51
|
Abstract
Many bacteria have evolved specialized nanomachines with the remarkable ability to inject multiple bacterially encoded effector proteins into eukaryotic or prokaryotic cells. Known as type III, type IV, and type VI secretion systems, these machines play a central role in the pathogenic or symbiotic interactions between multiple bacteria and their eukaryotic hosts, or in the establishment of bacterial communities in a diversity of environments. Here we focus on recent progress elucidating the structure and assembly pathways of these machines. As many of the interactions shaped by these machines are of medical importance, they provide an opportunity to develop novel therapeutic approaches to combat important human diseases.
Collapse
Affiliation(s)
- Jorge E Galán
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA.
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology, Birkbeck, Malet Street, London WC1E 7HX, UK; Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
52
|
The Major RNA-Binding Protein ProQ Impacts Virulence Gene Expression in Salmonella enterica Serovar Typhimurium. mBio 2019; 10:mBio.02504-18. [PMID: 30602583 PMCID: PMC6315103 DOI: 10.1128/mbio.02504-18] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
FinO domain proteins such as ProQ of the model pathogen Salmonella enterica have emerged as a new class of major RNA-binding proteins in bacteria. ProQ has been shown to target hundreds of transcripts, including mRNAs from many virulence regions, but its role, if any, in bacterial pathogenesis has not been studied. Here, using a Dual RNA-seq approach to profile ProQ-dependent gene expression changes as Salmonella infects human cells, we reveal dysregulation of bacterial motility, chemotaxis, and virulence genes which is accompanied by altered MAPK (mitogen-activated protein kinase) signaling in the host. Comparison with the other major RNA chaperone in Salmonella, Hfq, reinforces the notion that these two global RNA-binding proteins work in parallel to ensure full virulence. Of newly discovered infection-associated ProQ-bound small noncoding RNAs (sRNAs), we show that the 3'UTR-derived sRNA STnc540 is capable of repressing an infection-induced magnesium transporter mRNA in a ProQ-dependent manner. Together, this comprehensive study uncovers the relevance of ProQ for Salmonella pathogenesis and highlights the importance of RNA-binding proteins in regulating bacterial virulence programs.IMPORTANCE The protein ProQ has recently been discovered as the centerpiece of a previously overlooked "third domain" of small RNA-mediated control of gene expression in bacteria. As in vitro work continues to reveal molecular mechanisms, it is also important to understand how ProQ affects the life cycle of bacterial pathogens as these pathogens infect eukaryotic cells. Here, we have determined how ProQ shapes Salmonella virulence and how the activities of this RNA-binding protein compare with those of Hfq, another central protein in RNA-based gene regulation in this and other bacteria. To this end, we apply global transcriptomics of pathogen and host cells during infection. In doing so, we reveal ProQ-dependent transcript changes in key virulence and host immune pathways. Moreover, we differentiate the roles of ProQ from those of Hfq during infection, for both coding and noncoding transcripts, and provide an important resource for those interested in ProQ-dependent small RNAs in enteric bacteria.
Collapse
|
53
|
BoseDasgupta S, Pieters J. Macrophage-microbe interaction: lessons learned from the pathogen Mycobacterium tuberculosis. Semin Immunopathol 2018; 40:577-591. [PMID: 30306257 DOI: 10.1007/s00281-018-0710-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 09/17/2018] [Indexed: 02/07/2023]
Abstract
Macrophages, being the cornerstone of the immune system, have adapted the ancient nutrient acquisition mechanism of phagocytosis to engulf various infectious organisms thereby helping to orchestrate an appropriate host response. Phagocytosis refers to the process of internalization and degradation of particulate material, damaged and senescent cells and microorganisms by specialized cells, after which the vesicle containing the ingested particle, the phagosome, matures into acidic phagolysosomes upon fusion with hydrolytic enzyme-containing lysosomes. The destructive power of the macrophage is further exacerbated through the induction of macrophage activation upon a variety of inflammatory stimuli. Despite being the end-point for many phagocytosed microbes, the macrophage can also serve as an intracellular survival niche for a number of intracellular microorganisms. One microbe that is particularly successful at surviving within macrophages is the pathogen Mycobacterium tuberculosis, which can efficiently manipulate the macrophage at several levels, including modulation of the phagocytic pathway as well as interfering with a number of immune activation pathways that normally would lead to eradication of the internalized bacilli. M. tuberculosis excels at circumventing destruction within macrophages, thus establishing itself successfully for prolonged times within the macrophage. In this contribution, we describe a number of general features of macrophages in the context of their function to clear an infection, and highlight the strategies employed by M. tuberculosis to counter macrophage attack. Interestingly, research on the evasion tactics employed by M. tuberculosis within macrophages not only helps to design strategies to curb tuberculosis, but also allows a better understanding of host cell biology.
Collapse
Affiliation(s)
- Somdeb BoseDasgupta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| | - Jean Pieters
- Department of Biochemistry, Biozentrum, University of Basel, 50-70 Klingelbergstrasse, 4056, Basel, Switzerland.
| |
Collapse
|
54
|
Bertoldo JB, Terenzi H, Hüttelmaier S, Bernardes GJL. Posttranslational Chemical Mutagenesis: To Reveal the Role of Noncatalytic Cysteine Residues in Pathogenic Bacterial Phosphatases. Biochemistry 2018; 57:6144-6152. [DOI: 10.1021/acs.biochem.8b00639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jean B. Bertoldo
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
- Institut für Molekulare Medizin, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Stra 3a, 06108 Halle, Germany
| | - Hernán Terenzi
- Centro de Biologia Molecular Estrutural, Departamento de Bioquímica, Universidade Federal de Santa Catarina, 88040-970 Florianópolis, SC, Brazil
| | - Stefan Hüttelmaier
- Institut für Molekulare Medizin, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Stra 3a, 06108 Halle, Germany
| | - Gonçalo J. L. Bernardes
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
55
|
Patrick KL, Wojcechowskyj JA, Bell SL, Riba MN, Jing T, Talmage S, Xu P, Cabello AL, Xu J, Shales M, Jimenez-Morales D, Ficht TA, de Figueiredo P, Samuel JE, Li P, Krogan NJ, Watson RO. Quantitative Yeast Genetic Interaction Profiling of Bacterial Effector Proteins Uncovers a Role for the Human Retromer in Salmonella Infection. Cell Syst 2018; 7:323-338.e6. [PMID: 30077634 PMCID: PMC6160342 DOI: 10.1016/j.cels.2018.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/21/2018] [Accepted: 06/21/2018] [Indexed: 11/26/2022]
Abstract
Intracellular bacterial pathogens secrete a repertoire of effector proteins into host cells that are required to hijack cellular pathways and cause disease. Despite decades of research, the molecular functions of most bacterial effectors remain unclear. To address this gap, we generated quantitative genetic interaction profiles between 36 validated and putative effectors from three evolutionarily divergent human bacterial pathogens and 4,190 yeast deletion strains. Correlating effector-generated profiles with those of yeast mutants, we recapitulated known biology for several effectors with remarkable specificity and predicted previously unknown functions for others. Biochemical and functional validation in human cells revealed a role for an uncharacterized component of the Salmonella SPI-2 translocon, SseC, in regulating maintenance of the Salmonella vacuole through interactions with components of the host retromer complex. These results exhibit the power of genetic interaction profiling to discover and dissect complex biology at the host-pathogen interface.
Collapse
Affiliation(s)
- Kristin L Patrick
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77802, USA
| | - Jason A Wojcechowskyj
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA 94158, USA; J. David Gladstone Institute, San Francisco, CA 94158, USA
| | - Samantha L Bell
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77802, USA
| | - Morgan N Riba
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77802, USA
| | - Tao Jing
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Sara Talmage
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77802, USA
| | - Pengbiao Xu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Ana L Cabello
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77802, USA; Department of Veterinary Pathobiology, Texas A&M College of Veterinary Medicine and Biomedical Sciences, College Station, TX 77843, USA; Norman Borlaug Center, Texas A&M University, College Station, TX 77843, USA
| | - Jiewei Xu
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA 94158, USA
| | - Michael Shales
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA 94158, USA
| | - David Jimenez-Morales
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA 94158, USA; J. David Gladstone Institute, San Francisco, CA 94158, USA
| | - Thomas A Ficht
- Department of Veterinary Pathobiology, Texas A&M College of Veterinary Medicine and Biomedical Sciences, College Station, TX 77843, USA
| | - Paul de Figueiredo
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77802, USA; Department of Veterinary Pathobiology, Texas A&M College of Veterinary Medicine and Biomedical Sciences, College Station, TX 77843, USA; Norman Borlaug Center, Texas A&M University, College Station, TX 77843, USA
| | - James E Samuel
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77802, USA
| | - Pingwei Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA 94158, USA; J. David Gladstone Institute, San Francisco, CA 94158, USA.
| | - Robert O Watson
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77802, USA.
| |
Collapse
|
56
|
Johnson R, Mylona E, Frankel G. TyphoidalSalmonella: Distinctive virulence factors and pathogenesis. Cell Microbiol 2018; 20:e12939. [DOI: 10.1111/cmi.12939] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/06/2018] [Accepted: 07/13/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Rebecca Johnson
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences; Imperial College London; London UK
| | - Elli Mylona
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences; Imperial College London; London UK
| | - Gad Frankel
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences; Imperial College London; London UK
| |
Collapse
|
57
|
Why Is Eradicating Typhoid Fever So Challenging: Implications for Vaccine and Therapeutic Design. Vaccines (Basel) 2018; 6:vaccines6030045. [PMID: 30042307 PMCID: PMC6160957 DOI: 10.3390/vaccines6030045] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/19/2018] [Accepted: 07/23/2018] [Indexed: 01/22/2023] Open
Abstract
Salmonella enterica serovar Typhi (S. Typhi) and S. Paratyphi, namely typhoidal Salmonellae, are the cause of (para) typhoid fever, which is a devastating systemic infectious disease in humans. In addition, the spread of multidrug-resistant (MDR) and extensively drug-resistant (XDR) S. Typhi in many low and middle-income countries poses a significant risk to human health. While currently available typhoid vaccines and therapeutics are efficacious, they have some limitations. One important limitation is the lack of controlling individuals who chronically carry S. Typhi. However, due to the strict host specificity of S. Typhi to humans, S. Typhi research is hampered. As a result, our understanding of S. Typhi pathogenesis is incomplete, thereby delaying the development and improvement of prevention and treatment strategies. Nonetheless, to better combat and contain S. Typhi, it is vital to develop a vaccine and therapy for controlling both acutely and chronically infected individuals. This review discusses how scientists are trying to combat typhoid fever, why it is so challenging to do so, which approaches show promise, and what we know about the pathogenesis of S. Typhi chronic infection.
