51
|
Lan YL, Wang X, Xing JS, Lou JC, Ma XC, Zhang B. The potential roles of dopamine in malignant glioma. Acta Neurol Belg 2017; 117:613-621. [PMID: 27995487 DOI: 10.1007/s13760-016-0730-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/26/2016] [Indexed: 12/24/2022]
Abstract
Despite the numerous promising discoveries in contemporary cancer research and the emerging innovative cancer treatment strategies, the global burden of malignant glioma is expected to increase, partially due to its poor prognosis and human aging. Dopamine, a monoamine catecholamine neurotransmitter, is currently regarded as an important endogenous regulator of tumor growth. Dopamine may be an important treatment for brain tumors and could impact the pathogenesis of glioma by regulating tumor angiogenesis and vasculogenesis. Additionally, dopamine might exert an anti-glioma, cytotoxic effect by modulating apoptosis and autophagy. Dopamine and its receptors are also known to influence the immune system, as it is related to the pathogenesis of glioma. Dopamine may also increase the efficacy of anti-cancer drugs. Here, we review the potential roles of dopamine in malignant glioma and further identify the previously unknown function of dopamine as a potent regulator in the pathogenesis of glioma. Currently, the precise mechanisms regarding the protective effect of dopamine on glioma are poorly understood. However, our experimental results strongly emphasize the importance of this topic in future investigations.
Collapse
|
52
|
Hamilton G, Rath B. Circulating tumor cell interactions with macrophages: implications for biology and treatment. Transl Lung Cancer Res 2017; 6:418-430. [PMID: 28904886 DOI: 10.21037/tlcr.2017.07.04] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer and metastasis are closely associated with inflammation. Macrophages are important effector cells in enhancing tumor proliferation, invasion and providing protection against the immune system. Despite advanced knowledge of tumor-macrophage interactions, the role of macrophages in emergence and invasion of circulating tumor cells (CTCs) is not known. A series of six CTC cell lines have been derived from blood of patients with extensive disease small cell lung cancer (ED-SCLC) in our lab, most likely representing a homogenous cell population of the actual metastasis-initiating cells (MIC) of CTCs. SCLC has an unfavorable prognosis due to rapid dissemination and early chemoresistant relapses. SCLC CTCs recruit macrophages and elicit secretion of various cytokines and the six CTC lines express chitinase-3-like-1 (CHI3L1), vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP9) in abundance. CHI3L1 is cytokine/growth factor expressed in inflammation and cancer and found to be correlated to metastasis and a dismal prognosis. In conclusion, SCLC CTCs have acquired the essential means for aggressiveness and invasion in a tumor microenvironment specifically shaped by macrophages and inflammation.
Collapse
Affiliation(s)
- Gerhard Hamilton
- Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Barbara Rath
- Department of Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
53
|
Shen S, Li HJ, Chen KG, Wang YC, Yang XZ, Lian ZX, Du JZ, Wang J. Spatial Targeting of Tumor-Associated Macrophages and Tumor Cells with a pH-Sensitive Cluster Nanocarrier for Cancer Chemoimmunotherapy. NANO LETTERS 2017; 17:3822-3829. [PMID: 28488871 DOI: 10.1021/acs.nanolett.7b01193] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Chemoimmunotherapy, which combines chemotherapeutics with immune-modulating agents, represents an appealing approach for improving cancer therapy. To optimize its therapeutic efficacy, differentially delivering multiple therapeutic drugs to target cells is desirable. Here we developed an immunostimulatory nanocarrier (denoted as BLZ-945SCNs/Pt) that could spatially target tumor-associated macrophages (TAMs) and tumor cells for cancer chemoimmunotherapy. BLZ-945SCNs/Pt undergo supersensitive structure collapse in the prevascular regions of tumor tissues and enable the simultaneous release of platinum (Pt)-prodrug conjugated small particles and BLZ-945, a small molecule inhibitor of colony stimulating factor 1 receptor (CSF-1R) of TAMs. The released BLZ-945 can be preferentially taken up by TAMs to cause TAMs depletion from tumor tissues, while the small particles carrying Pt-prodrug enable deep tumor penetration as well as intracellularly specific drug release to kill more cancer cells. Our studies demonstrate that BLZ-945SCNs/Pt outperform their monotherapy counterparts in multiple tumor models. The underlying mechanism studies suggest that the designer pH-sensitive codelivery nanocarrier not only induces apoptosis of tumor cells but also modulates the tumor immune environment to eventually augment the antitumor effect of CD8+ cytotoxic T cells through TAMs depletion.
Collapse
Affiliation(s)
- Song Shen
- Institutes for Life Sciences, and School of Medicine, South China University of Technology , Guangzhou, Guangdong 510006, China
- CAS Center for Excellence in Nanoscience, School of Life Sciences, University of Science and Technology of China , Hefei, Anhui 230027, China
| | - Hong-Jun Li
- Institutes for Life Sciences, and School of Medicine, South China University of Technology , Guangzhou, Guangdong 510006, China
- CAS Center for Excellence in Nanoscience, School of Life Sciences, University of Science and Technology of China , Hefei, Anhui 230027, China
| | - Kai-Ge Chen
- CAS Center for Excellence in Nanoscience, School of Life Sciences, University of Science and Technology of China , Hefei, Anhui 230027, China
| | - Yu-Cai Wang
- CAS Center for Excellence in Nanoscience, School of Life Sciences, University of Science and Technology of China , Hefei, Anhui 230027, China
| | - Xian-Zhu Yang
- Institutes for Life Sciences, and School of Medicine, South China University of Technology , Guangzhou, Guangdong 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction , Guangzhou, Guangdong 510006, China
- Key Laboratory of Biomedical Materials of Ministry of Education, South China University of Technology , Guangzhou 510641, China
| | - Zhe-Xiong Lian
- Institutes for Life Sciences, and School of Medicine, South China University of Technology , Guangzhou, Guangdong 510006, China
| | - Jin-Zhi Du
- Institutes for Life Sciences, and School of Medicine, South China University of Technology , Guangzhou, Guangdong 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction , Guangzhou, Guangdong 510006, China
- Key Laboratory of Biomedical Materials of Ministry of Education, South China University of Technology , Guangzhou 510641, China
| | - Jun Wang
- Institutes for Life Sciences, and School of Medicine, South China University of Technology , Guangzhou, Guangdong 510006, China
- CAS Center for Excellence in Nanoscience, School of Life Sciences, University of Science and Technology of China , Hefei, Anhui 230027, China
- National Engineering Research Center for Tissue Restoration and Reconstruction , Guangzhou, Guangdong 510006, China
- Key Laboratory of Biomedical Materials of Ministry of Education, South China University of Technology , Guangzhou 510641, China
| |
Collapse
|
54
|
Dauer P, Nomura A, Saluja A, Banerjee S. Microenvironment in determining chemo-resistance in pancreatic cancer: Neighborhood matters. Pancreatology 2017; 17:7-12. [PMID: 28034553 PMCID: PMC5291762 DOI: 10.1016/j.pan.2016.12.010] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 12/11/2022]
Abstract
Every year, nearly 300,000 people are diagnosed with pancreatic cancer worldwide, and an equivalent number succumb to this disease. One of the major challenges of pancreatic cancer that contributes to its poor survival rates is the development of resistance to the standard chemotherapy. Heterogeneity of the tumor, the dense fibroblastic stroma, and the aggressive biology of the tumor all contribute to the chemoresistant phenotype. In addition, the acellular components of the tumor microenvironment like hypoxia, stress pathways in the stromal cells, and the cytokines that are secreted by the immune cells, have a definitive role in orchestrating the chemoresistant property of the tumor. In this review, we systematically focus on the role played by the different microenvironmental components in determining chemoresistance of pancreatic tumors.
Collapse
Affiliation(s)
- Patricia Dauer
- Department of Pharmacology, University of Minnesota, MN, USA
| | - Alice Nomura
- Division of Surgical Oncology, Department of Surgery, University of Miami, FL, USA
| | - Ashok Saluja
- Division of Surgical Oncology, Department of Surgery, University of Miami, FL, USA
| | - Sulagna Banerjee
- Division of Surgical Oncology, Department of Surgery, University of Miami, FL, USA,Address of Correspondence: PAP Research Building, Rm 109B, 1550 NW 10th Ave, Miami, FL 33136, USA, , Phone: 305-243-8242
| |
Collapse
|
55
|
Wang Z, Yin N, Zhang Z, Zhang Y, Zhang G, Chen W. Upregulation of T-cell Immunoglobulin and Mucin-Domain Containing-3 (Tim-3) in Monocytes/Macrophages Associates with Gastric Cancer Progression. Immunol Invest 2016; 46:134-148. [PMID: 27911104 DOI: 10.1080/08820139.2016.1229790] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
T-cell immunoglobulin and mucin-domain containing-3 (Tim-3) is an important immune regulatory molecule in cancer immune system. However, expression and function of Tim-3 in monocytes/macrophages in cancer progression mainly remain unclear. In this study, we analyzed Tim-3 levels in peripheral blood mononuclear cells (PBMCs) from 62 gastric cancer patients and 45 healthy controls using flow cytometry and then associated Tim-3 levels with clinical pathological data from patients. We found Tim-3 level was significantly upregulated in monocytes from gastric cancer patients compared with those from healthy controls, and that upregulated Tim-3 levels associated with depth of tumor invasion and tumor lymph node metastasis and advanced clinical stages of gastric cancer patients. Furthermore, tumor-bearing mouse experiments revealed that Tim-3 level on monocytes/macrophages associated with xenograft formation and growth. In addition, culture of monocytes from healthy controls with gastric cancer cell-conditioned medium upregulated Tim-3 expression, but IL-10, TNF-α, IFN-γ, or GM-CSF treatment or T-bet, Eomes, and T-bet/Eomes double gene knockout did not affect Tim-3 levels in blood monocytes/macrophages from human or mouse, respectively. Gal-9/Tim-3 signal was able to significantly stimulate monocyte to secrete IL-6, IL-8, and IL-10, but not IL-1β, IL-12p70, or TNF-α in presence of LPS. In conclusion, our study demonstrated that Tim-3 expressed by monocyte/macrophages might be an important mechanism in gastric cancer progression.
