ventral fringe (VF) areas consist of "combination-sensitive" neurons tuned to the pair of an emitted biosonar pulse and its echo with a specific delay (best delay: BD). The DF and VF areas are hierarchically at a higher level than the FF area. Focal electric stimulation of the FF area evokes "centrifugal" BD shifts of DF neurons, i.e., shifts away from the BD of the stimulated FF neurons, whereas stimulation of the DF neurons evokes "centripetal" BD shifts of FF neurons, i.e., shifts toward the BD of the stimulated DF neurons. In our current studies, we found that the feedforward projection from FF neurons evokes centrifugal BD shifts of VF neurons, that the feedback projection from VF neurons evokes centripetal BD shifts of FF neurons, that the contralateral projection from DF neurons evokes centripetal BD shifts of DF neurons, and that the centripetal BD shifts evoked by the DF and VF neurons are 2.5 times larger than the centrifugal BD shifts evoked by the FF neurons. The centrifugal BD shifts shape the selective neural representation of a specific target distance, whereas the centripetal BD shifts expand the representation of the selected specific target distance to focus on the processing of the target information at a specific distance. The centrifugal and centripetal BD shifts evoked by the feedforward and feedback projections promote finer analysis of a target at shorter distances.
Collapse
|
65
|
Ji W, Suga N. Tone-specific and nonspecific plasticity of inferior colliculus elicited by pseudo-conditioning: role of acetylcholine and auditory and somatosensory cortices. J Neurophysiol 2009; 102:941-52. [PMID: 19474174 DOI: 10.1152/jn.00222.2009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Experience-dependent plasticity in the central sensory systems depends on activation of both the sensory and neuromodulatory systems. Sensitization or nonspecific augmentation of central auditory neurons elicited by pseudo-conditioning with unpaired conditioning tonal (CS) and unconditioned electric leg (US) stimuli is quite different from tone-specific plasticity, called best frequency (BF) shifts, of the neurons elicited by auditory fear conditioning with paired CS and US. Therefore the neural circuits eliciting the nonspecific augmentation must be different from that eliciting the BF shifts. We first examined plastic changes in the response properties of collicular neurons of the big brown bat elicited by pseudo-conditioning and found that it elicited prominent nonspecific augmentation-an auditory response increase, a frequency-tuning broadening, and a threshold decreas-and that, in addition, it elicited a small short-lasting BF shift only when the CS frequency was 5 kHz lower than the BF of a recorded neuron. We examined the role of acetylcholine and the auditory and somatosensory cortices in these collicular changes. The development of the nonspecific augmentation was affected little by a muscarinic acetylcholine receptor antagonist applied to the inferior colliculus and by a GABA(A) receptor agonist applied to the auditory or somatosensory cortex. However, these drugs abolished the small short-lasting BF shift as they abolished the large long-lasting cortical and short-lasting collicular BF shifts elicited by the conditioning. These results indicate that, different from the BF shift, the nonspecific augmentation of the inferior colliculus depends on neither the cholinergic neuromodulator nor the auditory and somatosensory cortices.
Collapse
Affiliation(s)
- Weiqing Ji
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA.
| | | |
Collapse
|
66
|
Ojima H, Taoka M, Iriki A. Adaptive Changes in Firing of Primary Auditory Cortical Neurons following Illumination Shift from Light to Dark in Freely Moving Guinea Pigs. Cereb Cortex 2009; 20:339-51. [DOI: 10.1093/cercor/bhp103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
67
|
Specific and nonspecific plasticity of the primary auditory cortex elicited by thalamic auditory neurons. J Neurosci 2009; 29:4888-96. [PMID: 19369557 DOI: 10.1523/jneurosci.0167-09.2009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The ventral and medial divisions of the medial geniculate body (MGBv and MGBm) respectively are the lemniscal and nonlemniscal thalamic auditory nuclei. Lemniscal neurons are narrowly frequency tuned and provide highly specific frequency information to the primary auditory cortex (AI), whereas nonlemniscal neurons are broadly frequency tuned and project widely to auditory cortical areas including AI. The MGBv and MGBm are presumably different not only in auditory signal processing, but also in eliciting cortical plastic changes. We electrically stimulated MGBv or MGBm neurons and found the following: (1) electric stimulation of narrowly frequency-tuned MGBv neurons evoked the shift of the frequency-tuning curves of AI neurons toward the tuning curves of the stimulated MGBv neurons. This shift was the same as that in the central nucleus of the inferior colliculus and AI elicited by focal electric stimulation of AI or auditory fear conditioning. The widths of the tuning curves of the AI neurons stayed the same or slightly increased. (2) Electric stimulation of broad frequency-tuned MGBm neurons augmented the auditory responses of AI neurons and broadened their frequency-tuning curves which did not shift. These cortical changes evoked by MGBv or MGBm neurons slowly disappeared over 45-60 min after the onset of the electric stimulation. Our findings indicate that lemniscal and nonlemniscal nuclei are indeed different in eliciting cortical plastic changes: the MGBv evokes tone-specific plasticity in AI for adjusting auditory signal processing in the frequency domain, whereas the MGBm evokes nonspecific plasticity in AI for increasing the sensitivity of cortical neurons.
Collapse
|
68
|
Abstract
The brain selectively extracts the most relevant information in top-down processing manner. Does the corticofugal system, a "back projection system," constitute the neural basis of such top-down selection? Here, we show how focal activation of the auditory cortex with 500 nA electrical pulses influences the auditory information processing in the cochlear nucleus (CN) that receives almost unprocessed information directly from the ear. We found that cortical activation increased the response magnitudes and shortened response latencies of physiologically matched CN neurons, whereas decreased response magnitudes and lengthened response latencies of unmatched CN neurons. In addition, cortical activation shifted the frequency tunings of unmatched CN neurons toward those of the activated cortical neurons. Our data suggest that cortical activation selectively enhances the neural processing of particular auditory information and attenuates others at the first processing level in the brain based on sound frequencies encoded in the auditory cortex. The auditory cortex apparently implements a long-range feedback mechanism to select or filter incoming signals from the ear.
Collapse
|
69
|
Abstract
Auditory neurons must represent accurately a wide range of sound levels using firing rates that vary over a far narrower range of levels. Recently, we demonstrated that this "dynamic range problem" is lessened by neural adaptation, whereby neurons adjust their input-output functions for sound level according to the prevailing distribution of levels. These adjustments in input-output functions increase the accuracy with which levels around those occurring most commonly are coded by the neural population. Here, we examine how quickly this adaptation occurs. We recorded from single neurons in the auditory midbrain during a stimulus that switched repeatedly between two distributions of sound levels differing in mean level. The high-resolution analysis afforded by this stimulus showed that a prominent component of the adaptation occurs rapidly, with an average time constant across neurons of 160 ms after an increase in mean level, much faster than our previous experiments were able to assess. This time course appears to be independent of both the timescale over which sound levels varied and that over which sound level distributions varied, but is related to neural characteristic frequency. We find that adaptation to an increase in mean level occurs more rapidly than to a decrease. Finally, we observe an additional, slow adaptation in some neurons, which occurs over a timescale of tens of seconds. Our findings provide constraints in the search for mechanisms underlying adaptation to sound level. They also have functional implications for the role of adaptation in the representation of natural sounds.
