51
|
De Paoli P. Institutional shared resources and translational cancer research. J Transl Med 2009; 7:54. [PMID: 19563639 PMCID: PMC2711056 DOI: 10.1186/1479-5876-7-54] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 06/29/2009] [Indexed: 02/06/2023] Open
Abstract
The development and maintenance of adequate shared infrastructures is considered a major goal for academic centers promoting translational research programs. Among infrastructures favoring translational research, centralized facilities characterized by shared, multidisciplinary use of expensive laboratory instrumentation, or by complex computer hardware and software and/or by high professional skills are necessary to maintain or improve institutional scientific competitiveness. The success or failure of a shared resource program also depends on the choice of appropriate institutional policies and requires an effective institutional governance regarding decisions on staffing, existence and composition of advisory committees, policies and of defined mechanisms of reporting, budgeting and financial support of each resource. Shared Resources represent a widely diffused model to sustain cancer research; in fact, web sites from an impressive number of research Institutes and Universities in the U.S. contain pages dedicated to the SR that have been established in each Center, making a complete view of the situation impossible. However, a nation-wide overview of how Cancer Centers develop SR programs is available on the web site for NCI-designated Cancer Centers in the U.S., while in Europe, information is available for individual Cancer centers. This article will briefly summarize the institutional policies, the organizational needs, the characteristics, scientific aims, and future developments of SRs necessary to develop effective translational research programs in oncology. In fact, the physical build-up of SRs per se is not sufficient for the successful translation of biomedical research. Appropriate policies to improve the academic culture in collaboration, the availability of educational programs for translational investigators, the existence of administrative facilitations for translational research and an efficient organization supporting clinical trial recruitment and management represent essential tools, providing solutions to overcome existing barriers in the development of translational research in biomedical research centers.
Collapse
Affiliation(s)
- Paolo De Paoli
- Centro di Riferimento Oncologico, IRCCS, I-33081 Aviano PN Aviano, Italy.
| |
Collapse
|
52
|
van Noort D, Ong SM, Zhang C, Zhang S, Arooz T, Yu H. Stem cells in microfluidics. Biotechnol Prog 2009; 25:52-60. [PMID: 19205022 DOI: 10.1002/btpr.171] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
With the introduction of microtechnology and microfluidic platforms for cell culture, stem cell research can be put into a new context. Inside microfluidics, microenvironments can be more precisely controlled and their influence on cell fate studied. Microfluidic devices can be made transparent and the cells monitored real time by imaging, using fluorescence markers to probe cell functions and cell fate. This article gives a perspective on the yet untapped utility of microfluidic devices for stem cell research. It will guide the biologists through some basic microtechnology and the application of microfluidics to cell research, as well as highlight to the engineers the cell culture capabilities of microfluidics.
Collapse
Affiliation(s)
- Danny van Noort
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore.
| | | | | | | | | | | |
Collapse
|
53
|
Abstract
In recent years, relatively simple MEMS fabrications have helped accelerate our knowledge of the microbial cell. Current progress and challenges in the application of lab-on-a-chip devices to the viable microbe are reviewed. Furthermore, the degree to which microbiologists are becoming the engineers and are tailoring microbial cells and protocells as potential components for bioMEMS devices is highlighted. We conclude this is a highly productive time for microbiologists and microengineers to unite their shared interest in the micron scale world.
Collapse
Affiliation(s)
- Colin J Ingham
- Top Institute Food and Nutrition, Nieuwe Kanaal 9A, 6709, PA, Wageningen, The Netherlands.
