51
|
Bugter JM, Fenderico N, Maurice MM. Mutations and mechanisms of WNT pathway tumour suppressors in cancer. Nat Rev Cancer 2021; 21:5-21. [PMID: 33097916 DOI: 10.1038/s41568-020-00307-z] [Citation(s) in RCA: 281] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/15/2020] [Indexed: 12/21/2022]
Abstract
Mutation-induced activation of WNT-β-catenin signalling is a frequent driver event in human cancer. Sustained WNT-β-catenin pathway activation endows cancer cells with sustained self-renewing growth properties and is associated with therapy resistance. In healthy adult stem cells, WNT pathway activity is carefully controlled by core pathway tumour suppressors as well as negative feedback regulators. Gene inactivation experiments in mouse models unequivocally demonstrated the relevance of WNT tumour suppressor loss-of-function mutations for cancer growth. However, in human cancer, a far more complex picture has emerged in which missense or truncating mutations mediate stable expression of mutant proteins, with distinct functional and phenotypic ramifications. Herein, we review recent advances and challenges in our understanding of how different mutational subsets of WNT tumour suppressor genes link to distinct cancer types, clinical outcomes and treatment strategies.
Collapse
Affiliation(s)
- Jeroen M Bugter
- Oncode Institute and Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Nicola Fenderico
- Oncode Institute and Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Madelon M Maurice
- Oncode Institute and Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands.
| |
Collapse
|
52
|
Zhu G, Hu J, Xi R. The cellular niche for intestinal stem cells: a team effort. CELL REGENERATION 2021; 10:1. [PMID: 33385259 PMCID: PMC7775856 DOI: 10.1186/s13619-020-00061-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/07/2020] [Indexed: 12/31/2022]
Abstract
The rapidly self-renewing epithelium in the mammalian intestine is maintained by multipotent intestinal stem cells (ISCs) located at the bottom of the intestinal crypt that are interspersed with Paneth cells in the small intestine and Paneth-like cells in the colon. The ISC compartment is also closely associated with a sub-epithelial compartment that contains multiple types of mesenchymal stromal cells. With the advances in single cell and gene editing technologies, rapid progress has been made for the identification and characterization of the cellular components of the niche microenvironment that is essential for self-renewal and differentiation of ISCs. It has become increasingly clear that a heterogeneous population of mesenchymal cells as well as the Paneth cells collectively provide multiple secreted niche signals to promote ISC self-renewal. Here we review and summarize recent advances in the regulation of ISCs with a main focus on the definition of niche cells that sustain ISCs.
Collapse
Affiliation(s)
- Guoli Zhu
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Jiulong Hu
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China.,School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Rongwen Xi
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, China. .,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
53
|
Howe LJ, Hemani G, Lesseur C, Gaborieau V, Ludwig KU, Mangold E, Brennan P, Ness AR, St Pourcain B, Davey Smith G, Lewis SJ. Evaluating shared genetic influences on nonsyndromic cleft lip/palate and oropharyngeal neoplasms. Genet Epidemiol 2020; 44:924-933. [PMID: 32710482 PMCID: PMC8240308 DOI: 10.1002/gepi.22343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 06/12/2020] [Accepted: 07/15/2020] [Indexed: 12/23/2022]
Abstract
It has been hypothesised that nonsyndromic cleft lip/palate (nsCL/P) and cancer may share aetiological risk factors. Population studies have found inconsistent evidence for increased incidence of cancer in nsCL/P cases, but several genes (e.g., CDH1, AXIN2) have been implicated in the aetiologies of both phenotypes. We aimed to evaluate shared genetic aetiology between nsCL/P and oral cavity/oropharyngeal cancers (OC/OPC), which affect similar anatomical regions. Using a primary sample of 5,048 OC/OPC cases and 5,450 controls of European ancestry and a replication sample of 750 cases and 336,319 controls from UK Biobank, we estimate genetic overlap using nsCL/P polygenic risk scores (PRS) with Mendelian randomization analyses performed to evaluate potential causal mechanisms. In the primary sample, we found strong evidence for an association between a nsCL/P PRS and increased odds of OC/OPC (per standard deviation increase in score, odds ratio [OR]: 1.09; 95% confidence interval [CI]: 1.04, 1.13; p = .000053). Although confidence intervals overlapped with the primary estimate, we did not find confirmatory evidence of an association between the PRS and OC/OPC in UK Biobank (OR 1.02; 95% CI: 0.95, 1.10; p = .55). Mendelian randomization analyses provided evidence that major nsCL/P risk variants are unlikely to influence OC/OPC. Our findings suggest possible shared genetic influences on nsCL/P and OC/OPC.
Collapse
Affiliation(s)
- Laurence J. Howe
- Medical Research Council Integrative Epidemiology Unit, Population Health SciencesUniversity of BristolBristolUK
- Institute of Cardiovascular ScienceUniversity College LondonLondonUK
- Max Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Gibran Hemani
- Medical Research Council Integrative Epidemiology Unit, Population Health SciencesUniversity of BristolBristolUK
| | - Corina Lesseur
- Section of GeneticsInternational Agency for Research on CancerLyonFrance
| | - Valérie Gaborieau
- Section of GeneticsInternational Agency for Research on CancerLyonFrance
| | | | | | - Paul Brennan
- Section of GeneticsInternational Agency for Research on CancerLyonFrance
| | - Andy R. Ness
- NIHR Bristol Biomedical Research CentreUniversity Hospitals BristolBristolUK
- Weston NHS Foundation TrustUniversity of BristolBristolUK
| | - Beate St Pourcain
- Medical Research Council Integrative Epidemiology Unit, Population Health SciencesUniversity of BristolBristolUK
- Max Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - George Davey Smith
- Medical Research Council Integrative Epidemiology Unit, Population Health SciencesUniversity of BristolBristolUK
| | - Sarah J. Lewis
- Medical Research Council Integrative Epidemiology Unit, Population Health SciencesUniversity of BristolBristolUK
| |
Collapse
|
54
|
Lower Rate of CTNNB1 Mutations and Higher Rate of APC Mutations in Desmoid Fibromatosis of the Breast: A Series of 134 Tumors. Am J Surg Pathol 2020; 44:1266-1273. [PMID: 32590455 DOI: 10.1097/pas.0000000000001517] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Desmoid fibromatosis (DF) is a rare, locally aggressive, nonmetastasizing fibroblastic/myofibroblastic tumor with a tendency to recur and an unpredictable clinical course. A "wait-and-see" policy is the new standard of care. DF are characterized by activating alterations of the wnt/β-catenin pathway: CTNNB1 or adenomatous polyposis coli gene (APC) mutations (these mutations being mutually exclusive). Desmoid-type fibromatosis of the breast (DFB) is rare with an incidence of 0.2% of breast tumors. The diagnosis of DFB is difficult, as it must be distinguished from metaplastic carcinoma and other spindle cell lesions. Sequencing of 128 DFB identified a lower rate of CTNNB1 mutations using Sanger (65.6%) or Sanger+next-generation sequencing (77.7%) and a higher rate of APC mutations (11.8%) than in all-site DF. By excluding patients with familial adenomatous polyposis (n=2), the rate of APC mutations in DFB was high (10.7%). The distribution of CTNNB1 mutations in DFB was different from all-site DF, with a higher rate of T41A (68.9%), a lower rate of S45F (5.7%), and a similar rate of S45T (12.6%). By combining the 2 molecular techniques in a 2-step manner (Sanger, then next-generation sequencing), we increased the detection rate of CTNNB1 mutations and lowered the rate of wild-type tumors from 34.4% to 9.8%, therefore improving the diagnosis of DFB. The identification of the exon 3 CTNNB1 mutation in breast spindle cell lesions is a highly specific tool for the diagnosis of DFB, in addition to extensive immunohistochemical analysis. Our study also underlines the importance of APC in DFB tumorigenesis. These findings have significant implications for patient care and management.
Collapse
|
55
|
Frei T, Cella F, Tedeschi F, Gutiérrez J, Stan GB, Khammash M, Siciliano V. Characterization and mitigation of gene expression burden in mammalian cells. Nat Commun 2020; 11:4641. [PMID: 32934213 PMCID: PMC7492461 DOI: 10.1038/s41467-020-18392-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/18/2020] [Indexed: 12/19/2022] Open
Abstract
Despite recent advances in circuit engineering, the design of genetic networks in mammalian cells is still painstakingly slow and fraught with inexplicable failures. Here, we demonstrate that transiently expressed genes in mammalian cells compete for limited transcriptional and translational resources. This competition results in the coupling of otherwise independent exogenous and endogenous genes, creating a divergence between intended and actual function. Guided by a resource-aware mathematical model, we identify and engineer natural and synthetic miRNA-based incoherent feedforward loop (iFFL) circuits that mitigate gene expression burden. The implementation of these circuits features the use of endogenous miRNAs as elementary components of the engineered iFFL device, a versatile hybrid design that allows burden mitigation to be achieved across different cell-lines with minimal resource requirements. This study establishes the foundations for context-aware prediction and improvement of in vivo synthetic circuit performance, paving the way towards more rational synthetic construct design in mammalian cells.
Collapse
Affiliation(s)
- Timothy Frei
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Mattenstrasse 26, Basel, 4058, Switzerland
| | - Federica Cella
- Istituto Italiano di Tecnologia-IIT, Largo Barsanti e Matteucci, Naples, 80125, Italy
- University of Genoa, Genoa, 16132, Italy
| | - Fabiana Tedeschi
- Istituto Italiano di Tecnologia-IIT, Largo Barsanti e Matteucci, Naples, 80125, Italy
| | - Joaquín Gutiérrez
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Mattenstrasse 26, Basel, 4058, Switzerland
| | - Guy-Bart Stan
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
| | - Mustafa Khammash
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Mattenstrasse 26, Basel, 4058, Switzerland.
| | - Velia Siciliano
- Istituto Italiano di Tecnologia-IIT, Largo Barsanti e Matteucci, Naples, 80125, Italy.
| |
Collapse
|
56
|
Ramos-Betancourt N, Field MG, Davila-Alquisiras JH, Karp CL, Hernández-Zimbrón LF, García-Vázquez R, Vazquez-Romo KA, Wang G, Fromow-Guerra J, Hernandez-Quintela E, Galor A. Whole exome profiling and mutational analysis of Ocular Surface Squamous Neoplasia. Ocul Surf 2020; 18:627-632. [PMID: 32717381 DOI: 10.1016/j.jtos.2020.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/04/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE To determine genetic mutational profiles in patients with Ocular Surface Squamous Neoplasia (OSSN) using whole exome sequencing. METHODS Prospective, case-series study. Patient recruitment was conducted in a single tertiary referral center from April to September 2017. Specimens were obtained by incisional biopsies of tumors from ten eyes with histopathologic confirmation of OSSN. DNA whole exome sequencing and mutation analysis were performed. RESULTS Ten patients with clinically-diagnosed OSSN underwent DNA whole exome sequencing analysis. Deleterious mutations in 305 genes known to drive tumor development and progression were found. These mutations centered around two main pathways: DNA repair/cell cycle and development/growth. All ten samples had at least one mutation in a DNA repair/cell cycle gene and all but one sample had one in a development/growth gene. The most common mutation was found in TP53 and HGF (both present in 50% of cases) and mutually exclusive mutations were found in BRCA1 and BRCA2 (50% of cases). Mutations in APC, MSH6, PDGFRA, and PTCH1 were found in 40% of cases. Global mutation analysis identified ultraviolet induced radiation as the only mutational signature present in the dataset. CONCLUSIONS Mutations found in samples from patients with OSSN are mainly induced by ultraviolet radiation and occur within two main pathways related to DNA repair/cell cycle and development/growth. There are many clinically available drugs and several others being evaluated in clinical trials that target the genes found mutated in this study, offering new therapeutic options for OSSN.