Collapse
Affiliation(s)
- Zhenxin Wang
- a Department of Gastroenterology , The First Affiliated Hospital of Soochow University , Suzhou , China.,b Department of Medical Oncology , The First Affiliated Hospital of Soochow University , Suzhou , China
| | - Ni Yin
- b Department of Medical Oncology , The First Affiliated Hospital of Soochow University , Suzhou , China
| | - Zixiang Zhang
- c Department of General Surgery , The First Affiliated Hospital of Soochow University , Suzhou , China
| | - Yi Zhang
- c Department of General Surgery , The First Affiliated Hospital of Soochow University , Suzhou , China
| | - Guangbo Zhang
- d Clinical Immunology of Jiangsu Province , The First Affiliated Hospital of Soochow University , Suzhou , China
| | - Weichang Chen
- a Department of Gastroenterology , The First Affiliated Hospital of Soochow University , Suzhou , China.,d Clinical Immunology of Jiangsu Province , The First Affiliated Hospital of Soochow University , Suzhou , China
| |
Collapse
|
56
|
Tsuchikawa T, Takeuchi S, Nakamura T, Shichinohe T, Hirano S. Clinical impact of chemotherapy to improve tumor microenvironment of pancreatic cancer. World J Gastrointest Oncol 2016; 8:786-792. [PMID: 27895816 PMCID: PMC5108980 DOI: 10.4251/wjgo.v8.i11.786] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/19/2016] [Accepted: 09/18/2016] [Indexed: 02/05/2023] Open
Abstract
A perioperative multimodal strategy including combination chemotherapy and radiotherapy, in addition to surgical resection, has been acknowledged to improve patient prognosis. However chemotherapy has not been actively applied as an immunomodulating modality because of concerns about various immunosuppressive effects. It has recently been shown that certain chemotherapeutic agents could modify tumor microenvironment and host immune responses through several underlying mechanisms such as immunogenic cell death, local T-cell infiltration and also the eradication of immune-suppressing regulatory cells such as regulatory T cells (Tregs) and myeloid-derived suppressor cells. With the better understanding of the cell components in the tumor microenvironment and the effect of chemotherapy to improve tumor microenvironment, it has been gradually clear that the chemotherapeutic agents is two-edged sword to have both immune promoting and suppressing effects. The cellular components of the tumor microenvironment include infiltrating T lymphocytes, dendritic cells, regulatory T cells, tumor associated macrophages, myeloid derived suppressor cells and cancer associated fibroblasts. Based on the better understanding of tumor microenvironment following chemotherapy, the treatment protocol could be modified as personalized medicine and the prognosis of pancreas cancer would be more improved utilizing multimodal chemotherapy. Here we review the recent advances of chemotherapy to improve tumor microenvironment of pancreatic cancer, introducing the unique feature of tumor microenvironment of pancreatic cancer, interaction between anti-cancer reagents and these constituting cells and future prospects.
Collapse
|
57
|
Fucoidan inhibits CCL22 production through NF-κB pathway in M2 macrophages: a potential therapeutic strategy for cancer. Sci Rep 2016; 6:35855. [PMID: 27775051 PMCID: PMC5075786 DOI: 10.1038/srep35855] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/06/2016] [Indexed: 12/18/2022] Open
Abstract
In tumor microenvironment, macrophages as a polarized M2 population promote tumor progression via releasing multiple cytokines and chemokines. A brown seaweed fucose-rich polysaccharide, fucoidan has antitumor activity and immune modulation through affecting tumor cells and lymphocytes. Here, we focused on the effect of fucoidan on macrophages especially M2 subtype. Our results demonstrated that fucoidan down-regulated partial cytokines and chemokines, especially a M2-type chemokine CCL22. Furthermore, fucoidan inhibited tumor cells migration and CD4+ T lymphocytes, especially Treg cells, recruitment induced by M2 macrophages conditioned medium through suppression of CCL22. Mechanismly, fucoidan inhibited CCL22 via suppressing p65-NF-κB phosphorylation and nuclear translocation. In addition, p38-MAPK and PI3K-AKT also affected the expression of CCL22 through differential modulation of NF-κB transcriptional activity. Taken together, we reveal an interesting result that fucoidan can inhibit tumor cell migration and lymphocytes recruitment by suppressing CCL22 in M2 macrophages via NF-κB-dependent transcription, which may be a novel and promising mechanism for tumor immunotherapy.
Collapse
|
58
|
Chen L, Li J, Wang F, Dai C, Wu F, Liu X, Li T, Glauben R, Zhang Y, Nie G, He Y, Qin Z. Tie2 Expression on Macrophages Is Required for Blood Vessel Reconstruction and Tumor Relapse after Chemotherapy. Cancer Res 2016; 76:6828-6838. [PMID: 27758887 DOI: 10.1158/0008-5472.can-16-1114] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/18/2016] [Accepted: 09/14/2016] [Indexed: 11/16/2022]
Affiliation(s)
- Lin Chen
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jie Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Fei Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Chengliang Dai
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Fan Wu
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaoman Liu
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Taotao Li
- Laboratory of Vascular and Cancer Biology, Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Thrombosis and Hemostasis Key Lab of the Ministry of Health, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Rainer Glauben
- Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Medical Department I, Berlin, Germany
| | - Yi Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Guangjun Nie
- National Centre for Nanoscience and Technology of China, Beijing, China
| | - Yulong He
- Laboratory of Vascular and Cancer Biology, Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Thrombosis and Hemostasis Key Lab of the Ministry of Health, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China.
| | - Zhihai Qin
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
59
|
Velaei K, Samadi N, Barazvan B, Soleimani Rad J. Tumor microenvironment-mediated chemoresistance in breast cancer. Breast 2016; 30:92-100. [PMID: 27668856 DOI: 10.1016/j.breast.2016.09.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 09/02/2016] [Accepted: 09/02/2016] [Indexed: 12/20/2022] Open
Abstract
Therapy resistance or tumor relapse in cancer is common. Tumors develop resistance to chemotherapeutic through a variety of mechanisms, with tumor microenvironment (TM) serving pivotal roles. Using breast cancer as a paradigm, we propose that responses of cancer cells to drugs are not exclusively determined by their intrinsic characteristics but are also controlled by deriving signals from TM. Affected microenvironment by chemotherapy is an avenue to promote phenotype which tends to resist on to be ruined. Therefore, exclusively targeting cancer cells does not demolish tumor recurrence after chemotherapy. Regardless of tumor-microenvironment pathways and their profound influence on the responsiveness of treatment, diversity of molecular properties of breast cancer also behave differently in terms of response to chemotherapy. And also it is assumed that there is cross-talk between phenotypic diversity and TM. Collectively, raising complex signal from TM in chemotherapy condition often encourages cancer cells are not killed but strengthen. Here, we summarized how TM modifies responses to chemotherapy in breast cancer. We also discussed successful treatment strategies have been considered TM in breast cancer treatment.
Collapse
Affiliation(s)
- Kobra Velaei
- Department of Anatomical Science, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Samadi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Balal Barazvan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleimani Rad
- Department of Anatomical Science, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
60
|
Baghdadi M, Wada H, Nakanishi S, Abe H, Han N, Putra WE, Endo D, Watari H, Sakuragi N, Hida Y, Kaga K, Miyagi Y, Yokose T, Takano A, Daigo Y, Seino KI. Chemotherapy-Induced IL34 Enhances Immunosuppression by Tumor-Associated Macrophages and Mediates Survival of Chemoresistant Lung Cancer Cells. Cancer Res 2016; 76:6030-6042. [PMID: 27550451 DOI: 10.1158/0008-5472.can-16-1170] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/15/2016] [Indexed: 11/16/2022]
Abstract
The ability of tumor cells to escape immune destruction and their acquired resistance to chemotherapy are major obstacles to effective cancer therapy. Although immune checkpoint therapies such as anti-PD-1 address these issues in part, clinical responses remain limited to a subpopulation of patients. In this report, we identified IL34 produced by cancer cells as a driver of chemoresistance. In particular, we found that IL34 modulated the functions of tumor-associated macrophages to enhance local immunosuppression and to promote the survival of chemoresistant cancer cells by activating AKT signaling. Targeting IL34 in chemoresistant tumors resulted in a remarkable inhibition of tumor growth when accompanied with chemotherapy. Our results define a pathogenic role for IL34 in mediating immunosuppression and chemoresistance and identify it as a tractable target for anticancer therapy. Cancer Res; 76(20); 6030-42. ©2016 AACR.
Collapse
Affiliation(s)
- Muhammad Baghdadi
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Haruka Wada
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Sayaka Nakanishi
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Hirotake Abe
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Nanumi Han
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Wira Eka Putra
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Daisuke Endo
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hidemichi Watari
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Noriaki Sakuragi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuhiro Hida
- Department of Cardiovascular and Thoracic Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kichizo Kaga
- Department of Cardiovascular and Thoracic Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center, Yokohama, Japan
| | - Tomoyuki Yokose
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Japan
| | - Atsushi Takano
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Japan. Center for Antibody and Vaccine, Research Hospital, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yataro Daigo
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Japan. Center for Antibody and Vaccine, Research Hospital, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Ken-Ichiro Seino
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
61
|
The metabolomic signature of hematologic malignancies. Leuk Res 2016; 49:22-35. [PMID: 27526405 DOI: 10.1016/j.leukres.2016.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 08/04/2016] [Accepted: 08/08/2016] [Indexed: 12/17/2022]
Abstract
The ongoing accumulation of knowledge raises hopes that understanding tumor metabolism will provide new ways for predicting, diagnosing, and even treating cancers. Some metabolic biomarkers are at present routinely utilized to diagnose cancer and metabolic alterations of tumors are being confirmed as therapeutic targets. The growing utilization of metabolomics in clinical research may rapidly turn it into one of the most potent instruments used to detect and fight tumor. In fact, while the current state and trends of high throughput metabolomics profiling focus on the purpose of discovering biomarkers and hunting for metabolic mechanism, a prospective direction, namely reprogramming metabolomics, highlights the way to use metabolomics approach for the aim of treatment of disease by way of reconstruction of disturbed metabolic pathways. In this review, we present an ample summary of the current clinical appliances of metabolomics in hematological malignancies.
Collapse
|
62
|
Tumor-associated macrophages in human breast cancer parenchyma negatively correlate with lymphatic metastasis after neoadjuvant chemotherapy. Immunobiology 2016; 222:101-109. [PMID: 27510849 DOI: 10.1016/j.imbio.2016.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 08/04/2016] [Indexed: 12/27/2022]
Abstract
Breast cancer is the leading cause of cancer death in women worldwide with high morbidity and mortality. Tumor-associated macrophages (TAM) are major innate immune cells in the tumor microenvironment controlling primary tumor growth and metastasis. Neoadjuvant chemotherapy (NACT) is a conventional pre-operative treatment for breast cancer. In the present study we examined the distribution of TAM in five distinct intratumoral morphological compartments of human breast cancer and their correlation with clinical parameters after NACT. Our data indicated that CD68+ but not stabilin-1+ TAM in areas with parenchymal elements negatively correlate with lymphatic metastasis after NACT. However, in cases where lymphatic metastases were detected (28 out of 50 analyzed samples) both amount of CD68+ and stabilin-1+ macrophages in the areas with coarse fibrous stroma directly correlated with the number of positive lymph nodes. In patients with complete response to the preoperative NACT the average score of CD68 expression in the areas with coarse fibrous stroma was lower compared with cases of a partial response and stable disease. We concluded that function of TAM after NACT depends on their intratumoral localization and local tumor microenvironment which plays an important role in polarization of macrophages towards tumor-suppressive or tumor-supportive types.
Collapse
|
63
|
Su X, Esser AK, Amend SR, Xiang J, Xu Y, Ross MH, Fox GC, Kobayashi T, Steri V, Roomp K, Fontana F, Hurchla MA, Knolhoff BL, Meyer MA, Morgan EA, Tomasson JC, Novack JS, Zou W, Faccio R, Novack DV, Robinson SD, Teitelbaum SL, DeNardo DG, Schneider JG, Weilbaecher KN. Antagonizing Integrin β3 Increases Immunosuppression in Cancer. Cancer Res 2016; 76:3484-95. [PMID: 27216180 PMCID: PMC4944657 DOI: 10.1158/0008-5472.can-15-2663] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 03/07/2016] [Indexed: 01/05/2023]
Abstract
Integrin β3 is critical for tumor invasion, neoangiogenesis, and inflammation, making it a promising cancer target. However, preclinical and clinical data of integrin β3 antagonists have demonstrated no benefit or worse outcomes. We hypothesized that integrin β3 could affect tumor immunity and evaluated tumors in mice with deletion of integrin β3 in macrophage lineage cells (β3KOM). β3KOM mice had increased melanoma and breast cancer growth with increased tumor-promoting M2 macrophages and decreased CD8(+) T cells. Integrin β3 antagonist, cilengitide, also enhanced tumor growth and increased M2 function. We uncovered a negative feedback loop in M2 myeloid cells, wherein integrin β3 signaling favored STAT1 activation, an M1-polarizing signal, and suppressed M2-polarizing STAT6 activation. Finally, disruption of CD8(+) T cells, macrophages, or macrophage integrin β3 signaling blocked the tumor-promoting effects of integrin β3 antagonism. These results suggest that effects of integrin β3 therapies on immune cells should be considered to improve outcomes. Cancer Res; 76(12); 3484-95. ©2016 AACR.