Collapse
|
70
|
Zhang Z, Liu CH, Yu YQ, Fujimoto K, Chan YS, He J. Corticofugal Projection Inhibits the Auditory Thalamus Through the Thalamic Reticular Nucleus. J Neurophysiol 2008; 99:2938-45. [DOI: 10.1152/jn.00002.2008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Electrical stimulation of the auditory cortex (AC) causes both facilitatory and inhibitory effects on the medial geniculate body (MGB). The purpose of this study was to identify the corticofugal inhibitory pathway to the MGB. We assessed two potential circuits: 1) the cortico-colliculo-thalamic circuit and 2) cortico-reticulo-thalamic one. We compared intracellular responses of MGB neurons to electrical stimulation of the AC following bilateral ablation of the inferior colliculi (IC) or thalamic reticular nucleus (TRN) in anesthetized guinea pigs. Cortical stimulation with intact TRN could cause strong inhibitory effects on the MGB neurons. The corticofugal inhibition remained effective after bilateral IC ablation, but it was minimized after the TRN was lesioned with kainic acid. Synchronized TRN neuronal activity and MGB inhibitory postsynaptic potentials (IPSPs) were observed with multiple recordings. The results suggest that corticofugal inhibition traverses the corticoreticulothalamic pathway, indicating that the colliculi-geniculate inhibitory pathway is probably only for feedforward inhibition.
Collapse
|
71
|
Modulation of auditory processing by cortico-cortical feed-forward and feedback projections. Proc Natl Acad Sci U S A 2008; 105:7600-5. [PMID: 18495931 DOI: 10.1073/pnas.0802961105] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The auditory center in the cerebrum, the auditory cortex, consists of multiple interconnected areas. The functional role of these interconnections is poorly understood. The auditory cortex of the mustached bat consists of at least nine areas, including the frequency modulation-frequency modulation (FF) and dorsal fringe (DF) areas. The FF and DF areas consist of neurons tuned to specific echo delays carrying target-distance information. The DF area is hierarchically at a higher level than the FF area. Here, we show that the feedback projection from the DF area to the FF area shifts the delay-tuning of FF neurons toward that of the stimulated DF neurons. In contrast, the feed-forward projection from the FF area to the DF area shifts the delay-tuning of DF neurons away from that of the stimulated FF neurons. The lateral projection within the DF area shifts the delay-tuning of DF neurons toward that of the stimulated DF neurons. In contrast, the lateral projection within the FF area shifts the delay-tuning of FF neurons away from that of the stimulated FF neurons. The delay-tuning shift evoked by the DF stimulation was 2.5 times larger than that evoked by the FF stimulation. Our data indicate that the FF-DF feed-forward and FF-FF lateral projections shape the highly selective neural representation of the tuning of the excited DF neurons, whereas the DF-FF feedback and DF-DF lateral projections enhance the representation of the selected tuning, perhaps, for focal processing of information carried by the excited FF neurons.
Collapse
|
72
|
Suga N. Role of corticofugal feedback in hearing. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2008; 194:169-83. [PMID: 18228080 DOI: 10.1007/s00359-007-0274-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 08/31/2007] [Accepted: 09/16/2007] [Indexed: 10/22/2022]
Abstract
The auditory system consists of the ascending and descending (corticofugal) systems. The corticofugal system forms multiple feedback loops. Repetitive acoustic or auditory cortical electric stimulation activates the cortical neural net and the corticofugal system and evokes cortical plastic changes as well as subcortical plastic changes. These changes are short-term and are specific to the properties of the acoustic stimulus or electrically stimulated cortical neurons. These plastic changes are modulated by the neuromodulatory system. When the acoustic stimulus becomes behaviorally relevant to the animal through auditory fear conditioning or when the cortical electric stimulation is paired with an electric stimulation of the cholinergic basal forebrain, the cortical plastic changes become larger and long-term, whereas the subcortical changes stay short-term, although they also become larger. Acetylcholine plays an essential role in augmenting the plastic changes and in producing long-term cortical changes. The corticofugal system has multiple functions. One of the most important functions is the improvement and adjustment (reorganization) of subcortical auditory signal processing for cortical signal processing.
Collapse
Affiliation(s)
- Nobuo Suga
- Department of Biology, Washington University, One Brookings Drive, St Louis, MO 63130, USA.
| |
Collapse
|
73
|
Zhou X, Jen PHS. Corticofugal modulation of multi-parametric auditory selectivity in the midbrain of the big brown bat. J Neurophysiol 2007; 98:2509-16. [PMID: 17804577 DOI: 10.1152/jn.00613.2007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Corticofugal modulation of sub-cortical auditory selectivity has been shown previously in mammals for frequency, amplitude, time, and direction domains in separate studies. As such, these studies do not show if multi-parametric corticofugal modulation can be mediated through the same sub-cortical neuron. Here we specifically studied corticofugal modulation of best frequency (BF), best amplitude (BA), and best azimuth (BAZ) at the same neuron in the inferior colliculus of the big brown bat, Eptesicus fuscus, using focal electrical stimulation in the auditory cortex. Among 53 corticofugally inhibited collicular neurons examined, cortical electrical stimulation produced a shift of all three measurements (i.e., BF, BA, and BAZ) toward the value of stimulated cortical neuron in 13 (24.5%) neurons, two measurements (i.e., BF and BAZ or BA and BAZ) in 19 (36%) neurons, and one measurement in 16 (30%) neurons. Cortical electrical stimulation did not shift any of these measurements in the remaining five (9.5%) neurons. Corticofugally induced collicular BF shift was symmetrical, whereas the shift in collicular BA or BAZ was asymmetrical. The amount of shift in each measurement was significantly correlated with each measurement difference between recorded collicular and stimulated cortical neurons. However, shifts of three measurements were not correlated with each other. Furthermore, average measurement difference between collicular and cortical neurons was larger for collicular neurons with measurement shifts than for those without shifts. These data indicate that multi-parametric corticofugal modulation can be mediated through the same subcortical neuron based on the difference in auditory selectivity between subcortical and cortical neurons.