| | | |
Collapse
|
54
|
Darling EM, Guilak F. A neural network model for cell classification based on single-cell biomechanical properties. Tissue Eng Part A 2008; 14:1507-15. [PMID: 18620486 PMCID: PMC2748927 DOI: 10.1089/ten.tea.2008.0180] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Accepted: 04/25/2008] [Indexed: 02/05/2023] Open
Abstract
The potential success of tissue engineering or other cell-based therapies is dependent on factors such as the purity and homogeneity of the source cell populations. The ability to enrich cell harvests for specific phenotypes can have significant effects on the overall success of such therapies. While most techniques for cell sorting or enrichment have relied on cell surface markers, recent studies have shown that single-cell mechanical properties can serve as identifying markers of phenotype. In this study, a neural network modeling approach was developed to classify mesenchymal-derived primary and stem cells based on their biomechanical properties. Cell sorting was simulated using previously published data characterizing the mechanical properties of several different cell types as measured by atomic force microscopy. Neural networks were trained using combined data sets, with the resultant groupings analyzed for their purity, efficiency, and enrichment. Heterogeneous populations of zonal chondrocytes, chondrosarcoma cells, and mesenchymal-lineage cells, respectively, could all be classified into enriched subpopulations. Additionally, adult stem cells (adipose-derived or bone marrow-derived) separated disproportionately into nodes associated with the three primary mesenchymal lineages examined. These findings suggest that mathematical approaches such as neural network modeling, in combination with novel measures of cell properties, may provide a means of classifying and eventually sorting mixed populations of cells that are otherwise difficult to identify using more established techniques. In this respect, the identification of biomechanically based cell properties that increase the percentage of stem cells capable of differentiating into predictable lineages may improve the overall success of cell-based therapies.
Collapse
Affiliation(s)
- Eric M Darling
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | | |
Collapse
|
55
|
Wlodkowic D, Skommer J, Darzynkiewicz Z. SYTO probes in the cytometry of tumor cell death. Cytometry A 2008; 73:496-507. [DOI: 10.1002/cyto.a.20535] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
56
|
Carboxylated superparamagnetic iron oxide particles label cells intracellularly without transfection agents. Mol Imaging Biol 2008; 10:138-46. [PMID: 18297365 DOI: 10.1007/s11307-007-0130-3] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 11/06/2007] [Accepted: 11/09/2007] [Indexed: 01/03/2023]
Abstract
Cell labeling by superparamagnetic iron oxide particles (SPIO) has emerged as a potentially powerful tool to monitor trafficking of transplanted cells by magnetic resonance tomography, e.g., in studies for tissue repair. However, intracellular labeling is mostly achieved by transfection agents not approved for clinical use. In this work, the feasibility and efficiency of labeling human mesenchymal stem cells (MSC) and HeLa cells with two commercially available SPIOs (Resovist and Feridex) without transfection agents was evaluated. In both cell types, Resovist without a transfection agent was more efficiently taken up than Feridex. Increasing the concentration of Resovist can yield similar amounts of iron in cells as SPIOs with transfection agents. This offers the opportunity to omit transfection agents from the labeling protocol when Resovist is used. Intracellular localization of the contrast agents is found by light microscopy and confirmed by electron microscopy. Coagulation of the SPIO nanoparticles, which is problematic for the quantification of the intracellular iron content, was observed and analyzed with a fluorescent activated cell sorter. As Resovist consists of a carboxydextran shell in contrast to Feridex which is composed of a dextran shell, we synthesized fluorescent polymeric nanoparticles as model systems with different amounts of carboxyl groups on the surface by the miniemulsion process. A steady increase in uptake of nanoparticles was detected with a higher density of carboxyl groups showing the relevance of charged groups as in the case of Resovist. Aggregation of these polymeric nanoparticles was not found.
Collapse
|
57
|
Abstract
We present a microfluidic cell-sorting device which augments microscopy with the capability to perform facile image-based cell sorting. This combination enables intuitive, complex phenotype sorting based on spatio-temporal fluorescence or cell morphology. The microfluidic device contains a microwell array that can be passively loaded with mammalian cells via sedimentation and can be subsequently inspected with microscopy. After inspection, we use the scattering force from a focused infrared laser to levitate cells of interest from their wells into a flow field for collection. First, we demonstrate image-based sorting predicated on whole-cell fluorescence, which could enable sorting based on temporal whole-cell fluorescence behavior. Second, we demonstrate image-based sorting predicated on fluorescence localization (nuclear vs whole-cell fluorescence), highlighting the capability of our approach to sort based on imaged subcellular events, such as localized protein expression or translocation events. We achieve postsort purities up to 89% and up to 155-fold enrichment of target cells. Optical manipulation literature and a direct cell viability assay suggest that cells remain viable after using our technique. The architecture is highly scalable and supports over 10 000 individually addressable trap sites. Our approach enables sorting of significant populations based on subcellular spatio-temporal information, which is difficult or impossible with existing widespread sorting technologies.