Collapse
|
58
|
Stradal TEB, Schelhaas M. Actin dynamics in host-pathogen interaction. FEBS Lett 2018; 592:3658-3669. [PMID: 29935019 PMCID: PMC6282728 DOI: 10.1002/1873-3468.13173] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 02/06/2023]
Abstract
The actin cytoskeleton and Rho GTPase signaling to actin assembly are prime targets of bacterial and viral pathogens, simply because actin is involved in all motile and membrane remodeling processes, such as phagocytosis, macropinocytosis, endocytosis, exocytosis, vesicular trafficking and membrane fusion events, motility, and last but not least, autophagy. This article aims at providing an overview of the most prominent pathogen‐induced or ‐hijacked actin structures, and an outlook on how future research might uncover additional, equally sophisticated interactions.
Collapse
Affiliation(s)
- Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Mario Schelhaas
- Institute of Cellular Virology, ZMBE, University of Münster, Germany
| |
Collapse
|
59
|
Pinaud L, Sansonetti PJ, Phalipon A. Host Cell Targeting by Enteropathogenic Bacteria T3SS Effectors. Trends Microbiol 2018; 26:266-283. [DOI: 10.1016/j.tim.2018.01.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/29/2018] [Accepted: 01/29/2018] [Indexed: 12/23/2022]
|
60
|
Abstract
Background Like many members of the Enterobacteriaceae family, Yersinia ruckeri has the ability to invade non professional phagocytic cells. Intracellular location is advantageous for the bacterium because it shields it from the immune system and can help it cross epithelial membranes and gain entry into the host. In the present manuscript, we report on our investigation regarding the mechanisms of Y. ruckeri’s invasion of host cells. Results A gentamycin assay was applied to two isolates, belonging to both the biotype 1 (ATCC 29473) and biotype 2 (A7959–11) and using several cell culture types: Atlantic Salmon Kidney, Salmon Head Kidney and, Chinook salmon embryos cells at both low and high passage numbers. Varying degrees of sensitivity to Y. ruckeri infection were found between the cell types and the biotype 1 strain was found to be more invasive than the non-motile biotype 2 isolate. Furthermore, the effect of six chemical compounds (Cytochalasin D, TAE 226, vinblastine, genistein, colchicine and, N-acetylcysteine), known to interfere with bacterial invasion strategies, were investigated. All of these compounds had a significant impact on the ability of the bacterium to invade host cells. Changes in the concentration of bacterial cells over time were investigated and the results suggested that neither isolate could survive intracellularly for sustained periods. Conclusions These results suggest that Y. ruckeri can gain entrance into host cells through several mechanisms, and might take advantage of both the actin and microtubule cytoskeletal systems.
Collapse
|
61
|
Weber MM, Faris R, van Schaik EJ, Samuel JE. Identification and characterization of arginine finger-like motifs, and endosome-lysosome basolateral sorting signals within the Coxiella burnetii type IV secreted effector protein CirA. Microbes Infect 2018; 20:302-307. [PMID: 29331581 PMCID: PMC6021133 DOI: 10.1016/j.micinf.2017.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 10/17/2017] [Accepted: 12/20/2017] [Indexed: 01/20/2023]
Abstract
Coxiella burnetii is an obligate intracellular pathogen that replicates in an endolysosome-like compartment termed the Coxiella-containing vacuole (CCV). Formation of this unique replicative niche requires delivery of bacterial effector proteins into the host cytosol where they mediate crucial interactions with the host. We previously identified an essential Dot/Icm effector, CirA that is required for intracellular replication and CCV formation. Furthermore, CirA was shown to stimulate the GTPase activity of RhoA in vitro. In the current study, we used a bioinformatics-guided approach and identified three arginine finger-like motifs, often found in Rho GTPase-activating proteins (GAPs) and endosome-lysosome basolateral sorting signals associated with vesicle trafficking. When expressed in mammalian cells, mutation of either endosome-lysosome-basolateral sorting signals or the arginine finger-like motifs rescued stress phenotypes and decreased plasma membrane localization of ectopically expressed CirA. We further demonstrate that endosome-lysosome sorting signals are required for co-localization with Rab5 and Rab7. Collectively our data indicate that arginine finger-like motifs and endosome-lysosome-basolateral sorting signals within CirA are essential for interaction with the host cytoskeleton.
Collapse
Affiliation(s)
- Mary M Weber
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College of Medicine, Bryan, TX, 77807, USA
| | - Robert Faris
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College of Medicine, Bryan, TX, 77807, USA
| | - Erin J van Schaik
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College of Medicine, Bryan, TX, 77807, USA
| | - James E Samuel
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College of Medicine, Bryan, TX, 77807, USA.
| |
Collapse
|
62
|
Woida PJ, Satchell KJF. Coordinated delivery and function of bacterial MARTX toxin effectors. Mol Microbiol 2017; 107:133-141. [PMID: 29114985 DOI: 10.1111/mmi.13875] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2017] [Indexed: 12/22/2022]
Abstract
Bacteria often coordinate virulence factors to fine-tune the host response during infection. These coordinated events can include toxins counteracting or amplifying effects of another toxin or though regulating the stability of virulence factors to remove their function once it is no longer needed. Multifunctional autoprocessing repeats-in toxin (MARTX) toxins are effector delivery toxins that form a pore into the plasma membrane of a eukaryotic cell to deliver multiple effector proteins into the cytosol of the target cell. The function of these proteins includes manipulating actin cytoskeletal dynamics, regulating signal transduction pathways and inhibiting host secretory pathways. Investigations into the molecular mechanisms of these effector domains are providing insight into how the function of some effectors overlap and regulate one another during infection. Coordinated crosstalk of effector function suggests that MARTX toxins are not simply a sum of all their parts. Instead, modulation of cell function by effector domains may depend on which other effector domain are co-delivered. Future studies will elucidate how these effectors interact with each other to modulate the bacterial host interaction.
Collapse
Affiliation(s)
- Patrick J Woida
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Karla J F Satchell
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
63
|
Olson RM, Anderson DM. Usurping bacterial virulence factors as self-delivery vehicles for therapeutic use. Virulence 2017. [PMID: 28636422 DOI: 10.1080/21505594.2017.1336595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Rachel M Olson
- a Department of Veterinary Pathobiology and the Laboratory for Infectious Disease Research , University of Missouri , Columbia , MO11 , USA
| | - Deborah M Anderson
- a Department of Veterinary Pathobiology and the Laboratory for Infectious Disease Research , University of Missouri , Columbia , MO11 , USA
| |
Collapse
|
64
|
Zhang K, Griffiths G, Repnik U, Hornef M. Seeing is understanding: Salmonella's way to penetrate the intestinal epithelium. Int J Med Microbiol 2017; 308:97-106. [PMID: 28939439 DOI: 10.1016/j.ijmm.2017.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/06/2017] [Accepted: 09/11/2017] [Indexed: 02/06/2023] Open
Abstract
The molecular processes that govern host-microbial interaction illustrate not only the sophisticated and multifaceted mechanisms that protect the host from infection, but also the elaborated features of microbial pathogens that have evolved to overcome or evade the host's immune system. Here we focus on Salmonella that like other enteric pathogens must overcome the intestinal mucosal immune system, a surface constantly on alert and evolved to restrict the enteric microbiota. We discuss the initial step of Salmonella infection, the penetration of the intestinal epithelial barrier and the models used to study this fascinating aspect of microbial pathogenesis.
Collapse
Affiliation(s)
- Kaiyi Zhang
- Institute of Medical Microbiology, RWTH University Hospital Aachen, Aachen, Germany
| | | | - Urska Repnik
- Department of Biosciences, University of Oslo, Oslo, Norway.
| | - Mathias Hornef
- Institute of Medical Microbiology, RWTH University Hospital Aachen, Aachen, Germany.
| |
Collapse
|
65
|
Aktories K, Schwan C, Lang AE. ADP-Ribosylation and Cross-Linking of Actin by Bacterial Protein Toxins. Handb Exp Pharmacol 2017; 235:179-206. [PMID: 27316913 DOI: 10.1007/164_2016_26] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Actin and the actin cytoskeleton play fundamental roles in host-pathogen interactions. Proper function of the actin cytoskeleton is crucial for innate and acquired immune defense. Bacterial toxins attack the actin cytoskeleton by targeting regulators of actin. Moreover, actin is directly modified by various bacterial protein toxins and effectors, which cause ADP-ribosylation or cross-linking of actin. Modification of actin can result in inhibition or stimulation of actin polymerization. Toxins, acting directly on actin, are reviewed.
Collapse
Affiliation(s)
- Klaus Aktories
- Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-Universität Freiburg, Freiburg, 79104, Germany. .,Freiburg Institute of Advanced Studies (FRIAS), Albert-Ludwigs-Universität Freiburg, Freiburg, 79104, Germany.
| | - Carsten Schwan
- Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-Universität Freiburg, Freiburg, 79104, Germany
| | - Alexander E Lang
- Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-Universität Freiburg, Freiburg, 79104, Germany
| |
Collapse
|
66
|
Hume PJ, Singh V, Davidson AC, Koronakis V. Swiss Army Pathogen: The Salmonella Entry Toolkit. Front Cell Infect Microbiol 2017; 7:348. [PMID: 28848711 PMCID: PMC5552672 DOI: 10.3389/fcimb.2017.00348] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/21/2017] [Indexed: 02/04/2023] Open
Abstract
Salmonella causes disease in humans and animals ranging from mild self-limiting gastroenteritis to potentially life-threatening typhoid fever. Salmonellosis remains a considerable cause of morbidity and mortality globally, and hence imposes a huge socio-economic burden worldwide. A key property of all pathogenic Salmonella strains is the ability to invade non-phagocytic host cells. The major determinant of this invasiveness is a Type 3 Secretion System (T3SS), a molecular syringe that injects virulence effector proteins directly into target host cells. These effectors cooperatively manipulate multiple host cell signaling pathways to drive pathogen internalization. Salmonella does not only rely on these injected effectors, but also uses several other T3SS-independent mechanisms to gain entry into host cells. This review summarizes our current understanding of the methods used by Salmonella for cell invasion, with a focus on the host signaling networks that must be coordinately exploited for the pathogen to achieve its goal.