Collapse
Affiliation(s)
- Nallely Ramos-Betancourt
- Department of Cornea and Refractive Surgery, Asociación para Evitar la Ceguera, IAP, Mexico City, Mexico.
| | - Matthew G Field
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jesus H Davila-Alquisiras
- Department of Cornea and Refractive Surgery, Asociación para Evitar la Ceguera, IAP, Mexico City, Mexico
| | - Carol L Karp
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Luis F Hernández-Zimbrón
- Research Department, Asociación para Evitar la Ceguera en México, IAP, Mexico City, Mexico; Biochemistry Department, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Roberto García-Vázquez
- Department of Cornea and Refractive Surgery, Asociación para Evitar la Ceguera, IAP, Mexico City, Mexico
| | - Kristian A Vazquez-Romo
- Department of Cornea and Refractive Surgery, Asociación para Evitar la Ceguera, IAP, Mexico City, Mexico
| | - Gaofeng Wang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA; John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Jans Fromow-Guerra
- Research Department, Asociación para Evitar la Ceguera en México, IAP, Mexico City, Mexico
| | - Everardo Hernandez-Quintela
- Department of Cornea and Refractive Surgery, Asociación para Evitar la Ceguera, IAP, Mexico City, Mexico; Research Department, Asociación para Evitar la Ceguera en México, IAP, Mexico City, Mexico
| | - Anat Galor
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Ophthalmology, Miami Veteran Affairs Medical Center, Miami, FL, USA
| |
Collapse
|
57
|
Venkatachalam K, Vinayagam R, Arokia Vijaya Anand M, Isa NM, Ponnaiyan R. Biochemical and molecular aspects of 1,2-dimethylhydrazine (DMH)-induced colon carcinogenesis: a review. Toxicol Res (Camb) 2020; 9:2-18. [PMID: 32440334 DOI: 10.1093/toxres/tfaa004] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 01/20/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023] Open
Abstract
1,2-dimethylhydrazine (DMH) is a member in the class of hydrazines, strong DNA alkylating agent, naturally present in cycads. DMH is widely used as a carcinogen to induce colon cancer in animal models. Exploration of DMH-induced colon carcinogenesis in rodent models provides the knowledge to perceive the biochemical, molecular, and histological mechanisms of different stages of colon carcinogenesis. The procarcinogen DMH, after a series of metabolic reactions, finally reaches the colon, there produces the ultimate carcinogen and reactive oxygen species (ROS), which further alkylate the DNA and initiate the development of colon carcinogenesis. The preneolpastic lesions and histopathological observations of DMH-induced colon tumors may provide typical understanding about the disease in rodents and humans. In addition, this review discusses about the action of biotransformation and antioxidant enzymes involved in DMH intoxication. This understanding is essential to accurately identify and interpret alterations that occur in the colonic mucosa when evaluating natural or pharmacological compounds in DMH-induced animal colon carcinogenesis.
Collapse
Affiliation(s)
- Karthikkumar Venkatachalam
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, UAE University, Al Ain-17666, United Arab Emirates
| | - Ramachandran Vinayagam
- Department of Biotechnology, Thiruvalluvar University, Serkadu, Vellore, Tamilnadu 632 115, India
| | | | - Nurulfiza Mat Isa
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 Seri Kembangan, Selangor, Malaysia
| | - Rajasekar Ponnaiyan
- Department of Zoology, Jamal Mohamed College, Tiruchirappalli, Tamil Nadu 620020, India
| |
Collapse
|
58
|
Goldsberry WN, Meza-Perez S, Londoño AI, Katre AA, Mott BT, Roane BM, Goel N, Wall JA, Cooper SJ, Norian LA, Randall TD, Birrer MJ, Arend RC. Inhibiting WNT Ligand Production for Improved Immune Recognition in the Ovarian Tumor Microenvironment. Cancers (Basel) 2020; 12:cancers12030766. [PMID: 32213921 PMCID: PMC7140065 DOI: 10.3390/cancers12030766] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/21/2022] Open
Abstract
In ovarian cancer, upregulation of the Wnt/β–catenin pathway leads to chemoresistance and correlates with T cell exclusion from the tumor microenvironment (TME). Our objectives were to validate these findings in an independent cohort of ovarian cancer subjects and determine whether inhibiting the Wnt pathway in a syngeneic ovarian cancer murine model could create a more T-cell-inflamed TME, which would lead to decreased tumor growth and improved survival. We preformed RNA sequencing in a cohort of human high grade serous ovarian carcinoma subjects. We used CGX1321, an inhibitor to the porcupine (PORCN) enzyme that is necessary for secretion of WNT ligand, in mice with established ID8 tumors, a murine ovarian cancer cell line. In order to investigate the effect of decreased Wnt/β–catenin pathway activity in the dendritic cells (DCs), we injected ID8 cells in mice that lacked β–catenin specifically in DCs. Furthermore, to understand how much the effects of blocking the Wnt/β–catenin pathway are dependent on CD8+ T cells, we injected ID8 cells into mice with CD8+ T cell depletion. We confirmed a negative correlation between Wnt activity and T cell signature in our cohort. Decreasing WNT ligand production resulted in increases in T cell, macrophage and dendritic cell functions, decreased tumor burden and improved survival. Reduced tumor growth was found in mice that lacked β–catenin specifically in DCs. When CD8+ T cells were depleted, CGX1321 treatment did not have the same magnitude of effect on tumor growth. Our investigation confirmed an increase in Wnt activity correlated with a decreased T-cell-inflamed environment; a relationship that was further supported in our pre-clinical model that suggests inhibiting the Wnt/β–catenin pathway was associated with decreased tumor growth and improved survival via a partial dependence on CD8+ T cells.
Collapse
Affiliation(s)
- Whitney N. Goldsberry
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.I.L.); (A.A.K.); (B.T.M.); (B.M.R.); (N.G.); (J.A.W.); (M.J.B.); (R.C.A.)
- Correspondence:
| | - Selene Meza-Perez
- Division of Immunology & Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.M.-P.); (T.D.R.)
| | - Angelina I. Londoño
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.I.L.); (A.A.K.); (B.T.M.); (B.M.R.); (N.G.); (J.A.W.); (M.J.B.); (R.C.A.)
| | - Ashwini A. Katre
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.I.L.); (A.A.K.); (B.T.M.); (B.M.R.); (N.G.); (J.A.W.); (M.J.B.); (R.C.A.)
| | - Bryan T. Mott
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.I.L.); (A.A.K.); (B.T.M.); (B.M.R.); (N.G.); (J.A.W.); (M.J.B.); (R.C.A.)
| | - Brandon M. Roane
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.I.L.); (A.A.K.); (B.T.M.); (B.M.R.); (N.G.); (J.A.W.); (M.J.B.); (R.C.A.)
| | - Nidhi Goel
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.I.L.); (A.A.K.); (B.T.M.); (B.M.R.); (N.G.); (J.A.W.); (M.J.B.); (R.C.A.)
| | - Jaclyn A. Wall
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.I.L.); (A.A.K.); (B.T.M.); (B.M.R.); (N.G.); (J.A.W.); (M.J.B.); (R.C.A.)
| | - Sara J. Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA;
| | - Lyse A. Norian
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Troy D. Randall
- Division of Immunology & Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.M.-P.); (T.D.R.)
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michael J. Birrer
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.I.L.); (A.A.K.); (B.T.M.); (B.M.R.); (N.G.); (J.A.W.); (M.J.B.); (R.C.A.)
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rebecca C. Arend
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.I.L.); (A.A.K.); (B.T.M.); (B.M.R.); (N.G.); (J.A.W.); (M.J.B.); (R.C.A.)
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
59
|
Chen F, Qu M, Zhang F, Tan Z, Xia Q, Hambly BD, Bao S, Tao K. IL-36 s in the colorectal cancer: is interleukin 36 good or bad for the development of colorectal cancer? BMC Cancer 2020; 20:92. [PMID: 32013927 PMCID: PMC6998229 DOI: 10.1186/s12885-020-6587-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 01/29/2020] [Indexed: 01/16/2023] Open
Abstract
Background and aims Colorectal cancer (CRC) is a major killer. Host immunity is important in tumorigenesis. Direct comparison among IL-36α, IL-36β and IL-36γ in the prognosis of CRC is unclear. Methods CRC tissue arrays were generated from colorectostomy samples with TNM stage, invasion depth and the demography of these patients (n = 185). Using immunohistochemistry/histopathology, IL-36α, IL-36β and IL-36γ were determined, in comparison to non-cancer tissues. Results A significant association was observed between colonic IL-36α, IL-36β or IL-36γ and the presence of cancer (with all P < 0.0001). Using ROC curve analysis, specificity and sensitivity of IL-36α, IL-36β or IL-36γ were confirmed, with area under the curve (AUC) values of 0.68, 0.73 and 0.65, respectively. Significant differences in survival were observed between IL-36αhigh and IL-36αlow (P = 0.003) or IL-36γhigh and IL-36γlow (P = 0.03). Survival curves varied significantly when further stratification into sub-groups, on the basis of combined levels of expression of two isotypes of IL-36 was undertaken. A significant difference was observed when levels of IL-36α and IL-36β were combined (P = 0.01), or a combination of IL-36α plus IL-36γ (P = 0.002). The sub-groups with a combination of IL-36αhigh plus IL-36βhigh, or IL-36αhigh plus IL-36γlow exhibited the longest survival time among CRC patients. In contrast, the sub-groups of IL-36αlow plus IL-36βhigh or IL-36αlow plus IL-36γhigh had the shortest overall survival. Using the log-rank test, IL-36αhigh expression significantly improved survival in patients with an invasion depth of T4 (P < 0.0001), lymph node metastasis (P = 0.04), TNM III-IV (P = 0.03) or with a right-sided colon tumour (P = 0.02). Similarly, IL-36γlow expression was significantly associated with improved survival in patients with no lymph node metastasis (P = 0.008), TNM I-II (P = 0.03) or with a left-sided colon tumour (P = 0.05). Multivariate analysis demonstrated that among IL-36α, IL-36β and IL-36γ, only IL-36α (HR, 0.37; 95% CI, 0.16–0.87; P = 0.02) was an independent factor in survival, using Cox proportional hazards regression analysis. Conclusion IL-36α or IL-36γ are reliable biomarkers in predicting the prognosis of CRC during the later or early stages of the disease, respectively. Combining IL-36α plus IL-36γ appears to more accurately predict the postoperative prognosis of CRC patients. Our data may be useful in the management of CRC.
Collapse
Affiliation(s)
- Feier Chen
- Department of Pathology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Discipline of Pathology, School of Medical Sciences and Bosch Institute, Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Meng Qu
- Beihua University School of Medicine, Jilin, China
| | - Feng Zhang
- Department of Pathology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhenyu Tan
- Department of Pathology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qinghua Xia
- Centre for Disease Control and Prevention of Changning District, Shanghai, China
| | - Brett D Hambly
- Department of Pathology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Discipline of Pathology, School of Medical Sciences and Bosch Institute, Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Shisan Bao
- Department of Pathology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,Discipline of Pathology, School of Medical Sciences and Bosch Institute, Charles Perkins Centre, The University of Sydney, Sydney, Australia.
| | - Kun Tao
- Department of Pathology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
60
|
Sheng QS, He KX, Li JJ, Zhong ZF, Wang FX, Pan LL, Lin JJ. Comparison of Gut Microbiome in Human Colorectal Cancer in Paired Tumor and Adjacent Normal Tissues. Onco Targets Ther 2020; 13:635-646. [PMID: 32021305 PMCID: PMC6982458 DOI: 10.2147/ott.s218004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 12/12/2019] [Indexed: 01/24/2023] Open
Abstract
Background To understand the biological effect of gut microbiome on the progression of colorectal cancer (CRC), we sequenced the V3-V4 region of the 16S rRNA gene to illustrate the overall structure of microbiota in the CRC patients. Methods In this study, a total of 66 CRC patients were dichotomized into different groups based on the following characteristics: paired tumor and adjacent normal tissues, distal and proximal CRC segments, MMR (-) and MMR (+), different TNM staging and clinic tumor staging. Results By sequencing and comparing the microbial assemblages, our results indicated that 7 microbe genus (Fusobacterium, Faecalibacterium, Akkermansia, Ruminococcus2, Parabacteroides, Streptococcus, and f_Ruminococcaceae) were significantly different between tumor and adjacent normal tissues; and 5 microbe genus (Bacteroides, Fusobacterium, Faecalibacterium, Parabacteroides, and Ruminococcus2) were significantly different between distal and proximal CRC segments; only 2 microbe genus (f_Enterobacteriaceae and Granulicatella) were significantly different between MMR (-) and MMR (+); but there was no significant microbial difference were detected neither in the TNM staging nor in the clinic tumor staging. Conclusion All these findings implied a better understanding of the alteration in the gut microbiome, which may offer new insight into diagnosing and therapying for CRC patients.