Collapse
Affiliation(s)
- Xinming Su
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Alison K Esser
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Sarah R Amend
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Jingyu Xiang
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Yalin Xu
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Michael H Ross
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Gregory C Fox
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Takayuki Kobayashi
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Veronica Steri
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Kirsten Roomp
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg
| | - Francesca Fontana
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Michelle A Hurchla
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Brett L Knolhoff
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Melissa A Meyer
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Elizabeth A Morgan
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Julia C Tomasson
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Joshua S Novack
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Wei Zou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri. Deparment of Medicine, Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, Missouri
| | - Roberta Faccio
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Deborah V Novack
- Deparment of Medicine, Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, Missouri
| | - Stephen D Robinson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Steven L Teitelbaum
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri. Deparment of Medicine, Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, Missouri
| | - David G DeNardo
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Jochen G Schneider
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg. Department of Internal Medicine II, Saarland University Medical Center, Homburg/Saar, Germany
| | - Katherine N Weilbaecher
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
64
|
Komohara Y, Fujiwara Y, Ohnishi K, Takeya M. Tumor-associated macrophages: Potential therapeutic targets for anti-cancer therapy. Adv Drug Deliv Rev 2016; 99:180-185. [PMID: 26621196 DOI: 10.1016/j.addr.2015.11.009] [Citation(s) in RCA: 446] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 10/19/2015] [Accepted: 11/11/2015] [Indexed: 01/03/2023]
Abstract
The macrophage is known to be a multifunctional antigen presenting cells and playing a central role in inflammation. Macrophages infiltrate into malignant tumor tissues in high numbers (the so-called tumor-associated macrophages [TAMs]) and many studies over the past decade have demonstrated that macrophages have protumor functions and are closely related to tumor progression. It has been shown that protumor macrophages that have differentiated through interaction with tumor cells are involved in stem cell niches, immunosuppression, invasion, and metastasis. Consistent with these functions, studies using human tumor samples have demonstrated that a higher density of macrophages, especially macrophages with the M2 phenotype, is closely associated with worse clinical prognosis in many kinds of malignant tumors. Infiltrating TAMs themselves or polarization pathway of TAMs are considered as new therapeutic targets for the therapy of malignant tumors.
Collapse
|
65
|
Martins ML, Ignazzi R, Eckert J, Watts B, Kaneno R, Zambuzzi WF, Daemen L, Saeki MJ, Bordallo HN. Restricted mobility of specific functional groups reduces anti-cancer drug activity in healthy cells. Sci Rep 2016; 6:22478. [PMID: 26932808 PMCID: PMC4773877 DOI: 10.1038/srep22478] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 02/08/2016] [Indexed: 12/23/2022] Open
Abstract
The most common cancer treatments currently available are radio- and chemo-therapy. These therapies have, however, drawbacks, such as, the reduction in quality of life and the low efficiency of radiotherapy in cases of multiple metastases. To lessen these effects, we have encapsulated an anti-cancer drug into a biocompatible matrix. In-vitro assays indicate that this bio-nanocomposite is able to interact and cause morphological changes in cancer cells. Meanwhile, no alterations were observed in monocytes and fibroblasts, indicating that this system might carry the drug in living organisms with reduced clearance rate and toxicity. X-rays and neutrons were used to investigate the carrier structure, as well as to assess the drug mobility within the bio-nanocomposite. From these unique data we show that partial mobility restriction of active groups of the drug molecule suggests why this carrier design is potentially safer to healthy cells.
Collapse
Affiliation(s)
- Murillo L. Martins
- Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Instituto de Biociências - Universidade Estadual Paulista – CP 510, 18618-970 Botucatu–SP, Brazil
| | - Rosanna Ignazzi
- Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Juergen Eckert
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, Florida 33620, United States
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Benjamin Watts
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Ramon Kaneno
- Instituto de Biociências - Universidade Estadual Paulista – CP 510, 18618-970 Botucatu–SP, Brazil
| | - Willian F. Zambuzzi
- Instituto de Biociências - Universidade Estadual Paulista – CP 510, 18618-970 Botucatu–SP, Brazil
| | - Luke Daemen
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Margarida J. Saeki
- Instituto de Biociências - Universidade Estadual Paulista – CP 510, 18618-970 Botucatu–SP, Brazil
| | - Heloisa N. Bordallo
- Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark
- European Spallation Source ESS AB, PO Box 176, SE-221 00 Lund, Sweden
| |
Collapse
|
66
|
Jia R, Wang T, Jiang Q, Wang Z, Song C, Ding B. Self-Assembled DNA Nanostructures for Drug Delivery. CHINESE J CHEM 2016. [DOI: 10.1002/cjoc.201500838] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
67
|
Liu M, Luo F, Ding C, Albeituni S, Hu X, Ma Y, Cai Y, McNally L, Sanders MA, Jain D, Kloecker G, Bousamra M, Zhang HG, Higashi RM, Lane AN, Fan TWM, Yan J. Dectin-1 Activation by a Natural Product β-Glucan Converts Immunosuppressive Macrophages into an M1-like Phenotype. THE JOURNAL OF IMMUNOLOGY 2015; 195:5055-65. [PMID: 26453753 DOI: 10.4049/jimmunol.1501158] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/10/2015] [Indexed: 12/15/2022]
Abstract
Tumor-associated macrophages (TAM) with an alternatively activated phenotype have been linked to tumor-elicited inflammation, immunosuppression, and resistance to chemotherapies in cancer, thus representing an attractive target for an effective cancer immunotherapy. In this study, we demonstrate that particulate yeast-derived β-glucan, a natural polysaccharide compound, converts polarized alternatively activated macrophages or immunosuppressive TAM into a classically activated phenotype with potent immunostimulating activity. This process is associated with macrophage metabolic reprograming with enhanced glycolysis, Krebs cycle, and glutamine utilization. In addition, particulate β-glucan converts immunosuppressive TAM via the C-type lectin receptor dectin-1-induced spleen tyrosine kinase-Card9-Erk pathway. Further in vivo studies show that oral particulate β-glucan treatment significantly delays tumor growth, which is associated with in vivo TAM phenotype conversion and enhanced effector T cell activation. Mice injected with particulate β-glucan-treated TAM mixed with tumor cells have significantly reduced tumor burden with less blood vascular vessels compared with those with TAM plus tumor cell injection. In addition, macrophage depletion significantly reduced the therapeutic efficacy of particulate β-glucan in tumor-bearing mice. These findings have established a new paradigm for macrophage polarization and immunosuppressive TAM conversion and shed light on the action mode of β-glucan treatment in cancer.
Collapse
Affiliation(s)
- Min Liu
- Division of Hematology/Oncology, Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202; Department of Immunology, Wuhan University School of Medicine, Wuhan 430072, China
| | - Fengling Luo
- Division of Hematology/Oncology, Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202; Department of Immunology, Wuhan University School of Medicine, Wuhan 430072, China
| | - Chuanlin Ding
- Division of Hematology/Oncology, Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202
| | - Sabrin Albeituni
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40202
| | - Xiaoling Hu
- Division of Hematology/Oncology, Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202
| | - Yunfeng Ma
- Division of Hematology/Oncology, Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202
| | - Yihua Cai
- Division of Hematology/Oncology, Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202
| | - Lacey McNally
- Division of Hematology/Oncology, Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202
| | - Mary Ann Sanders
- Department of Pathology, University of Louisville School of Medicine, Louisville, KY 40202
| | - Dharamvir Jain
- Division of Hematology/Oncology, Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202
| | - Goetz Kloecker
- Division of Hematology/Oncology, Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202
| | - Michael Bousamra
- Department of Cardiovascular Thoracic Surgery, University of Louisville, Louisville, KY 40202
| | - Huang-ge Zhang
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40202
| | - Richard M Higashi
- Department of Chemistry, University of Louisville, Louisville, KY 40202; and
| | - Andrew N Lane
- Division of Hematology/Oncology, Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202; Department of Chemistry, University of Louisville, Louisville, KY 40202; and Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40202
| | - Teresa W-M Fan
- Department of Chemistry, University of Louisville, Louisville, KY 40202; and Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40202
| | - Jun Yan
- Division of Hematology/Oncology, Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202; Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40202;
| |
Collapse
|
68
|
Jakeman PG, Hills TE, Fisher KD, Seymour LW. Macrophages and their interactions with oncolytic viruses. Curr Opin Pharmacol 2015; 24:23-9. [PMID: 26164569 DOI: 10.1016/j.coph.2015.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/21/2015] [Accepted: 06/23/2015] [Indexed: 11/24/2022]
Abstract
Macrophages are a highly plastic cell type and exhibit a range of defensive and regulatory functions in normal physiology. Phagocytic macrophages play an important role in defending against virus infection and they provide an important barrier that can limit the delivery of therapeutic viruses from the injection to the tumour. Within tumours, macrophages generally adopt an immunosuppressive phenotype and are associated with poor clinical prognosis. However their plasticity also provides the opportunity for therapeutic 're-education' of tumour-associated macrophages (TAMs) to adopt an active anticancer role. Oncolytic viruses present the possibility for non-specific stimulation of TAMs, and also the option for tumour-targeted expression of cytokines chosen specifically to modulate macrophage activation.
Collapse
Affiliation(s)
| | - Thomas E Hills
- Department of Oncology, University of Oxford, OX3 7DQ, UK
| | - Kerry D Fisher
- Department of Oncology, University of Oxford, OX3 7DQ, UK
| | | |
Collapse
|
69
|
Jakeman PG, Hills TE, Tedcastle AB, Di Y, Fisher KD, Seymour LW. Improved in vitro human tumor models for cancer gene therapy. Hum Gene Ther 2015; 26:249-56. [PMID: 25808057 DOI: 10.1089/hum.2015.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Developing effective anticancer treatments is a particular challenge, as agents must contend with not only the target cellular biology, but also with the complex tumor microenvironment. Here we discuss various in vitro strategies that have sought to address this issue, with a particular focus on new methodologies that utilize clinical samples in basic research and their application in gene therapy and virotherapy.