Collapse
Affiliation(s)
- Peter J Hume
- Department of Pathology, University of CambridgeCambridge, United Kingdom
| | - Vikash Singh
- Department of Pathology, University of CambridgeCambridge, United Kingdom
| | - Anthony C Davidson
- Department of Pathology, University of CambridgeCambridge, United Kingdom
| | - Vassilis Koronakis
- Department of Pathology, University of CambridgeCambridge, United Kingdom
| |
Collapse
|
67
|
Lin Z, Tang P, Jiao Y, Kang X, Li Q, Xu X, Sun J, Pan Z, Jiao X. Immunogenicity and protective efficacy of a Salmonella Enteritidis sptP mutant as a live attenuated vaccine candidate. BMC Vet Res 2017. [PMID: 28646853 PMCID: PMC5483252 DOI: 10.1186/s12917-017-1115-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Salmonella enterica serovar Enteritidis (S. Enteritidis) is a highly adaptive pathogen in both humans and animals. As a Salmonella Type III secretion system (T3SS) effector, Salmonella protein tyrosine phosphatase (SptP) is critical for virulence in this genus. To investigate the feasibility of using C50336ΔsptP as a live attenuated oral vaccine in mice, we generated the sptP gene deletion mutant C50336ΔsptP in S. Enteritidis strain C50336 by λ-Red mediated recombination and evaluated the protective ability of the S. Enteritidis sptP mutant strain C50336ΔsptP against mice salmonellosis. Results We found that C50336ΔsptP was a highly immunogenic, effective, and safe vaccine in mice. Compared to wild-type C50336, C50336ΔsptP showed reduced virulence as confirmed by the 50% lethal dose (LD50) in orally infected mice. C50336ΔsptP also showed decreased bacterial colonization both in vivo and in vitro. Immunization with C50336ΔsptP had no significant effect on body weight and did not result in obvious clinical symptoms relative to control animals treated with phosphate-buffered saline (PBS), but induced humoral and cellular immune responses at 12 and 26 days post inoculation. Immunization with 1 × 108 colony-forming units (CFU) C50336ΔsptP per mouse provided 100% protection against subsequent challenge with the wild-type C50336 strain, and immunized mice showed mild and temporary clinical symptoms as compared to those of control group. Conclusions These results demonstrate that C50336ΔsptP can be a live attenuated oral vaccine for salmonellosis.
Collapse
Affiliation(s)
- Zhijie Lin
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, MOA Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOE Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, Yangzhou, 225001, China
| | - Peipei Tang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, MOA Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOE Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, Yangzhou, 225001, China
| | - Yang Jiao
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, MOA Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOE Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, Yangzhou, 225001, China
| | - Xilong Kang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, MOA Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOE Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, Yangzhou, 225001, China
| | - Qiuchun Li
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, MOA Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOE Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, Yangzhou, 225001, China
| | - Xiulong Xu
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, MOA Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOE Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, Yangzhou, 225001, China.,Center for Comparative Medicine, Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225001, China.,Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, 60612, USA
| | - Jun Sun
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, MOA Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOE Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, Yangzhou, 225001, China.,Division of Gastroenterology and Hepatology, College of Medicine, University of Illinois at Chicago, Chicago, 60612, USA
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, MOA Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOE Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, Yangzhou, 225001, China.
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, MOA Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOE Joint International Research Laboratory of Agriculture and Agri-product Safety, Yangzhou University, Yangzhou, 225001, China.
| |
Collapse
|
68
|
Lin YH, Machner MP. Exploitation of the host cell ubiquitin machinery by microbial effector proteins. J Cell Sci 2017; 130:1985-1996. [PMID: 28476939 PMCID: PMC5482977 DOI: 10.1242/jcs.188482] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pathogenic bacteria are in a constant battle for survival with their host. In order to gain a competitive edge, they employ a variety of sophisticated strategies that allow them to modify conserved host cell processes in ways that favor bacterial survival and growth. Ubiquitylation, the covalent attachment of the small modifier ubiquitin to target proteins, is such a pathway. Ubiquitylation profoundly alters the fate of a myriad of cellular proteins by inducing changes in their stability or function, subcellular localization or interaction with other proteins. Given the importance of ubiquitylation in cell development, protein homeostasis and innate immunity, it is not surprising that this post-translational modification is exploited by a variety of effector proteins from microbial pathogens. Here, we highlight recent advances in our understanding of the many ways microbes take advantage of host ubiquitylation, along with some surprising deviations from the canonical theme. The lessons learned from the in-depth analyses of these host-pathogen interactions provide a fresh perspective on an ancient post-translational modification that we thought was well understood.This article is part of a Minifocus on Ubiquitin Regulation and Function. For further reading, please see related articles: 'Mechanisms of regulation and diversification of deubiquitylating enzyme function' by Pawel Leznicki and Yogesh Kulathu (J. Cell Sci.130, 1997-2006). 'Cell scientist to watch - Mads Gyrd-Hansen' (J. Cell Sci.130, 1981-1983).
Collapse
Affiliation(s)
- Yi-Han Lin
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthias P Machner
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
69
|
The Type III Secretion System Effector SptP of Salmonella enterica Serovar Typhi. J Bacteriol 2017; 199:JB.00647-16. [PMID: 27920299 PMCID: PMC5287405 DOI: 10.1128/jb.00647-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/19/2016] [Indexed: 01/11/2023] Open
Abstract
Strains of the various Salmonella enterica serovars cause gastroenteritis or typhoid fever in humans, with virulence depending on the action of two type III secretion systems (Salmonella pathogenicity island 1 [SPI-1] and SPI-2). SptP is a Salmonella SPI-1 effector, involved in mediating recovery of the host cytoskeleton postinfection. SptP requires a chaperone, SicP, for stability and secretion. SptP has 94% identity between S. enterica serovar Typhimurium and S Typhi; direct comparison of the protein sequences revealed that S Typhi SptP has numerous amino acid changes within its chaperone-binding domain. Subsequent comparison of ΔsptP S Typhi and S. Typhimurium strains demonstrated that, unlike SptP in S. Typhimurium, SptP in S Typhi was not involved in invasion or cytoskeletal recovery postinfection. Investigation of whether the observed amino acid changes within SptP of S Typhi affected its function revealed that S Typhi SptP was unable to complement S. Typhimurium ΔsptP due to an absence of secretion. We further demonstrated that while S. Typhimurium SptP is stable intracellularly within S Typhi, S Typhi SptP is unstable, although stability could be recovered following replacement of the chaperone-binding domain with that of S. Typhimurium. Direct assessment of the strength of the interaction between SptP and SicP of both serovars via bacterial two-hybrid analysis demonstrated that S Typhi SptP has a significantly weaker interaction with SicP than the equivalent proteins in S. Typhimurium. Taken together, our results suggest that changes within the chaperone-binding domain of SptP in S Typhi hinder binding to its chaperone, resulting in instability, preventing translocation, and therefore restricting the intracellular activity of this effector. IMPORTANCE Studies investigating Salmonella pathogenesis typically rely on Salmonella Typhimurium, even though Salmonella Typhi causes the more severe disease in humans. As such, an understanding of S. Typhi pathogenesis is lacking. Differences within the type III secretion system effector SptP between typhoidal and nontyphoidal serovars led us to characterize this effector within S Typhi. Our results suggest that SptP is not translocated from typhoidal serovars, even though the loss of sptP results in virulence defects in S. Typhimurium. Although SptP is just one effector, our results exemplify that the behavior of these serovars is significantly different and genes identified to be important for S. Typhimurium virulence may not translate to S Typhi.
Collapse
|
70
|
Liu Y, Zhu W, Tan Y, Nakayasu ES, Staiger CJ, Luo ZQ. A Legionella Effector Disrupts Host Cytoskeletal Structure by Cleaving Actin. PLoS Pathog 2017; 13:e1006186. [PMID: 28129393 PMCID: PMC5298343 DOI: 10.1371/journal.ppat.1006186] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 02/08/2017] [Accepted: 01/17/2017] [Indexed: 12/24/2022] Open
Abstract
Legionella pneumophila, the etiological agent of Legionnaires' disease, replicates intracellularly in protozoan and human hosts. Successful colonization and replication of this pathogen in host cells requires the Dot/Icm type IVB secretion system, which translocates approximately 300 effector proteins into the host cell to modulate various cellular processes. In this study, we identified RavK as a Dot/Icm substrate that targets the host cytoskeleton and reduces actin filament abundance in mammalian cells upon ectopic expression. RavK harbors an H95EXXH99 motif associated with diverse metalloproteases, which is essential for the inhibition of yeast growth and for the induction of cell rounding in HEK293T cells. We demonstrate that the actin protein itself is the cellular target of RavK and that this effector cleaves actin at a site between residues Thr351 and Phe352. Importantly, RavK-mediated actin cleavage also occurs during L. pneumophila infection. Cleavage by RavK abolishes the ability of actin to form polymers. Furthermore, an F352A mutation renders actin resistant to RavK-mediated cleavage; expression of the mutant in mammalian cells suppresses the cell rounding phenotype caused by RavK, further establishing that actin is the physiological substrate of RavK. Thus, L. pneumophila exploits components of the host cytoskeleton by multiple effectors with distinct mechanisms, highlighting the importance of modulating cellular processes governed by the actin cytoskeleton in the intracellular life cycle of this pathogen.
Collapse
Affiliation(s)
- Yao Liu
- Purdue Institute for Inflammation, Immunology and Infectious Diseases and Department of Biological Sciences, Purdue University, West Lafayette, IN, United States of America
| | - Wenhan Zhu
- Purdue Institute for Inflammation, Immunology and Infectious Diseases and Department of Biological Sciences, Purdue University, West Lafayette, IN, United States of America
| | - Yunhao Tan
- Purdue Institute for Inflammation, Immunology and Infectious Diseases and Department of Biological Sciences, Purdue University, West Lafayette, IN, United States of America
| | - Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Christopher J. Staiger
- Purdue Institute for Inflammation, Immunology and Infectious Diseases and Department of Biological Sciences, Purdue University, West Lafayette, IN, United States of America
| | - Zhao-Qing Luo
- Purdue Institute for Inflammation, Immunology and Infectious Diseases and Department of Biological Sciences, Purdue University, West Lafayette, IN, United States of America
- * E-mail:
| |
Collapse
|
71
|
Ernst JD. Antigenic Variation and Immune Escape in the MTBC. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1019:171-190. [PMID: 29116635 DOI: 10.1007/978-3-319-64371-7_9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microbes that infect other organisms encounter host immune responses, and must overcome or evade innate and adaptive immune responses to successfully establish infection. Highly successful microbial pathogens, including M. tuberculosis, are able to evade adaptive immune responses (mediated by antibodies and/or T lymphocytes) and thereby establish long-term chronic infection. One mechanism that diverse pathogens use to evade adaptive immunity is antigenic variation, in which structural variants emerge that alter recognition by established immune responses and allow those pathogens to persist and/or to infect previously-immune hosts. Despite the wide use of antigenic variation by diverse pathogens, this mechanism appears to be infrequent in M. tuberculosis, as indicated by findings that known and predicted human T cell epitopes in this organism are highly conserved, although there are exceptions. These findings have implications for diagnostic tests that are based on measuring host immune responses, and for vaccine design and development.