Collapse
Affiliation(s)
- Qin-Song Sheng
- Department of Colorectal and Anal Surgery, the First Affiliated Hospital of College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Kang-Xin He
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jian-Jiong Li
- Department of Colorectal and Anal Surgery, the First Affiliated Hospital of College of Medicine, Zhejiang University, Ningbo, People's Republic of China
| | - Zi-Feng Zhong
- Department of Colorectal and Anal Surgery, the First Affiliated Hospital of College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Fei-Xia Wang
- Department of Colorectal and Anal Surgery, the First Affiliated Hospital of College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Le-Lin Pan
- Department of Colorectal and Anal Surgery, the First Affiliated Hospital of College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jian-Jiang Lin
- Department of Colorectal and Anal Surgery, the First Affiliated Hospital of College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
61
|
Sasidharan Nair V, Saleh R, Toor SM, Taha RZ, Ahmed AA, Kurer MA, Murshed K, Alajez NM, Abu Nada M, Elkord E. Transcriptomic profiling disclosed the role of DNA methylation and histone modifications in tumor-infiltrating myeloid-derived suppressor cell subsets in colorectal cancer. Clin Epigenetics 2020; 12:13. [PMID: 31941522 PMCID: PMC6964037 DOI: 10.1186/s13148-020-0808-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/03/2020] [Indexed: 12/16/2022] Open
Abstract
Background Increased numbers of myeloid-derived suppressor cells (MDSCs) are positively correlated with poor prognosis and reduced survivals of cancer patients. They play central roles in tumor immune evasion and tumor metastasis. However, limited data are available on phenotypic/transcriptomic characteristics of the different MDSCs subsets in cancer. These cells include immature (I-MDSCs), monocytic (M-MDSCs), and polymorphonuclear/granulocytic (PMN-MDSCs). Methods Phenotypic characterization of myeloid subsets from 27 colorectal cancer (CRC) patients was assessed by flow cytometric analyses. RNA-sequencing of sorted I-MDSCs, PMN-MDSCs, and antigen-presenting cells (APCs) was also performed. Results We found that the levels of I-MDSCs and PMN-MDSCs were increased in tumor tissues (TT), compared with normal tissues (NT) in colorectal cancer. Our functional annotation analyses showed that genes associated with histone deacetylase (HDAC) activation- and DNA methylation-mediated transcriptional silencing were upregulated, and histone acetyl transferase (HAT)-related genes were downregulated in tumor-infiltrating I-MDSCs. Moreover, pathways implicated in cell trafficking and immune suppression, including Wnt, interleukin-6 (IL-6), and mitogen-activated protein kinase (MAPK) signaling, were upregulated in I-MDSCs. Notably, PMN-MDSCs showed downregulation in genes related to DNA methylation and HDAC binding. Using an ex vivo model, we found that inhibition of HDAC activation or neutralization of IL-6 in CRC tumor tissues downregulates the expression of genes associated with immunosuppression and myeloid cell chemotaxis, confirming the importance of HDAC activation and IL-6 signaling pathway in MDSC function and chemotaxis. Conclusions This study provides novel insights into the epigenetic regulations and other molecular pathways in different myeloid cell subsets within the CRC tumor microenvironment (TME), giving opportunities to potential targets for therapeutic benefits.
Collapse
Affiliation(s)
- Varun Sasidharan Nair
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110, Doha, Qatar
| | - Reem Saleh
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110, Doha, Qatar
| | - Salman M Toor
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110, Doha, Qatar
| | - Rowaida Z Taha
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110, Doha, Qatar
| | - Ayman A Ahmed
- Department of Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Mohamed A Kurer
- Department of Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Khaled Murshed
- Department of Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Nehad M Alajez
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110, Doha, Qatar
| | | | - Eyad Elkord
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box 34110, Doha, Qatar. .,Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester, UK.
| |
Collapse
|
62
|
Lorca V, Garre P. Current status of the genetic susceptibility in attenuated adenomatous polyposis. World J Gastrointest Oncol 2019; 11:1101-1114. [PMID: 31908716 PMCID: PMC6937445 DOI: 10.4251/wjgo.v11.i12.1101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/18/2019] [Accepted: 10/14/2019] [Indexed: 02/05/2023] Open
Abstract
Adenomatous polyposis (AP) is classified according to cumulative adenoma number in classical AP (CAP) and attenuated AP (AAP). Genetic susceptibility is the major risk factor in CAP due to mutations in the known high predisposition genes APC and MUTYH. However, the contribution of genetic susceptibility to AAP is lower and less understood. New predisposition genes have been recently proposed, and some of them have been validated, but their scarcity hinders accurate risk estimations and prevalence calculations. AAP is a heterogeneous condition in terms of severity, clinical features and heritability. Therefore, clinicians do not have strong discriminating criteria for the recommendation of the genetic study of known predisposition genes, and the detection rate is low. Elucidation and knowledge of new AAP high predisposition genes are of great importance to offer accurate genetic counseling to the patient and family members. This review aims to update the genetic knowledge of AAP, and to expound the difficulties involved in the genetic analysis of a highly heterogeneous condition such as AAP.
Collapse
Affiliation(s)
- Víctor Lorca
- Laboratorio de Oncología Molecular, Grupo de Investigación Clínica y Traslacional en Oncología, Hospital Clínico San Carlos, Madrid 28040, Spain
| | - Pilar Garre
- Laboratorio de Oncología Molecular, Servicio de Oncología, Hospital Clínico San Carlos, Madrid 28040, Spain
| |
Collapse
|
63
|
Interleukin-38 in colorectal cancer: a potential role in precision medicine. Cancer Immunol Immunother 2019; 69:69-79. [PMID: 31786620 DOI: 10.1007/s00262-019-02440-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related death, partly due to a lack of reliable biomarkers for early diagnosis. To improve the outcome of CRC, it is critical to provide diagnosis at an early stage using promising sensitive/specific marker(s). Using immunohistochemistry and histopathology, IL-38 expression was determined in tissue arrays of CRC with different TNM status and depth of tumour invasion. Data were compared to IL-38 in adjacent non-cancer tissue and correlated with demographic information, including survival. A substantial reduction of IL-38 was detected in the CRC tissue compared to adjacent non-cancer colonic tissue. IL-38 correlated with the extent of tumour differentiation (P < 0.0001); CRC location in the left side of the colon (P < 0.05), and smaller tumour size (≤ 5 cm; P < 0.05). Receiver operating characteristic (ROC) curve analysis demonstrated both high specificity and high sensitivity of IL-38 for the diagnosis of CRC [area under the curve (AUC) = 0.89)]. By sub-group analysis, AUC of IL-38 for the diagnosis of CRC was higher in poorly differentiated, right-sided CRC or tumour size > 5 cm (all AUC > 0.9). Significantly, longer survival was observed for the IL-38high versus the IL-38low groups in CRC patients (P = 0.04). Survival was also longer for IL-38high patients with lymph node metastasis (P = 0.01) and TNM stage III-IV (P = 0.02). Multivariate analysis demonstrated that IL-38 (P = 0.05) and tumour invasion depth (P = 0.04) were independent factors for survival. High IL38 in CRC is an independent prognostic factor for the longer survival of CRC patients. IL-38 signalling may constitute a therapeutic target in CRC.
Collapse
|
64
|
Chang SC, Lan YT, Lin PC, Yang SH, Lin CH, Liang WY, Chen WS, Jiang JK, Lin JK. Patterns of germline and somatic mutations in 16 genes associated with mismatch repair function or containing tandem repeat sequences. Cancer Med 2019; 9:476-486. [PMID: 31769227 PMCID: PMC6970039 DOI: 10.1002/cam4.2702] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/19/2019] [Accepted: 10/28/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND We assumed that targeted next-generation sequencing (NGS) of mismatch repair-associated genes could improve the detection of driving mutations in colorectal cancers (CRC) with microsatellite instability (MSI) and microsatellite alterations at selected tetranucleotide repeats (EMAST) and clarify the somatic mutation patterns of CRC subtypes. MATERIAL AND METHODS DNAs from tumors and white blood cells were obtained from 81 patients with EMAST(+)/MSI-high (MSI-H), 78 patients with EMAST(+)/microsatellite stable (MSS), and 72 patients with EMAST(-)/MSI-H. The germline and somatic mutations were analyzed with a 16-genes NGS panel. RESULTS In total, 284 germline mutations were identified in 161 patients. The most common mutations were in EPCAM (24.8%), MSH6 (24.2%), MLH1 (21.7%), and AXIN2 (21.7%). Germline mutations of AXIN2, POLE, POLD1, and TGFBR2 also resulted in EMAST and MSI. EMAST(+)/MSI-H tumors had a significant higher mutation number (205.9 ± 95.2 mut/MB) than tumors that were only EMAST(+) or MSI-H (118.6 ± 64.2 and 106.2 ± 54.5 mut/MB, respectively; both P < .001). In patients with AXIN2 germline mutations, the number of pathological somatic mutations in the tumors was significantly higher than those without AXIN2 germline mutations (176.7 ± 94.2 mut/MB vs 139.6 ± 85.0 mut/MB, P = .002). CONCLUSION Next-generation sequencing could enhance the detection of familial CRC. The somatic mutation burden might result from not only the affected genes in germline mutations but also through the dysfunction of downstream effectors. The AXIN2 gene might associate with hypermutation in tumors. Further in vitro experiments to confirm the causal relationship is deserved.
Collapse
Affiliation(s)
- Shih-Ching Chang
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yuan-Tzu Lan
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Ching Lin
- Department of Clinical Pathology, Yang-Ming Branch, Taipei City Hospital, Taipei, Taiwan.,Department of Health and Welfare, University of Taipei, Taipei, Taiwan
| | - Shung-Haur Yang
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,National Yang-Ming University Hospital, Yilan, Taiwan
| | - Chien-Hsing Lin
- Division of Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Wen-Yi Liang
- Department of Pathology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wei-Shone Chen
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jeng-Kai Jiang
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jen-Kou Lin
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
65
|
Otero L, Lacunza E, Vasquez V, Arbelaez V, Cardier F, González F. Variations in AXIN2 predict risk and prognosis of colorectal cancer. BDJ Open 2019; 5:13. [PMID: 31632692 PMCID: PMC6795800 DOI: 10.1038/s41405-019-0022-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/18/2019] [Accepted: 07/24/2019] [Indexed: 01/23/2023] Open
Abstract
Objective Colorectal cancer (CRC) and hypodontia are frequent and different diseases with common genes are involved in their etiology. The objective of this study was to identify the association between AXIN2 rs2240308 with hypodontia and CRC. Patients and methods This study consisted of 50 individuals with hypodontia, 50 individuals with CRC, and 155 healthy individuals from Colombia. SNP genotyping assays of rs2240308 were performed and family history of cancer in individuals with hypodontia was documented. In silico analysis was implemented to define the genomic profile of the AXIN2 gene associated with CRC. Multivariate analysis, chi square, odd ratio tests, and R software were used for statistical analysis. Results AXIN2 rs2240308 showed association with CRC (OR = 5.4 CI: 2.7–10.4; p < 0.001) and with other familial cancer in individuals with hypodontia (p < 0.005 OR = 1.75, 95% CI: 1.22–6.91). In silico analysis showed that variations in AXIN2 found in CRC patients, were more frequently in earlier stages of tumor and patients who carry variations in the AXIN2 gene have a worse prognosis (p < 0.05). The association between AXIN2 rs2240308 with hypodontia was not significant. Conclusions These results suggest that AXIN2 rs2240308 polymorphism is associated with CRC and AXIN2 could be a risk marker for predisposition and prognosis of CRC.