Collapse
Affiliation(s)
- Xiaoming Zhou
- Division of Biological Sciences, University of Missouri-Columbia, Missouri, USA
| | | |
Collapse
|
74
|
Tang J, Xiao Z, Suga N. Bilateral cortical interaction: modulation of delay-tuned neurons in the contralateral auditory cortex. J Neurosci 2007; 27:8405-13. [PMID: 17670987 PMCID: PMC6673069 DOI: 10.1523/jneurosci.1257-07.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Transcallosal excitation and inhibition have been theorized based on the effect of callosotomy on intractable epilepsy and dichotic listening research, respectively. We studied bilateral interaction of cortical auditory neurons and found that this interaction consisted of focused facilitation and widespread lateral inhibition. The frequency modulated (FM)-FM area of the auditory cortex of the mustached bat is composed of delay-tuned neurons tuned to the combination of the emitted biosonar pulse and its echo with a specific echo delay [best delay (BD)] and consists of three subdivisions in terms of the combination sensitivity of neurons. We found that focal electric stimulation of one of these three subdivisions evoked BD shifts of delay-tuned neurons in all three subdivisions of the contralateral FM-FM area, presumably via the corpus callosum. The effect of electric stimulation of the delay-tuned neurons on the contralateral delay-tuned neurons was different depending on whether the BD of a recorded neuron was matched or unmatched in BD with that of the stimulated neurons. BD-matched neurons did not change their BDs and increased the responses at their BDs, whereas BD-unmatched neurons shifted their BDs away from the BD of the stimulated neurons and reduced their responses. The ipsilateral and contralateral BD shifts evoked by the electric stimulation were identical to each other. The contralateral modulation, in addition to the ipsilateral modulation, increases the contrast in the neural representation of the echo delay to which the stimulated neurons are tuned.
Collapse
Affiliation(s)
- Jie Tang
- Department of Biology, Washington University, St. Louis, Missouri 63130, and
| | - Zhongju Xiao
- Department of Physiology, Nanfang Medical University, Guangzhou 510515, China
| | - Nobuo Suga
- Department of Biology, Washington University, St. Louis, Missouri 63130, and
| |
Collapse
|
75
|
Palmer AR, Hall DA, Sumner C, Barrett DJK, Jones S, Nakamoto K, Moore DR. Some investigations into non-passive listening. Hear Res 2007; 229:148-57. [PMID: 17275232 DOI: 10.1016/j.heares.2006.12.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 12/07/2006] [Accepted: 12/07/2006] [Indexed: 10/23/2022]
Abstract
Our knowledge of the function of the auditory nervous system is based upon a wealth of data obtained, for the most part, in anaesthetised animals. More recently, it has been generally acknowledged that factors such as attention profoundly modulate the activity of sensory systems and this can take place at many levels of processing. Imaging studies, in particular, have revealed the greater activation of auditory areas and areas outside of sensory processing areas when attending to a stimulus. We present here a brief review of the consequences of such non-passive listening and go on to describe some of the experiments we are conducting to investigate them. In imaging studies, using fMRI, we can demonstrate the activation of attention networks that are non-specific to the sensory modality as well as greater and different activation of the areas of the supra-temporal plane that includes primary and secondary auditory areas. The profuse descending connections of the auditory system seem likely to be part of the mechanisms subserving attention to sound. These are generally thought to be largely inactivated by anaesthesia. However, we have been able to demonstrate that even in an anaesthetised preparation, removing the descending control from the cortex leads to quite profound changes in the temporal patterns of activation by sounds in thalamus and inferior colliculus. Some of these effects seem to be specific to the ear of stimulation and affect interaural processing. To bridge these observations we are developing an awake behaving preparation involving freely moving animals in which it will be possible to investigate the effects of consciousness (by contrasting awake and anaesthetized), passive and active listening.
Collapse
Affiliation(s)
- A R Palmer
- MRC Institute of Hearing Research, University Park, Nottingham, UK.
| | | | | | | | | | | | | |
Collapse
|
76
|
Sun X, Xia Q, Lai CH, Shum DKY, Chan YS, He J. Corticofugal modulation of acoustically induced Fos expression in the rat auditory pathway. J Comp Neurol 2007; 501:509-25. [PMID: 17278128 DOI: 10.1002/cne.21249] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
To investigate the corticofugal modulation of acoustic information ascending through the auditory pathway of the rat, immunohistochemical techniques were used to study the functional expression of Fos protein in neurons. With auditory stimulation at different frequencies, Fos expression in the medial geniculate body (MGB), inferior colliculus (IC), superior olivary complex, and cochlear nucleus was examined, and the extent of Fos expression on the two sides was compared. Strikingly, we found densely Fos-labeled neurons in all divisions of the MGB after both presentation of an auditory stimulus and administration of a gamma-aminobutyric acid type A (GABA(A)) antagonist (bicuculline methobromide; BIM) to the auditory cortex. The location of Fos-labeled neurons in the ventral division (MGv) after acoustic stimulation at different frequencies was in agreement with the known tonotopic organization. That no Fos-labeled neurons were found in the MGv with acoustic stimuli alone suggests that the transmission of ascending thalamocortical information is critically governed by corticofugal modulation. The dorsal (DCIC) and external cortices (ECIC) of the IC ipsilateral to the BIM-injected cortex showed a significantly higher number of Fos-labeled neurons than the contralateral IC. However, no difference in the number of Fos-labeled neurons was found between the central nucleus of the IC on either side, indicating that direct corticofugal modulation occurs only in the ECIC and DCIC. Further investigations are needed to assess the functional implications of the morphological differences observed between the descending corticofugal projections to the thalamus and the IC.
Collapse
Affiliation(s)
- Xia Sun
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | | | | | | | | | | |
Collapse
|
77
|
Ma X, Suga N. Multiparametric corticofugal modulation of collicular duration-tuned neurons: modulation in the amplitude domain. J Neurophysiol 2007; 97:3722-30. [PMID: 17376844 DOI: 10.1152/jn.01268.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The subcortical auditory nuclei contain not only neurons tuned to a specific frequency but also those tuned to multiple parameters characterizing a sound. All these neurons are potentially subject to modulation by descending fibers from the auditory cortex (corticofugal modulation). In the past, we electrically stimulated cortical duration-tuned neurons of the big brown bat, Eptesicus fuscus, and found that its collicular duration-tuned neurons were corticofugally modulated in the frequency and time (duration) domains. In the current paper, we report that they were also corticofugally modulated in the amplitude (intensity) domain. We found the following collicular changes evoked by focal cortical electric stimulation. 1) Corticofugal modulation in the amplitude domain differed depending on whether recorded collicular neurons matched in best frequency (BF) with stimulated cortical neurons. BF-matched neurons decreased their thresholds, whereas BF-unmatched neurons increased their thresholds: the larger the BF difference between the recorded collicular and stimulated cortical neurons, the larger the threshold increase. 2) In general, the dynamic range for amplitude coding was larger in the inferior colliculus than in the auditory cortex. BF-matched neurons increased their dynamic ranges and response magnitude, whereas BF-unmatched neurons decreased them. 3) Single duration-tuned neurons were simultaneously modulated by cortical electric stimulation in the amplitude, frequency and time domains. 4) Corticofugal modulation in these three domains indicates that the contrast of the neural representation of repeatedly delivered sound stimuli is increased.