Collapse
Affiliation(s)
- Joel D Ernst
- Division of Infectious Diseases and Immunology, Departments of Medicine, Microbiology, and Pathology, New York University School of Medicine, Smilow Building, 9th floor, Rooms 901-907, 522 First Avenue, New York, NY, 10016, USA.
| |
Collapse
|
72
|
Ratner D, Orning MPA, Proulx MK, Wang D, Gavrilin MA, Wewers MD, Alnemri ES, Johnson PF, Lee B, Mecsas J, Kayagaki N, Goguen JD, Lien E. The Yersinia pestis Effector YopM Inhibits Pyrin Inflammasome Activation. PLoS Pathog 2016; 12:e1006035. [PMID: 27911947 PMCID: PMC5135138 DOI: 10.1371/journal.ppat.1006035] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/31/2016] [Indexed: 12/25/2022] Open
Abstract
Type III secretion systems (T3SS) are central virulence factors for many pathogenic Gram-negative bacteria, and secreted T3SS effectors can block key aspects of host cell signaling. To counter this, innate immune responses can also sense some T3SS components to initiate anti-bacterial mechanisms. The Yersinia pestis T3SS is particularly effective and sophisticated in manipulating the production of pro-inflammatory cytokines IL-1β and IL-18, which are typically processed into their mature forms by active caspase-1 following inflammasome formation. Some effectors, like Y. pestis YopM, may block inflammasome activation. Here we show that YopM prevents Y. pestis induced activation of the Pyrin inflammasome induced by the RhoA-inhibiting effector YopE, which is a GTPase activating protein. YopM blocks YopE-induced Pyrin-mediated caspase-1 dependent IL-1β/IL-18 production and cell death. We also detected YopM in a complex with Pyrin and kinases RSK1 and PKN1, putative negative regulators of Pyrin. In contrast to wild-type mice, Pyrin deficient mice were also highly susceptible to an attenuated Y. pestis strain lacking YopM, emphasizing the importance of inhibition of Pyrin in vivo. A complex interplay between the Y. pestis T3SS and IL-1β/IL-18 production is evident, involving at least four inflammasome pathways. The secreted effector YopJ triggers caspase-8- dependent IL-1β activation, even when YopM is present. Additionally, the presence of the T3SS needle/translocon activates NLRP3 and NLRC4-dependent IL-1β generation, which is blocked by YopK, but not by YopM. Taken together, the data suggest YopM specificity for obstructing the Pyrin pathway, as the effector does not appear to block Y. pestis-induced NLRP3, NLRC4 or caspase-8 dependent caspase-1 processing. Thus, we identify Y. pestis YopM as a microbial inhibitor of the Pyrin inflammasome. The fact that so many of the Y. pestis T3SS components are participating in regulation of IL-1β/IL-18 release suggests that these effects are essential for maximal control of innate immunity during plague. Many pathogenic Gram-negative bacteria express type III secretion systems (T3SS) that translocate bacterial proteins into host cells with the potential of altering normal cell processes. Yersinia pestis, the causative agent of plague, harbors a T3SS which is particularly effective in suppressing innate immunity and release of pro-inflammatory cytokines IL-1β and IL-18, potent triggers of anti-bacterial responses. These cytokines are produced via processing by active caspase-1 in inflammasome complexes. Pyrin is an inflammasome component that recognizes alterations in certain host cell signals. Here we show that the T3SS effector protein YopM inhibits effector YopE-mediated Pyrin-induced caspase-1 activation, IL-1β, IL-18 and cell death triggered by Y. pestis. We also found that blocking the Pyrin pathway is important for disease development in a mouse model of bubonic plague. Thus, YopM is a microbial molecule blocking Pyrin inflammasomes.
Collapse
Affiliation(s)
- Dmitry Ratner
- UMass Medical School, Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, Worcester, Massachusetts, United States of America
| | - M. Pontus A. Orning
- UMass Medical School, Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, Worcester, Massachusetts, United States of America
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Megan K. Proulx
- UMass Medical School, Department of Microbiology and Physiological Systems, Worcester, Massachusetts, United States of America
| | - Donghai Wang
- UMass Medical School, Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, Worcester, Massachusetts, United States of America
- Department of Medicine, School of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Mikhail A. Gavrilin
- Davis Heart and Lung Research Institute, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Mark D. Wewers
- Davis Heart and Lung Research Institute, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Emad S. Alnemri
- Department of Biochemistry and Molecular Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Peter F. Johnson
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Bettina Lee
- Department of Physiological Chemistry, Genentech, Inc., South San Francisco, California, United States of America
| | - Joan Mecsas
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Nobuhiko Kayagaki
- Department of Physiological Chemistry, Genentech, Inc., South San Francisco, California, United States of America
| | - Jon D. Goguen
- UMass Medical School, Department of Microbiology and Physiological Systems, Worcester, Massachusetts, United States of America
| | - Egil Lien
- UMass Medical School, Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, Worcester, Massachusetts, United States of America
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- * E-mail:
| |
Collapse
|
73
|
Guven-Maiorov E, Tsai CJ, Nussinov R. Pathogen mimicry of host protein-protein interfaces modulates immunity. Semin Cell Dev Biol 2016; 58:136-45. [DOI: 10.1016/j.semcdb.2016.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/02/2016] [Accepted: 06/06/2016] [Indexed: 12/21/2022]
|
74
|
Subinhibitory concentrations of phloretin repress the virulence of Salmonella typhimurium and protect against Salmonella typhimurium infection. Antonie van Leeuwenhoek 2016; 109:1503-1512. [PMID: 27549210 DOI: 10.1007/s10482-016-0752-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 08/06/2016] [Indexed: 10/21/2022]
Abstract
Phloretin, a natural component of many fruits, exhibits anti-virulence effects and provides a new alternative to counter bacterial infection. The aim of this study was to determine the effect of subinhibitory concentrations of phloretin on the virulence of Salmonella typhimurium. At concentrations where growth of Salmonella was not inhibited, phloretin significantly inhibited bacteria biofilm formation and motility. Subinhibitory concentrations of phloretin repressed eight genes involved in the Salmonella pathogenicity island 1 and 3 genes involved in flagella production. Furthermore, subinhibitory concentrations of phloretin inhibited the adhesion and invasion of Salmonella in IEC-6 cells and reduced the LDH levels of S. typhimurium-infected IEC-6 cells. Additionally, phloretin significantly decreased the cecum bacterial loads of the mice infected with live S. typhimurium containing subinhibitory concentrations of phloretin by gavage. These results suggested that subinhibitory concentrations of phloretin attenuate the virulence of S. typhimurium and protect against S. typhimurium infection.
Collapse
|
75
|
The Type IV Secretion System Effector Protein CirA Stimulates the GTPase Activity of RhoA and Is Required for Virulence in a Mouse Model of Coxiella burnetii Infection. Infect Immun 2016; 84:2524-33. [PMID: 27324482 DOI: 10.1128/iai.01554-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/14/2016] [Indexed: 01/08/2023] Open
Abstract
Coxiella burnetii, the etiological agent of Q fever in humans, is an intracellular pathogen that replicates in an acidified parasitophorous vacuole derived from host lysosomes. Generation of this replicative compartment requires effectors delivered into the host cell by the Dot/Icm type IVb secretion system. Several effectors crucial for C. burnetii intracellular replication have been identified, but the host pathways coopted by these essential effectors are poorly defined, and very little is known about how spacious vacuoles are formed and maintained. Here we demonstrate that the essential type IVb effector, CirA, stimulates GTPase activity of RhoA. Overexpression of CirA in mammalian cells results in cell rounding and stress fiber disruption, a phenotype that is rescued by overexpression of wild-type or constitutively active RhoA. Unlike other effector proteins that subvert Rho GTPases to modulate uptake, CirA is the first effector identified that is dispensable for uptake and instead recruits Rho GTPase to promote biogenesis of the bacterial vacuole. Collectively our results highlight the importance of CirA in coopting host Rho GTPases for establishment of Coxiella burnetii infection and virulence in mammalian cell culture and mouse models of infection.
Collapse
|
76
|
Mishra AK, Lambright DG. Invited review: Small GTPases and their GAPs. Biopolymers 2016; 105:431-48. [PMID: 26972107 PMCID: PMC5439442 DOI: 10.1002/bip.22833] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/16/2016] [Accepted: 03/10/2016] [Indexed: 12/11/2022]
Abstract
Widespread utilization of small GTPases as major regulatory hubs in many different biological systems derives from a conserved conformational switch mechanism that facilitates cycling between GTP-bound active and GDP-bound inactive states under control of guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs), which accelerate slow intrinsic rates of activation by nucleotide exchange and deactivation by GTP hydrolysis, respectively. Here we review developments leading to current understanding of intrinsic and GAP catalyzed GTP hydrolytic reactions in small GTPases from structural, molecular and chemical mechanistic perspectives. Despite the apparent simplicity of the GTPase cycle, the structural bases underlying the hallmark hydrolytic reaction and catalytic acceleration by GAPs are considerably more diverse than originally anticipated. Even the most fundamental aspects of the reaction mechanism have been challenging to decipher. Through a combination of experimental and in silico approaches, the outlines of a consensus view have begun to emerge for the best studied paradigms. Nevertheless, recent observations indicate that there is still much to be learned. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 431-448, 2016.
Collapse
Affiliation(s)
- Ashwini K Mishra
- Program in Molecular Medicine and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605
| | - David G Lambright
- Program in Molecular Medicine and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605
| |
Collapse
|
77
|
Abstract
Bacterial pathogens encode a wide variety of effectors and toxins that hijack host cell structure and function. Of particular importance are virulence factors that target actin cytoskeleton dynamics critical for cell shape, stability, motility, phagocytosis, and division. In addition, many bacteria target organelles of the general secretory pathway (e.g., the endoplasmic reticulum and the Golgi complex) and recycling pathways (e.g., the endolysosomal system) to establish and maintain an intracellular replicative niche. Recent research on the biochemistry and structural biology of bacterial effector proteins and toxins has begun to shed light on the molecular underpinnings of these host-pathogen interactions. This exciting work is revealing how pathogens gain control of the complex and dynamic host cellular environments, which impacts our understanding of microbial infectious disease, immunology, and human cell biology.