Collapse
Affiliation(s)
- L Otero
- 1Dentistry and Sciences Faculties, Center of Dental Research, Pontificia Universidad Javeriana, Carrera 7 No. 40-62, Bogotá, Colombia
| | - E Lacunza
- 2Medicine Faculty, Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Universidad Nacional de La Plata, Calle 60 y 120, CP:1900 La Plata, Argentina
| | - V Vasquez
- 3Dentistry Faculty, Pontificia Universidad Javeriana, Carrera 7 No. 40-62, Bogotá, Colombia
| | - V Arbelaez
- Gastroenterology, Centro Médico Almirante Colón, Carrera 16. No. 84A-09, Bogotá, Colombia
| | - F Cardier
- 3Dentistry Faculty, Pontificia Universidad Javeriana, Carrera 7 No. 40-62, Bogotá, Colombia
| | - F González
- 5Dentistry Faculty, Universidad de Cartagena, Cra. 6 #36-100, Cartagena, Bolívar Colombia
| |
Collapse
|
66
|
Dzobo K, Thomford NE, Senthebane DA. Targeting the Versatile Wnt/β-Catenin Pathway in Cancer Biology and Therapeutics: From Concept to Actionable Strategy. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 23:517-538. [PMID: 31613700 DOI: 10.1089/omi.2019.0147] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This expert review offers a critical synthesis of the latest insights and approaches at targeting the Wnt/β-catenin pathway in various cancers such as colorectal cancer, melanoma, leukemia, and breast and lung cancers. Notably, from organogenesis to cancer, the Wnt/β-catenin signaling displays varied and highly versatile biological functions in animals, with virtually all tissues requiring the Wnt/β-catenin signaling in one way or the other. Aberrant expression of the members of the Wnt/β-catenin has been implicated in many pathological conditions, particularly in human cancers. Mutations in the Wnt/β-catenin pathway genes have been noted in diverse cancers. Biochemical and genetic data support the idea that inhibition of Wnt/β-catenin signaling is beneficial in cancer therapeutics. The interaction of this important pathway with other signaling systems is also noteworthy, but remains as an area for further research and discovery. In addition, formation of different complexes by components of the Wnt/β-catenin pathway and the precise roles of these complexes in the cytoplasmic milieu are yet to be fully elucidated. This article highlights the latest medical technologies in imaging, single-cell omics, use of artificial intelligence (e.g., machine learning techniques), genome sequencing, quantum computing, molecular docking, and computational softwares in modeling interactions between molecules and predicting protein-protein and compound-protein interactions pertinent to the biology and therapeutic value of the Wnt/β-catenin signaling pathway. We discuss these emerging technologies in relationship to what is currently needed to move from concept to actionable strategies in translating the Wnt/β-catenin laboratory discoveries to Wnt-targeted cancer therapies and diagnostics in the clinic.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa.,Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Nicholas Ekow Thomford
- Pharmacogenetics Research Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Dimakatso A Senthebane
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa.,Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
67
|
Dai F, Zhu LJ, Zhang W, Mi YY, Sun HY, Zhang LF, Yue C, Wu XY, Zuo L, Bai Y. The association between three AXIN2 variants and cancer risk. J Cell Biochem 2019; 120:15561-15571. [PMID: 31038806 DOI: 10.1002/jcb.28823] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 12/13/2022]
Abstract
Plenty of epidemiological studies have assessed the effects of AXIN2 polymorphisms on the risk of developing cancer, but the available results were somewhat inconclusive. Odds ratios (ORs) with 95% confidence intervals (CIs) were utilized to investigate the relationship between three AXIN2 variants (rs2240308 C/T, rs1133683 C/T, and rs4791171 A/G) and overall cancer susceptibility. In silico tools were undertaken to investigate the correlation of AXIN2 expression with cancer risk and survival time. Furthermore, we explored the serum expression of AXIN2 by enzyme-linked immunosorbent assay. A total of 4167 cancer patients and 3515 control subjects were evaluated. The overall results demonstrated that there was no major association of these polymorphisms on cancer risk. However, stratified analysis by cancer type showed evidence that rs2240308 C/T polymorphism had a lower risk in lung cancer (OR, 0.76; 95% CI, 0.63-0.92; Pheterogeneity = 0.865) and prostate cancer (OR, 0.54; 95% CI, 0.35-0.84; Pheterogeneity = 0.088) by heterozygote comparison. Similar results were indicated in Asian descendants and population-based studies. In silico analysis showed evidence that AXIN2 expressions in lung cancer and prostate cancer were lower than that in normal counterpart. High expression of AXIN2 may have longer overall survival time than low expression group for lung cancer participants. In addition, individuals who were CC/TC carriers had a higher serum expression level than TT carriers. In conclusion, this pooled analysis suggested that AXIN2 rs2240308 C/T variant may decrease both lung and prostate cancer susceptibility, particularly in Asian descendants and population-based studies. Future large scale and well-designed research are required to validate these effects in more detail.
Collapse
Affiliation(s)
- Feng Dai
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Li-Jie Zhu
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Wei Zhang
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu, China
| | - Yuan-Yuan Mi
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - He-Yun Sun
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Li-Feng Zhang
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Chuang Yue
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Xing-Yu Wu
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Li Zuo
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Yu Bai
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
68
|
Liu X, Rong Z, Shou C. Mycoplasma hyorhinis infection promotes gastric cancer cell motility via β-catenin signaling. Cancer Med 2019; 8:5301-5312. [PMID: 31321908 PMCID: PMC6718539 DOI: 10.1002/cam4.2357] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 05/15/2019] [Accepted: 06/01/2019] [Indexed: 12/13/2022] Open
Abstract
Background We previously identified that Mycoplasma hyorhinis infection promotes gastric cancer cell motility. The β‐catenin signaling pathway is critical to determining malignant cancer cell phenotypes; however, the association between M hyorhinis and the β‐catenin signaling pathway is unclear. Methods We performed subcellular fractionation and immunofluorescence staining to observe β‐catenin accumulation in the nucleus. The expression of downstream β‐catenin genes was detected by quantitative RT‐PCR. Gastric cancer cell motility was examined by transwell chamber migration and wound healing assays, and a co‐immunoprecipitation assay was used to detect the proteins associated with the membrane protein p37 of M hyorhinis. Results We found that M hyorhinis infection promoted nuclear β‐catenin accumulation and enhanced the expression of downstream β‐catenin genes. M hyorhinis‐promoted gastric cancer cell motility was counteracted by treatment with the β‐catenin inhibitor XAV939 or β‐catenin knockdown. We further detected a protein complex containing LRP6, GSK3β, and p37 in M hyorhinis‐infected cells. M hyorhinis also induced LRP6 phosphorylation in a GSK3β‐dependent fashion. Knockdown of LRP6 or GSK3β abolished M hyorhinis‐induced cell motility. Conclusion Our results reveal that the β‐catenin signaling pathway could be activated by M hyorhinis infection, thereby contributing to M hyorhinis‐induced gastric cancer cell motility.
Collapse
Affiliation(s)
- Xia Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Departments of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhuona Rong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Departments of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Chengchao Shou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Departments of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
69
|
Transcription factor 7 promotes the progression of perihilar cholangiocarcinoma by inducing the transcription of c-Myc and FOS-like antigen 1. EBioMedicine 2019; 45:181-191. [PMID: 31248836 PMCID: PMC6642257 DOI: 10.1016/j.ebiom.2019.06.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/09/2019] [Accepted: 06/13/2019] [Indexed: 01/03/2023] Open
Abstract
Background Perihilar cholangiocarcinoma (PHCC) is the most common type of cholangiocarcinoma with the worst prognosis. Radical resection of PHCC is difficult; thus, few effective biomarkers or useful molecular profiles for PHCC have been reported in recent years. Therefore, in this study, we aimed to assess biomarkers for PHCC. Methods We screened potential biomarkers for PHCC using exome and transcriptome sequencing with PHCC tissues and paired normal tissues. Transcription factor 7 (TCF7) expression was evaluated using quantitative reverse transcription polymerase chain reaction, western blotting, and immunohistochemistry. The correlations between TCF7 and clinicopathological factors were analyzed with Chi-square test, and the prognostic significance of TCF7 was evaluated with univariate and multivariate analyses. The functions of TCF7 and its main effectors in PHCC cells were investigated in vitro and in vivo. Findings TCF7 expression was upregulated in PHCC and was an unfavorable prognostic biomarker. c-Myc was a main effector of TCF7 in PHCC cells and modulated TCF7-induced proliferation, invasion, and migration. FOS-like antigen 1 (FOSL1) was identified as a downstream target of TCF7 and was required in TCF7-induced PHCC proliferation. Triple-positive expression of TCF7, c-Myc, and FOSL1 predicted a much worse prognosis in patients with PHCC than TCF7 expression alone. Interpretation Postoperative detection of TCF7, c-Myc, and FOSL1 may be useful for stratifying patients with a high risk of unfavorable prognosis, and suppressing TCF7 or its downstream effectors may be a promising strategy for the treatment of PHCC.
Collapse
|
70
|
Ardila HJ, Sanabria-Salas MC, Meneses X, Rios R, Huertas-Salgado A, Serrano ML. Circulating miR-141-3p, miR-143-3p and miR-200c-3p are differentially expressed in colorectal cancer and advanced adenomas. Mol Clin Oncol 2019; 11:201-207. [PMID: 31316774 DOI: 10.3892/mco.2019.1876] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 04/22/2019] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the prominent causes of cancer related deaths because, in part, there is not an early, non-invasive, effective detection strategy. Circulating microRNAs (miRNAs) have been proposed as potential non-invasive biomarkers for CRC. In this study, we evaluated the miRNA profile in sixteen CRC tissues by Next-Generation-Sequencing and compared the circulating expression levels of 22 miRNAs among 45 CRC, 14 hyperplastic polyps, 11 advanced adenoma patients and 45 control subjects, by reverse transcription-quantitative PCR, to search for miRNAs which could be potential biomarkers. In total, nine of them represented 70% of total read counts (miR-10a-5p, miR-192-5p, miR-10b-5p, miR-22-3p, miR-26a-5p, miR-148a-3p, miR-181a-5p, miR-92a-3p and miR-143-5p). In silico analysis found eight candidates to mature miRNAs. With respect to circulating miRNA, we found higher serum expression levels of miR-143-3p, miR-141-3p and miR-200c-3p in the CRC and adenoma groups compared with controls (P<0.002), and we also found significant higher levels of miR-141-3p and miR-200c-3p in serum of adenoma patients compared with the CRC group. In conclusion, the measurement of miRNAs in the blood could complement current screening methods for CRC and might provide new insights into mechanisms of tumorigenesis. miR-143-3p, miR-141-3p and miR-200c-3p could be interesting miRNAs to study as potential biomarkers for CRC.
Collapse
Affiliation(s)
- Héctor Javier Ardila
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología, Bogotá, Colombia.,Instituto de Genética, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | - Ximena Meneses
- Unidad de Análisis, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Rafael Rios
- Unidad de Genética y Resistencia Antimicrobiana, Centro Internacional de Genómica Microbiana, Universidad el Bosque, Bogotá, Colombia
| | | | - Martha Lucía Serrano
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología, Bogotá, Colombia.,Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
71
|
Goldsberry WN, Londoño A, Randall TD, Norian LA, Arend RC. A Review of the Role of Wnt in Cancer Immunomodulation. Cancers (Basel) 2019; 11:cancers11060771. [PMID: 31167446 PMCID: PMC6628296 DOI: 10.3390/cancers11060771] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/17/2019] [Accepted: 05/31/2019] [Indexed: 12/12/2022] Open
Abstract
Alterations in the Wnt signaling pathway are associated with the advancement of cancers; however, the exact mechanisms responsible remain largely unknown. It has recently been established that heightened intratumoral Wnt signaling correlates with tumor immunomodulation and immune suppression, which likely contribute to the decreased efficacy of multiple cancer therapeutics. Here, we review available literature pertaining to connections between Wnt pathway activation in the tumor microenvironment and local immunomodulation. We focus specifically on preclinical and clinical data supporting the hypothesis that strategies targeting Wnt signaling could act as adjuncts for cancer therapy, either in combination with chemotherapy or immunotherapy, in a variety of tumor types.