Collapse
Affiliation(s)
- Xiaofeng Ma
- Dept. of Biology, Washington University, St. Louis, MO 63130, USA
| | | |
Collapse
|
78
|
Lim HH, Anderson DJ. Antidromic Activation Reveals Tonotopically Organized Projections From Primary Auditory Cortex to the Central Nucleus of the Inferior Colliculus in Guinea Pig. J Neurophysiol 2007; 97:1413-27. [PMID: 17151230 DOI: 10.1152/jn.00384.2006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The inferior colliculus (IC) is highly modulated by descending projections from higher auditory and nonauditory centers. Traditionally, corticofugal fibers were believed to project mainly to the extralemniscal IC regions. However, there is some anatomical evidence suggesting that a substantial number of fibers from the primary auditory cortex (A1) project into the IC central nucleus (ICC) and appear to be tonotopically organized. In this study, we used antidromic stimulation combined with other electrophysiological techniques to further investigate the spatial organization of descending fibers from A1 to the ICC in ketamine-anesthetized guinea pigs. Based on our findings, corticofugal fibers originate predominantly from layer V of A1, are amply scattered throughout the ICC and only project to ICC neurons with a similar best frequency (BF). This strict tonotopic pattern suggests that these corticofugal projections are involved with modulating spectral features of sound. Along the isofrequency dimension of the ICC, there appears to be some differences in projection patterns that depend on BF region and possibly isofrequency location within A1 and may be indicative of different descending coding strategies. Furthermore, the success of the antidromic stimulation method in our study demonstrates that it can be used to investigate some of the functional properties associated with corticofugal projections to the ICC as well as to other regions (e.g., medial geniculate body, cochlear nucleus). Such a method can address some of the limitations with current anatomical techniques for studying the auditory corticofugal system.
Collapse
Affiliation(s)
- Hubert H Lim
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, MI 48109-2122, USA
| | | |
Collapse
|
79
|
Li L, Ebner FF. Cortical modulation of spatial and angular tuning maps in the rat thalamus. J Neurosci 2007; 27:167-79. [PMID: 17202484 PMCID: PMC6672283 DOI: 10.1523/jneurosci.4165-06.2007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 11/20/2006] [Accepted: 11/28/2006] [Indexed: 11/21/2022] Open
Abstract
The massive feedback projections from cortex to the thalamus modulate sensory information transmission in many ways. We investigated the role of corticothalamic feedback projections on the directional selectivity (angular tuning) of neurons in the rat ventral posterior medial (VPM) nucleus to stimulation of their principal whisker. The angular tuning properties of single VPM neurons were compared before and after epochs of electrical stimulation of layer VI feedback neurons in the ipsilateral cortex under urethane anesthesia. Microstimulation of layer VI in "matched" (homologous) barrel columns sharpens the angular tuning curves of single VPM neurons that are tuned to the same direction as the stimulation site in the cortex. Further, microstimulation rotates the angular preference of VPM neurons initially tuned to a different direction toward the direction that cortical neurons prefer. Stimulation in "mismatched" (nonhomologous) barrel columns suppresses responses without consistent effects on angular tuning. We conclude that the primary sensory cortex exerts a significant influence on both spatial and angular tuning maps in the relay nuclei that project to it. The results suggest that the tuning properties of VPM cells in the behaving animal are continually modified to optimize perception of the most salient incoming messages.
Collapse
Affiliation(s)
- Lu Li
- Department of Psychology, Vanderbilt University, Nashville, Tennessee 37203
| | - Ford F. Ebner
- Department of Psychology, Vanderbilt University, Nashville, Tennessee 37203
| |
Collapse
|
80
|
Grossberg S. Towards a unified theory of neocortex: laminar cortical circuits for vision and cognition. PROGRESS IN BRAIN RESEARCH 2007; 165:79-104. [DOI: 10.1016/s0079-6123(06)65006-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
81
|
Grossberg S, Seidman D. Neural dynamics of autistic behaviors: cognitive, emotional, and timing substrates. Psychol Rev 2006; 113:483-525. [PMID: 16802879 DOI: 10.1037/0033-295x.113.3.483] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
What brain mechanisms underlie autism, and how do they give rise to autistic behavioral symptoms? This article describes a neural model, called the Imbalanced Spectrally Timed Adaptive Resonance Theory (iSTART) model, that proposes how cognitive, emotional, timing, and motor processes that involve brain regions such as the prefrontal and temporal cortex, amygdala, hippocampus, and cerebellum may interact to create and perpetuate autistic symptoms. These model processes were originally developed to explain data concerning how the brain controls normal behaviors. The iSTART model shows how autistic behavioral symptoms may arise from prescribed breakdowns in these brain processes, notably a combination of underaroused emotional depression in the amygdala and related affective brain regions, learning of hyperspecific recognition categories in the temporal and prefrontal cortices, and breakdowns of adaptively timed attentional and motor circuits in the hippocampal system and cerebellum. The model clarifies how malfunctions in a subset of these mechanisms can, through a systemwide vicious circle of environmentally mediated feedback, cause and maintain problems with them all.
Collapse
Affiliation(s)
- Stephen Grossberg
- Department of Cognitive and Neural Systems, Center for Adaptive Systems and Center of Excellence for Learning in Education, Science, and Technology, Boston University, 677 Beacon Street, Boston, MA 02215, USA.
| | | |
Collapse
|
82
|
de Labra C, Rivadulla C, Grieve K, Mariño J, Espinosa N, Cudeiro J. Changes in visual responses in the feline dLGN: selective thalamic suppression induced by transcranial magnetic stimulation of V1. Cereb Cortex 2006; 17:1376-85. [PMID: 16908494 DOI: 10.1093/cercor/bhl048] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) of the cortex can modify activity noninvasively and produce either excitatory or inhibitory effects, depending on stimulus parameters. Here we demonstrate controlled inhibitory effects on the large corticogeniculate feedback pathway from primary visual cortex to cells of the dorsal lateral geniculate nucleus (dLGN) that are focal and reversible-induced by either single pulses or trains of pulses of TMS. These effects selectively suppress the sustained component of responses to flashed spots or moving grating stimuli and are the result of loss of spikes fired in tonic mode, whereas the number of spikes fired in bursts remain the same. We conclude that acute inactivation of the corticogeniculate downflow selectively affects the tonic mode. We found no evidence to suggest that cortical inactivation increased burst frequency.