Collapse
Affiliation(s)
- Alyssa Jimenez
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390;
| | - Didi Chen
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390;
| | - Neal M Alto
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390;
| |
Collapse
|
78
|
A novel method of transcriptome interpretation reveals a quantitative suppressive effect on tomato immune signaling by two domains in a single pathogen effector protein. BMC Genomics 2016; 17:229. [PMID: 26976140 PMCID: PMC4790048 DOI: 10.1186/s12864-016-2534-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/25/2016] [Indexed: 11/21/2022] Open
Abstract
Background Effector proteins are translocated into host cells by plant-pathogens to undermine pattern-triggered immunity (PTI), the plant response to microbe-associated molecular patterns that interferes with the infection process. Individual effectors are found in variable repertoires where some constituents target the same pathways. The effector protein AvrPto from Pseudomonas syringae has a core domain (CD) and C-terminal domain (CTD) that each promotes bacterial growth and virulence in tomato. The individual contributions of each domain and whether they act redundantly is unknown. Results We use RNA-Seq to elucidate the contribution of the CD and CTD to the suppression of PTI in tomato leaves 6 h after inoculation. Unexpectedly, each domain alters transcript levels of essentially the same genes but to a different degree. This difference, when quantified, reveals that although targeting the same host genes, the two domains act synergistically. AvrPto has a relatively greater effect on genes whose expression is suppressed during PTI, and the effect on these genes appears to be diminished by saturation. Conclusions RNA-Seq profiles can be used to observe relative contributions of effector subdomains to PTI suppression. Our analysis shows the CD and CTD multiplicatively affect the same gene transcript levels with a greater relative impact on genes whose expression is suppressed during PTI. The higher degree of up-regulation versus down-regulation during PTI is plausibly an evolutionary adaptation against effectors that target immune signaling. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2534-4) contains supplementary material, which is available to authorized users.
Collapse
|
79
|
Abstract
Eukaryotic cells utilize the ubiquitin (Ub) system for maintaining a balanced functioning of cellular pathways. Although the Ub system is exclusive to eukaryotes, prokaryotic bacteria have developed an armory of Ub ligase enzymes that are capable of employing the Ub systems of various hosts, ranging from plant to animal cells. These enzymes have been acquired through the evolution and can be classified into three main classes, RING (really interesting new gene), HECT (homologous to the E6-AP carboxyl terminus) and NEL (novel E3 ligases). In this review we describe the roles played by different classes of bacterial Ub ligases in infection and pathogenicity. We also provide an overview of the different mechanisms by which bacteria mimic specific components of the host Ub system and outline the gaps in our current understanding of their functions. Additionally, we discuss approaches and experimental tools for validating this class of enzymes as potential novel antibacterial therapy targets.
Collapse
|
80
|
Sun H, Kamanova J, Lara-Tejero M, Galán JE. A Family of Salmonella Type III Secretion Effector Proteins Selectively Targets the NF-κB Signaling Pathway to Preserve Host Homeostasis. PLoS Pathog 2016; 12:e1005484. [PMID: 26933955 PMCID: PMC4775039 DOI: 10.1371/journal.ppat.1005484] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/10/2016] [Indexed: 12/11/2022] Open
Abstract
Microbial infections usually lead to host innate immune responses and inflammation. These responses most often limit pathogen replication although they can also result in host-tissue damage. The enteropathogenic bacteria Salmonella Typhimurium utilizes a type III secretion system to induce intestinal inflammation by delivering specific effector proteins that stimulate signal transduction pathways resulting in the production of pro-inflammatory cytokines. We show here that a family of related Salmonella Typhimurium effector proteins PipA, GogA and GtgA redundantly target components of the NF-κB signaling pathway to inhibit transcriptional responses leading to inflammation. We show that these effector proteins are proteases that cleave both the RelA (p65) and RelB transcription factors but do not target p100 (NF-κB2) or p105 (NF-κB1). A Salmonella Typhimurium strain lacking these effectors showed increased ability to stimulate NF-κB and increased virulence in an animal model of infection. These results indicate that bacterial pathogens can evolve determinants to preserve host homeostasis and that those determinants can reduce the pathogen’s virulence. The inflammatory response to microbial pathogens usually limits their replication but it can also cause tissue damage. The enteropathogenic bacteria Salmonella Typhimurium stimulate host signal transduction pathways that result in inflammation. We show here that a family of related Salmonella Typhimurium effector proteins, PipA, GogA and GtgA, which are delivered by its type III secretion systems, specifically and redundantly target components of the NF-κB signaling pathway to inhibit transcriptional responses leading to host inflammation. We show that these effector proteins are proteases that cleave both the RelA (p65) and RelB transcription factors, which are central components of the NF-κB signaling pathway, but do not target p100 (NF-κB2) or p105 (NF-κB1). A Salmonella Typhimurium mutant strain lacking these effector proteins showed increased ability to stimulate NF-κB and increased virulence in an animal model of infection. These results indicate that bacterial pathogens can evolve determinants to preserve host homeostasis.
Collapse
Affiliation(s)
- Hui Sun
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Jana Kamanova
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Maria Lara-Tejero
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Jorge E. Galán
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
81
|
Kühn S, Mannherz HG. Actin: Structure, Function, Dynamics, and Interactions with Bacterial Toxins. Curr Top Microbiol Immunol 2016; 399:1-34. [PMID: 27848038 DOI: 10.1007/82_2016_45] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Actin is one of the most abundant proteins in any eukaryotic cell and an indispensable component of the cytoskeleton. In mammalian organisms, six highly conserved actin isoforms can be distinguished, which differ by only a few amino acids. In non-muscle cells, actin polymerizes into actin filaments that form actin structures essential for cell shape stabilization, and participates in a number of motile activities like intracellular vesicle transport, cytokinesis, and also cell locomotion. Here, we describe the structure of monomeric and polymeric actin, the polymerization kinetics, and its regulation by actin-binding proteins. Probably due to its conserved nature and abundance, actin and its regulating factors have emerged as prefered targets of bacterial toxins and effectors, which subvert the host actin cytoskeleton to serve bacterial needs.
Collapse
Affiliation(s)
- Sonja Kühn
- Department of Cell Biology and Infection, Institut Pasteur, Paris, France
| | - Hans Georg Mannherz
- Department of Anatomy and Molecular Embryology, Ruhr-University, Bochum, Germany.
| |
Collapse
|
82
|
Sajid A, Arora G, Singhal A, Kalia VC, Singh Y. Protein Phosphatases of Pathogenic Bacteria: Role in Physiology and Virulence. Annu Rev Microbiol 2015; 69:527-47. [DOI: 10.1146/annurev-micro-020415-111342] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Andaleeb Sajid
- Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Delhi 110007, India;
| | - Gunjan Arora
- Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Delhi 110007, India;
| | - Anshika Singhal
- Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Delhi 110007, India;
| | - Vipin C. Kalia
- Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Delhi 110007, India;
| | - Yogendra Singh
- Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Delhi 110007, India;
| |
Collapse
|
83
|
Abstract
Cell biology is the study of the structure and function of the unit or units of living organisms. Enabled by current and evolving technologies, cell biologists today are embracing new scientific challenges that span many disciplines. The eclectic nature of cell biology is core to its future and remains its enduring legacy.
Collapse
Affiliation(s)
- Wendy S Garrett
- Harvard T.H. Chan School of Public Health, Boston, MA 02115 Harvard Medical School, Boston, MA 02115 Dana-Farber Cancer Institute, Boston, MA 02115
| |
Collapse
|
84
|
Pseudogenization of sopA and sopE2 is functionally linked and contributes to virulence of Salmonella enterica serovar Typhi. INFECTION GENETICS AND EVOLUTION 2015; 33:131-42. [DOI: 10.1016/j.meegid.2015.04.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/13/2015] [Accepted: 04/21/2015] [Indexed: 12/11/2022]
|
85
|
Wong VK, Baker S, Pickard DJ, Parkhill J, Page AJ, Feasey NA, Kingsley RA, Thomson NR, Keane JA, Weill FX, Edwards DJ, Hawkey J, Harris SR, Mather AE, Cain AK, Hadfield J, Hart PJ, Thieu NTV, Klemm EJ, Glinos DA, Breiman RF, Watson CH, Kariuki S, Gordon MA, Heyderman RS, Okoro C, Jacobs J, Lunguya O, Edmunds WJ, Msefula C, Chabalgoity JA, Kama M, Jenkins K, Dutta S, Marks F, Campos J, Thompson C, Obaro S, MacLennan CA, Dolecek C, Keddy KH, Smith AM, Parry CM, Karkey A, Mulholland EK, Campbell JI, Dongol S, Basnyat B, Dufour M, Bandaranayake D, Naseri TT, Singh SP, Hatta M, Newton P, Onsare RS, Isaia L, Dance D, Davong V, Thwaites G, Wijedoru L, Crump JA, De Pinna E, Nair S, Nilles EJ, Thanh DP, Turner P, Soeng S, Valcanis M, Powling J, Dimovski K, Hogg G, Farrar J, Holt KE, Dougan G. Phylogeographical analysis of the dominant multidrug-resistant H58 clade of Salmonella Typhi identifies inter- and intracontinental transmission events. Nat Genet 2015; 47:632-9. [PMID: 25961941 PMCID: PMC4921243 DOI: 10.1038/ng.3281] [Citation(s) in RCA: 319] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 03/23/2015] [Indexed: 11/09/2022]
Abstract
The emergence of multidrug-resistant (MDR) typhoid is a major global health threat affecting many countries where the disease is endemic. Here whole-genome sequence analysis of 1,832 Salmonella enterica serovar Typhi (S. Typhi) identifies a single dominant MDR lineage, H58, that has emerged and spread throughout Asia and Africa over the last 30 years. Our analysis identifies numerous transmissions of H58, including multiple transfers from Asia to Africa and an ongoing, unrecognized MDR epidemic within Africa itself. Notably, our analysis indicates that H58 lineages are displacing antibiotic-sensitive isolates, transforming the global population structure of this pathogen. H58 isolates can harbor a complex MDR element residing either on transmissible IncHI1 plasmids or within multiple chromosomal integration sites. We also identify new mutations that define the H58 lineage. This phylogeographical analysis provides a framework to facilitate global management of MDR typhoid and is applicable to similar MDR lineages emerging in other bacterial species.