Collapse
Affiliation(s)
- Whitney N Goldsberry
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Angelina Londoño
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Troy D Randall
- Division of Immunology & Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Lyse A Norian
- Department of Nutritional Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Rebecca C Arend
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
72
|
Dai J, Gao H, Xue J, Lin W, Zheng L. The Association Between AXIN2 Gene Polymorphisms and the Risk of Breast Cancer in Chinese Women. Genet Test Mol Biomarkers 2019; 23:393-400. [PMID: 31063404 DOI: 10.1089/gtmb.2018.0309] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background: The protein AXIN2 is involved in the negative feedback regulation of the Wnt/β-catenin signaling pathway; it functions by promoting β-catenin degradation. AXIN2 mutations have been studied in various cancers. In this study, we genotyped three single nucleotide polymorphisms in the AXIN2 gene and investigated their association with the risk of breast cancer (BC) in the Chinese Han population. Methods: In a population of 415 BC patients and 528 controls the expression of AXIN2 was measured using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and compared with the overall survival (OS) of BC patients analyzed through Oncomine and Kaplan-Meier plotter databases. Bioinformatic analyses demonstrated that AXIN2 mRNA levels were downregulated in BC patients; this in turn correlated with a poorer survival rate for BC patients. Results: The polymorphisms rs11079571 and rs3923087, but not rs3923086, were associated with an increased risk of BC. The minor allele containing genotypes of polymorphism rs3923087 were positively associated with lymph node metastases. A haplotype analysis demonstrated that the ATA haplotype was correlated with an increased risk of BC. Conclusion: In conclusion, the downregulation of AXIN2 is related to poorer OS for BC patients. Its polymorphisms rs11079571 and rs3923087 confer susceptibility to BC. These findings should be confirmed with larger studies that include more diverse ethnic populations.
Collapse
Affiliation(s)
- Jianbo Dai
- Department of Thyroid and Breast Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Haiyan Gao
- Department of Thyroid and Breast Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Jiao Xue
- Department of Thyroid and Breast Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Weijia Lin
- Department of Thyroid and Breast Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Lin Zheng
- Department of Thyroid and Breast Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
73
|
Pedone E, Marucci L. Role of β-Catenin Activation Levels and Fluctuations in Controlling Cell Fate. Genes (Basel) 2019; 10:genes10020176. [PMID: 30823613 PMCID: PMC6410200 DOI: 10.3390/genes10020176] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 02/18/2019] [Indexed: 12/12/2022] Open
Abstract
Cells have developed numerous adaptation mechanisms to external cues by controlling signaling-pathway activity, both qualitatively and quantitatively. The Wnt/β-catenin pathway is a highly conserved signaling pathway involved in many biological processes, including cell proliferation, differentiation, somatic cell reprogramming, development, and cancer. The activity of the Wnt/β-catenin pathway and the temporal dynamics of its effector β-catenin are tightly controlled by complex regulations. The latter encompass feedback loops within the pathway (e.g., a negative feedback loop involving Axin2, a β-catenin transcriptional target) and crosstalk interactions with other signaling pathways. Here, we provide a review shedding light on the coupling between Wnt/β-catenin activation levels and fluctuations across processes and cellular systems; in particular, we focus on development, in vitro pluripotency maintenance, and cancer. Possible mechanisms originating Wnt/β-catenin dynamic behaviors and consequently driving different cellular responses are also reviewed, and new avenues for future research are suggested.
Collapse
Affiliation(s)
- Elisa Pedone
- Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1UB, UK.
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK.
| | - Lucia Marucci
- Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1UB, UK.
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK.
- BrisSynBio, Bristol, BS8 1TQ, UK.
| |
Collapse
|
74
|
Song W, Ma J, Lei B, Yuan X, Cheng B, Yang H, Wang M, Feng Z, Wang L. Sine oculis homeobox 1 promotes proliferation and migration of human colorectal cancer cells through activation of Wnt/β-catenin signaling. Cancer Sci 2019; 110:608-616. [PMID: 30548112 PMCID: PMC6361609 DOI: 10.1111/cas.13905] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/29/2018] [Accepted: 12/02/2018] [Indexed: 12/11/2022] Open
Abstract
Sine oculis homeobox 1 (Six1) is a homeodomain transcription factor that is aberrantly expressed in a variety of human cancers, including colorectal cancer (CRC). Six1 has been reported to play a key role in the proliferation and migration of CRC cells but the underlying molecular mechanisms are still poorly characterized. In the present study, we found that Six1 overexpression promoted the proliferation and migration of CRC cells. Consistently, Six1 knockdown (KD) significantly inhibited proliferation and migration of CRC cells. In addition, we showed that Six1 promoted proliferation and migration of CRC cells through activation of Wnt/β‐catenin signaling, as evidenced by promotion of nuclear localization of β‐catenin. Silencing of β‐catenin expression with siRNA or inhibiting Wnt signaling with a specific inhibitor, xav939, significantly blocked Six1‐induced nuclear localization of β‐catenin and mitigated Six1‐promoted proliferation and migration of CRC cells. We further confirmed the involvement of β‐catenin in Six1‐promoted proliferation and migration of CRC cells by activation of Wnt signaling with lithium chloride (LiCl) in Six1 KD CRC cells and results showed that LiCl restores defective β‐catenin nuclear localization and proliferation and migration of CRC cells. Taken together, these results suggest that Six1 homeoprotein promotes the proliferation and migration of CRC cells by activating the Wnt/β‐catenin signaling pathway, and strategies targeting Six1 may be promising for the treatment of CRC.
Collapse
Affiliation(s)
- Wenxin Song
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Jian Ma
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China
| | - Bingbing Lei
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China
| | - Xin Yuan
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China
| | - Binfeng Cheng
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China
| | - Haijie Yang
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China
| | - Mian Wang
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China
| | - Zhiwei Feng
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Lei Wang
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
75
|
Galluzzi L, Spranger S, Fuchs E, López-Soto A. WNT Signaling in Cancer Immunosurveillance. Trends Cell Biol 2019; 29:44-65. [PMID: 30220580 PMCID: PMC7001864 DOI: 10.1016/j.tcb.2018.08.005] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/23/2018] [Indexed: 12/25/2022]
Abstract
Deregulated WNT signaling has been shown to favor malignant transformation, tumor progression, and resistance to conventional cancer therapy in a variety of preclinical and clinical settings. Accumulating evidence suggests that aberrant WNT signaling may also subvert cancer immunosurveillance, hence promoting immunoevasion and resistance to multiple immunotherapeutics, including immune checkpoint blockers. Here, we discuss the molecular and cellular mechanisms through which WNT signaling influences cancer immunosurveillance and present potential therapeutic avenues to harness currently available WNT modulators for cancer immunotherapy.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, New York, NY 10065, USA; Université Paris Descartes/Paris V, 75006 Paris, France.
| | - Stefani Spranger
- The Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Alejandro López-Soto
- Departamento de Biología Funcional, Área de Inmunología, Universidad de Oviedo. Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (IISPA), 33011 Oviedo, Asturias, Spain.
| |
Collapse
|
76
|
Wang Z, Liu CH, Huang S, Chen J. Wnt Signaling in vascular eye diseases. Prog Retin Eye Res 2018; 70:110-133. [PMID: 30513356 DOI: 10.1016/j.preteyeres.2018.11.008] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/21/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022]
Abstract
The Wnt signaling pathway plays a pivotal role in vascular morphogenesis in various organs including the eye. Wnt ligands and receptors are key regulators of ocular angiogenesis both during the eye development and in vascular eye diseases. Wnt signaling participates in regulating multiple vascular beds in the eye including regression of the hyaloid vessels, and development of structured layers of vasculature in the retina. Loss-of-function mutations in Wnt signaling components cause rare genetic eye diseases in humans such as Norrie disease, and familial exudative vitreoretinopathy (FEVR) with defective ocular vasculature. On the other hand, experimental studies in more prevalent vascular eye diseases, such as wet age-related macular degeneration (AMD), diabetic retinopathy (DR), retinopathy of prematurity (ROP), and corneal neovascularization, suggest that aberrantly increased Wnt signaling is one of the causations for pathological ocular neovascularization, indicating the potential of modulating Wnt signaling to ameliorate pathological angiogenesis in eye diseases. This review recapitulates the key roles of the Wnt signaling pathway during ocular vascular development and in vascular eye diseases, and pharmaceutical approaches targeting the Wnt signaling as potential treatment options.
Collapse
Affiliation(s)
- Zhongxiao Wang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, United States
| | - Chi-Hsiu Liu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, United States
| | - Shuo Huang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, United States
| | - Jing Chen
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, United States.
| |
Collapse
|
77
|
Wu C, Luo K, Zhao F, Yin P, Song Y, Deng M, Huang J, Chen Y, Li L, Lee S, Kim J, Zhou Q, Tu X, Nowsheen S, Luo Q, Gao X, Lou Z, Liu Z, Yuan J. USP20 positively regulates tumorigenesis and chemoresistance through β-catenin stabilization. Cell Death Differ 2018; 25:1855-1869. [PMID: 29867130 PMCID: PMC6180113 DOI: 10.1038/s41418-018-0138-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/09/2018] [Accepted: 05/15/2018] [Indexed: 12/13/2022] Open
Abstract
β-catenin is a major transcriptional activator of the canonical Wnt/β-catenin signaling pathway. It is important for a series of biological processes including tissue homeostasis, and embryonic development and is involved in various human diseases. Elevated oncogenic activity of β-catenin is frequently observed in cancers, which contributes to survival, metastasis and chemo-resistance of cancer cells. However, the mechanism of β-catenin overexpression in cancers is not well defined. Here we demonstrate that the deubiquitination enzyme USP20 is a new regulator of the Wnt/β-catenin signaling pathway. Mechanistically, USP20 regulates the deubiquitination of β-catenin to control its stability, thereby inducing proliferation, invasion and migration of cancer cells. High expression of USP20 correlates with increased β-catenin protein level in multiple cancer cell lines and patient samples. Moreover, knockdown of USP20 increases β-catenin polyubiquitination, which enhances β-catenin turnover and cell sensitivity to chemotherapy. Collectively, our results establish the USP20-β-catenin axis as a critical regulatory mechanism of canonical Wnt/β-catenin signaling pathway with an important role in tumorigenesis and chemo response in human cancers.
Collapse
Affiliation(s)
- Chenming Wu
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Kuntian Luo
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Fei Zhao
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ping Yin
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ying Song
- Department of Pathology, East Hospital, Shanghai, 200120, China
| | - Min Deng
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jinzhou Huang
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Yuping Chen
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Lei Li
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - SeungBaek Lee
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - JungJin Kim
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Qin Zhou
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Xinyi Tu
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Somaira Nowsheen
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic School of Medicine and Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Qifeng Luo
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University Shanghai, 200120, Shanghai, P. R. China
| | - Xiumei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 300193, Tianjin, China
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Zhongmin Liu
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| | - Jian Yuan
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA.