Collapse
Affiliation(s)
- Carmen de Labra
- Neuroscience and Motor Control Group, Department of Medicine, Universidad de A Coruña, Campus de Oza, 15006 A Coruña, Spain
| | | | | | | | | | | |
Collapse
|
83
|
Schofield BR, Coomes DL, Schofield RM. Cells in auditory cortex that project to the cochlear nucleus in guinea pigs. J Assoc Res Otolaryngol 2006; 7:95-109. [PMID: 16557424 PMCID: PMC2504579 DOI: 10.1007/s10162-005-0025-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Accepted: 12/07/2005] [Indexed: 11/28/2022] Open
Abstract
Fluorescent retrograde tracers were used to identify the cells in auditory cortex that project directly to the cochlear nucleus (CN). Following injection of a tracer into the CN, cells were labeled bilaterally in primary auditory cortex and the dorsocaudal auditory field as well as several surrounding fields. On both sides, the cells were limited to layer V. The size of labeled cell bodies varied considerably, suggesting that different cell types may project to the CN. Cells ranging from small to medium in size were present bilaterally, whereas the largest cells were labeled only ipsilaterally. In optimal cases, the extent of dendritic labeling was sufficient to identify the morphologic class. Many cells had an apical dendrite that could be traced to a terminal tuft in layer I. Such "tufted" pyramidal cells were identified both ipsilateral and contralateral to the injected CN. The results suggest that the direct pathway from auditory cortex to the cochlear nucleus is substantial and is likely to play a role in modulating the way the cochlear nucleus processes acoustic stimuli.
Collapse
Affiliation(s)
- Brett R Schofield
- Department of Neurobiology, Northeastern Ohio Universities College of Medicine, 4209 St. Rt. 44, P.O. Box 95, Rootstown, OH 44272, USA.
| | | | | |
Collapse
|
84
|
Abstract
Many studies of neuromodulators have focused on changes in the magnitudes of neural responses, but fewer studies have examined neuromodulator effects on response latency. Across sensory systems, response latency is important for encoding not only the temporal structure but also the identity of stimuli. In the auditory system, latency is a fundamental response property that varies with many features of sound, including intensity, frequency, and duration. To determine the extent of neuromodulatory regulation of latency within the inferior colliculus (IC), a midbrain auditory nexus, the effects of iontophoretically applied serotonin on first-spike latencies were characterized in the IC of the Mexican free-tailed bat. Serotonin significantly altered the first-spike latencies in response to tones in 24% of IC neurons, usually increasing, but sometimes decreasing, latency. Serotonin-evoked changes in latency and spike count were not always correlated but sometimes occurred independently within individual neurons. Furthermore, in some neurons, the size of serotonin-evoked latency shifts depended on the frequency or intensity of the stimulus, as reported previously for serotonin-evoked changes in spike count. These results support the general conclusion that changes in latency are an important part of the neuromodulatory repertoire of serotonin within the auditory system and show that serotonin can change latency either in conjunction with broad changes in other aspects of neuronal excitability or in highly specific ways.
Collapse
Affiliation(s)
- Laura M Hurley
- Biology Department, Indiana University, Bloomington, Indiana 47405, USA.
| | | |
Collapse
|
85
|
Abstract
Sound localization behavior is of great importance for an animal's survival. To localize a sound, animals have to detect a sound source and assign a location to it. In this review we discuss recent results on the underlying mechanisms and on modulatory influences in the barn owl, an auditory specialist with very well developed capabilities to localize sound. Information processing in the barn owl auditory pathway underlying the computations of detection and localization is well understood. This analysis of the sensory information primarily determines the following orienting behavior towards the sound source. However, orienting behavior may be modulated by cognitive (top-down) influences such as attention. We show how advanced stimulation techniques can be used to determine the importance of different cues for sound localization in quasi-realistic stimulation situations, how attentional influences can improve the response to behaviorally relevant stimuli, and how attention can modulate related neural responses. Taken together, these data indicate how sound localization might function in the usually complex natural environment.
Collapse
|
86
|
Li L, Ebner FF. Balancing bilateral sensory activity: callosal processing modulates sensory transmission through the contralateral thalamus by altering the response threshold. Exp Brain Res 2006; 172:397-415. [PMID: 16429268 DOI: 10.1007/s00221-005-0337-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Accepted: 12/13/2005] [Indexed: 10/25/2022]
Abstract
Rats tactually explore a nearly spherical space field around their heads with their whiskers. The information sampled by the two sets of whiskers is integrated bilaterally at the cortical level in an activity dependent manner via the corpus callosum. We have recently shown that sensory activity in one barrel field cortex (BFC) modulates the processing of incoming sensory information to the other BFC. Whether interhemispheric integration is dynamically linked with corticothalamic modulation of incoming sensory activity is an important hypothesis to test, since subcortical relay neurons are directly modulated by cortical neurons through top-down processes. In the present study, we compared the direct sensory responses of single thalamic relay neurons under urethane anesthesia before and after inactivating the BFC contralateral to a thalamic neuron. The data show that silencing one BFC reduces response magnitude in contralateral thalamic relay neurons, significantly and reversibly, in response to test stimuli applied to the principal whisker at two times response threshold (2T) intensity for each unit. Neurons in the ventral posterior medial (VPM) nucleus and the medial division of the posterior nucleus (POm) react in a similar manner, although POm neurons are more profoundly depressed by inactivation of the contralateral BFC than VPM neurons. The results support the novel idea that the subcortical relay of sensory information to one hemisphere is strongly modulated by activity levels in the contralateral as well as in the ipsilateral SI cortex. The mechanism of the modulation appears to be based on shifting the stimulus-response curves of thalamic neurons, thereby rendering them more or less sensitive to sensory stimuli. We conclude that global sensory processing is created by combining activity in each cerebral hemisphere and continually balancing the flow of information to cortex by adjusting the responsiveness of ascending sensory pathways.
Collapse
Affiliation(s)
- Lu Li
- Department of Psychology, Vanderbilt University, Nashville, TN 37203, USA
| | | |
Collapse
|
87
|
Xiao Z, Suga N. Asymmetry in corticofugal modulation of frequency-tuning in mustached bat auditory system. Proc Natl Acad Sci U S A 2005; 102:19162-7. [PMID: 16380430 PMCID: PMC1323221 DOI: 10.1073/pnas.0509761102] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Focal electric stimulation of the auditory cortex is well suited for exploration of the function of the corticofugal (descending) system and the neural mechanism of plasticity in the central auditory system, because it evokes changes in frequency-tuning, called best frequency (BF) shifts, as does auditory fear conditioning. The Doppler-shifted constant frequency (DSCF) area of the primary auditory cortex of the mustached bat is highly specialized for fine frequency analysis. Focal electric stimulation of the DSCF area evokes the BF shifts of ipsilateral cortical and collicular neurons away from the BF of stimulated neurons, whereas the stimulation evokes the BF shifts of contralateral cortical and collicular neurons either toward or away from the stimulated BF. The direction of contralateral BF shifts shows a flip-flop, depending on the spatial relationship between the stimulated and recorded neurons. This asymmetry in corticofugal modulation is mostly, if not totally, created by two subdivisions of the stimulated DSCF area that transmit signals to the contralateral DSCF area, presumably through the corpus callosum. This intriguing asymmetry in corticofugal modulation presumably functions for equalization of the reorganization of the frequency maps of the DSCF areas and subcortical auditory nuclei on both sides.