Collapse
Affiliation(s)
- Vanessa K Wong
- 1] Wellcome Trust Sanger Institute, Hinxton, UK. [2] Department of Microbiology, Addenbrooke's Hospital, Cambridge University Hospitals National Health Service (NHS) Foundation Trust, Cambridge, UK
| | - Stephen Baker
- 1] Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam. [2] Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Oxford University, Oxford, UK. [3] Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | | | | | | | | | - Robert A Kingsley
- 1] Wellcome Trust Sanger Institute, Hinxton, UK. [2] Institute of Food Research, Norwich Research Park, Norwich, UK
| | - Nicholas R Thomson
- 1] Wellcome Trust Sanger Institute, Hinxton, UK. [2] Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | | | | | - David J Edwards
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Jane Hawkey
- 1] Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria, Australia. [2] Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | | | | | - Amy K Cain
- Wellcome Trust Sanger Institute, Hinxton, UK
| | | | - Peter J Hart
- Institute of Biomedical Research, School of Immunity and Infection, College of Medicine and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Nga Tran Vu Thieu
- Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | | | - Robert F Breiman
- 1] Kenya Medical Research Institute (KEMRI), Nairobi, Kenya. [2] Centers for Disease Control and Prevention, Atlanta, Georgia, USA. [3] Emory Global Health Institute, Atlanta, Georgia, USA
| | - Conall H Watson
- Centre for the Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Samuel Kariuki
- 1] Wellcome Trust Sanger Institute, Hinxton, UK. [2] Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
| | - Melita A Gordon
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Robert S Heyderman
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
| | | | - Jan Jacobs
- 1] Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium. [2] Department of Microbiology and Immunology, Katholieke Universiteit (KU) Leuven, University of Leuven, Leuven, Belgium
| | - Octavie Lunguya
- 1] National Institute for Biomedical Research, Kinshasa, Democratic Republic of the Congo. [2] University Hospital of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - W John Edmunds
- Centre for the Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Chisomo Msefula
- 1] Malawi-Liverpool Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi. [2] Microbiology Department, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Jose A Chabalgoity
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Montevideo, Uruguay
| | | | | | - Shanta Dutta
- National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Florian Marks
- International Vaccine Institute, Department of Epidemiology, Seoul, Republic of Korea
| | - Josefina Campos
- Enteropathogen Division, Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) Carlos G. Malbran Institute, Buenos Aires, Argentina
| | - Corinne Thompson
- 1] Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam. [2] Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Oxford University, Oxford, UK
| | - Stephen Obaro
- 1] Division of Pediatric Infectious Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. [2] University of Abuja Teaching Hospital, Abuja, Nigeria. [3] Bingham University, Karu, Nigeria
| | - Calman A MacLennan
- 1] Wellcome Trust Sanger Institute, Hinxton, UK. [2] Institute of Biomedical Research, School of Immunity and Infection, College of Medicine and Dental Sciences, University of Birmingham, Birmingham, UK. [3] Novartis Vaccines Institute for Global Health, Siena, Italy
| | - Christiane Dolecek
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Oxford University, Oxford, UK
| | - Karen H Keddy
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Division in the National Health Laboratory Service, University of the Witwatersrand, Johannesburg, South Africa
| | - Anthony M Smith
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Division in the National Health Laboratory Service, University of the Witwatersrand, Johannesburg, South Africa
| | - Christopher M Parry
- 1] Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK. [2] Graduate School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Abhilasha Karkey
- Patan Academy of Health Sciences, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Kathmandu, Nepal
| | - E Kim Mulholland
- 1] Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK. [2] Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - James I Campbell
- 1] Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam. [2] Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Oxford University, Oxford, UK
| | - Sabina Dongol
- Patan Academy of Health Sciences, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Kathmandu, Nepal
| | - Buddha Basnyat
- Patan Academy of Health Sciences, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Kathmandu, Nepal
| | - Muriel Dufour
- Enteric and Leptospira Reference Laboratory, Institute of Environmental Science and Research, Ltd. (ESR), Porirua, New Zealand
| | - Don Bandaranayake
- National Centre for Biosecurity and Infectious Disease, Institute of Environmental Science and Research, Porirua, New Zealand
| | | | - Shalini Pravin Singh
- National Influenza Center, World Health Organization, Center for Communicable Disease Control, Suva, Fiji
| | - Mochammad Hatta
- Department of Microbiology, Hasanuddin University, Makassar, Indonesia
| | - Paul Newton
- 1] Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Oxford University, Oxford, UK. [2] Lao Oxford Mahosot Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos
| | | | | | - David Dance
- 1] Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Oxford University, Oxford, UK. [2] Lao Oxford Mahosot Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos
| | - Viengmon Davong
- Lao Oxford Mahosot Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos
| | - Guy Thwaites
- 1] Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam. [2] Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Oxford University, Oxford, UK
| | - Lalith Wijedoru
- 1] Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. [2] Paediatric Emergency Medicine, Chelsea and Westminster Hospital, London, UK
| | - John A Crump
- Centre for International Health and Otago International Health Research Network, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Elizabeth De Pinna
- Salmonella Reference Service, Public Health England, Colindale, London, UK
| | - Satheesh Nair
- Salmonella Reference Service, Public Health England, Colindale, London, UK
| | - Eric J Nilles
- Emerging Disease Surveillance and Response, Division of Pacific Technical Support, World Health Organization, Suva, Fiji
| | - Duy Pham Thanh
- Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Paul Turner
- 1] Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Oxford University, Oxford, UK. [2] Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. [3] Cambodia-Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
| | - Sona Soeng
- Cambodia-Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
| | - Mary Valcanis
- Microbiological Diagnostic Unit-Public Health Laboratory, Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Joan Powling
- Microbiological Diagnostic Unit-Public Health Laboratory, Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Karolina Dimovski
- Microbiological Diagnostic Unit-Public Health Laboratory, Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Geoff Hogg
- Microbiological Diagnostic Unit-Public Health Laboratory, Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Jeremy Farrar
- 1] Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam. [2] Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Oxford University, Oxford, UK
| | - Kathryn E Holt
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria, Australia
| | | |
Collapse
|
86
|
Shin S, Brodsky IE. The inflammasome: Learning from bacterial evasion strategies. Semin Immunol 2015; 27:102-10. [PMID: 25914126 DOI: 10.1016/j.smim.2015.03.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 03/12/2015] [Indexed: 01/01/2023]
Abstract
The innate immune system plays a critical role in defense against microbial infection and employs germline-encoded pattern recognition receptors to detect broadly conserved microbial structures or activities. Pattern recognition receptors of the nucleotide binding domain/leucine rich repeat (NLR) family respond to particular microbial products or disruption of cellular physiology, and mediate the activation of an arm of the innate immune response termed the inflammasome. Inflammasomes are multiprotein complexes that are inducibly assembled in response to the contamination of the host cell cytosol by microbial products. Individual NLRs sense the presence of their cognate stimuli, and initiate assembly of inflammasomes via the adaptor protein apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and the effector pro-enzyme caspase-1. Inflammasome activation leads to rapid release of pro-inflammatory mediators of the IL-1 family as well as the release of intracellular alarmins due to a lytic form of programmed cell death termed pyroptosis. Over the past 15 years, a great deal has been learned about the mechanisms that drive inflammasome activation in response to infection by diverse pathogens. However, pathogens have also evolved mechanisms to evade or suppress host defenses, and the mechanisms by which pathogens evade inflammasome activation are not well-understood. Here, we will discuss emerging evidence on how diverse pathogens evade inflammasome activation, and what these studies have revealed about inflammasome biology. Deeper understanding of pathogen evasion of inflammasome activation has the potential to lead to development of novel classes of immunomodulatory factors that could be used in the context of human inflammatory diseases.
Collapse
Affiliation(s)
- Sunny Shin
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Igor E Brodsky
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
87
|
Abstract
Salmonellae invasion and intracellular replication within host cells result in a range of diseases, including gastroenteritis, bacteraemia, enteric fever and focal infections. In recent years, considerable progress has been made in our understanding of the molecular mechanisms that salmonellae use to alter host cell physiology; through the delivery of effector proteins with specific activities and through the modulation of defence and stress response pathways. In this Review, we summarize our current knowledge of the complex interplay between bacterial and host factors that leads to inflammation, disease and, in most cases, control of the infection by its animal hosts, with a particular focus on Salmonella enterica subsp. enterica serovar Typhimurium. We also highlight gaps in our knowledge of the contributions of salmonellae and the host to disease pathogenesis, and we suggest future avenues for further study.
Collapse
Affiliation(s)
- Doris L. LaRock
- Department of Microbiology, University of Washington, Seattle, WA 98195
| | - Anu Chaudhary
- Department of Microbiology, University of Washington, Seattle, WA 98195
| | - Samuel I. Miller
- Department of Microbiology, University of Washington, Seattle, WA 98195
- Department of Genome Sciences, University of Washington, Seattle, WA 98195
- Department of Immunology, University of Washington, Seattle, WA 98195
- Department of Medicine, University of Washington, Seattle, WA 98195
| |
Collapse
|
88
|
Abel AM, Schuldt KM, Rajasekaran K, Hwang D, Riese MJ, Rao S, Thakar MS, Malarkannan S. IQGAP1: insights into the function of a molecular puppeteer. Mol Immunol 2015; 65:336-49. [PMID: 25733387 DOI: 10.1016/j.molimm.2015.02.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/09/2015] [Accepted: 02/09/2015] [Indexed: 02/06/2023]
Abstract
The intracellular spatiotemporal organization of signaling events is critical for normal cellular function. In response to environmental stimuli, cells utilize highly organized signaling pathways that are subject to multiple layers of regulation. However, the molecular mechanisms that coordinate these complex processes remain an enigma. Scaffolding proteins (scaffolins) have emerged as critical regulators of signaling pathways, many of which have well-described functions in immune cells. IQGAP1, a highly conserved cytoplasmic scaffold protein, is able to curb, compartmentalize, and coordinate multiple signaling pathways in a variety of cell types. IQGAP1 plays a central role in cell-cell interaction, cell adherence, and movement via actin/tubulin-based cytoskeletal reorganization. Evidence also implicates IQGAP1 as an essential regulator of the MAPK and Wnt/β-catenin signaling pathways. Here, we summarize the recent advances on the cellular and molecular biology of IQGAP1. We also describe how this pleiotropic scaffolin acts as a true molecular puppeteer, and highlight the significance of future research regarding the role of IQGAP1 in immune cells.
Collapse
Affiliation(s)
- Alex M Abel
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kristina M Schuldt
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kamalakannan Rajasekaran
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - David Hwang
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Matthew J Riese
- Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sridhar Rao
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
89
|
Alomairi J, Bonacci T, Ghigo E, Soubeyran P. Alterations of host cell ubiquitination machinery by pathogenic bacteria. Front Cell Infect Microbiol 2015; 5:17. [PMID: 25774357 PMCID: PMC4343185 DOI: 10.3389/fcimb.2015.00017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/09/2015] [Indexed: 11/13/2022] Open
Abstract
Response of immune and non-immune cells to pathogens infections is a very dynamic process. It involves the activation/modulation of many pathways leading to actin remodeling, membrane engulfing, phagocytosis, vesicle trafficking, phagolysosome formation, aiming at the destruction of the intruder. These sophisticated and rapid mechanisms rely on post-translational modifications (PTMs) of key host cells' factors, and bacteria have developed various strategies to manipulate them to favor their survival. Among these important PTMs, ubiquitination has emerged as a major mediator/modulator/regulator of host cells response to infections that pathogens have also learned to use for their own benefit. In this mini-review, we summarize our current knowledge about the normal functions of ubiquitination during host cell infection, and we detail its hijacking by model pathogens to escape clearance and to proliferate.