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
78
|
Shen P, Reineke LC, Knutsen E, Chen M, Pichler M, Ling H, Calin GA. Metformin blocks MYC protein synthesis in colorectal cancer via mTOR-4EBP-eIF4E and MNK1-eIF4G-eIF4E signaling. Mol Oncol 2018; 12:1856-1870. [PMID: 30221473 PMCID: PMC6210051 DOI: 10.1002/1878-0261.12384] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 08/04/2018] [Accepted: 08/14/2018] [Indexed: 12/26/2022] Open
Abstract
The antidiabetic drug metformin has been associated with reduced colorectal cancer (CRC) risk and improved prognosis of CRC patients. However, the detailed mechanisms underlying such beneficial effects remain unknown. In this study, we aimed to evaluate metformin activity in CRC models and unveil the underlying molecular mechanisms. We showed that metformin inhibits CRC cell proliferation by arresting cells in the G1 phase of the cell cycle and dramatically reduces colony formation of CRC cells. We discovered that metformin causes a robust reduction of MYC protein level. Through the use of luciferase assay and coincubation with either protein synthesis or proteasome inhibitors, we demonstrated that regulation of MYC by metformin is independent of the proteasome and 3' UTR-mediated regulation, but depends on protein synthesis. Data from polysome profiling and ribopuromycylation assays showed that metformin induced widespread inhibition of protein synthesis. Repression of protein synthesis by metformin preferentially affects cell cycle-associated proteins, by altering signaling through the mTOR-4EBP-eIF4E and MNK1-eIF4G-eIF4E axes. The inhibition of MYC protein synthesis may underlie metformin's beneficial effects on CRC risk and prognosis.
Collapse
Affiliation(s)
- Peng Shen
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lucas C Reineke
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Erik Knutsen
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Meng Chen
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Martin Pichler
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Division of Oncology, Research Unit of Non-Coding RNA and Genome Editing in Cancer, Medical University of Graz, Austria
| | - Hui Ling
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
79
|
HPV-18 E6 Oncoprotein and Its Spliced Isoform E6*I Regulate the Wnt/β-Catenin Cell Signaling Pathway through the TCF-4 Transcriptional Factor. Int J Mol Sci 2018; 19:ijms19103153. [PMID: 30322153 PMCID: PMC6214013 DOI: 10.3390/ijms19103153] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/29/2018] [Accepted: 10/09/2018] [Indexed: 01/03/2023] Open
Abstract
The Wnt/β-catenin signaling pathway regulates cell proliferation and differentiation and its aberrant activation in cervical cancer has been described. Persistent infection with high risk human papillomavirus (HR-HPV) is the most important factor for the development of this neoplasia, since E6 and E7 viral oncoproteins alter cellular processes, promoting cervical cancer development. A role of HPV-16 E6 in Wnt/β-catenin signaling has been proposed, although the participation of HPV-18 E6 has not been previously studied. The aim of this work was to investigate the participation of HPV-18 E6 and E6*I, in the regulation of the Wnt/β-catenin signaling pathway. Here, we show that E6 proteins up-regulate TCF-4 transcriptional activity and promote overexpression of Wnt target genes. In addition, it was demonstrated that E6 and E6*I bind to the TCF-4 (T cell factor 4) and β-catenin, impacting TCF-4 stabilization. We found that both E6 and E6*I proteins interact with the promoter of Sp5, in vitro and in vivo. Moreover, although differences in TCF-4 transcriptional activation were found among E6 intratype variants, no changes were observed in the levels of regulated genes. Furthermore, our data support that E6 proteins cooperate with β-catenin to promote cell proliferation.
Collapse
|
80
|
Pavlovic Z, Adams JJ, Blazer LL, Gakhal AK, Jarvik N, Steinhart Z, Robitaille M, Mascall K, Pan J, Angers S, Moffat J, Sidhu SS. A synthetic anti-Frizzled antibody engineered for broadened specificity exhibits enhanced anti-tumor properties. MAbs 2018; 10:1157-1167. [PMID: 30183492 DOI: 10.1080/19420862.2018.1515565] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Secreted Wnt ligands play a major role in the development and progression of many cancers by modulating signaling through cell-surface Frizzled receptors (FZDs). In order to achieve maximal effect on Wnt signaling by targeting the cell surface, we developed a synthetic antibody targeting six of the 10 human FZDs. We first identified an anti-FZD antagonist antibody (F2) with a specificity profile matching that of OMP-18R5, a monoclonal antibody that inhibits growth of many cancers by targeting FZD7, FZD1, FZD2, FZD5 and FZD8. We then used combinatorial antibody engineering by phage display to develop a variant antibody F2.A with specificity broadened to include FZD4. We confirmed that F2.A blocked binding of Wnt ligands, but not binding of Norrin, a ligand that also activates FZD4. Importantly, F2.A proved to be much more efficacious than either OMP-18R5 or F2 in inhibiting the growth of multiple RNF43-mutant pancreatic ductal adenocarcinoma cell lines, including patient-derived cells.
Collapse
Affiliation(s)
- Zvezdan Pavlovic
- a Terrence Donnelly Centre for Cellular and Biomolecular Research , University of Toronto , Toronto , Canada
| | - Jarrett J Adams
- a Terrence Donnelly Centre for Cellular and Biomolecular Research , University of Toronto , Toronto , Canada
| | - Levi L Blazer
- a Terrence Donnelly Centre for Cellular and Biomolecular Research , University of Toronto , Toronto , Canada
| | - Amandeep K Gakhal
- a Terrence Donnelly Centre for Cellular and Biomolecular Research , University of Toronto , Toronto , Canada
| | - Nick Jarvik
- a Terrence Donnelly Centre for Cellular and Biomolecular Research , University of Toronto , Toronto , Canada
| | - Zachary Steinhart
- b Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy , University of Toronto , Toronto , Canada
| | - Mélanie Robitaille
- b Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy , University of Toronto , Toronto , Canada
| | - Keith Mascall
- b Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy , University of Toronto , Toronto , Canada
| | - James Pan
- a Terrence Donnelly Centre for Cellular and Biomolecular Research , University of Toronto , Toronto , Canada
| | - Stephane Angers
- b Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy , University of Toronto , Toronto , Canada.,c Department of Biochemistry , University of Toronto , Toronto , Canada
| | - Jason Moffat
- a Terrence Donnelly Centre for Cellular and Biomolecular Research , University of Toronto , Toronto , Canada.,d Department of Molecular Genetics , University of Toronto , Toronto , Canada.,e Canadian Institute for Advanced Research , Toronto , Canada
| | - Sachdev S Sidhu
- a Terrence Donnelly Centre for Cellular and Biomolecular Research , University of Toronto , Toronto , Canada.,d Department of Molecular Genetics , University of Toronto , Toronto , Canada
| |
Collapse
|
81
|
Targeting nonsense-mediated mRNA decay in colorectal cancers with microsatellite instability. Oncogenesis 2018; 7:70. [PMID: 30228267 PMCID: PMC6143633 DOI: 10.1038/s41389-018-0079-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/06/2018] [Accepted: 07/24/2018] [Indexed: 12/02/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is responsible for the degradation of mRNAs with a premature termination codon (PTC). The role of this system in cancer is still quite poorly understood. In the present study, we evaluated the functional consequences of NMD activity in a subgroup of colorectal cancers (CRC) characterized by high levels of mRNAs with a PTC due to widespread instability in microsatellite sequences (MSI). In comparison to microsatellite stable (MSS) CRC, MSI CRC expressed increased levels of two critical activators of the NMD system, UPF1/2 and SMG1/6/7. Suppression of NMD activity led to the re-expression of dozens of PTC mRNAs. Amongst these, several encoded mutant proteins with putative deleterious activity against MSI tumorigenesis (e.g., HSP110DE9 chaperone mutant). Inhibition of NMD in vivo using amlexanox reduced MSI tumor growth, but not that of MSS tumors. These results suggest that inhibition of the oncogenic activity of NMD may be an effective strategy for the personalized treatment of MSI CRC.
Collapse
|
82
|
Wnt Effector TCF4 Is Dispensable for Wnt Signaling in Human Cancer Cells. Genes (Basel) 2018; 9:genes9090439. [PMID: 30200414 PMCID: PMC6162433 DOI: 10.3390/genes9090439] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/09/2018] [Accepted: 08/24/2018] [Indexed: 12/22/2022] Open
Abstract
T-cell factor 4 (TCF4), together with β-catenin coactivator, functions as the major transcriptional mediator of the canonical wingless/integrated (Wnt) signaling pathway in the intestinal epithelium. The pathway activity is essential for both intestinal homeostasis and tumorigenesis. To date, several mouse models and cellular systems have been used to analyze TCF4 function. However, some findings were conflicting, especially those that were related to the defects observed in the mouse gastrointestinal tract after Tcf4 gene deletion, or to a potential tumor suppressive role of the gene in intestinal cancer cells or tumors. Here, we present the results obtained using a newly generated conditional Tcf4 allele that allows inactivation of all potential Tcf4 isoforms in the mouse tissue or small intestinal and colon organoids. We also employed the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system to disrupt the TCF4 gene in human cells. We showed that in adult mice, epithelial expression of Tcf4 is indispensable for cell proliferation and tumor initiation. However, in human cells, the TCF4 role is redundant with the related T-cell factor 1 (TCF1) and lymphoid enhancer-binding factor 1 (LEF1) transcription factors.
Collapse
|
83
|
Yilmaz E, Mihci E, Guzel Nur B, Alper OM. A novel
AXIN2
gene mutation in sagittal synostosis. Am J Med Genet A 2018; 176:1976-1980. [DOI: 10.1002/ajmg.a.40373] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Elanur Yilmaz
- Department of Medical Biology and GeneticsAkdeniz University, School of Medicine Antalya Turkey
| | - Ercan Mihci
- Department of Pediatric GeneticsAkdeniz University, School of Medicine Antalya Turkey
| | - Banu Guzel Nur
- Department of Pediatric GeneticsAkdeniz University, School of Medicine Antalya Turkey
| | - Ozgul M. Alper
- Department of Medical Biology and GeneticsAkdeniz University, School of Medicine Antalya Turkey
| |
Collapse
|
84
|
Lee PY, Chin SF, Low TY, Jamal R. Probing the colorectal cancer proteome for biomarkers: Current status and perspectives. J Proteomics 2018; 187:93-105. [PMID: 29953962 DOI: 10.1016/j.jprot.2018.06.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/13/2018] [Accepted: 06/23/2018] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is one of the most prevalent malignancies worldwide. Biomarkers that can facilitate better clinical management of CRC are in high demand to improve patient outcome and to reduce mortality. In this regard, proteomic analysis holds a promising prospect in the hunt of novel biomarkers for CRC and in understanding the mechanisms underlying tumorigenesis. This review aims to provide an overview of the current progress of proteomic research, focusing on discovery and validation of diagnostic biomarkers for CRC. We will summarize the contributions of proteomic strategies to recent discoveries of protein biomarkers for CRC and also briefly discuss the potential and challenges of different proteomic approaches in biomarker discovery and translational applications.
Collapse
Affiliation(s)
- Pey Yee Lee
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia.
| | - Siok-Fong Chin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
85
|
Nguyen HT, Duong HQ. The molecular characteristics of colorectal cancer: Implications for diagnosis and therapy. Oncol Lett 2018; 16:9-18. [PMID: 29928381 DOI: 10.3892/ol.2018.8679] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 02/22/2018] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) results from the progressive accumulation of multiple genetic and epigenetic aberrations within cells. The progression from colorectal adenoma to carcinoma is caused by three major pathways: Microsatellite instability, chromosomal instability and CpG island methylator phenotype. A growing body of scientific evidences suggests that CRC is a heterogeneous disease, and genetic characteristics of the tumors determine their prognostic outcome and response to targeted therapies. Early diagnosis and effective targeted therapies based on a current knowledge of the molecular characteristics of CRC are essential to the successful treatment of CRC. Therefore, the present review summarized the current understanding of the molecular characteristics of CRC, and discussed its implications for diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Ha Thi Nguyen
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam
| | - Hong-Quan Duong
- Department of Cancer Research, Vinmec Research Institute of Stem Cell and Gene Technology, Hanoi 100000, Vietnam
| |
Collapse
|
86
|
Li Z, Wang Y, Li Y, Yin W, Mo L, Qian X, Zhang Y, Wang G, Bu F, Zhang Z, Ren X, Zhu B, Niu C, Xiao W, Zhang W. Ube2s stabilizes β-Catenin through K11-linked polyubiquitination to promote mesendoderm specification and colorectal cancer development. Cell Death Dis 2018; 9:456. [PMID: 29674637 PMCID: PMC5908793 DOI: 10.1038/s41419-018-0451-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 02/20/2018] [Accepted: 03/01/2018] [Indexed: 01/01/2023]
Abstract
The canonical Wnt/β-Catenin signaling pathway is widely involved in regulating diverse biological processes. Dysregulation of the pathway results in severe consequences, such as developmental defects and malignant cancers. Here, we identified Ube2s as a novel activator of the Wnt/β-Catenin signaling pathway. It modified β-Catenin at K19 via K11-linked polyubiquitin chain. This modification resulted in an antagonistic effect against the destruction complex/β-TrCP cascade-orchestrated β-Catenin degradation. As a result, the stability of β-Catenin was enhanced, thus promoting its cellular accumulation. Importantly, Ube2s-promoted β-Catenin accumulation partially released the dependence on exogenous molecules for the process of embryonic stem (ES) cell differentiation into mesoendoderm lineages. Moreover, we demonstrated that UBE2S plays a critical role in determining the malignancy properties of human colorectal cancer (CRC) cells in vitro and in vivo. The findings in this study extend our mechanistic understanding of the mesoendodermal cell fate commitment, and provide UBE2S as a putative target for human CRC therapy.