Collapse
Affiliation(s)
- Philip G Jakeman
- Department of Oncology, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Thomas E Hills
- Department of Oncology, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Alison B Tedcastle
- Department of Oncology, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Ying Di
- Department of Oncology, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Kerry D Fisher
- Department of Oncology, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Leonard W Seymour
- Department of Oncology, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|
70
|
Xu M, Liu M, Du X, Li S, Li H, Li X, Li Y, Wang Y, Qin Z, Fu YX, Wang S. Intratumoral Delivery of IL-21 Overcomes Anti-Her2/Neu Resistance through Shifting Tumor-Associated Macrophages from M2 to M1 Phenotype. THE JOURNAL OF IMMUNOLOGY 2015; 194:4997-5006. [PMID: 25876763 DOI: 10.4049/jimmunol.1402603] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/23/2015] [Indexed: 01/18/2023]
Abstract
Tumor resistance is a major hurdle to anti-Her2/neu Ab-based cancer therapy. Current strategies to overcome tumor resistance focus on tumor cell-intrinsic resistance. However, the extrinsic mechanisms, especially the tumor microenvironment, also play important roles in modulating the therapeutic response and resistance of the Ab. In this study, we demonstrate that tumor progression is highly associated with TAMs with immune-suppressive M2 phenotypes, and deletion of TAMs markedly enhanced the therapeutic effects of anti-Her2/neu Ab in a HER2/neu-dependent breast cancer cell TUBO model. Tumor local delivery of IL-21 can skew TAM polarization away from the M2 phenotype to a tumor-inhibiting M1 phenotype, which rapidly stimulates T cell responses against tumor and dramatically promotes the therapeutic effect of anti-Her2 Ab. Skewing of TAM polarization by IL-21 relies substantially on direct action of IL-21 on TAMs rather than stimulation of T and NK cells. Thus, our findings identify the abundant TAMs as a major extrinsic barrier for anti-Her2/neu Ab therapy and present a novel approach to combat this extrinsic resistance by tumor local delivery of IL-21 to skew TAM polarization. This study offers a therapeutic strategy to modulate the tumor microenvironment to overcome tumor-extrinsic resistance.
Collapse
Affiliation(s)
- Meng Xu
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China; and
| | - Mingyue Liu
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China; and
| | - Xuexiang Du
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China; and
| | - Sirui Li
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China; and
| | - Hang Li
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaozhu Li
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Li
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Wang
- Department of Pathology and Committee on Immunology, University of Chicago, Chicago, IL 60637
| | - Zhihai Qin
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang-Xin Fu
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Department of Pathology and Committee on Immunology, University of Chicago, Chicago, IL 60637
| | - Shengdian Wang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China;
| |
Collapse
|
71
|
Pistelli M, De Lisa M, Ballatore Z, Caramanti M, Pagliacci A, Battelli N, Ridolfi F, Santoni M, Maccaroni E, Bracci R, Santinelli A, Biscotti T, Berardi R, Cascinu S. Pre-treatment neutrophil to lymphocyte ratio may be a useful tool in predicting survival in early triple negative breast cancer patients. BMC Cancer 2015; 15:195. [PMID: 25884918 PMCID: PMC4428113 DOI: 10.1186/s12885-015-1204-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 03/17/2015] [Indexed: 12/31/2022] Open
Abstract
Background There is a growing body of evidence that immune response plays a large role in cancer outcome. The neutrophil to lymphocyte ratio (NLR) has been used as a simple parameter of systemic inflammation in several tumors. The purpose was to investigate the association between pre-treatment NLR, disease-free survival and overall survival in patients with early triple negative breast cancer (TNBC). Methods We reviewed the records of patients with stage I-III TNBC at our Institution from 2006 to 2012. The association between pre-treatment NLR and survival was analyzed. The difference among variables was calculated by chi-square test. DFS and OS were estimated using Kaplan-Meier method. Cox analysis was performed to analyze clinical parameters for their prognostic relevance. Results A total of 90 patients were eligible. There was no significant correlation among pre-treatment NLR and various clinical pathological factors. Patients with NLR higher than 3 showed significantly lower DFS (p = 0.002) and OS (p = 0.009) than patients with NLR equal or lower than 3. The Cox proportional multivariate hazard model revealed that higher pre-treatment NLR was independently correlated with poor DFS and OS, with hazard ratio 5.15 (95% confidence interval [CI] 1.11-23.88, p = 0.03) and 6.16 (95% CI 1.54-24.66, p = 0.01) respectively. Conclusion Our study suggests that pre-treatment NLR may be associated with DFS and OS patients with early TNBC. Further validation and a feasibility study are required before it can be considered for clinical use.
Collapse
Affiliation(s)
- Mirco Pistelli
- Clinica di Oncologia Medica, Università Politecnica delle Marche, Ancona, AO Ospedali Riuniti-Ancona, Italy.
| | - Mariagrazia De Lisa
- Clinica di Oncologia Medica, Università Politecnica delle Marche, Ancona, AO Ospedali Riuniti-Ancona, Italy.
| | - Zelmira Ballatore
- Clinica di Oncologia Medica, Università Politecnica delle Marche, Ancona, AO Ospedali Riuniti-Ancona, Italy.
| | - Miriam Caramanti
- Clinica di Oncologia Medica, Università Politecnica delle Marche, Ancona, AO Ospedali Riuniti-Ancona, Italy.
| | - Alessandra Pagliacci
- Clinica di Oncologia Medica, Università Politecnica delle Marche, Ancona, AO Ospedali Riuniti-Ancona, Italy.
| | - Nicola Battelli
- Clinica di Oncologia Medica, Università Politecnica delle Marche, Ancona, AO Ospedali Riuniti-Ancona, Italy.
| | - Francesca Ridolfi
- Clinica di Oncologia Medica, Università Politecnica delle Marche, Ancona, AO Ospedali Riuniti-Ancona, Italy.
| | - Matteo Santoni
- Clinica di Oncologia Medica, Università Politecnica delle Marche, Ancona, AO Ospedali Riuniti-Ancona, Italy.
| | - Elena Maccaroni
- Clinica di Oncologia Medica, Università Politecnica delle Marche, Ancona, AO Ospedali Riuniti-Ancona, Italy.
| | - Raffaella Bracci
- Clinica di Oncologia Medica, Università Politecnica delle Marche, Ancona, AO Ospedali Riuniti-Ancona, Italy.
| | - Alfredo Santinelli
- Anatomia Patologica, AO Ospedali Riuniti-Ancona, Università Politecnica delle Marche, Ancona, Italy.
| | - Tommasina Biscotti
- Anatomia Patologica, AO Ospedali Riuniti-Ancona, Università Politecnica delle Marche, Ancona, Italy.
| | - Rossana Berardi
- Clinica di Oncologia Medica, Università Politecnica delle Marche, Ancona, AO Ospedali Riuniti-Ancona, Italy.
| | - Stefano Cascinu
- Clinica di Oncologia Medica, Università Politecnica delle Marche, Ancona, AO Ospedali Riuniti-Ancona, Italy.
| |
Collapse
|
72
|
Pirilä E, Väyrynen O, Sundquist E, Päkkilä K, Nyberg P, Nurmenniemi S, Pääkkönen V, Pesonen P, Dayan D, Vered M, Uhlin-Hansen L, Salo T. Macrophages modulate migration and invasion of human tongue squamous cell carcinoma. PLoS One 2015; 10:e0120895. [PMID: 25811194 PMCID: PMC4374792 DOI: 10.1371/journal.pone.0120895] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 01/27/2015] [Indexed: 12/29/2022] Open
Abstract
Oral tongue squamous cell carcinoma (OTSCC) has a high mortality rate and the incidence is rising worldwide. Despite advances in treatment, the disease lacks specific prognostic markers and treatment modality. The spreading of OTSCC is dependent on the tumor microenvironment and involves tumor-associated macrophages (TAMs). Although the presence of TAMs is associated with poor prognosis in OTSCC, the specific mechanisms underlying this are still unknown. The aim here was to investigate the effect of macrophages (Mfs) on HSC-3 tongue carcinoma cells and NF-kappaB activity. We polarized THP-1 cells to M1 (inflammatory), M2 (TAM-like) and R848 (imidazoquinoline-treated) type Mfs. We then investigated the effect of Mfs on HSC-3 cell migration and NF-kappaB activity, cytokine production and invasion using several different in vitro migration models, a human 3D tissue invasion model, antibody arrays, confocal microscopy, immunohistochemistry and a mouse invasion model. We found that in co-culture studies all types of Mfs fused with HSC-3 cells, a process which was partially due to efferocytosis. HSC-3 cells induced expression of epidermal growth factor and transforming growth factor-beta in co-cultures with M2 Mfs. Direct cell-cell contact between M2 Mfs and HSC-3 cells induced migration and invasion of HSC-3 cells while M1 Mfs reduced HSC-3 cell invasion. M2 Mfs had an excess of NF-kappaB p50 subunit and a lack of p65 subunits both in the presence and absence of HSC-3 cells, indicating dysregulation and pro-tumorigenic NF-kappaB activation. TAM-like cells were abundantly present in close vicinity to carcinoma cells in OTSCC patient samples. We conclude that M2 Mfs/TAMs have an important role in OTSCC regulating adhesion, migration, invasion and cytokine production of carcinoma cells favouring tumor growth. These results demonstrate that OTSCC patients could benefit from therapies targeting TAMs, polarizing TAM-like M2 Mfs to inflammatory macrophages and modulating NF-kappaB activity.
Collapse
Affiliation(s)
- Emma Pirilä
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland
- Oulu Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
- * E-mail:
| | - Otto Väyrynen
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland
- Oulu Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Elias Sundquist
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland
- Oulu Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Kaisa Päkkilä
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland
- Oulu Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Pia Nyberg
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland
- Oulu Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Sini Nurmenniemi
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland
- Oulu Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Virve Pääkkönen
- Department of Pedodontics, Cariology and Endodontology, University of Oulu, Oulu, Finland
| | - Paula Pesonen
- Department of Community Dentistry, Institute of Dentistry, University of Oulu, Oulu, Finland
| | - Dan Dayan
- Department of Oral Pathology and Oral Medicine, School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marilena Vered
- Department of Oral Pathology and Oral Medicine, School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Pathology, The Chaim Sheba Medical Center, Tel Hashomer, Tel Aviv, Israel
| | - Lars Uhlin-Hansen
- Institute of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
- Department of Pathology, University Hospital of Northern Norway, Tromsø, Tromsø, Norway
| | - Tuula Salo
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland
- Oulu Medical Research Center, University of Oulu and Oulu University Hospital, Oulu, Finland
- Oulu University Hospital, Oulu, Finland
| |
Collapse
|
73
|
Dopamine induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages in rat C6 glioma. Toxicol Appl Pharmacol 2015; 286:112-23. [PMID: 25818600 DOI: 10.1016/j.taap.2015.03.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 03/08/2015] [Accepted: 03/17/2015] [Indexed: 11/22/2022]
Abstract
Dopamine (DA), a monoamine catecholamine neurotransmitter with antiangiogenic activity, stabilizes tumor vessels in colon, prostate and ovarian cancers, thus increases chemotherapeutic efficacy. Here, in the rat C6 glioma models, we investigated the vascular normalization effects of DA and its mechanisms of action. DA (25, 50mg/kg) inhibited tumor growth, while a precursor of DA (levodopa) prolonged the survival time of rats bearing orthotopic C6 glioma. DA improved tumor perfusion, with significant effects from day 3, and a higher level at days 5 to 7. In addition, DA decreased microvessel density and hypoxia-inducible factor-1α expression in tumor tissues, while increasing the coverage of pericyte. Conversely, an antagonist of dopamine receptor 2 (DR2) (eticlopride) but not DR1 (butaclamol) abrogated DA-induced tumor regression and vascular normalization. Furthermore, DA improved the delivery and efficacy of temozolomide therapy. Importantly, DA increased representative M1 markers (iNOS, CXCL9, etc.), while decreasing M2 markers (CD206, arginase-1, etc.). Depletion of macrophages by clodronate or zoledronic acid attenuated the effects of DA. Notably, DA treatment induced M2-to-M1 polarization in RAW264.7 cells and mouse peritoneal macrophages, and enhanced the migration of pericyte-like cells (10T1/2), which was reversed by eticlopride or DR2-siRNA. Such changes were accompanied by the downregulation of VEGF/VEGFR2 signaling. In summary, DA induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages. Thus, targeting the tumor microvasculature by DA represents a promising strategy for human glioma therapy.