Collapse
Affiliation(s)
- Jaafar Alomairi
- Cellular Stress, Centre de Recherche en Carcérologie de Marseille, INSERM UMR 1068, CNRS UMR 7258, Aix-Marseille University and Institut Paoli-Calmettes Marseille, France ; Infections, Gender and Pregnancy Laboratory, URMITE-IRD198, INSERM U1095, CNRS UMR7278, Aix-Marseille University Marseille, France
| | - Thomas Bonacci
- Cellular Stress, Centre de Recherche en Carcérologie de Marseille, INSERM UMR 1068, CNRS UMR 7258, Aix-Marseille University and Institut Paoli-Calmettes Marseille, France
| | - Eric Ghigo
- Infections, Gender and Pregnancy Laboratory, URMITE-IRD198, INSERM U1095, CNRS UMR7278, Aix-Marseille University Marseille, France
| | - Philippe Soubeyran
- Cellular Stress, Centre de Recherche en Carcérologie de Marseille, INSERM UMR 1068, CNRS UMR 7258, Aix-Marseille University and Institut Paoli-Calmettes Marseille, France
| |
Collapse
|
90
|
Kolodziejek AM, Miller SI. Salmonella modulation of the phagosome membrane, role of SseJ. Cell Microbiol 2015; 17:333-41. [PMID: 25620407 DOI: 10.1111/cmi.12420] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/21/2015] [Accepted: 01/22/2015] [Indexed: 12/15/2022]
Abstract
Salmonellae have the ability to invade, persist and replicate within an intracellular phagosome termed the Salmonella-containing vacuole (SCV). Salmonellae alter lipid and protein content of the SCV membrane and manipulate cytoskeletal elements in contact with the SCV using the Salmonella pathogenicity island 1 (SPI-2) type III secretion system effectors. These modifications result in microtubular-based movement and morphological changes, which include endosomal tubulation of the SCV membrane. SseJ is a SPI-2 effector that localizes to the cytoplasmic face of the SCV and esterifies cholesterol through its glycerophospholipid : cholesterol acyltransferase activity. SseJ enzymatic activity as well as localization to the SCV are determined by binding to the small mammalian GTPase, RhoA. This review will focus on current knowledge about the role of SseJ in SCV membrane modification and will discuss how the hypothesis that a major role of SPI-2 effectors is to modify SCV protein and lipid content to promote bacterial intracellular survival.
Collapse
|
91
|
Davidson AC, Humphreys D, Brooks ABE, Hume PJ, Koronakis V. The Arf GTPase-activating protein family is exploited by Salmonella enterica serovar Typhimurium to invade nonphagocytic host cells. mBio 2015; 6:e02253-14. [PMID: 25670778 PMCID: PMC4337568 DOI: 10.1128/mbio.02253-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 12/05/2014] [Indexed: 01/06/2023] Open
Abstract
UNLABELLED To establish intracellular infections, Salmonella bacteria trigger host cell membrane ruffling and invasion by subverting cellular Arf guanine nucleotide exchange factors (GEFs) that activate Arf1 and Arf6 GTPases by promoting GTP binding. A family of cellular Arf GTPase-activating proteins (GAPs) can downregulate Arf signaling by stimulating GTP hydrolysis, but whether they do this during infection is unknown. Here, we uncovered a remarkable role for distinct Arf GAP family members in Salmonella invasion. The Arf6 GAPs ACAP1 and ADAP1 and the Arf1 GAP ASAP1 localized at Salmonella-induced ruffles, which was not the case for the plasma membrane-localized Arf6 GAPs ARAP3 and GIT1 or the Golgi-associated Arf1 GAP1. Surprisingly, we found that loss of ACAP1, ADAP1, or ASAP1 impaired Salmonella invasion, revealing that GAPs cannot be considered mere terminators of cytoskeleton remodeling. Salmonella invasion was restored in Arf GAP-depleted cells by expressing fast-cycling Arf derivatives, demonstrating that Arf GTP/GDP cycles facilitate Salmonella invasion. Consistent with this view, both constitutively active and dominant-negative Arf derivatives that cannot undergo GTP/GDP cycles inhibited invasion. Furthermore, we demonstrated that Arf GEFs and GAPs colocalize at invading Salmonella and collaborate to drive Arf1-dependent pathogen invasion. This study revealed that Salmonella bacteria exploit a remarkable interplay between Arf GEFs and GAPs to direct cycles of Arf GTPase activation and inactivation. These cycles drive Salmonella cytoskeleton remodeling and enable intracellular infections. IMPORTANCE To initiate infections, the Salmonella bacterial pathogen remodels the mammalian actin cytoskeleton and invades host cells by subverting host Arf GEFs that activate Arf1 and Arf6 GTPases. Cellular Arf GAPs deactivate Arf GTPases and negatively regulate cell processes, but whether they target Arfs during infection is unknown. Here, we uncovered an important role for the Arf GAP family in Salmonella invasion. Surprisingly, we found that Arf1 and Arf6 GAPs cooperate with their Arf GEF counterparts to facilitate cycles of Arf GTPase activation and inactivation, which direct pathogen invasion. This report illustrates that GAP proteins promote actin-dependent processes and are not necessarily restricted to negatively regulating cellular signaling. It uncovers a remarkable interplay between Arf GEFs and GAPs that is exploited by Salmonella to establish infection and expands our understanding of Arf GTPase-regulated cytoskeleton remodeling.
Collapse
Affiliation(s)
- Anthony C Davidson
- Department of Pathology, Cambridge University, Cambridge, United Kingdom
| | - Daniel Humphreys
- Department of Pathology, Cambridge University, Cambridge, United Kingdom
| | - Andrew B E Brooks
- Department of Pathology, Cambridge University, Cambridge, United Kingdom
| | - Peter J Hume
- Department of Pathology, Cambridge University, Cambridge, United Kingdom
| | - Vassilis Koronakis
- Department of Pathology, Cambridge University, Cambridge, United Kingdom
| |
Collapse
|
92
|
Grishin AM, Beyrakhova KA, Cygler M. Structural insight into effector proteins of Gram-negative bacterial pathogens that modulate the phosphoproteome of their host. Protein Sci 2015; 24:604-20. [PMID: 25565677 DOI: 10.1002/pro.2636] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 12/29/2014] [Indexed: 12/16/2022]
Abstract
Invading pathogens manipulate cellular process of the host cell to establish a safe replicative niche. To this end they secrete a spectrum of proteins called effectors that modify cellular environment through a variety of mechanisms. One of the most important mechanisms is the manipulation of cellular signaling through modifications of the cellular phosphoproteome. Phosphorylation/dephosphorylation plays a pivotal role in eukaryotic cell signaling, with ∼ 500 different kinases and ∼ 130 phosphatases in the human genome. Pathogens affect the phosphoproteome either directly through the action of bacterial effectors, and/or indirectly through downstream effects of host proteins modified by the effectors. Here we review the current knowledge of the structure, catalytic mechanism and function of bacterial effectors that modify directly the phosphorylation state of host proteins. These effectors belong to four enzyme classes: kinases, phosphatases, phospholyases and serine/threonine acetylases.
Collapse
Affiliation(s)
- Andrey M Grishin
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N 5E5
| | | | | |
Collapse
|
93
|
de Souza Santos M, Orth K. Subversion of the cytoskeleton by intracellular bacteria: lessons from Listeria, Salmonella and Vibrio. Cell Microbiol 2015; 17:164-73. [PMID: 25440316 PMCID: PMC5806695 DOI: 10.1111/cmi.12399] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 10/29/2014] [Accepted: 11/07/2014] [Indexed: 12/18/2022]
Abstract
Entry into host cells and intracellular persistence by invasive bacteria are tightly coupled to the ability of the bacterium to disrupt the eukaryotic cytoskeletal machinery. Herein we review the main strategies used by three intracellular pathogens to harness key modulators of the cytoskeleton. Two of these bacteria, namely Listeria monocytogenes and Salmonella enterica serovar Typhimurium, exhibit quite distinct intracellular lifestyles and therefore provide a comprehensive panel for the understanding of the intricate bacteria-cytoskeleton interplay during infections. The emerging intracellular pathogen Vibrio parahaemolyticus is depicted as a developing model for the uncovering of novel mechanisms used to hijack the cytoskeleton.
Collapse
Affiliation(s)
- Marcela de Souza Santos
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
94
|
Wiedemann A, Virlogeux-Payant I, Chaussé AM, Schikora A, Velge P. Interactions of Salmonella with animals and plants. Front Microbiol 2015; 5:791. [PMID: 25653644 PMCID: PMC4301013 DOI: 10.3389/fmicb.2014.00791] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 12/22/2014] [Indexed: 12/16/2022] Open
Abstract
Salmonella enterica species are Gram-negative bacteria, which are responsible for a wide range of food- and water-borne diseases in both humans and animals, thereby posing a major threat to public health. Recently, there has been an increasing number of reports, linking Salmonella contaminated raw vegetables and fruits with food poisoning. Many studies have shown that an essential feature of the pathogenicity of Salmonella is its capacity to cross a number of barriers requiring invasion of a large variety of cells and that the extent of internalization may be influenced by numerous factors. However, it is poorly understood how Salmonella successfully infects hosts as diversified as animals or plants. The aim of this review is to describe the different stages required for Salmonella interaction with its hosts: (i) attachment to host surfaces; (ii) entry processes; (iii) multiplication; (iv) suppression of host defense mechanisms; and to point out similarities and differences between animal and plant infections.