Collapse
Affiliation(s)
- Zhaoyan Li
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Yan Wang
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Yadan Li
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Wanqi Yin
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Libin Mo
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Xianghao Qian
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Yiran Zhang
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Guifen Wang
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Fan Bu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Zhiling Zhang
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Xiaofang Ren
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Baochang Zhu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Chang Niu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Wei Xiao
- College of Life Sciences, Capital Normal University, Beijing, China.
| | - Weiwei Zhang
- College of Life Sciences, Capital Normal University, Beijing, China.
| |
Collapse
|
87
|
Zarkou V, Galaras A, Giakountis A, Hatzis P. Crosstalk mechanisms between the WNT signaling pathway and long non-coding RNAs. Noncoding RNA Res 2018; 3:42-53. [PMID: 30159439 PMCID: PMC6096407 DOI: 10.1016/j.ncrna.2018.04.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 12/15/2022] Open
Abstract
The WNT/β-catenin signaling pathway controls a plethora of biological processes throughout animal development and adult life. Because of its fundamental role during animal lifespan, the WNT pathway is subject to strict positive and negative multi-layered regulation, while its aberrant activity causes a wide range of pathologies, including cancer. At present, despite the inroads into the molecules involved in WNT-mediated transcriptional responses, the fine-tuning of WNT pathway activity and the totality of its target genes have not been fully elucidated. Over the past few years, long non-coding RNAs (lncRNAs), RNA transcripts longer that 200nt that do not code for proteins, have emerged as significant transcriptional regulators. Recent studies show that lncRNAs can modulate WNT pathway outcome by affecting gene expression through diversified mechanisms, from the transcriptional to post-translational level. In this review, we selectively discuss those lncRNA-mediated mechanisms we believe the most important to WNT pathway modulation.
Collapse
Affiliation(s)
- Vasiliki Zarkou
- Biomedical Sciences Research Center ‘Alexander Fleming’, 16672 Vari, Greece
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Alexandros Galaras
- Biomedical Sciences Research Center ‘Alexander Fleming’, 16672 Vari, Greece
- Department of Medicine, National and Kapodistrian University of Athens, 11527 Goudi, Greece
| | - Antonis Giakountis
- Biomedical Sciences Research Center ‘Alexander Fleming’, 16672 Vari, Greece
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Pantelis Hatzis
- Biomedical Sciences Research Center ‘Alexander Fleming’, 16672 Vari, Greece
- Corresponding author.
| |
Collapse
|
88
|
Wingless/Wnt Signaling in Intestinal Development, Homeostasis, Regeneration and Tumorigenesis: A Drosophila Perspective. J Dev Biol 2018; 6:jdb6020008. [PMID: 29615557 PMCID: PMC6026893 DOI: 10.3390/jdb6020008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 02/06/2023] Open
Abstract
In mammals, the Wnt/β-catenin signal transduction pathway regulates intestinal stem cell maintenance and proliferation, whereas Wnt pathway hyperactivation, resulting primarily from the inactivation of the tumor suppressor Adenomatous polyposis coli (APC), triggers the development of the vast majority of colorectal cancers. The Drosophila adult gut has recently emerged as a powerful model to elucidate the mechanisms by which Wingless/Wnt signaling regulates intestinal development, homeostasis, regeneration, and tumorigenesis. Herein, we review recent insights on the roles of Wnt signaling in Drosophila intestinal physiology and pathology.
Collapse
|
89
|
Flanagan DJ, Austin CR, Vincan E, Phesse TJ. Wnt Signalling in Gastrointestinal Epithelial Stem Cells. Genes (Basel) 2018; 9:genes9040178. [PMID: 29570681 PMCID: PMC5924520 DOI: 10.3390/genes9040178] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 02/06/2023] Open
Abstract
Wnt signalling regulates several cellular functions including proliferation, differentiation, apoptosis and migration, and is critical for embryonic development. Stem cells are defined by their ability for self-renewal and the ability to be able to give rise to differentiated progeny. Consequently, they are essential for the homeostasis of many organs including the gastrointestinal tract. This review will describe the huge advances in our understanding of how stem cell functions in the gastrointestinal tract are regulated by Wnt signalling, including how deregulated Wnt signalling can hijack these functions to transform cells and lead to cancer.
Collapse
Affiliation(s)
- Dustin J Flanagan
- Molecular Oncology Laboratory, Victorian Infectious Diseases Reference Laboratory and the Doherty Institute, University of Melbourne, Melbourne, VIC 3000, Australia.
| | - Chloe R Austin
- Cancer and Cell Signalling Laboratory, European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, Wales, UK.
| | - Elizabeth Vincan
- Molecular Oncology Laboratory, Victorian Infectious Diseases Reference Laboratory and the Doherty Institute, University of Melbourne, Melbourne, VIC 3000, Australia.
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA 6102, Australia.
| | - Toby J Phesse
- Cancer and Cell Signalling Laboratory, European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, Wales, UK.
| |
Collapse
|
90
|
Lamba A, Parekh P, Dvorak CT, Karlitz JJ. Pedigree analysis supports a correlation between an AXIN2 variant and polyposis/colorectal cancer. World J Med Genet 2018; 8:1-4. [DOI: 10.5496/wjmg.v8.i1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/18/2017] [Accepted: 12/29/2017] [Indexed: 02/06/2023] Open
Abstract
We present a patient with a history of colonic polyposis and family history significant for colon polyps and colorectal cancer (CRC). The patient and the family also had a history of bone loss of the jaw and early tooth loss, consistent with oligodontia. Genetic testing revealed the patient to have a previously unpublished variant of unknown significance (VUS) in the AXIN2 gene. These clinical findings have been demonstrated previously in only two other families, both of which exhibited oligodontia, colorectal neoplasia (polyps and cancer) and a heterozygous mutation in AXIN2. The AXIN2 protein is component of the Wnt pathway, which is known to be vital for organism development and cellular homeostasis. Alterations of the Wnt pathway lead to cell proliferation and neoplasm, in addition to agenesis of physical structures (such as teeth). The analysis of our pedigree further supports an association between colonic neoplasm (polyposis and CRC), the AXIN2 gene in general, and this particular VUS. It also highlights the importance of analyzing and disseminating information on pedigrees with less commonly encountered genomic abnormalities so that genotypic-phenotypic correlations can be solidified.
Collapse
Affiliation(s)
- Amrit Lamba
- Department of Internal Medicine, Tulane University, New Orleans, LA 70112, United States
| | - Parth Parekh
- Department of Gastroenterology, Carillion Clinic, Roanoke, VA 24016, United States
| | - Chris T Dvorak
- Department of Genetics, Tulane University, New Orleans, LA 70112, United States
| | - Jordan J Karlitz
- Department of Gastroenterology, Tulane University, New Orleans, LA 70112, United States
| |
Collapse
|
91
|
A mononucleotide repeat in PRRT2 is an important, frequent target of mismatch repair deficiency in cancer. Oncotarget 2018; 8:6043-6056. [PMID: 27907910 PMCID: PMC5351611 DOI: 10.18632/oncotarget.13464] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 10/21/2016] [Indexed: 02/06/2023] Open
Abstract
The DNA mismatch repair (MMR) system corrects DNA replication mismatches thereby contributing to the maintenance of genomic stability. MMR deficiency has been observed in prostate cancer but its impact on the genomic landscape of these tumours is not known. In order to identify MMR associated mutations in prostate cancer we have performed whole genome sequencing of the MMR deficient PC346C prostate cancer cell line. We detected a total of 1196 mutations in PC346C which was 1.5-fold higher compared to a MMR proficient prostate cancer sample (G089). Of all different mutation classes, frameshifts in mononucleotide repeat (MNR) sequences were significantly enriched in the PC346C sample. As a result, a selection of genes with frameshift mutations in MNR was further assessed regarding its mutational status in a comprehensive panel of prostate, ovarian, endometrial and colorectal cancer cell lines. We identified PRRT2 and DAB2IP to be frequently mutated in MMR deficient cell lines, colorectal and endometrial cancer patient samples. Further characterization of PRRT2 revealed an important role of this gene in cancer biology. Both normal prostate cell lines and a colorectal cancer cell line showed increased proliferation, migration and invasion when expressing the mutated form of PRRT2 (ΔPRRT2). The wild-type PRRT2 (PRRT2wt) had an inhibitory effect in proliferation, consistent with the low expression level of PRRT2 in cancer versus normal prostate samples.
Collapse
|
92
|
Lietman C, Wu B, Lechner S, Shinar A, Sehgal M, Rossomacha E, Datta P, Sharma A, Gandhi R, Kapoor M, Young PP. Inhibition of Wnt/β-catenin signaling ameliorates osteoarthritis in a murine model of experimental osteoarthritis. JCI Insight 2018; 3:96308. [PMID: 29415892 PMCID: PMC5821202 DOI: 10.1172/jci.insight.96308] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/12/2017] [Indexed: 12/21/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease involving both cartilage and synovium. The canonical Wnt/β-catenin pathway, which is activated in OA, is emerging as an important regulator of tissue repair and fibrosis. This study seeks to examine Wnt pathway effects on synovial fibroblasts and articular chondrocytes as well as the therapeutic effects of Wnt inhibition on OA disease severity. Mice underwent destabilization of the medial meniscus surgery and were treated by intra-articular injection with XAV-939, a small-molecule inhibitor of Wnt/β-catenin signaling. Wnt/β-catenin signaling was highly activated in murine synovial fibroblasts as well as in OA-derived human synovial fibroblasts. XAV-939 ameliorated OA severity associated with reduced cartilage degeneration and synovitis in vivo. Wnt inhibition using mechanistically distinct small-molecule inhibitors, XAV-939 and C113, attenuated the proliferation and type I collagen synthesis in synovial fibroblasts in vitro but did not affect human OA-derived chondrocyte proliferation. However, Wnt modulation increased COL2A1 and PRG4 transcripts, which are downregulated in chondrocytes in OA. In conclusion, therapeutic Wnt inhibition reduced disease severity in a model of traumatic OA via promoting anticatabolic effects on chondrocytes and antifibrotic effects on synovial fibroblasts and may be a promising class of drugs for the treatment of OA.