Collapse
Affiliation(s)
- Zhongju Xiao
- Department of Biology, Washington University, One Brookings Drive, St. Louis, MO 63130, USA
| | | |
Collapse
|
88
|
Morand-Villeneuve N, Veuillet E, Perrot X, Lemoine P, Gagnieu MC, Sebert P, Durrant JD, Collet L. Lateralization of the effects of the benzodiazepine drug oxazepam on medial olivocochlear system activity in humans. Hear Res 2005; 208:101-6. [PMID: 15993014 DOI: 10.1016/j.heares.2005.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Accepted: 05/25/2005] [Indexed: 11/19/2022]
Abstract
Benzodiazepines (Bzd) are known to interact with GABAergic inhibitory neurotransmission. Previous research on their effect on human auditory efferent pathways--through evoked otoacoustic emissions suppression by contralateral acoustic stimulation (CAS)--indicated a decrease in medial olivocochlear (MOC) efferent system inhibitory activity, after oral intake of oxazepam--representative of the Bzd drug class. To date, this pharmacological effect was only assessed in the right ear. Since a leftward asymmetry of Bzd receptors localization in human auditory cortex has been described recently, we explored in this study the hypothesis of an asymmetrical action of Bzd on MOC efferent functioning. The results revealed a significant difference of Bzd effect probing the right ear versus the left ear, with CAS-induced suppression being less effective in the right than left ear after oxazepam intake. This finding raises the question of possible neurochemical left-right asymmetry in the descending auditory pathways. The potential localization of this asymmetry is discussed.
Collapse
Affiliation(s)
- N Morand-Villeneuve
- Laboratoire Neurosciences et Systèmes Sensoriels, CNRS UMR 5020, Université Claude Bernard Lyon I, 50 av. Tony Garnier, 3 Place d'Arsonval, Pavillon U, Hôpital Edouard Herriot, 69366 Lyon, Cedex 07, France
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Zhou X, Jen PHS. Corticofugal modulation of directional sensitivity in the midbrain of the big brown bat, Eptesicus fuscus. Hear Res 2005; 203:201-15. [PMID: 15855045 DOI: 10.1016/j.heares.2004.12.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Accepted: 12/22/2004] [Indexed: 11/18/2022]
Abstract
In our recent study of corticofugal modulation of collicular amplitude sensitivity of the big brown bat, Eptesicus fuscus, we suggested that the corticofugal modulation is based upon the best frequency (BF) differences and the relative amplitude sensitivity difference between collicular (IC) and cortical (AC) neurons but not the absolute amplitude sensitivity of IC and AC neurons. To show that corticofugal modulation is systematic and multiparametric, we studied corticofugal modulation of directional sensitivity in 89 corticofugally inhibited IC neurons in the same bat species under free field stimulation conditions. A neuron's directional sensitivity was expressed with the azimuthal range (AR) at 50% below the maximum of each directional sensitivity curve and the best azimuth (BAZ) at which the neuron discharged maximally. Cortical electrical stimulation did not affect the directional sensitivity of 40 (45%) neurons with BF(IC-AC) differences of 7.3+/-4.4kHz but sharpened the directional sensitivity of other 49 (55%) neurons with BF(IC-AC) differences of 2.3+/-1.8kHz. Corticofugal modulation sharpened directional sensitivity curves of IC neurons by decreasing the AR and shifting collicular BAZ toward cortical BAZ. The decrease in AR and the shift in BAZ increased significantly with AR(IC-AC) and BAZ(IC-AC) differences but not with absolute AR and BAZ of IC and AC neurons or BF(IC-AC) differences. Corticofual modulation also shifted collicular BF toward cortical BF. The shift in BF increased significantly with BF(IC-AC) differences but not with the BF of IC and AC neurons or BAZ shift. Consonant with our previous study, these data indicate that corticofugal modulation of collicular directional sensitivity is based on topographic projections between the IC and the AC and the difference in directional sensitivity but not the absolute directional sensitivity of IC or AC neurons.
Collapse
Affiliation(s)
- Xiaoming Zhou
- Division of Biological Sciences and Interdisciplinary Neuroscience Program, University of Missouri, 208 Lefevre Hall, Columbia, MO 65211, USA
| | | |
Collapse
|
90
|
Ji W, Suga N, Gao E. Effects of Agonists and Antagonists of NMDA and ACh Receptors on Plasticity of Bat Auditory System Elicited by Fear Conditioning. J Neurophysiol 2005; 94:1199-211. [PMID: 16061490 DOI: 10.1152/jn.00112.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In big brown bats, tone-specific plastic changes [best frequency (BF) shifts] of cortical and collicular neurons can be evoked by auditory fear conditioning, repetitive acoustic stimuli or cortical electric stimulation. It has been shown that acetylcholine (ACh) plays an important role in evoking large long-term cortical BF shifts. However, the role of N-methyl-d-aspartate (NMDA) receptors in evoking BF shifts has not yet been studied. We found 1) NMDA applied to the auditory cortex (AC) or inferior colliculus (IC) augmented the auditory responses, as ACh did, whereas 2-amino-5-phosphovalerate (APV), an antagonist of NMDA receptors, reduced the auditory responses, as atropine did; 2) although any of these four drugs did not evoke BF shifts, they influenced the development of the long-term cortical and short-term collicular BF shifts elicited by conditioning; 3) like ACh, NMDA augmented the cortical and collicular BF shifts regardless of whether it was applied to the AC or IC; 4) endogenous ACh of the AC and IC is necessary to produce the long-term cortical and short-term collicular BF shifts; 5) blockade of collicular NMDA receptors by APV abolished the development of the collicular BF shift and made the cortical BF shift small and short-term; 6) blockade of cortical NMDA receptors by APV reduced the cortical and collicular BF shifts and made the cortical BF shift short-term; and 7) conditioning with NMDA + atropine applied to the AC evoked the small, short-term cortical BF shift, whereas conditioning with APV + ACh applied to the AC evoked the small, but long-term cortical BF shift.