Collapse
Affiliation(s)
- Agnès Wiedemann
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique Nouzilly, France ; UMR1282 Infectiologie et Santé Publique, Université François Rabelais Tours, France
| | - Isabelle Virlogeux-Payant
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique Nouzilly, France ; UMR1282 Infectiologie et Santé Publique, Université François Rabelais Tours, France
| | - Anne-Marie Chaussé
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique Nouzilly, France ; UMR1282 Infectiologie et Santé Publique, Université François Rabelais Tours, France
| | - Adam Schikora
- Institute for Phytopathology, Research Center for BioSystems, Land Use and Nutrition (IFZ), Justus Liebig University Giessen Giessen, Germany
| | - Philippe Velge
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique Nouzilly, France ; UMR1282 Infectiologie et Santé Publique, Université François Rabelais Tours, France
| |
Collapse
|
95
|
Lhocine N, Arena ET, Bomme P, Ubelmann F, Prévost MC, Robine S, Sansonetti PJ. Apical invasion of intestinal epithelial cells by Salmonella typhimurium requires villin to remodel the brush border actin cytoskeleton. Cell Host Microbe 2015; 17:164-77. [PMID: 25600187 PMCID: PMC4346658 DOI: 10.1016/j.chom.2014.12.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 09/16/2014] [Accepted: 12/04/2014] [Indexed: 01/16/2023]
Abstract
Salmonella invasion of intestinal epithelial cells requires extensive, though transient, actin modifications at the site of bacterial entry. The actin-modifying protein villin is present in the brush border where it participates in the constitution of microvilli and in epithelial restitution after damage through its actin-severing activity. We investigated a possible role for villin in Salmonella invasion. The absence of villin, which is normally located at the bacterial entry site, leads to a decrease in Salmonella invasion. Villin is necessary for early membrane-associated processes and for optimal ruffle assembly by balancing the steady-state level of actin. The severing activity of villin is important for Salmonella invasion in vivo. The bacterial phosphatase SptP tightly regulates villin phosphorylation, while the actin-binding effector SipA protects F-actin and counterbalances villin-severing activity. Thus, villin plays an important role in establishing the balance between actin polymerization and actin severing to facilitate the initial steps of Salmonella entry. The host actin-binding protein villin is required for Salmonella apical invasion Villin plays a role in Salmonella ruffle formation and actin dynamics Villin-severing activity promotes Salmonella invasion in cells and in vivo The bacterial effectors SipA and SptP regulate villin activities
Collapse
Affiliation(s)
- Nouara Lhocine
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France; INSERM U786, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France
| | - Ellen T Arena
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France; INSERM U786, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France
| | - Perrine Bomme
- Plateforme de Microscopie Ultrastructurale, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France
| | - Florent Ubelmann
- Unité Mixte de Recherche 144, Institut Curie, 75248 Paris Cedex 05, France; Centro de Estudos de Doenças Crónicas (CEDOC), Faculdade de Ciencias Médicas, Universidade Nova de Lisboa, 1169-056, Portugal
| | - Marie-Christine Prévost
- Plateforme de Microscopie Ultrastructurale, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France
| | - Sylvie Robine
- Unité Mixte de Recherche 144, Institut Curie, 75248 Paris Cedex 05, France
| | - Philippe J Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France; INSERM U786, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France; Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France.
| |
Collapse
|
96
|
Fisher TW, Vyas M, He R, Nelson W, Cicero JM, Willer M, Kim R, Kramer R, May GA, Crow JA, Soderlund CA, Gang DR, Brown JK. Comparison of potato and asian citrus psyllid adult and nymph transcriptomes identified vector transcripts with potential involvement in circulative, propagative liberibacter transmission. Pathogens 2014; 3:875-907. [PMID: 25436509 PMCID: PMC4282890 DOI: 10.3390/pathogens3040875] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/18/2014] [Accepted: 10/20/2014] [Indexed: 01/01/2023] Open
Abstract
The potato psyllid (PoP) Bactericera cockerelli (Sulc) and Asian citrus psyllid (ACP) Diaphorina citri Kuwayama are the insect vectors of the fastidious plant pathogen, Candidatus Liberibacter solanacearum (CLso) and Ca. L. asiaticus (CLas), respectively. CLso causes Zebra chip disease of potato and vein-greening in solanaceous species, whereas, CLas causes citrus greening disease. The reliance on insecticides for vector management to reduce pathogen transmission has increased interest in alternative approaches, including RNA interference to abate expression of genes essential for psyllid-mediated Ca. Liberibacter transmission. To identify genes with significantly altered expression at different life stages and conditions of CLso/CLas infection, cDNA libraries were constructed for CLso-infected and -uninfected PoP adults and nymphal instars. Illumina sequencing produced 199,081,451 reads that were assembled into 82,224 unique transcripts. PoP and the analogous transcripts from ACP adult and nymphs reported elsewhere were annotated, organized into functional gene groups using the Gene Ontology classification system, and analyzed for differential in silico expression. Expression profiles revealed vector life stage differences and differential gene expression associated with Liberibacter infection of the psyllid host, including invasion, immune system modulation, nutrition, and development.
Collapse
Affiliation(s)
- Tonja W Fisher
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA.
| | - Meenal Vyas
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA.
| | - Ruifeng He
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA.
| | | | - Joseph M Cicero
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA.
| | - Mark Willer
- BIO5, The University of Arizona, Tucson, AZ 85721, USA.
| | - Ryan Kim
- National Center for Genome Resources, 2935 Rodeo Park Drive East, Santa Fe, NM 87505, USA.
| | - Robin Kramer
- National Center for Genome Resources, 2935 Rodeo Park Drive East, Santa Fe, NM 87505, USA.
| | - Greg A May
- National Center for Genome Resources, 2935 Rodeo Park Drive East, Santa Fe, NM 87505, USA.
| | - John A Crow
- National Center for Genome Resources, 2935 Rodeo Park Drive East, Santa Fe, NM 87505, USA.
| | | | - David R Gang
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA.
| | - Judith K Brown
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
97
|
Asrat S, de Jesús DA, Hempstead AD, Ramabhadran V, Isberg RR. Bacterial Pathogen Manipulation of Host Membrane Trafficking. Annu Rev Cell Dev Biol 2014; 30:79-109. [DOI: 10.1146/annurev-cellbio-100913-013439] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Seblewongel Asrat
- Howard Hughes Medical Institute,
- Department of Molecular Biology and Microbiology, and
- Graduate Program in Molecular Microbiology, Sackler School of Graduate Biomedical Science, Tufts University School of Medicine, Boston, Massachusetts, 02111; , , , ,
| | - Dennise A. de Jesús
- Department of Molecular Biology and Microbiology, and
- Graduate Program in Molecular Microbiology, Sackler School of Graduate Biomedical Science, Tufts University School of Medicine, Boston, Massachusetts, 02111; , , , ,
| | - Andrew D. Hempstead
- Department of Molecular Biology and Microbiology, and
- Graduate Program in Molecular Microbiology, Sackler School of Graduate Biomedical Science, Tufts University School of Medicine, Boston, Massachusetts, 02111; , , , ,
| | - Vinay Ramabhadran
- Howard Hughes Medical Institute,
- Department of Molecular Biology and Microbiology, and
| | - Ralph R. Isberg
- Howard Hughes Medical Institute,
- Department of Molecular Biology and Microbiology, and
| |
Collapse
|
98
|
Levin R, Grinstein S, Schlam D. Phosphoinositides in phagocytosis and macropinocytosis. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:805-23. [PMID: 25238964 DOI: 10.1016/j.bbalip.2014.09.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/23/2014] [Accepted: 09/08/2014] [Indexed: 01/08/2023]
Abstract
Professional phagocytes provide immunoprotection and aid in the maintenance of tissue homeostasis. They perform these tasks by recognizing, engulfing and eliminating pathogens and endogenous cell debris. Here, we examine the paramount role played by phosphoinositides in phagocytosis and macropinocytosis, two major endocytic routes that mediate the uptake of particulate and fluid matter, respectively. We analyze accumulating literature describing the molecular mechanisms whereby phosphoinositides translate environmental cues into the complex, sophisticated responses that underlie the phagocytic and macropinocytic responses. In addition, we exemplify virulence strategies involving modulation of host cell phosphoinositide signaling that are employed by bacteria to undermine immunity. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
Affiliation(s)
- Roni Levin
- Division of Cell Biology, Hospital for Sick Children, 555 University Ave., Toronto M5G1X8, Canada
| | - Sergio Grinstein
- Division of Cell Biology, Hospital for Sick Children, 555 University Ave., Toronto M5G1X8, Canada; Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria St., Toronto M5C1N8, Canada.
| | - Daniel Schlam
- Division of Cell Biology, Hospital for Sick Children, 555 University Ave., Toronto M5G1X8, Canada
| |
Collapse
|
99
|
Vonaesch P, Sellin ME, Cardini S, Singh V, Barthel M, Hardt WD. The Salmonella Typhimurium effector protein SopE transiently localizes to the early SCV and contributes to intracellular replication. Cell Microbiol 2014; 16:1723-35. [PMID: 25052734 DOI: 10.1111/cmi.12333] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 06/19/2014] [Accepted: 07/05/2014] [Indexed: 12/28/2022]
Abstract
Salmonella enterica serovar Typhimurium (S. Tm) is a facultative intracellular pathogen that induces entry into non-phagocytic cells by a Type III secretion system (TTSS) and cognate effector proteins. Upon host cell entry, S. Tm expresses a second TTSS and subverts intracellular trafficking to create a replicative niche - the Salmonella-containing vacuole (SCV). SopE, a guanidyl exchange factor (GEF) for Rac1 and Cdc42, is translocated by the TTSS-1 upon host cell contact and promotes entry through triggering of actin-dependent ruffles. After host cell entry, the bulk of SopE undergoes proteasomal degradation. Here we show that a subfraction is however detectable on the nascent SCV membrane up to ∼ 6 h post infection. Membrane localization of SopE and the closely related SopE2 differentially depend on the Rho-GTPase-binding GEF domain, and to some extent involves also the unstructured N-terminus. SopE localizes transiently to the early SCV, dependent on continuous synthesis and secretion by the TTSS-1 during the intracellular state. Mutant strains lacking SopE or SopE2 are attenuated in early intracellular replication, while complementation restores this defect. Hence, the present study reveals an unanticipated role for SopE and SopE2 in establishing the Salmonella replicative niche, and further emphasizes the importance of entry effectors in later stages of host-cell manipulation.
Collapse
Affiliation(s)
- Pascale Vonaesch
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
100
|
Fraiture M, Brunner F. Killing two birds with one stone: trans-kingdom suppression of PAMP/MAMP-induced immunity by T3E from enteropathogenic bacteria. Front Microbiol 2014; 5:320. [PMID: 25101059 PMCID: PMC4105635 DOI: 10.3389/fmicb.2014.00320] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 06/11/2014] [Indexed: 01/07/2023] Open
Abstract
Within the past decade, remarkable similarities between the molecular organization of animal and plant systems for non-self discrimination were revealed. Obvious parallels exist between the molecular structures of the receptors mediating the recognition of pathogen- or microbe-associated molecular patterns (PAMPs/MAMPs) with plant pattern recognition receptors strikingly resembling mammalian Toll-like receptors. Mitogen-activated protein kinase cascades, leading to the transcriptional activation of immunity-associated genes, illustrate the conservation of whole molecular building blocks of PAMP/MAMP-induced signaling. Enteropathogenic Salmonella and Escherichia coli use a type three secretion system (T3SS) to inject effector proteins into the mammalian host cell to subvert defense mechanisms and promote gut infection. Lately, disease occurrence was increasingly associated with bacteria-contaminated fruits and vegetables and common themes have emerged with regard to whether and how effectors target innate immune responses in a trans-kingdom manner. We propose that numerous Salmonella or E. coli effectors may be active in planta and tend to target central components (hubs) of immune signaling pathways.
Collapse
Affiliation(s)
- Malou Fraiture
- Plant Biochemistry, Centre for Plant Molecular Biology, Eberhard Karls University Tübingen Tübingen, Germany
| | - Frédéric Brunner
- Plant Biochemistry, Centre for Plant Molecular Biology, Eberhard Karls University Tübingen Tübingen, Germany
| |
Collapse
|