Collapse
|
74
|
Increased drug resistance in breast cancer by tumor-associated macrophages through IL-10/STAT3/bcl-2 signaling pathway. Med Oncol 2015; 32:352. [DOI: 10.1007/s12032-014-0352-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 11/12/2014] [Indexed: 02/07/2023]
|
75
|
Li M, Knight DA, A Snyder L, Smyth MJ, Stewart TJ. A role for CCL2 in both tumor progression and immunosurveillance. Oncoimmunology 2014; 2:e25474. [PMID: 24073384 PMCID: PMC3782157 DOI: 10.4161/onci.25474] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 06/18/2013] [Accepted: 06/19/2013] [Indexed: 01/27/2023] Open
Abstract
The chemokine CCL2, which is best known for its chemotactic functions, is expressed not only by immune cells, but also by several types of malignant and stromal cells. CCL2 has been shown to exert both pro- and anti-tumor effects. However, recent results demonstrate a main role for CCL2 in tumor progression and metastasis, suggesting that this chemokine may constitute a therapeutic target for anticancer drugs. Mammary carcinoma models, including models of implantable, transgenic, and chemically-induced tumors, were employed in the setting of Ccl2 or Ccr2 knockout mice or CCL2 neutralization with a monoclonal antibody to further investigate the role of the CCL2/CCR2 signaling axis in tumor progression and metastatic spread. In our implantable tumor models, an anti-CCL2 monoclonal antibody inhibited the growth of primary malignant lesions in a biphasic manner and reduced the number of metastases. However, in Ccl2-/- or Ccr2-/- mice developing implanted or transgenic tumors, the number of pulmonary metastases was increased despite a reduction in the growth rate of primary neoplasms. Transgenic Mtag.Ccl2-/- or Mtag.Ccr2-/- mice also exhibited a significantly earlier of disease onset. In a chemical carcinogenesis model, anti-CCL2 monoclonal antibody inhibited the growth of established lesions but was ineffective in the tumor induction phase. In contrast to previous studies indicating a role for CCL2 in the establishment of metastases, we have demonstrated that the absence of CCL2/CCR2-signaling results in increased metastatic disease. Thus, the CCL2/CCR2 signaling axis appears to play a dual role in mediating early tumor immunosurveillance and sustaining the growth and progression of established neoplasms. Our findings support the use of anti-CCL2 therapies for the treatment of established breast carcinoma, although the complete abrogation of the CCL2 signaling cascade may also limit immunosurveillance and support metastatic spread.
Collapse
Affiliation(s)
- Ming Li
- Cancer Immunology Program; Peter MacCallum Cancer Centre; East Melbourne, VIC Australia ; Sir Peter MacCallum Department of Oncology; The University of Melbourne; East Melbourne, VIC Australia
| | | | | | | | | |
Collapse
|
76
|
Aine M, Liedberg F, Sjödahl G, Höglund M. Re: David J. McConkey, Woonyoung Choi, Colin P.N. Dinney. New insights into subtypes of invasive bladder cancer: considerations of the clinician. Eur Urol 2014;66:609-10. Eur Urol 2014; 67:e73-5. [PMID: 25194907 DOI: 10.1016/j.eururo.2014.08.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 08/25/2014] [Indexed: 01/15/2023]
Affiliation(s)
- Mattias Aine
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Fredrik Liedberg
- Department of Urology, Skåne University Hospital, Lund University, Malmö, Sweden.
| | - Gottfrid Sjödahl
- Department of Urology, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Mattias Höglund
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
77
|
Matsumura S, Yuge R, Sato S, Tomida A, Ichihashi T, Irie H, Iijima S, Shiba K, Yudasaka M. Ultrastructural localization of intravenously injected carbon nanohorns in tumor. Int J Nanomedicine 2014; 9:3499-508. [PMID: 25092979 PMCID: PMC4114911 DOI: 10.2147/ijn.s62688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Nanocarbons have many potential medical applications. Drug delivery, diagnostic imaging, and photohyperthermia therapy, especially in the treatment of tumors, have attracted interest. For the further advancement of these application studies, the microscopic localization of nanocarbons in tumor tissues and cells is a prerequisite. In this study, carbon nanohorns (CNHs) with sizes of about 100 nm were intravenously injected into mice having subcutaneously transplanted tumors, and the CNHs in tumor tissue were observed with optical and electron microscopy. In the tumor tissue, the CNHs were found in macrophages and endothelial cells within the blood vessels. Few CNHs were found in tumor cells or in the region away from blood vessels, suggesting that, under these study conditions, the enhanced permeability of tumor blood vessels was not effective for the movement of CNHs through the vessel walls. The CNHs in normal skin tissue were similarly observed. The extravasation of CNHs was not so obvious in tumor but was easily found in normal skin, which was probably due to their vessel wall structure difference. Proper understanding of the location of CNHs in tissues is helpful in the development of the medical uses of CNHs.
Collapse
Affiliation(s)
- Sachiko Matsumura
- Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ryota Yuge
- Smart Energy Research Laboratories, NEC Corporation, Tsukuba, Japan
| | - Shigeo Sato
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan
| | - Akihiro Tomida
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan
| | | | - Hiroshi Irie
- Teikyo University School of Medicine, Tokyo, Japan
| | - Sumio Iijima
- Smart Energy Research Laboratories, NEC Corporation, Tsukuba, Japan ; Faculty of Science and Technology, Meijo University, Tenpaku, Nagoya, Japan ; Nanotube Research Center, National Institute of Advanced Industrial Science and Technology, Higashi, Tsukuba, Japan
| | - Kiyotaka Shiba
- Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Masako Yudasaka
- Nanotube Research Center, National Institute of Advanced Industrial Science and Technology, Higashi, Tsukuba, Japan
| |
Collapse
|
78
|
Dutta S, Warshall C, Bandyopadhyay C, Dutta D, Chandran B. Interactions between exosomes from breast cancer cells and primary mammary epithelial cells leads to generation of reactive oxygen species which induce DNA damage response, stabilization of p53 and autophagy in epithelial cells. PLoS One 2014; 9:e97580. [PMID: 24831807 PMCID: PMC4022578 DOI: 10.1371/journal.pone.0097580] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 03/27/2014] [Indexed: 12/16/2022] Open
Abstract
Exosomes are nanovesicles originating from multivesicular bodies and are released by all cell types. They contain proteins, lipids, microRNAs, mRNAs and DNA fragments, which act as mediators of intercellular communications by inducing phenotypic changes in recipient cells. Tumor-derived exosomes have been shown to play critical roles in different stages of tumor development and metastasis of almost all types of cancer. One of the ways by which exosomes affect tumorigenesis is to manipulate the tumor microenvironments to create tumor permissive “niches”. Whether breast cancer cell secreted exosomes manipulate epithelial cells of the mammary duct to facilitate tumor development is not known. To address whether and how breast cancer cell secreted exosomes manipulate ductal epithelial cells we studied the interactions between exosomes isolated from conditioned media of 3 different breast cancer cell lines (MDA-MB-231, T47DA18 and MCF7), representing three different types of breast carcinomas, and normal human primary mammary epithelial cells (HMECs). Our studies show that exosomes released by breast cancer cell lines are taken up by HMECs, resulting in the induction of reactive oxygen species (ROS) and autophagy. Inhibition of ROS by N-acetyl-L-cysteine (NAC) led to abrogation of autophagy. HMEC-exosome interactions also induced the phosphorylation of ATM, H2AX and Chk1 indicating the induction of DNA damage repair (DDR) responses. Under these conditions, phosphorylation of p53 at serine 15 was also observed. Both DDR responses and phosphorylation of p53 induced by HMEC-exosome interactions were also inhibited by NAC. Furthermore, exosome induced autophagic HMECs were found to release breast cancer cell growth promoting factors. Taken together, our results suggest novel mechanisms by which breast cancer cell secreted exosomes manipulate HMECs to create a tumor permissive microenvironment.
Collapse
Affiliation(s)
- Sujoy Dutta
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
- * E-mail:
| | - Case Warshall
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Chirosree Bandyopadhyay
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Dipanjan Dutta
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Bala Chandran
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| |
Collapse
|
79
|
Heylman C, Sobrino A, Shirure VS, Hughes CC, George SC. A strategy for integrating essential three-dimensional microphysiological systems of human organs for realistic anticancer drug screening. Exp Biol Med (Maywood) 2014; 239:1240-54. [PMID: 24740872 DOI: 10.1177/1535370214525295] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cancer is one of the leading causes of morbidity and mortality around the world. Despite some success, traditional anticancer drugs developed to reduce tumor growth face important limitations primarily due to undesirable bone marrow and cardiovascular toxicity. Many drugs fail in clinical development after showing promise in preclinical trials, suggesting that the available in vitro and animal models are poor predictors of drug efficacy and toxicity in humans. Thus, novel models that more accurately mimic the biology of human organs are necessary for high-throughput drug screening. Three-dimensional (3D) microphysiological systems can utilize induced pluripotent stem cell technology, tissue engineering, and microfabrication techniques to develop tissue models of human tumors, cardiac muscle, and bone marrow on the order of 1 mm(3) in size. A functional network of human capillaries and microvessels to overcome diffusion limitations in nutrient delivery and waste removal can also nourish the 3D microphysiological tissues. Importantly, the 3D microphysiological tissues are grown on optically clear platforms that offer non-invasive and non-destructive image acquisition with subcellular resolution in real time. Such systems offer a new paradigm for high-throughput drug screening and will significantly improve the efficiency of identifying new drugs for cancer treatment that minimize cardiac and bone marrow toxicity.
Collapse
Affiliation(s)
- Christopher Heylman
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, CA 92697, USA
| | - Agua Sobrino
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Venktesh S Shirure
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, CA 92697, USA
| | - Christopher Cw Hughes
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, CA 92697, USA Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Steven C George
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, CA 92697, USA Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697, USA Department of Medicine, University of California, Irvine, CA 92697, USA
| |
Collapse
|
80
|
Liu YP, Suksanpaisan L, Steele MB, Russell SJ, Peng KW. Induction of antiviral genes by the tumor microenvironment confers resistance to virotherapy. Sci Rep 2014; 3:2375. [PMID: 23921465 PMCID: PMC3736178 DOI: 10.1038/srep02375] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 07/22/2013] [Indexed: 12/12/2022] Open
Abstract
Oncolytic viruses obliterate tumor cells in tissue culture but not against the same tumors in vivo. We report that macrophages can induce a powerfully protective antiviral state in ovarian and breast tumors, rendering them resistant to oncolytic virotherapy. These tumors have activated JAK/STAT pathways and expression of interferon-stimulated genes (ISGs) is upregulated. Gene expression profiling (GEP) of human primary ovarian and breast tumors confirmed constitutive activation of ISGs. The tumors were heavily infiltrated with CD68+ macrophages. Exposure of OV-susceptible tumor cell lines to conditioned media from RAW264.7 or primary macrophages activated antiviral ISGs, JAK/STAT signaling and an antiviral state. Anti-IFN antibodies and shRNA knockdown studies show that this effect is mediated by an extremely low concentration of macrophage-derived IFNβ. JAK inhibitors reversed the macrophage-induced antiviral state. This study points to a new role for tumor-associated macrophages in the induction of a constitutive antiviral state that shields tumors from viral attack.