Collapse
Affiliation(s)
- Weiqing Ji
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | | | | |
Collapse
|
91
|
Zhang Y, Hakes JJ, Bonfield SP, Yan J. Corticofugal feedback for auditory midbrain plasticity elicited by tones and electrical stimulation of basal forebrain in mice. Eur J Neurosci 2005; 22:871-9. [PMID: 16115210 DOI: 10.1111/j.1460-9568.2005.04276.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The auditory cortex (AC) is the major origin of descending auditory projections and is one of the targets of the cholinergic basal forebrain, nucleus basalis (NB). In the big brown bat, cortical activation evokes frequency-specific plasticity in the inferior colliculus and the NB augments this collicular plasticity. To examine whether cortical descending function and NB contributions to collicular plasticity are different between the bat and mouse and to extend the findings in the bat, we induced plasticity in the central nucleus of the mouse inferior colliculus by a tone paired with electrical stimulation of the NB (hereafter referred to as tone-ES(NB)). We show here that tone-ES(NB) shifted collicular best frequencies (BFs) towards the frequency of the tone paired with ES(NB) when collicular BFs were different from tone frequency. The shift in collicular BF was linearly correlated to the difference between collicular BFs and tone frequencies. The changes in collicular BFs after tone-ES(NB) were similar to those found in the big brown bat. Compared with cortical plasticity evoked by tone-ES(NB), the pattern of collicular BF shifts was identical but the shifting range of collicular BFs was narrower. A GABA(A) agonist (muscimol) or a muscarinic acetylcholine receptor antagonist (atropine) applied to the AC completely abolished the collicular plasticity evoked by tone-ES(NB). Therefore, our findings strongly suggest that the AC plays a critical role in experience-dependent auditory plasticity through descending projections.
Collapse
Affiliation(s)
- Yunfeng Zhang
- Department of Physiology and Biophysics, Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, 3330 Hospital Drive, N.W., Rm193B, Calgary, Alberta, T2N 4N1, Canada
| | | | | | | |
Collapse
|
92
|
Zhang Y, Suga N. Corticofugal feedback for collicular plasticity evoked by electric stimulation of the inferior colliculus. J Neurophysiol 2005; 94:2676-82. [PMID: 16000518 DOI: 10.1152/jn.00549.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Focal electric stimulation of the auditory cortex, 30-min repetitive acoustic stimulation, and auditory fear conditioning each evoke shifts of the frequency-tuning curves [hereafter, best frequency (BF) shifts] of cortical and collicular neurons. The short-term collicular BF shift is produced by the corticofugal system and primarily depends on the relationship in BF between a recorded collicular and a stimulated cortical neuron or between the BF of a recorded collicular neuron and the frequency of an acoustic stimulus. However, it has been unknown whether focal electric stimulation of the inferior colliculus evokes the collicular BF shift and whether the collicular BF shift, if evoked, depends on corticofugal feedback. In our present research with the awake big brown bat, we found that focal electric stimulation of collicular neurons evoked the BF shifts of collicular neurons located near the stimulated ones; that there were two types of BF shifts: centripetal and centrifugal BF shifts, i.e., shifts toward and shifts away from the BF of stimulated neurons, respectively; and that the development of these collicular BF shifts was blocked by inactivation of the auditory cortex. Our data indicate that the collicular BF shifts (plasticity) evoked by collicular electric stimulation depended on corticofugal feedback. It should be noted that collicular BF shifts also depend on acetylcholine because it has been demonstrated that atropine (an antagonist of muscarinic acetylcholine receptors) applied to the IC blocks the development of collicular BF shifts.
Collapse
Affiliation(s)
- Yongkui Zhang
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | | |
Collapse
|
93
|
Ma X, Suga N. Long-term cortical plasticity evoked by electric stimulation and acetylcholine applied to the auditory cortex. Proc Natl Acad Sci U S A 2005; 102:9335-40. [PMID: 15961542 PMCID: PMC1166631 DOI: 10.1073/pnas.0503851102] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Auditory fear conditioning with tone bursts followed by electric leg stimulation activates neurons not only in the auditory and somatosensory systems but also in many other regions of the brain and elicits shifts in the best frequencies (BFs) of collicular and cortical neurons, i.e., reorganization of the frequency (co-chleotopic) maps in the inferior colliculus and auditory cortex (AC). What are the neural elements minimally necessary for evoking long-term cortical BF shifts? We found that: (i) both electric stimulation and acetylcholine applied to the AC evoke the long-term cortical BF shift as does the conditioning; (ii) both electric stimulation of the AC and acetylcholine applied to the inferior colliculus increase the short-term collicular BF shift evoked by the cortical electric stimulation but do not change it into long-term; and (iii) as this short-term collicular BF shift is blocked by atropine, the development of the long-term cortical BF shift becomes slow and small. Therefore, the most essential neural elements for evoking the long-term cortical BF shift are the AC, corticofugal feedback and the cholinergic nucleus. Our current data support the Gao-Suga model, which hypothesizes that the small short-term cortical BF shifts are evoked by tonal stimuli without the association of conditioned and unconditioned stimuli in the multisensory thalamic nuclei and that these BF shifts are augmented and changed into the large long-term BF shifts by cholinergic neurons.
Collapse
Affiliation(s)
- Xiaofeng Ma
- Department of Biology, Washington University, One Brookings Drive, St. Louis, MO 63130, USA
| | | |
Collapse
|
94
|
Affiliation(s)
- Kevin A Davis
- Department of Biomedical Engineering and Neurobiology, University of Rochester, Rochester, New York 14642, USA
| |
Collapse
|
95
|
Bashford JA, Warren RM, Lenz PW. Enhancing intelligibility of narrowband speech with out-of-band noise: evidence for lateral suppression at high-normal intensity. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2005; 117:365-9. [PMID: 15704428 PMCID: PMC3031247 DOI: 10.1121/1.1835513] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Previous studies have shown that the intelligibility of filtered speech can be enhanced by filling stopbands with noise. The present study found that this enhancement occurred only when speech intensity was sufficiently high to degrade performance. Intelligibility decreased by about 15% when narrowband speech was increased from 45 to 65 dBA (corresponding to broadband speech levels of about 60 and 80 dBA), and decreased by 20% at a level of 75 dBA. However, when flanking bands of low-pass and high-pass filtered white noise were added at spectrum levels of -40 to -20 dB relative to the speech, intelligibility of the 75-dBA speech band increased by about 13%. Additional findings confirm that this enhancement of intelligibility depends upon out-of-band stimulation, in agreement with theories proposing that lateral suppressive interactions extend the dynamic range of intensity coding by counteracting effects of auditory-nerve firing-rate saturation at high signal levels.