Collapse
Affiliation(s)
- Caressa Lietman
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Brian Wu
- Arthritis Program, University Health Network, Toronto, Ontario, Canada
| | - Sarah Lechner
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Andrew Shinar
- Orthopedic Institute, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Madhur Sehgal
- Department of Surgery and Department of Laboratory Medicine and Pathobiology, University of Toronto, and Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Evgeny Rossomacha
- Department of Surgery and Department of Laboratory Medicine and Pathobiology, University of Toronto, and Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Poulami Datta
- Department of Surgery and Department of Laboratory Medicine and Pathobiology, University of Toronto, and Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Anirudh Sharma
- Department of Surgery and Department of Laboratory Medicine and Pathobiology, University of Toronto, and Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Rajiv Gandhi
- Arthritis Program, University Health Network, Toronto, Ontario, Canada
| | - Mohit Kapoor
- Arthritis Program, University Health Network, Toronto, Ontario, Canada
- Department of Surgery and Department of Laboratory Medicine and Pathobiology, University of Toronto, and Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Pampee P. Young
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Cell and Developmental Biology and Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Veterans Affairs Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
93
|
Yu F, Zhou C, Zeng H, Liu Y, Li S. BMI1 activates WNT signaling in colon cancer by negatively regulating the WNT antagonist IDAX. Biochem Biophys Res Commun 2018; 496:468-474. [DOI: 10.1016/j.bbrc.2018.01.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 01/09/2018] [Indexed: 02/07/2023]
|
94
|
CK2 blockade causes MPNST cell apoptosis and promotes degradation of β-catenin. Oncotarget 2018; 7:53191-53203. [PMID: 27448963 PMCID: PMC5288178 DOI: 10.18632/oncotarget.10668] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/07/2016] [Indexed: 12/24/2022] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are soft tissue sarcomas that are a major cause of mortality of Neurofibromatosis type 1 (NF1) patients. MPNST patients have few therapeutic options available and only complete surgical resection can be curative. MPNST formation and survival are dependent on activated β-catenin signaling. The goal of this study was to determine if inhibition of the CK2 enzyme can be therapeutically exploited in MPNSTs, given CK2's role in mainta ining oncogenic phenotypes including stabilization of β-catenin. We found that CK2α is over-expressed in MPNSTs and is critical for maintaining cell survival, as the CK2 inhibitor, CX-4945 (Silmitasertib), and shRNA targeting CK2α each significantly reduce MPNST cell viability. These effects were preceded by loss of critical signaling pathways in MPNSTs, including destabilization of β-catenin and TCF8. CX-4945 administration in vivo slowed tumor growth and extends survival time. We conclude that CK2 inhibition is a promising approach to blocking β-catenin in MPNST cells, although combinatorial therapies may be required for maximal efficacy.
Collapse
|
95
|
Sato M, Yamamoto H, Hatanaka Y, Nishijima T, Jiromaru R, Yasumatsu R, Taguchi K, Masuda M, Nakagawa T, Oda Y. Wnt/β-catenin signal alteration and its diagnostic utility in basal cell adenoma and histologically similar tumors of the salivary gland. Pathol Res Pract 2018; 214:586-592. [PMID: 29496310 DOI: 10.1016/j.prp.2017.12.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/07/2017] [Accepted: 12/31/2017] [Indexed: 10/18/2022]
Abstract
Differential diagnosis among basal cell adenoma (BCA), basal cell adenocarcinoma (BCAC), adenoid cystic carcinoma (ACC) and pleomorphic adenoma (PA) of the salivary gland can be challenging due to their similar histological appearance. Although frequent nuclear β-catenin expression and CTNNB1 mutations have been reported in BCA, further details of the Wnt/β-catenin signal alterations are unclear. The aim of this study was to assess the diagnostic utility of Wnt/β-catenin signal alteration in BCA and morphological mimics. We performed immunohistochemical staining for β-catenin and mutation analysis for Wnt/β-catenin-related genes (CTNNB1, APC, AXIN1 and AXIN2) in BCA (n = 34), BCAC (n = 3), ACC (n = 67) and PA (n = 31). We also analyzed ACC-specific MYB and MYBL1 gene rearrangements by fluorescence in situ hybridization (FISH). Nuclear β-catenin expression (≥3%) was present in 32/34 cases (94.1%) of BCA, and the nuclear β-catenin labeling index was significantly higher than in other tumor types (p = < 0.0001). In BCA, we found mutations in CTNNB1, APC and AXIN1 genes (41.1%, 2.9% and 8.8%, respectively). In BCAC, nuclear β-catenin expression with CTNNB1 mutation was present in 1/3 cases (33.3%). As for ACC, nuclear β-catenin expression was observed in 3/67 cases (4.4%), but all 3 cases harbored either MYB or MYBL1 gene rearrangement. The results suggest that nuclear β-catenin immunoreactivity with appropriate criteria may be helpful to distinguish BCA from histologically similar tumors. However, a minor subset of ACCs with nuclear β-catenin expression require careful diagnosis. In addition, Wnt/β-catenin signal alteration may play a role in the pathogenesis of BCA and BCAC.
Collapse
Affiliation(s)
- Masanobu Sato
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka, 812-8582, Japan
| | - Hidetaka Yamamoto
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka, 812-8582, Japan
| | - Yui Hatanaka
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka, 812-8582, Japan
| | - Toshimitsu Nishijima
- Department of Otorhinolaryngology, Japan Community Health Care Organization Kyushu Hospital, 1-8-1 Kishinoura, Yahatanishi-ku, Kitakyushu-shi, Fukuoka, 806-8501, Japan
| | - Rina Jiromaru
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka, 812-8582, Japan
| | - Ryuji Yasumatsu
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka, 812-8582, Japan
| | - Kenichi Taguchi
- Department of Pathology, National Kyushu Cancer Center, 3-1-1 Notame, Minami-ku, Fukuoka-shi, Fukuoka, 811-1395, Japan
| | - Muneyuki Masuda
- Department of Head and Neck Surgery, National Kyushu Cancer Center, 3-1-1 Notame, Minami-ku, Fukuoka-shi, Fukuoka, 811-1395, Japan
| | - Takashi Nakagawa
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka, 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka, 812-8582, Japan.
| |
Collapse
|
96
|
Tan SH, Barker N. Wnt Signaling in Adult Epithelial Stem Cells and Cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 153:21-79. [PMID: 29389518 DOI: 10.1016/bs.pmbts.2017.11.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Wnt/β-catenin signaling is integral to the homeostasis and regeneration of many epithelial tissues due to its critical role in adult stem cell regulation. It is also implicated in many epithelial cancers, with mutations in core pathway components frequently present in patient tumors. In this chapter, we discuss the roles of Wnt/β-catenin signaling and Wnt-regulated stem cells in homeostatic, regenerative and cancer contexts of the intestines, stomach, skin, and liver. We also examine the sources of Wnt ligands that form part of the stem cell niche. Despite the diversity in characteristics of various tissue stem cells, the role(s) of Wnt/β-catenin signaling is generally coherent in maintaining stem cell fate and/or promoting proliferation. It is also likely to play similar roles in cancer stem cells, making the pathway a salient therapeutic target for cancer. While promising progress is being made in the field, deeper understanding of the functions and signaling mechanisms of the pathway in individual epithelial tissues will expedite efforts to modulate Wnt/β-catenin signaling in cancer treatment and tissue regeneration.
Collapse
Affiliation(s)
- Si Hui Tan
- A*STAR Institute of Medical Biology, Singapore
| | - Nick Barker
- A*STAR Institute of Medical Biology, Singapore; Kanazawa University, Kanazawa, Japan; Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
97
|
Guo P, Wang Y, Dai C, Tao C, Wu F, Xie X, Yu H, Zhu Q, Li J, Ye L, Yu F, Shan Y, Yu Z, Dhanasekaran R, Zheng R, Chen G. Ribosomal protein S15a promotes tumor angiogenesis via enhancing Wnt/β-catenin-induced FGF18 expression in hepatocellular carcinoma. Oncogene 2017; 37:1220-1236. [DOI: 10.1038/s41388-017-0017-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 09/13/2017] [Accepted: 10/23/2017] [Indexed: 01/08/2023]
|
98
|
Strubberg AM, Madison BB. MicroRNAs in the etiology of colorectal cancer: pathways and clinical implications. Dis Model Mech 2017; 10:197-214. [PMID: 28250048 PMCID: PMC5374322 DOI: 10.1242/dmm.027441] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small single-stranded RNAs that repress mRNA translation
and trigger mRNA degradation. Of the ∼1900 miRNA-encoding genes present
in the human genome, ∼250 miRNAs are reported to have changes in
abundance or altered functions in colorectal cancer. Thousands of studies have
documented aberrant miRNA levels in colorectal cancer, with some miRNAs reported
to actively regulate tumorigenesis. A recurrent phenomenon with miRNAs is their
frequent participation in feedback loops, which probably serve to reinforce or
magnify biological outcomes to manifest a particular cellular phenotype. Here,
we review the roles of oncogenic miRNAs (oncomiRs), tumor suppressive miRNAs
(anti-oncomiRs) and miRNA regulators in colorectal cancer. Given their stability
in patient-derived samples and ease of detection with standard and novel
techniques, we also discuss the potential use of miRNAs as biomarkers in the
diagnosis of colorectal cancer and as prognostic indicators of this disease.
MiRNAs also represent attractive candidates for targeted therapies because their
function can be manipulated through the use of synthetic antagonists and miRNA
mimics. Summary: This Review provides an overview of some important
microRNAs and their roles in colorectal cancer.
Collapse
Affiliation(s)
- Ashlee M Strubberg
- Division of Gastroenterology, Washington University School of Medicine, Washington University, Saint Louis, MO 63110, USA
| | - Blair B Madison
- Division of Gastroenterology, Washington University School of Medicine, Washington University, Saint Louis, MO 63110, USA
| |
Collapse
|
99
|
Huang S, Fantini D, Merrill BJ, Bagchi S, Guzman G, Raychaudhuri P. DDB2 Is a Novel Regulator of Wnt Signaling in Colon Cancer. Cancer Res 2017; 77:6562-6575. [PMID: 29021137 PMCID: PMC5712251 DOI: 10.1158/0008-5472.can-17-1570] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/29/2017] [Accepted: 09/28/2017] [Indexed: 01/23/2023]
Abstract
Deregulation of the Wnt/β-catenin signaling pathway drives the development of colorectal cancer, but understanding of this pathway remains incomplete. Here, we report that the damage-specific DNA-binding protein DDB2 is critical for β-catenin-mediated activation of RNF43, which restricts Wnt signaling by removing Wnt receptors from the cell surface. Reduced expression of DDB2 and RNF43 was observed in human hyperplastic colonic foci. DDB2 recruited EZH2 and β-catenin at an upstream site in the Rnf43 gene, enabling functional interaction with distant TCF4/β-catenin-binding sites in the intron of Rnf43 This novel activity of DDB2 was required for RNF43 function as a negative feedback regulator of Wnt signaling. Mice genetically deficient in DDB2 exhibited increased susceptibility to colon tumor development in a manner associated with higher abundance of the Wnt receptor-expressing cells and greater activation of the downstream Wnt pathway. Our results identify DDB2 as both a partner and regulator of Wnt signaling, with an important role in suppressing colon cancer development. Cancer Res; 77(23); 6562-75. ©2017 AACR.
Collapse
Affiliation(s)
- Shuo Huang
- Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, Chicago, Illinois
| | - Damiano Fantini
- Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, Chicago, Illinois
| | - Bradley J Merrill
- Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, Chicago, Illinois
- Genome Editing Core, University of Illinois, Chicago, Illinois
| | - Srilata Bagchi
- Department of Oral Biology, College of Dentistry, University of Illinois, Chicago, Illinois.
| | - Grace Guzman
- Department of Pathology, University of Illinois, Chicago, Illinois
| | - Pradip Raychaudhuri
- Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, Chicago, Illinois.
- Jesse Brown VA Medical Center, Chicago, Illinois
| |
Collapse
|
100
|
Abstract
The canonical Wnt/β-catenin signaling pathway, an important modulator of progenitor cell proliferation and differentiation, is highly regulated for the maintenance of critical biological homeostasis. Decades of studies in cancer genetics and genomics have demonstrated that multiple genes encoding key proteins in this signaling pathway serve as targets for recurrent mutational alterations. Among these proteins, β-catenin and adenomatosis polyposis coli (APC) are two key nodes. β-catenin contributes in transporting extracellular signals for nuclear programming. Mutations of the CTNNB1 gene that encodes β-catenin occur in a wide spectrum of cancers. These mutations alter the spatial characteristics of the β-catenin protein, leading to drastic reprogramming of the nuclear transcriptional network. Among the outcomes of this reprogramming are increased cell proliferation, enhanced immunosuppression, and disruption of metabolic regulation. Herein we review the current understanding of CTNNB1 mutations, their roles in tumorigenesis and discuss their possible therapeutic implications for cancer.
Collapse
|