Collapse
Affiliation(s)
- Yu-Ping Liu
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | |
Collapse
|
81
|
Jiang X, Shapiro DJ. The immune system and inflammation in breast cancer. Mol Cell Endocrinol 2014; 382:673-682. [PMID: 23791814 PMCID: PMC4919022 DOI: 10.1016/j.mce.2013.06.003] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 06/03/2013] [Accepted: 06/04/2013] [Indexed: 02/07/2023]
Abstract
During different stages of tumor development the immune system can either identify and destroy tumors, or promote their growth. Therapies targeting the immune system have emerged as a promising treatment modality for breast cancer, and immunotherapeutic strategies are being examined in preclinical and clinical models. However, our understanding of the complex interplay between cells of the immune system and breast cancer cells is incomplete. In this article, we review recent findings showing how the immune system plays dual host-protective and tumor-promoting roles in breast cancer initiation and progression. We then discuss estrogen receptor α (ERα)-dependent and ERα-independent mechanisms that shield breast cancers from immunosurveillance and enable breast cancer cells to evade immune cell induced apoptosis and produce an immunosuppressive tumor microenvironment. Finally, we discuss protumorigenic inflammation that is induced during tumor progression and therapy, and how inflammation promotes more aggressive phenotypes in ERα positive breast cancers.
Collapse
Affiliation(s)
- Xinguo Jiang
- Department of Medicine, VA Palo Alto Health Care System/Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - David J Shapiro
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
82
|
Moserle L, Jiménez-Valerio G, Casanovas O. Antiangiogenic Therapies: Going beyond Their Limits. Cancer Discov 2013; 4:31-41. [DOI: 10.1158/2159-8290.cd-13-0199] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
83
|
Is carcinoma a mesenchymal disease? The role of the stromal microenvironment in carcinogenesis. Pathology 2013; 45:371-81. [PMID: 23594691 DOI: 10.1097/pat.0b013e328360b600] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Most research into the biology of carcinoma has focused on the epithelial cells therein; the inherent assumption has been that the tumour arises from epithelial cells 'gone bad', and that the surrounding stroma is simply an 'innocent bystander'. However, there is increasing evidence that there is a complex interplay between tumour cells and their surrounding microenvironment, and that the latter may be just as important in determining the development and clinical behaviour of a given tumour. Similarly, traditional oncological practice has been predominantly aimed at a perceived ideal goal of killing all the tumour epithelial cells, with only a few recently developed therapies seeking to affect other components (such as tumour vasculature); but identifying stromal factors involved in tumour growth and survival may well lead to the development of novel therapies. This review examines current understanding of the interplay between tumour epithelial cells and their microenvironment, and enumerates various stromal factors which appear to play a role in tumour progression and/or metastasis.
Collapse
|
84
|
Amit M, Gil Z. Macrophages increase the resistance of pancreatic adenocarcinoma cells to gemcitabine by upregulating cytidine deaminase. Oncoimmunology 2013; 2:e27231. [PMID: 24498570 PMCID: PMC3912006 DOI: 10.4161/onci.27231] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 11/16/2013] [Indexed: 01/02/2023] Open
Abstract
Tumor-associated macrophages play a central role in tumor progression and metastasis. Macrophages can also promote the resistance of malignant cells to chemotherapy by stimulating the upregulation of cytidine deaminase, an intracellular enzyme that catabolizes the active form of gemcitabine. Targeting macrophage-dependent chemoresistance may reduce tumor-associated morbidity and mortality.
Collapse
Affiliation(s)
- Moran Amit
- The Laboratory for Applied Cancer Research; Department of Otolaryngology Head and Neck Surgery; Rambam Medical Center; the Technion Israel Institute of Technology; Haifa, Israel
| | - Ziv Gil
- The Laboratory for Applied Cancer Research; Department of Otolaryngology Head and Neck Surgery; Rambam Medical Center; the Technion Israel Institute of Technology; Haifa, Israel
| |
Collapse
|
85
|
Guo C, Buranych A, Sarkar D, Fisher PB, Wang XY. The role of tumor-associated macrophages in tumor vascularization. Vasc Cell 2013; 5:20. [PMID: 24314323 PMCID: PMC3913793 DOI: 10.1186/2045-824x-5-20] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/25/2013] [Indexed: 12/15/2022] Open
Abstract
Tumor vascularization is a highly complex process that involves the interaction between tumors and their surrounding stroma, as well as many distinct angiogenesis-regulating factors. Tumor associated macrophages (TAMs) represent one of the most abundant cell components in the tumor environment and key contributors to cancer-related inflammation. A large body of evidence supports the notion that TAMs play a critical role in promoting the formation of an abnormal tumor vascular network and subsequent tumor progression and invasion. Clinical and experimental evidence has shown that high levels of infiltrating TAMs are associated with poor patient prognosis and tumor resistance to therapies. In addition to stimulating angiogenesis during tumor growth, TAMs enhance tumor revascularization in response to cytotoxic therapy (e.g., radiotherapy), thereby causing cancer relapse. In this review, we highlight the emerging data related to the phenotype and polarization of TAMs in the tumor microenvironment, as well as the underlying mechanisms of macrophage function in the regulation of the angiogenic switch and tumor vascularization. Additionally, we discuss the potential of targeting pro-angiogenic TAMs, or reprograming TAMs toward a tumoricidal and angiostatic phenotype, to promote normalization of the tumor vasculature to enhance the outcome of cancer therapies.
Collapse
Affiliation(s)
- Chunqing Guo
- Department of Human & Molecular Genetics, Virginia Commonwealth University School of Medicine, PO BOX 980033, Richmond VA23298, USA
| | - Annicole Buranych
- Department of Human & Molecular Genetics, Virginia Commonwealth University School of Medicine, PO BOX 980033, Richmond VA23298, USA
| | - Devanand Sarkar
- Department of Human & Molecular Genetics, Virginia Commonwealth University School of Medicine, PO BOX 980033, Richmond VA23298, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond VA23298, USA
- VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond VA23298, USA
| | - Paul B Fisher
- Department of Human & Molecular Genetics, Virginia Commonwealth University School of Medicine, PO BOX 980033, Richmond VA23298, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond VA23298, USA
- VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond VA23298, USA
| | - Xiang-Yang Wang
- Department of Human & Molecular Genetics, Virginia Commonwealth University School of Medicine, PO BOX 980033, Richmond VA23298, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond VA23298, USA
- VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond VA23298, USA
| |
Collapse
|
86
|
Expression of vascular endothelial growth factor receptor 2 (VEGFR-2), inducible nitric oxide synthase (iNOS), and Ki-M1P in skull base chordoma: a series of 145 tumors. Neurosurg Rev 2013; 37:79-88. [DOI: 10.1007/s10143-013-0495-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 01/17/2013] [Accepted: 01/21/2013] [Indexed: 12/12/2022]
|
87
|
Weizman N, Krelin Y, Shabtay-Orbach A, Amit M, Binenbaum Y, Wong RJ, Gil Z. Macrophages mediate gemcitabine resistance of pancreatic adenocarcinoma by upregulating cytidine deaminase. Oncogene 2013; 33:3812-9. [PMID: 23995783 DOI: 10.1038/onc.2013.357] [Citation(s) in RCA: 210] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 07/02/2013] [Accepted: 07/19/2013] [Indexed: 11/09/2022]
Abstract
Resistance to pharmacologic agents used in chemotherapy is common in most human carcinomas, including pancreatic ductal adenocarcinoma (PDA), which is resistant to almost all drugs, including gemcitabine, a nucleoside analog used as a first-line treatment. Poor survival rates of PDA patients have, therefore, not changed much over 4 decades. Recent data indicated that tumor-associated macrophages (TAMs), which are abundant in the microenvironment of several tumors, including PDA, secrete pro-tumorigenic factors that contribute to cancer progression and dissemination. In this study, we show for the first time that TAMs can also induce chemoresistance of PDA by reducing gemcitabine-induced apoptosis. Macrophages co-cultured with cancer cells or TAM-conditioned medium significantly reduced apoptosis and activation of the caspase-3 pathway during gemcitabine treatment. In vivo PDA models of mice, which have reduced macrophage recruitment and activation, demonstrated improved response to gemcitabine compared with controls. Similarly, inhibition of monocytes/macrophages trafficking by a CSF1-receptor antagonist GW2580 augmented the effect of gemcitabine in a transgenic mouse PDA model that was resistant to gemcitabine alone. Analysis of multiple proteins involved in gemcitabine delivery and metabolism revealed that TAMs induced upregulation of cytidine deaminase (CDA), the enzyme that metabolizes the drug following its transport into the cell. Decreasing CDA expression by PDA cells blocked the protective effect of TAMs against gemcitabine. These results provide the first evidence of a paracrine effect of TAMs, which mediates acquired resistance of cancer cells to chemotherapy. Modulation of macrophage trafficking or inhibition of CDA may offer a new strategy for augmenting the response of PDA to chemotherapy.
Collapse
Affiliation(s)
- N Weizman
- The Laboratory for Applied Cancer Research, Department of Otolaryngology Head and Neck Surgery, Rambam Medical Center, Haifa, Israel
| | - Y Krelin
- The Laboratory for Applied Cancer Research, Department of Otolaryngology Head and Neck Surgery, Rambam Medical Center, Haifa, Israel
| | - A Shabtay-Orbach
- The Laboratory for Applied Cancer Research, Department of Otolaryngology Head and Neck Surgery, Rambam Medical Center, Haifa, Israel
| | - M Amit
- 1] The Laboratory for Applied Cancer Research, Department of Otolaryngology Head and Neck Surgery, Rambam Medical Center, Haifa, Israel [2] Department of Otolaryngology Head and Neck Surgery, Rambam Medical Center, The Technion Israel Institute of Technology, Haifa, Israel
| | - Y Binenbaum
- The Laboratory for Applied Cancer Research, Department of Otolaryngology Head and Neck Surgery, Rambam Medical Center, Haifa, Israel
| | - R J Wong
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Z Gil
- 1] The Laboratory for Applied Cancer Research, Department of Otolaryngology Head and Neck Surgery, Rambam Medical Center, Haifa, Israel [2] Department of Otolaryngology Head and Neck Surgery, Rambam Medical Center, The Technion Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
88
|
Di Matteo P, Hackl C, Jedeszko C, Valentinis B, Bordignon C, Traversari C, Kerbel RS, Rizzardi GP. NGR-TNF, a novel vascular-targeting agent, does not induce cytokine recruitment of proangiogenic bone marrow-derived cells. Br J Cancer 2013; 109:360-9. [PMID: 23828516 PMCID: PMC3722487 DOI: 10.1038/bjc.2013.347] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/12/2013] [Accepted: 06/12/2013] [Indexed: 01/11/2023] Open
Abstract
Background: Administration of certain chemotherapy drugs at the maximum tolerated dose, vascular-disrupting agents (VDAs) and irradiation can induce mobilisation and tumour homing of proangiogenic bone marrow-derived cells (BMDCs). Increases in cytokines and chemokines contribute to such mobilisation that eventually promotes tumour (re)growth. NGR-TNF is a vascular-targeting agent in advanced clinical development, coupling the CNGRCG angiogenic vessel-homing peptide with tumour necrosis factor-alpha (TNF). We investigated whether NGR-TNF mobilises host BMDCs and growth factors. Methods: Blood was obtained from Lewis lung carcinoma and 4T1 tumour-bearing mice at different time points following NGR-TNF, VDA or anti-VEGFR2/flk-1 antibody treatment. Levels of circulating growth factors were assessed by ELISAs. BMDCs were characterised by FACS. Circulating endothelial progenitor cells were defined as CD45−/CD13+/flk-1+/CD117+/7AAD−, Tie2-expressing monocytes as CD45+/CD11b+/Tie2+ and myeloid-derived suppressor cells as CD45+/CD11b+/Gr1+ cells. Results: NGR-TNF decreases tumour blood vessel density-inducing apoptosis of tumour and tumour endothelial cells. Unlike VDAs, or high-dose NGR-TNF, lower doses of NGR-TNF, comparable to those used in clinical trials, neither mobilise nor recruit to the tumour site proangiogenic BMDCs or induce host growth factors. Conclusion: Low-dose NGR-TNF exerts antitumour activity without inducing proangiogenic host responses, conceivably important for preventing/overcoming resistance and designing combination therapeutic strategies.