Collapse
Affiliation(s)
- James A Bashford
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA.
| | | | | |
Collapse
|
96
|
Ma X, Suga N. Lateral inhibition for center-surround reorganization of the frequency map of bat auditory cortex. J Neurophysiol 2004; 92:3192-9. [PMID: 15548634 DOI: 10.1152/jn.00301.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Repetitive acoustic stimulation, auditory fear conditioning, and focal electric stimulation of the auditory cortex (AC) each evoke the reorganization of the central auditory system. Our current study of the big brown bat indicates that focal electric stimulation of the AC evokes center-surround reorganization of the frequency map of the AC. In the center, the neuron's best frequencies (BFs), together with their frequency-tuning curves, shift toward the BFs of electrically stimulated cortical neurons (centripetal BF shifts). In the surround, BFs shift away from the stimulated cortical BF (centrifugal BF shifts). Centripetal BF shifts are much larger than centrifugal BF shifts. An antagonist (bicuculline methiodide) of inhibitory synaptic transmitter receptors changes centrifugal BF shifts into centripetal BF shifts, whereas its agonist (muscimol) changes centripetal BF shifts into centrifugal BF shifts. This reorganization of the AC thus depends on a balance between facilitation and inhibition evoked by focal cortical electric stimulation. Unlike neurons in the AC of the big brown bat, neurons in the Doppler-shifted constant-frequency (DSCF) area of the AC of the mustached bat are highly specialized for fine-frequency analysis and show almost exclusively centrifugal BF shifts for focal electric stimulation of the DSCF area. Our current data indicate that in the highly specialized area, lateral inhibition is strong compared with the less-specialized area and that the specialized and nonspecialized areas both share the same inhibitory mechanism for centrifugal BF shifts.
Collapse
Affiliation(s)
- Xiaofeng Ma
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA
| | | |
Collapse
|
97
|
|
98
|
Yan J, Zhang Y, Ehret G. Corticofugal shaping of frequency tuning curves in the central nucleus of the inferior colliculus of mice. J Neurophysiol 2004; 93:71-83. [PMID: 15331615 DOI: 10.1152/jn.00348.2004] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Plasticity of the auditory cortex can be induced by conditioning or focal cortical stimulation. The latter was used here to measure how stimulation in the tonotopy of the mouse primary auditory cortex influences frequency tuning in the midbrain central nucleus of the inferior colliculus (ICC). Shapes of collicular frequency tuning curves (FTCs) were quantified before and after cortical activation by measuring best frequencies, FTC bandwidths at various sound levels, level tolerance, Q-values, steepness of low- and high-frequency slopes, and asymmetries. We show here that all of these measures were significantly changed by focal cortical activation. The changes were dependent not only on the relationship of physiological properties between the stimulated cortical neurons and recorded collicular neurons but also on the tuning curve class of the collicular neuron. Cortical activation assimilated collicular FTC shapes; sharp and broad FTCs were changed to the shapes comparable to those of auditory nerve fibers. Plasticity in the ICC was organized in a center (excitatory)-surround (inhibitory) way with regard to the stimulated location (i.e., the frequency) of cortical tonotopy. This ensures, together with the spatial gradients of distribution of collicular FTC shapes, a sharp spectral filtering at the core of collicular frequency-band laminae and an increase in frequency selectivity at the periphery of the laminae. Mechanisms of FTC plasticity were suggested to comprise both corticofugal and local ICC components of excitatory and inhibitory modulation leading to a temporary change of the balance between excitation and inhibition in the ICC.
Collapse
Affiliation(s)
- Jun Yan
- Department of Physiology and Biophysics, Neuroscience Research Group, Faculty of Medicine, University of Calgary, 3330 Hospital Drive, N.W., Rm193B, Calgary, Alberta, T2N 4N1, Canada.
| | | | | |
Collapse
|
99
|
Jen PHS, Zhou X. Corticofugal modulation of amplitude domain processing in the midbrain of the big brown bat, Eptesicus fuscus. Hear Res 2004; 184:91-106. [PMID: 14553907 DOI: 10.1016/s0378-5955(03)00237-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Recent studies have shown that the corticofugal system systematically modulates and improves subcortical signal processing in the frequency, time and spatial domains. The present study examined corticofugal modulation of amplitude sensitivity of 113 corticofugally inhibited neurons in the central nucleus of the inferior colliculus (IC) of the big brown bat, Eptesicus fuscus. Cortical electrical stimulation decreased the number of impulses and increased the response latency of these neurons. They had an average of 5.9+/-4.4 kHz best frequency (BF) differences between collicular and electrically stimulated cortical neurons. Cortical electrical stimulation synchronized with sound stimulation for 30 min compressed the rate-amplitude functions of half (56, 49.6%) of these collicular neurons and shifted their minimum thresholds (MT) and dynamic ranges (DR) toward that of electrically stimulated cortical neurons for as long as 40 min. These collicular neurons had an average of 1.6+/-1.4 kHz BF differences. The shift in collicular MT and DR significantly increased with differences in MT and DR between collicular and cortical neurons. Cortical electrical stimulation also shifted the BF and best amplitude (BA) of collicular neurons toward that of cortical neurons. The BF shift increased with BF differences and the BA shift increased with BA differences. These data suggest that the corticofugal system modulates collicular responses on the basis of topographic projections between the IC and auditory cortex. However, corticofugal modulation of collicular amplitude sensitivity is primarily dependent upon the difference but not the absolute amplitude sensitivity between collicular and cortical neurons.
Collapse
Affiliation(s)
- Philip H-S Jen
- Division of Biological Sciences and Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO 65211, USA.
| | | |
Collapse
|
100
|
Yu YQ, Xiong Y, Chan YS, He J. Corticofugal gating of auditory information in the thalamus: an in vivo intracellular recording study. J Neurosci 2004; 24:3060-9. [PMID: 15044545 PMCID: PMC6729842 DOI: 10.1523/jneurosci.4897-03.2004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the present study, we investigated the auditory responses of the medial geniculate (MGB) neurons, through in vivo intracellular recordings of anesthetized guinea pigs, while the auditory cortex was electrically activated. Of the 63 neurons that received corticofugal modulation of the membrane potential, 30 received potentiation and 33 received hyperpolarization. The corticofugal potentiation of the membrane potential (amplitude, mean +/- SD, 8.6 +/- 5.5 mV; duration, 125.5 +/- 75.4 msec) facilitated the auditory responses and spontaneous firing of the MGB neurons. The hyperpolarization of -11.3 +/- 4.9 mV in amplitude and 210.0 +/- 210.1 msec in duration suppressed the auditory responses and spontaneous firing of the MGB neurons. Four of the five neurons that were histologically confirmed to be located in the lemniscal MGB received corticofugal facilitatory modulation, and all of the four neurons that were confirmed to be located in the non-lemniscal MGB received corticofugal inhibitory modulation. The present intracellular recording provides novel results on how the corticofugal projection gates the sensory information in the thalamus: via the spatially selective depolarization of lemniscal MGB neurons and hyperpolarization of non-lemniscal MGB neurons. It is speculated that the systematic selectivity of facilitation and inhibition over the lemniscal and non-lemniscal MGB is related to the attention shift within the auditory modality and across the sensory modalities.
Collapse
Affiliation(s)
- Yan-Qin Yu
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | | | | | | |
Collapse
|