Collapse
Affiliation(s)
- J. R. Kovac
- Department of Electrical Engineering and Computer Science, 77 Massachusetts Avenue, Building 36-824, Cambridge, Massachusetts 02139
| | - J. Voldman
- Department of Electrical Engineering and Computer Science, 77 Massachusetts Avenue, Building 36-824, Cambridge, Massachusetts 02139
| |
Collapse
|
58
|
Inglis DW, Davis JA, Zieziulewicz TJ, Lawrence DA, Austin RH, Sturm JC. Determining blood cell size using microfluidic hydrodynamics. J Immunol Methods 2007; 329:151-6. [PMID: 18036608 DOI: 10.1016/j.jim.2007.10.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 05/04/2007] [Accepted: 10/04/2007] [Indexed: 10/22/2022]
Abstract
Microfluidic flow cytometers currently analyze far fewer parameters than conventional flow cytometry or fluorescence activated cell sorting (FACS) in order to minimize cost and complexity. There is a need for microfluidic devices that analyze more and or new cell parameters with compact and minimal means. Here we show a new and explicitly microfluidic parameter, "hydrodynamic" cell size, and compare it to forward scatter in conventional flow cytometry. The hydrodynamic size of cells is determined by the degree of lateral displacement experienced while traveling through a 1.2-mm-wide non-clogging array of micro-fabricated obstacles. We show comparable size resolution between the microfluidic device and forward scatter in conventional flow cytometry and without the need to lyse red blood cells. We use the device to differentiate healthy lymphocytes from malignant lymphocytes by size alone and we use the device to detect increased numbers of activated lymphocytes in blood as a result of exposure to staphylococcal enterotoxin B (SEB), a potential bioterror agent. Together the results demonstrate a microfluidic device that performs some of the measurement and separation tasks of a flow cytometer but at a potentially lower cost and complexity.
Collapse
Affiliation(s)
- David W Inglis
- Princeton Institute for the Science and Technology of Materials (PRISM), Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA.
| | | | | | | | | | | |
Collapse
|
59
|
Abstract
Proteomics holds the promise of evaluating global changes in protein expression and post-translational modification in response to environmental stimuli. However, difficulties in achieving cellular anatomic resolution and extracting specific types of proteins from cells have limited the efficacy of these techniques. Laser capture microdissection has provided a solution to the problem of anatomical resolution in tissues. New extraction methodologies have expanded the range of proteins identified in subsequent analyses. This review will examine the application of laser capture microdissection to proteomic tissue sampling, and subsequent extraction of these samples for differential expression analysis. Statistical and other quantitative issues important for the analysis of the highly complex datasets generated are also reviewed.
Collapse
Affiliation(s)
- Howard B Gutstein
- MD Anderson Cancer Center, 1515 Holcombe Blvd, Box 110, Houston, TX 77030-4009, USA.
| | | |
Collapse
|
60
|
Wood DK, Braun GB, Fraikin JL, Swenson LJ, Reich NO, Cleland AN. A feasible approach to all-electronic digital labeling and readout for cell identification. LAB ON A CHIP 2007; 7:469-74. [PMID: 17389963 DOI: 10.1039/b616442k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We present two critical innovations that enable a unique, purely electronic approach to microfluidic whole-cell analysis, focusing on the problem of cell identification and sorting. We used fully-scalable lithographic techniques to microfabricate digital barcodes, providing a means for low-cost, large volume production. We have demonstrated molecular functionalization of the barcodes, using biotin-streptavidin, as well as human CD4 antibody, and we have successfully linked the barcodes to polystyrene beads using the biotin-streptavidin complex. This functionalization allows unique barcodes to be attached to specific cell types, based on phenotype. We have also implemented an electronic barcode readout scheme, using a radio frequency microsensor integrated in an elastomeric microfluidic channel, that can read individual barcodes at rates in excess of 1000 labels s(-1). The barcodes are biologically compatible, and coupled with the electronic sensing technology, provide a route to compact, inexpensive, disposable cell identification, sorting and purification.