Collapse
|
89
|
Collagen VI in cancer and its biological mechanisms. Trends Mol Med 2013; 19:410-7. [PMID: 23639582 DOI: 10.1016/j.molmed.2013.04.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/26/2013] [Accepted: 04/02/2013] [Indexed: 12/21/2022]
Abstract
Collagen VI is a widely distributed extracellular matrix protein highly expressed in a variety of cancers that favors tumor growth and progression. A growing number of studies indicate that collagen VI directly affects malignant cells by acting on the Akt-GSK-3β-β-catenin-TCF/LEF axis, enhancing the production of protumorigenic factors and inducing epithelial-mesenchymal transition. Moreover, it affects the tumor microenvironment by increasing the recruitment of macrophages and endothelial cells, thus promoting tumor inflammation and angiogenesis. Furthermore, collagen VI promotes chemotherapy resistance and can be regarded as a potential biomarker for cancer diagnosis. Collectively, these findings strongly support a role for collagen VI as an important regulator in tumors and provide new targets for cancer therapies.
Collapse
|
90
|
Casazza A, Di Conza G, Wenes M, Finisguerra V, Deschoemaeker S, Mazzone M. Tumor stroma: a complexity dictated by the hypoxic tumor microenvironment. Oncogene 2013; 33:1743-54. [PMID: 23604130 DOI: 10.1038/onc.2013.121] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 02/15/2013] [Accepted: 02/21/2013] [Indexed: 12/21/2022]
Abstract
A lot of effort has been done to study how cancer cells react to low-oxygen tension, a condition known as hypoxia. Indeed, abnormal and dysfunctional blood vessels in the tumor are incapable to restore oxygenation, therefore perpetuating hypoxia, which, in turn, will fuel tumor progression, metastasis and resistance to antitumor therapies. Nevertheless, how stromal components including blood and lymphatic endothelial cells, pericytes and fibroblasts, as well as hematopoietic cells, respond to low-oxygen tension in comparison with their normoxic counterparts has been a matter of investigation in the last few years only and, to date, this field of research remains poorly understood. In general, opposing phenotypes can arise from the same stromal component when embedded in different tumor microenvironments, and, vice versa, different stromal components can have opposite reaction to the same tumor microenvironment. In this article, we will discuss the emerging link between tumor stroma and hypoxia, and how this complexity is translated at the molecular level.
Collapse
Affiliation(s)
- A Casazza
- 1] Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, Leuven, Belgium, Belgium [2] Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, K.U.Leuven, Leuven, Belgium, Belgium
| | - G Di Conza
- 1] Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, Leuven, Belgium, Belgium [2] Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, K.U.Leuven, Leuven, Belgium, Belgium
| | - M Wenes
- 1] Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, Leuven, Belgium, Belgium [2] Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, K.U.Leuven, Leuven, Belgium, Belgium
| | - V Finisguerra
- 1] Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, Leuven, Belgium, Belgium [2] Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, K.U.Leuven, Leuven, Belgium, Belgium
| | - S Deschoemaeker
- 1] Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, Leuven, Belgium, Belgium [2] Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, K.U.Leuven, Leuven, Belgium, Belgium
| | - M Mazzone
- 1] Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, Leuven, Belgium, Belgium [2] Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, K.U.Leuven, Leuven, Belgium, Belgium
| |
Collapse
|
91
|
Chen P, Bonaldo P. Role of macrophage polarization in tumor angiogenesis and vessel normalization: implications for new anticancer therapies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 301:1-35. [PMID: 23317816 DOI: 10.1016/b978-0-12-407704-1.00001-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Angiogenesis, the formation of new capillary blood vessels from preexisting vasculature, is one of the hallmarks of cancer that is pivotal for tumor growth and metastasis. Tumor vessels are known to be abnormal, with typically aberrant, leaky and disordered vessels. Thus, the combination of angiogenesis inhibition and vessel normalization is a potential strategy for anticancer therapy. The solid tumor is composed of not only cancer cells, but also the nonmalignant resident stromal cells, such as bone-marrow-derived cells (BMDCs) and cancer-associated fibroblasts (CAFs). Tumor-associated macrophages (TAMs) are the most abundant cell components of BMDCs, which play a significant role in promoting tumor progression. Accumulating evidences from both patient biopsies and experimental animal models have shown that TAMs function in tumor angiogenesis and vessel abnormalization in a density- and phenotype-dependent manner. This chapter will discuss the evidence for the factors and signaling pathways that are involved in macrophage recruitment and polarization in the tumor microenvironment, and it summarizes the role and underlying molecular mechanisms of macrophage polarization in tumor angiogenesis and vessel normalization. In addition, an overview of the potential of targeting TAM polarization for anticancer therapy will be provided.
Collapse
Affiliation(s)
- Peiwen Chen
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
| | | |
Collapse
|
92
|
Zhao G, Rodriguez BL. Molecular targeting of liposomal nanoparticles to tumor microenvironment. Int J Nanomedicine 2012; 8:61-71. [PMID: 23293520 PMCID: PMC3534304 DOI: 10.2147/ijn.s37859] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Liposomes are biodegradable and can be used to deliver drugs at a much higher concentration in tumor tissues than in normal tissues. Both passive and active drug delivery by liposomal nanoparticles can significantly reduce the toxic side effects of anticancer drugs and enhance the therapeutic efficacy of the drugs delivered. Active liposomal targeting to tumors is achieved by recognizing specific tumor receptors through tumor-specific ligands or antibodies coupled onto the surface of the liposomes, or by stimulus-sensitive drug carriers such as acid-triggered release or enzyme-triggered drug release. Tumors are often composed of tumor cells and nontumor cells, which include endothelial cells, pericytes, fibroblasts, stromal, mesenchymal cells, innate, and adaptive immune cells. These nontumor cells thus form the tumor microenvironment, which could be targeted and modified so that it is unfavorable for tumor cells to grow. In this review, we briefly summarized articles that had taken advantage of liposomal nanoparticles as a carrier to deliver anticancer drugs to the tumor microenvironment, and how they overcame obstacles such as nonspecific uptake, interaction with components in blood, and toxicity. Special attention is devoted to the liposomal targeting of anticancer drugs to the endothelium of tumor neovasculature, tumor associated macrophages, fibroblasts, and pericytes within the tumor microenvironment.
Collapse
Affiliation(s)
- Gang Zhao
- Institute of Materia Medica, Shandong Academy of Medical Science, Shandong, China
| | | |
Collapse
|
93
|
Plate KH, Scholz A, Dumont DJ. Tumor angiogenesis and anti-angiogenic therapy in malignant gliomas revisited. Acta Neuropathol 2012; 124:763-75. [PMID: 23143192 PMCID: PMC3508273 DOI: 10.1007/s00401-012-1066-5] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 11/02/2012] [Accepted: 11/02/2012] [Indexed: 12/13/2022]
Abstract
The cellular and molecular mechanisms of tumor angiogenesis and its prospects for anti-angiogenic cancer therapy are major issues in almost all current concepts of both cancer biology and targeted cancer therapy. Currently, (1) sprouting angiogenesis, (2) vascular co-option, (3) vascular intussusception, (4) vasculogenic mimicry, (5) bone marrow-derived vasculogenesis, (6) cancer stem-like cell-derived vasculogenesis and (7) myeloid cell-driven angiogenesis are all considered to contribute to tumor angiogenesis. Many of these processes have been described in developmental angiogenesis; however, the relative contribution and relevance of these in human brain cancer remain unclear. Preclinical tumor models support a role for sprouting angiogenesis, vascular co-option and myeloid cell-derived angiogenesis in glioma vascularization, whereas a role for the other four mechanisms remains controversial and rather enigmatic. The anti-angiogenesis drug Avastin (Bevacizumab), which targets VEGF, has become one of the most popular cancer drugs in the world. Anti-angiogenic therapy may lead to vascular normalization and as such facilitate conventional cytotoxic chemotherapy. However, preclinical and clinical studies suggest that anti-VEGF therapy using bevacizumab may also lead to a pro-migratory phenotype in therapy resistant glioblastomas and thus actively promote tumor invasion and recurrent tumor growth. This review focusses on (1) mechanisms of tumor angiogenesis in human malignant glioma that are of particular relevance for targeted therapy and (2) controversial issues in tumor angiogenesis such as cancer stem-like cell-derived vasculogenesis and bone-marrow-derived vasculogenesis.
Collapse
Affiliation(s)
- Karl H Plate
- Institute of Neurology (Edinger Institute), Frankfurt University Medical School, Frankfurt, Germany.
| | | | | |
Collapse
|
94
|
Godin B, Chiappini C, Srinivasan S, Alexander JF, Yokoi K, Ferrari M, Decuzzi P, Liu X. Discoidal Porous Silicon Particles: Fabrication and Biodistribution in Breast Cancer Bearing Mice. ADVANCED FUNCTIONAL MATERIALS 2012; 22:4225-4235. [PMID: 23227000 PMCID: PMC3516182 DOI: 10.1002/adfm.201200869] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Porous silicon (pSi) is emerging as a promising material in the development of nanovectors for the systemic delivery of therapeutic and imaging agents. The integration of photolithographic patterning, typical of the semiconductor industry, with electrochemical silicon etching provides a highly flexible strategy to fabricate monodisperse and precisely tailored nanovectors. Here, a microfabrication strategy for direct lithographic patterning of discoidal pSi particles is presented that enables precise and independent control over particle size, shape, and porous structure. Discoidal pSi nanovectors with diameters ranging from 500 to 2600 nm, heights from 200 to 700 nm, pore sizes from 5 to 150 nm, and porosities from 40 to 90% are demonstrated. The degradation in serum, interaction with immune and endothelial cells in vitro, and biodistribution in mice bearing breast tumors are assessed for two discoidal nanovectors with sizes of 600 nm × 400 nm and 1000 nm × 400 nm. It is shown that both particle types are degraded after 24 h of continuous gentle agitation in serum, do not stimulate cytokine release from macrophages or affect endothelial cell viability, and accumulate up to about 10% of the injected dose per gram tissue in orthotopic murine models of breast cancer. The accumulation of the discoidal pSi nanovectors into the breast tumor mass is found to be up to five times higher than for spherical silica beads with similar diameters.