Collapse
Affiliation(s)
- D K Wood
- Department of Physics, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | | | | | | | | | | |
Collapse
|
61
|
Ibrahim SF, van den Engh G. Flow cytometry and cell sorting. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2007; 106:19-39. [PMID: 17728993 DOI: 10.1007/10_2007_073] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Flow cytometry and cell sorting are well-established technologies in clinical diagnostics and biomedical research. Heterogeneous mixtures of cells are placed in suspension and passed single file across one or more laser interrogation points. Light signals emitted from the particles are collected and correlated to entities such as cell morphology, surface and intracellular protein expression, gene expression, and cellular physiology. Based on user-defined parameters, individual cells can then be diverted from the fluid stream and collected into viable, homogeneous fractions at exceptionally high speeds and a purity that approaches 100%. As such, the cell sorter becomes the launching point for numerous downstream studies. Flow cytometry is a cornerstone in clinical diagnostics, and cheaper, more versatile machines are finding their way into widespread and varied uses. In addition, advances in computing and optics have led to a new generation of flow cytometers capable of processing cells at orders of magnitudes faster than their predecessors, and with staggering degrees of complexity, making the cytometer a powerful discovery tool in biotechnology. This chapter will begin with a discussion of basic principles of flow cytometry and cell sorting, including a technical description of factors that contribute to the performance of these instruments. The remaining sections will then be divided into clinical- and research-based applications of flow cytometry and cell sorting, highlighting salient studies that illustrate the versatility of this indispensable technology.
Collapse
Affiliation(s)
- Sherrif F Ibrahim
- Department of Dermatology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | | |
Collapse
|
62
|
Schütze K, Niyaz Y, Stich M, Buchstaller A. Noncontact laser microdissection and catapulting for pure sample capture. Methods Cell Biol 2007; 82:649-73. [PMID: 17586275 DOI: 10.1016/s0091-679x(06)82023-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
The understanding of the molecular mechanisms of cellular function, growth, and proliferation is based on the accurate identification, isolation, and finally characterization of a specific single cell or a population of cells and its subsets of biomolecules. For the simultaneous analysis of thousands of molecular parameters within one single experiment as realized by DNA, RNA, and protein microarray technologies, a defined number of homogeneous cells derived from a distinct morphological origin are required. Sample preparation is therefore a very crucial step preceding the functional characterization of specific cell populations. Laser microdissection and laser pressure catapulting (LMPC) enables pure and homogeneous sample preparation resulting in an increased specificity of molecular analyses. With LMPC, the force of focused laser light is utilized to excise selected cells or large tissue areas from object slides down to individual single cells and subcellular components like organelles or chromosomes. After microdissection, the sample is directly catapulted into an appropriate collection vial. As this process works entirely without mechanical contact, it enables pure sample retrieval from morphologically defined origin without cross-contamination. LMPC has been successfully applied to isolate and catapult cells from, for example, histological tissue sections, from forensic evidence material, and also from tough plant matter, supporting biomedical research, forensic science, and plant physiology studies. Even delicate living cells like stem cells have been captured for recultivation without affecting their viability or stem cell character, an important feature influencing stem cell research, regenerative medicine, and drug development. The combination of LMPC with microinjection to inject drugs or genetic material into individual cells and to capture them for molecular analyses bears great potential for efficient patient-tailored medication.
Collapse
Affiliation(s)
- K Schütze
- PALM Microlaser Technologies GmbH, Am Neuland 9 + 12, 82347 Bernried, Germany
| | | | | | | |
Collapse
|