Collapse
Affiliation(s)
- Biana Godin
- Department of Nanomedicine, The Methodist Hospital Research Institute, 6670 Bertner Ave, Houston, TX 77030, USA
| | - Ciro Chiappini
- Department of Nanomedicine, The Methodist Hospital Research Institute, 6670 Bertner Ave, Houston, TX 77030, USA
| | - Srimeenakshi Srinivasan
- Department of Nanomedicine, The Methodist Hospital Research Institute, 6670 Bertner Ave, Houston, TX 77030, USA
| | - Jenolyn F. Alexander
- Department of Nanomedicine, The Methodist Hospital Research Institute, 6670 Bertner Ave, Houston, TX 77030, USA
| | - Kenji Yokoi
- Department of Nanomedicine, The Methodist Hospital Research Institute, 6670 Bertner Ave, Houston, TX 77030, USA
| | - Mauro Ferrari
- Department of Nanomedicine, The Methodist Hospital Research Institute, 6670 Bertner Ave, Houston, TX 77030, USA
| | - Paolo Decuzzi
- Department of Nanomedicine, The Methodist Hospital Research Institute, 6670 Bertner Ave, Houston, TX 77030, USA
| | - Xuewu Liu
- Department of Nanomedicine, The Methodist Hospital Research Institute, 6670 Bertner Ave, Houston, TX 77030, USA
| |
Collapse
|
95
|
Dean JL, McClendon AK, Hickey TE, Butler LM, Tilley WD, Witkiewicz AK, Knudsen ES. Therapeutic response to CDK4/6 inhibition in breast cancer defined by ex vivo analyses of human tumors. Cell Cycle 2012; 11:2756-61. [PMID: 22767154 DOI: 10.4161/cc.21195] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To model the heterogeneity of breast cancer as observed in the clinic, we employed an ex vivo model of breast tumor tissue. This methodology maintained the histological integrity of the tumor tissue in unselected breast cancers, and importantly, the explants retained key molecular markers that are currently used to guide breast cancer treatment (e.g., ER and Her2 status). The primary tumors displayed the expected wide range of positivity for the proliferation marker Ki67, and a strong positive correlation between the Ki67 indices of the primary and corresponding explanted tumor tissues was observed. Collectively, these findings indicate that multiple facets of tumor pathophysiology are recapitulated in this ex vivo model. To interrogate the potential of this preclinical model to inform determinants of therapeutic response, we investigated the cytostatic response to the CDK4/6 inhibitor, PD-0332991. This inhibitor was highly effective at suppressing proliferation in approximately 85% of cases, irrespective of ER or HER2 status. However, 15% of cases were completely resistant to PD-0332991. Marker analyses in both the primary tumor tissue and the corresponding explant revealed that cases resistant to CDK4/6 inhibition lacked the RB-tumor suppressor. These studies provide important insights into the spectrum of breast tumors that could be treated with CDK4/6 inhibitors, and defines functional determinants of response analogous to those identified through neoadjuvant studies.
Collapse
Affiliation(s)
- Jeffry L Dean
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
96
|
Bordbar A, Mo ML, Nakayasu ES, Schrimpe-Rutledge AC, Kim YM, Metz TO, Jones MB, Frank BC, Smith RD, Peterson SN, Hyduke DR, Adkins JN, Palsson BO. Model-driven multi-omic data analysis elucidates metabolic immunomodulators of macrophage activation. Mol Syst Biol 2012; 8:558. [PMID: 22735334 PMCID: PMC3397418 DOI: 10.1038/msb.2012.21] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 05/09/2012] [Indexed: 12/11/2022] Open
Abstract
Macrophages are central players in immune response, manifesting divergent phenotypes to control inflammation and innate immunity through release of cytokines and other signaling factors. Recently, the focus on metabolism has been reemphasized as critical signaling and regulatory pathways of human pathophysiology, ranging from cancer to aging, often converge on metabolic responses. Here, we used genome-scale modeling and multi-omics (transcriptomics, proteomics, and metabolomics) analysis to assess metabolic features that are critical for macrophage activation. We constructed a genome-scale metabolic network for the RAW 264.7 cell line to determine metabolic modulators of activation. Metabolites well-known to be associated with immunoactivation (glucose and arginine) and immunosuppression (tryptophan and vitamin D3) were among the most critical effectors. Intracellular metabolic mechanisms were assessed, identifying a suppressive role for de-novo nucleotide synthesis. Finally, underlying metabolic mechanisms of macrophage activation are identified by analyzing multi-omic data obtained from LPS-stimulated RAW cells in the context of our flux-based predictions. Our study demonstrates metabolism's role in regulating activation may be greater than previously anticipated and elucidates underlying connections between activation and metabolic effectors.
Collapse
Affiliation(s)
- Aarash Bordbar
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Monica L Mo
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | | | | | - Young-Mo Kim
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Thomas O Metz
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Bryan C Frank
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | | | | - Daniel R Hyduke
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | | | - Bernhard O Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
97
|
Ben-Baruch A. The Tumor-Promoting Flow of Cells Into, Within and Out of the Tumor Site: Regulation by the Inflammatory Axis of TNFα and Chemokines. CANCER MICROENVIRONMENT 2011; 5:151-64. [PMID: 22190050 DOI: 10.1007/s12307-011-0094-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 12/08/2011] [Indexed: 12/19/2022]
Abstract
Tumors are dynamic organs, in which active processes of cell motility affect disease course by regulating the composition of cells at the tumor site. While sub-populations of tumor-promoting leukocytes are recruited inward and endothelial cell migration stands in the basis of vascular branching throughout the tumor, cancer cells make their way out of the primary site towards specific metastatic sites. This review describes the independent and cross-regulatory roles of inflammatory chemokines and of the inflammatory cytokine tumor necrosis factor α (TNFα) in determining cell motility processes that eventually have profound effects on tumor growth and metastasis. First, the effects of inflammatory chemokines such as CCL2 (MCP-1), CCL5 (RANTES) and CXCL8 (IL-8) are described, regulating the inward flow of leukocyte sub-populations with pro-tumoral activities, such as tumor-associated macrophages (TAM), myeloid-derived suppressor cells (MDSC), tumor-associated neutrophils (TAN), Th17 cells and Tregs. Then, the ability of inflammatory chemokines to induce endothelial cell migration, sprouting and tube formation is discussed, with its implications on tumor angiogenesis. This part is followed by an in depth description of the manners by which TNFα potentiates the above activities of the inflammatory chemokines, alongside with its ability to directly induce migratory processes in the tumor cells thus promoting metastasis. Note worthy is the ability of TNFα to induce in the tumor cells the important process of epithelial-to-mesenchymal transition (EMT). Emphasis is given to the ability of TNFα to establish an inflammatory network with the chemokines, and in parallel to form a cell re-modeling network together with transforming growth factor β (TGFβ). The review concludes by discussing the implications of such networks on disease course, and on the future design of therapeutic measures in cancer.
Collapse
Affiliation(s)
- Adit Ben-Baruch
- Department Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel,
| |
Collapse
|
98
|
Keliher EJ, Yoo J, Nahrendorf M, Lewis JS, Marinelli B, Newton A, Pittet MJ, Weissleder R. 89Zr-labeled dextran nanoparticles allow in vivo macrophage imaging. Bioconjug Chem 2011; 22:2383-9. [PMID: 22035047 DOI: 10.1021/bc200405d] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tissue macrophages play a critical role both in normal physiology and in disease states. However, because of a lack of specific imaging agents, we continue to have a poor understanding of their absolute numbers, flux rates, and functional states in different tissues. Here, we describe a new macrophage specific positron emission tomography imaging agent, labeled with zirconium-89 ((89)Zr), that was based on a cross-linked, short chain dextran nanoparticle (13 nm). Following systemic administration, the particle demonstrated a vascular half-life of 3.9 h and was found to be located primarily in tissue resident macrophages rather than other white blood cells. Subsequent imaging of the probe using a xenograft mouse model of cancer allowed for quantitation of tumor-associated macrophage numbers, which are of major interest in emerging molecular targeting strategies. It is likely that the material described, which allows the visualization of macrophage biology in vivo, will likewise be useful for a multitude of human applications.
Collapse
Affiliation(s)
- Edmund J Keliher
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Leuschner F, Dutta P, Gorbatov R, Novobrantseva TI, Donahoe JS, Courties G, Lee KM, Kim JI, Markmann JF, Marinelli B, Panizzi P, Lee WW, Iwamoto Y, Milstein S, Epstein-Barash H, Cantley W, Wong J, Cortez-Retamozo V, Newton A, Love K, Libby P, Pittet MJ, Swirski FK, Koteliansky V, Langer R, Weissleder R, Anderson DG, Nahrendorf M. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat Biotechnol 2011; 29:1005-10. [PMID: 21983520 PMCID: PMC3212614 DOI: 10.1038/nbt.1989] [Citation(s) in RCA: 653] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 08/29/2011] [Indexed: 12/24/2022]
Abstract
Inflammatory monocytes -- but not the non-inflammatory subset -- depend on the chemokine receptor CCR2 for distribution to injured tissue and stimulate disease progression. Precise therapeutic targeting of this inflammatory monocyte subset could spare innate immunity's essential functions for maintenance of homeostasis and thus limit unwanted effects. Here we developed siRNA nanoparticles targeting CCR2 expression in inflammatory monocytes. We identified an optimized lipid nanoparticle and silencing siRNA sequence that when administered systemically, had rapid blood clearance, accumulated in spleen and bone marrow and showed high cellular localization of fluorescently tagged siRNA inside monocytes. Efficient degradation of CCR2 mRNA in monocytes prevented their accumulation in sites of inflammation. Specifically, the treatment attenuated their number in atherosclerotic plaques, reduced infarct size following coronary artery occlusion, prolonged normoglycemia in diabetic mice after pancreatic islet transplantation and resulted in reduced tumor volumes and lower numbers of tumor-associated macrophages. Taken together, siRNA nanoparticle-mediated CCR2 gene silencing in leukocytes selectively modulates functions of innate immune cell subtypes and may allow for the development of specific anti-inflammatory therapy.
Collapse
Affiliation(s)
- Florian Leuschner
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Integrated molecular profiles of invasive breast tumors and ductal carcinoma in situ (DCIS) reveal differential vascular and interleukin signaling. Proc Natl Acad Sci U S A 2011; 109:2802-7. [PMID: 21908711 DOI: 10.1073/pnas.1108781108] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We use an integrated approach to understand breast cancer heterogeneity by modeling mRNA, copy number alterations, microRNAs, and methylation in a pathway context utilizing the pathway recognition algorithm using data integration on genomic models (PARADIGM). We demonstrate that combining mRNA expression and DNA copy number classified the patients in groups that provide the best predictive value with respect to prognosis and identified key molecular and stromal signatures. A chronic inflammatory signature, which promotes the development and/or progression of various epithelial tumors, is uniformly present in all breast cancers. We further demonstrate that within the adaptive immune lineage, the strongest predictor of good outcome is the acquisition of a gene signature that favors a high T-helper 1 (Th1)/cytotoxic T-lymphocyte response at the expense of Th2-driven humoral immunity. Patients who have breast cancer with a basal HER2-negative molecular profile (PDGM2) are characterized by high expression of protumorigenic Th2/humoral-related genes (24-38%) and a low Th1/Th2 ratio. The luminal molecular subtypes are again differentiated by low or high FOXM1 and ERBB4 signaling. We show that the interleukin signaling profiles observed in invasive cancers are absent or weakly expressed in healthy tissue but already prominent in ductal carcinoma in situ, together with ECM and cell-cell adhesion regulating pathways. The most prominent difference between low and high mammographic density in healthy breast tissue by PARADIGM was that of STAT4 signaling. In conclusion, by means of a pathway-based modeling methodology (PARADIGM) integrating different layers of molecular data from whole-tumor samples, we demonstrate that we can stratify immune signatures that predict patient survival.
Collapse
|